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Modeling the growth of stylolites in sedimentary rocks

Alexandra Rolland,1,2 Renaud Toussaint,1,3 Patrick Baud,1 Jean Schmittbuhl,1

Nathalie Conil,2 Daniel Koehn,4 François Renard,5,6 and Jean-Pierre Gratier5
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[1] Stylolites are ubiquitous pressure solution seams found in sedimentary rocks.
Their morphology is shown to follow two self-affine regimes. Analyzing the scaling
properties of their height over their average direction shows that (1) at small scale, they are
self-affine surfaces with a Hurst exponent around 1, and (2) at large scale, they follow
another self-affine scaling with Hurst exponent around 0.5. In the present paper, we show
theoretically the influence of the main principal stress and the local geometry of the
stylolitic interface on the dissolution reaction rate. We compute how it is affected by the
deviation between the principal stress axis and the local interface between the rock
and the soft material in the stylolite. The free energy entering in the dissolution reaction
kinetics is expressed from the surface energy term and via integration from the stress
perturbations due to these local misalignments. The resulting model shows the interface
evolution at different stress conditions. In the stylolitic case, i.e., when the main principal
stress is normal to the interface, two different stabilizing terms dominate at small and large
scales which are linked respectively to the surface energy and to the elastic interactions.
Integrating the presence of small-scale heterogeneities related to the rock properties of
the grains in the model leads to the formulation of a Langevin equation predicting the
dynamic evolution of the surface. This equation leads to saturated surfaces obeying the two
observed scaling laws. Analytical and numerical analysis of this surface evolution model
shows that the crossover length separating both scaling regimes depends directly on the
applied far-field stress magnitude. This method gives the basis for the development of a
paleostress magnitude marker. We apply the computation of this marker, i.e., the
morphological analysis, on a stylolite found in the Dogger limestone layer located in the
neighborhood of the ANDRA Underground Research Laboratory at Bure (eastern France).
The results are consistent with the two scaling regimes expected, and the practical
determination of the major principal paleostress, from the estimation of a crossover
length, is illustrated on this example.

Citation: Rolland, A., R. Toussaint, P. Baud, J. Schmittbuhl, N. Conil, D. Koehn, F. Renard, and J.-P. Gratier (2012), Modeling
the growth of stylolites in sedimentary rocks, J. Geophys. Res., 117, B06403, doi:10.1029/2011JB009065.

1. Introduction

[2] Stylolites are undulated surfaces resulting from local-
ized stress-driven dissolution of some minerals of the rock.
Insoluble minerals as clay particles, oxides and organic
matters are concentrated in the interface and make stylolites

visible. Bathurst [1987] describes stylolites as serrated
interfaces with an amplitude greater than the diameter of the
transected grains giving them a sutured appearance. He
makes a difference with dissolution seams or “flaser” which
are smooth, undulating, lacking in sutures and fitting around
grains instead of cutting through them. Stylolites are most
often found in carbonates [Stockdale, 1922, 1926, 1936,
1943; Dunnington, 1954; Bushinskiy, 1961; Park and Schot,
1968; Bathurst, 1971; Buxton and Sibley, 1981; Railsback,
1993] but also in sandstones [Young, 1945; Heald, 1955],
shales [Wright and Platt, 1982; Rutter, 1983], cherts
[Bushinskiy, 1961; Iijima, 1979; Cox and Whitford-Stark,
1987] and sometimes in coal [Stutzer, 1940]. Stylolites are
divided in two groups according (i) to their orientation with
respect to the bedding of the surrounding rock or (ii) to the
orientation of their “tooth” with respect to the mean plane of
the stylolite. The first group shows two types of orientation:
stylolites parallel to the bedding plane, designated as sedi-
mentary, and formed under the lithostatic pressure and sty-
lolites oblique or even perpendicular to the bedding,
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designated as tectonic, and depending on the maximum
tectonic stress. The tooth orientation is in both cases an
indicator of the direction of the incremental displacement
which is parallel to the major principal stress in coaxial
deformation. The stylolites of the second group are called
“slickolites” [Ebner et al., 2010a]. They develop when there
is a preferential plane for their growth (bedding or fracture).
In this case, the stress is not perpendicular to the mean plane
of the stylolite [Stockdale, 1922], but the edges of the tooth
are subparallel to the maximum principal stress axis. Various
studies [Park and Schot, 1968; Renard et al., 1997, 2001;
André, 2003; Aharonov and Katsman, 2009] suggest that
many parameters play an important role in the stylolite
growth such as confining pressure, deviatoric stress, fluid
pressure, temperature, shape and assemblage of grains,
anisotropy of minerals, rates of dissolution and presence of
clay (acting potentially as catalyst for the dissolution).
[3] Only few papers report experiments about stylolites

development. Indeed, they are inherently difficult to repro-
duce as the kinetics of pressure solution processes is very
slow [Rutter, 1976]. Experiments were conducted either on
aggregates [Cox and Paterson, 1991; Den Brok and Morel,
2001; Renard et al., 2001; Gratier et al., 2005] or with
indenter techniques [Gratier and Guiguet, 1986; Gratier,
1993; Gratier et al., 2004; Dysthe et al., 2002, 2003;
Karcz et al., 2008]. Dysthe et al. [2002, 2003] used an
indenter technique where a sodium chloride crystal was kept
in contact with a piston at given pressure and temperature for
several months. A fluid at compositional equilibrium with
the crystal is trapped between the sample and the indenter.
The contact evolved due to pressure solution during the
indentation. A power law time dependence with an exponent
value of 1/3 as in Andrade creep law was shown to control
the indentation rate. The observed microstructures in the
contact seem to be different from stylolites. Karcz et al.
[2008] loaded a halite cone-shaped indenter against a flat
silicate surface immersed in an undersaturated brine. Using
confocal microscopy techniques, they observed that the
evolution of the system is dictated by an interaction between
two deformation mechanisms: undercutting dissolution
reducing the area of the contact and plastic flow increasing
it. Recently, similar experiments were carried out with a
brine at chemical equilibrium with the crystal [Laronne Ben-
Itzhak, 2011]. Emerging evolving islands and channels were
observed at the contact. Such islands and channels structures
were previously observed at the contacts during experiments
on aggregates [Schutjens and Spiers, 1999; Den Brok and
Spiers, 1991]. Other experiments on aggregates were per-
formed by Gratier et al. [2005]. They loaded layers of fine
quartz sand grains. The experiments lasted several months at
350�C, under 50 MPa of differential stress and in presence
of an aqueous silica solution. Microstylolites were created
for the first time in the laboratory at the stressed contacts
between the quartz grains. An interesting observation is that
the stylolites peaks are always located in front of dislocation
pits. Consequently, stylolites appear to be localized by the
heterogeneities of the mineral. Den Brok and Morel [2001]
loaded elastically K alum crystals at a controlled tempera-
ture and in a saturated K alum solution. A hole was drilled in
the middle of the crystals to provide an elastic strain gradi-
ent. They observed macroscopic etch grooves on the origi-
nally smooth free surfaces of the soluble crystals which

disappear when removing the stress. Koehn et al. [2004]
stressed crystals of NaClO3 in a NaClO3 solution at room
temperature. Parallel dissolution grooves developed on their
free surface in a 1-D geometry to a 2-D geometry with the
coarsening of the pattern. The pressure solution process
slowed down or stopped progressively with the increasing
concentration of the solution during the experiments.
Gratier et al. [2004] used a similar technique in which a
sample of Bure claystone was kept in contact with a piston,
with a saturated brine in the contact, at an imposed pressure
and temperature for several months. No evidence of local-
ized pressure solution (dissolution seam) was observed in
this case, grain to grain sliding being more efficient in
presence of clay. Renard et al. [2001] studied chemical
compaction of aggregates of halite (salt) mixed with clay.
They showed that clay particles enhance pressure solution.
Moreover, Renard et al. [1997] studied the effect of clay on
clay-rich sandstones. They suggested that pressure solution
is enhanced by clay because a thick film of water is pre-
served between clay particles. They also concluded that the
depth determines the limiting factor for the process: at great
depth, the water film between grains should be thinner and
diffusion limits the process. Conversely, at low-depth water
films are bigger, transport is easier and the reaction kinetics
is the limiting factor.
[4] The clay particles effect on pressure solution was

recently simulated in numerical modeling. Aharonov and
Katsman [2009] used the two-dimensional Spring Network
Model to study the stylolites growth in a medium with a
uniform clay distribution. They showed that clay plays a role
of enhancing pressure solution and that stylolites propaga-
tion is possible only when both pressure solution and clay-
enhanced dissolution operate together. Koehn et al. [2007]
developed a new discrete simulation technique that repro-
duces successfully the roughening of stylolites from a pref-
erential existing surface with no clay. This model is based on
molecular dynamics, with a dissolution speed depending on
the local free energy that includes stress dependent terms
and surface energy terms. Two different spatial regimes arise
from this modeling: a small-scale regime where surface
energy is dominant with significant fluctuations of the
roughness and a large-scale regime where elastic energy
dominates. The dependence on the crossover scale between
both regime on the imposed stress has been recently inves-
tigated numerically [Koehn et al., 2012]. This model shows
that the growth of the stylolite tooth follows the main com-
pressive stress direction. The nature and structure of the
small-scale disorder for the dissolution properties of grains
were systematically analyzed [Ebner et al., 2009a]. More-
over, Ebner et al. [2010b] performed detailed micro-
structural analysis to investigate the interplay between this
disorder and the compositional nature of the grains sur-
rounding a stylolite.
[5] Stylolites are localized features for which deformation

is purely compactant as for compaction bands [Mollema and
Antonellini, 1996; Baud et al., 2004; Katsman et al., 2006b;
Tembe et al., 2008]. Stylolites and compaction bands
development was modeled as anticracks or antimode I frac-
ture [Fletcher and Pollard, 1981; Rispoli, 1981; Mollema
and Antonellini, 1996]. Fletcher and Pollard [1981]
assume that the rate of pressure solution is only a function
of the normal stress. They observed an elliptic dissolution

ROLLAND ET AL.: MODELING STYLOLITES B06403B06403

2 of 18



pattern, i.e., more dissolution in the central part of stylolites
than at the tips. With these observations they proposed an
analogy between propagation of stylolites and propagation
of mode I fractures. They observed that the relative dis-
placement between the sides of a stylolite should have the
opposite sign than that of a crack, and thus termed their
model an anticrack. Note however that cracks can bear zero
surface traction, contrary to stylolites. This distinction
between crack solutions and stylolites was introduced, and it
was shown by Katsman et al. [2006a] that, as compaction
bands, stylolites are Localized Volume Reduction zones
(LVR). The shape of the displacement along stylolites, and
how the stress perturbation can be determined from the
concept of LVR, is discussed in details by Katsman [2010].
[6] In LVR where the dissolution amount is constant

across the surface of the LVR, as for a compaction band, the
stress enhancement was shown to be that of a dislocation
[Katsman et al., 2006a]. In later models [Katsman, 2010], it
was shown that if more dissolution is allowed in the center
of a stylolite, another type of stress enhancement, with a
dependence on the distance to the tips analogous to the one
for a crack (rather than to a dislocation), can be observed it is
given by the Eshelby inclusion problem. Such an increase of
the dissolution in the center of a stylolite, where the disso-
lution does not stop in the already dissolved zone in the
middle of the stylolite, can be observed in models with a
positive feedback to the dissolution, as for example the one
that can be modeled from a clay concentration mechanism
[Aharonov and Katsman, 2009].
[7] In general, in stylolites, the stress concentrates at the

tips and the largest stress is perpendicular to the stylolites.
Recent models [Koehn et al., 2007; Ebner et al., 2009b;
Zhou and Aydin, 2010] suggest that a higher stress concen-
tration at the top of the tooth should be responsible of
localized high rates of dissolution. Benedicto and Schultz
[2010] investigated the topography of stylolites (along-
strike trace length, maximum and average amplitudes) from
the damaged zone of the Gubbio normal fault zone in central
Italy. They showed that the amount of contractional strain
accommodated by stylolites as well as their length and their
number increase according to the topography parameters.
Analyses of cores from boreholes reveal also an increase in
stylolite abundance with depth [Lind, 1993]. Fabricius and
Borre [2007] compared formations of chalk from boreholes
on the Ontong Java Plateau and in the central North Sea.
They showed that the burial stress and the temperature play
distinct roles in the burial diagenesis and porosity develop-
ment of chalk. Pressure solution and physical compaction
are controlled by the burial stress while the temperature
controls recrystallization and cementation. Moreover, Lind
[1993] suggests that mineralogical anomaly is an initializ-
ing factor in stylolite formation such as burrows, shale clasts
or flaser structures. Many studies were conducted on the
morphology of sedimentary stylolites [Renard et al., 2004;
Brouste et al., 2007; Ebner et al., 2009b]. Morphology
analyses can be done on 1-D profiles or 2-D opened sur-
faces. They consist on studying a stylolitic profile or surface
height variations (standard deviation, height differences,
power spectrum, average wavelet coefficient spectrum, etc.)
over different scales [Schmittbuhl et al., 1995, 2004; Renard
et al., 2004]. These analyses reveal two distinct scaling
regimes that could be described by power laws. The power

laws are a function of a roughness exponent, also called
Hurst exponent, inferred to be 1 and 0.5 for small and large
scale, respectively [Renard et al., 2004; Schmittbuhl et al.,
2004; Brouste et al., 2007; Ebner et al., 2009b]. The two
regimes are separated by a crossover length typically around
1 mm [Renard et al., 2004; Schmittbuhl et al., 2004]. For
sedimentary stylolites, the two-dimensional (2-D) analysis
of their surface does not show any significant in-plane
anisotropy reflecting the fact that horizontal stresses are
isotropic. Ebner et al. [2010a] observed that the profiles of
tectonic stylolites show the same geometric attributes as
sedimentary ones. Two different regimes are also observed
with Hurst exponent around 1 and 0.5 for small and large
scale, respectively. However, for tectonic stylolites, the 2-D
analysis revealed an anisotropy of the crossover length
which varies with the direction in the plane of stylolites.
Ebner et al. [2010a] argue that this anisotropy develops
because the stylolite roughens in an anisotropic in-plane
stress field. The vertical and in-plane horizontal stresses are
significantly different. In recent papers, stylolites are pre-
sented as fossilized signatures of the stress field [Renard
et al., 2004; Schmittbuhl et al., 2004; Ebner et al., 2009b,
2010a]. The existence of two scaling regimes for sedimen-
tary stylolites was shown in Schmittbuhl et al. [2004] where
a brief theoretical derivation was performed. It was shown
that the crossover length between both scaling regimes is
expected to be dependent on the stress acting on the stylolite
during its growth. Their conclusion was that stylolite mor-
phology can be used as a paleostress magnitude indicator.
This conclusion was later probed independently on two types
of approaches: first, on field data sampled from the same
formation at different heights, Ebner et al. [2009b] showed
that the measured crossover length in the morphology fol-
lowed the expected scaling with the burial stress, evaluated
from the position in the formation. Next, discrete numerical
simulations were carried out at different stress magnitudes,
allowing for the dissolution of grains along the fluid/rock
interface, with free energy depending on interfacial tension
and local stress. It was shown that the two expected scaling
regimes were observed [Koehn et al., 2007, 2012], and that
the crossover length followed the predicted dependence on
the far-field stress amplitude [Koehn et al., 2012].
[8] Interfaces between solids and fluids are related to

models of stylolitization. In the case where a solid in contact
with a fluid is stressed, an instability due to pressure solution
was shown theoretically to exist and is called the Asaro-
Tiller-Grinfeld (ATG) instability [Renard et al., 2004]. In
models of dissolving surfaces with a stress imposed to a
solid in contact with a fluid at chemical equilibrium, this
instability leads to the growth of initial large-scale modula-
tions of the surface with a wavelength selection obtained
through a fastest growing mode. The basic equation depends
on the particular boundary conditions, e.g., when two solids
with different elastic properties are in contact and submitted
to a stress, the interface can undergo a fingering instability
led by the contrast between the free energies applied to both
solids [Angheluta et al., 2008, 2009, 2010]. The stability
analysis can be performed theoretically from expressions for
the kinetics using local free energy criteria for the reaction
rate [Renard et al., 2004; Schmittbuhl et al., 2004], or global
ones [Bonnetier et al., 2009; Angheluta et al., 2008].
Depending on the boundary conditions, this situation is also
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found to be unstable for perturbations exceeding a certain
wavelength, leading to fingering (e.g., as with large stress
tangential to a fluid interface, or a stress normal to fluid
interfaces and lateral periodic boundary conditions
[Bonnetier et al., 2009]). With other boundary conditions,
the surface energy and elastic interactions are found to sta-
bilize the interfaces, which are only destabilized by material
noise due to heterogeneities [Schmittbuhl et al., 2004; Koehn
et al., 2007]. We will argue in details in the discussion sec-
tion about the different possibilities applied to the geometry
of stylolites, and the fact that stylolites displaying self-affine
scaling laws for their height at large scale are compatible
with the stabilizing character of elastic forces at large scale.
This manuscript provides the technical development and
details that lead to the final result that was previously pub-
lished without derivation, in a condensed form [Schmittbuhl
et al., 2004]. It also compares the result of the analytical
development to a direct numerical simulation.
[9] In this paper we concentrate on the following ques-

tions: (i) is the elastic energy stabilizing or destabilizing, and
(ii) what is the significance of the obtained paleostress
values? To answer to these questions, we do the following:
[10] 1. We derive the details of the computation leading to

the link between the paleostress magnitude and the crossover
length between the two scaling regimes. This is performed
by a perturbative analysis of the elastic energy around an
interface slightly wavy and unaligned with one of the prin-
cipal stresses. Then we show in details that the mechanics
and chemistry allow to relate the small and large-scale
behavior of stylolites to known models, with Hurst expo-
nents corresponding to the observed ones.
[11] 2. We finally present and discuss an application in

relation with the geological context. This is made on a sty-
lolite from the Bure carbonates and it shows how the

predicted scaling regimes can be found, and how to deter-
minate the paleostress from the extracted crossover length.

2. Analytical Approach: Continuous Elastostatic
Model for Stylolite Propagation

[12] The rough morphology of stylolites arises from the
disorder present in a rock and its impact on the pressure
solution process. This disorder is spatially linked to the grains
constituting the rock. To understand the impact of this disorder
on the chemicomechanical coupling, we will consider the
following simplified geometry: the initial stage of the stylolite
is modeled as an elongated fluid pocket enclosed between two
contactless rough surfaces of infinite extent. The contacts
between these two surfaces can in principle modify the
geometry of the resulting dissolution surface. However, they
are assumed to be sufficiently loose in a stylolite and thus the
main morphological results are not affected. This assumption
simplifies the problem since the dissolution process, happen-
ing on both sides of the stylolite (Figure 1), can be described as
the dissolution of a solid half plane in contact with a fluid.
With this geometry, the small- and large-scale self-affine
behaviors of the dissolution surface and the associated rough-
ness exponents (or Hurst exponents) are well reproduced. The
model leads to the characteristic exponents typically observed
in previous studies [Renard et al., 2004; Schmittbuhl et al.,
2004; Brouste et al., 2007; Ebner et al., 2009b].
[13] The average stylolitic plane is defined along the x and

y axis (Figure 2). To have better statistics on the morphology
of the studied surfaces, the model is assumed to be invariant
by translation along the y axis. It allows to us to describe a
larger range of scales at the same numerical cost and to
numerically solve the self-affine behavior of the resulting
pressure solution surface over a larger number of orders of
length scales. The same approach can be considered using
invariance by translation along the x axis. In the model we
assume a mechanical equilibrium throughout the system and
express the dissolution rate as a function of the stress tensor
and of the area of interface per unit volume.

2.1. Force Perturbation Related to the Mechanical
Equilibrium Along the Fluid-Solid Interface

[14] First, we express the mechanical equilibrium at the
solid-fluid interface (Figure 2). The convention adopted is
that compressive stresses and compactive strains are nega-
tive [Landau and Lifchitz, 1986]. The far-field stress applied
to the host rock is denoted by ��s0. The largest principal stress
axis, perpendicular to the average plane of the stylolite, is
defined along the z axis. The fluid pocket transmits all the
load through itself (the boundary condition of the fluid
pocket is approximated as undrained for that respect: if there
is any flow, from or into the fluid pocket, it happens slowly,
via the lateral ends. If there is any contact between the
opposite walls perpendicular to the main fluid direction, the
load transmitted through this contact is neglected). The fluid
pressure is thus homogeneous and equal to the largest prin-
cipal stress applied to the host rock, considering the integral
of the local stress field ��s along an elongated rectangular
boundary (dashed line in Figure 1):

p ¼ �s0
zz ð1Þ

Figure 1. Initial stage of a stylolite: trapped elongated fluid
pocket.
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Locally, the local stress ��s is split between the far-field
asymptotic value s0¼ and a perturbation generated by the
irregular nature of the interface s1¼:

��sðxÞ ¼ ��s0 þ ��s1ðxÞ ð2Þ
[15] The far-field stress unit vectors x̂ and ẑ along the x and

z axis are assumed to be the principal directions, i.e.,

��s0 ¼ s0
xxx̂x̂ þ s0

zzẑẑ ð3Þ

[16] Here, the notations x̂x̂ and ẑẑ correspond to unit
matrixes composed from the unit vectors, e.g., as are ŷŷ, x̂ŷ,
or ẑx̂ . This canonical basis for the matrixes is composed
from the doublets of unit vectors x̂; ŷ and ẑ. For example, x̂ẑ
represents the unit matrix with all components equal to zero,
apart from a unit in the line corresponding to the x coordi-
nate, and the column corresponding to the z one, so that for a
pair of vectors u, v applied to the left and right of this matrix,
u � ðx̂ẑÞ � v ¼ ðu � x̂Þð̂z � vÞ ¼ uxvz . In other terms, with car-
tesian components along directions of indexes i and j, and
the help of the Kronecker symbol d, the components of the
matrix x̂ẑ, for example, are: ðx̂ẑÞij ¼ dixdjz. This convention
to define the canonical basis of matrix space (nine elemen-
tary second-order dyadic products like x̂ẑ ) from the three
basic unitary vectors of the vectorial space, x̂; ŷ and ẑ is, for
example, defined by Gonzalez and Stuart [2008].
[17] For a stylolite, the largest compressive stress axis is

normal to its average plane and thus to the average fluid
pocket direction:

s0
zz

�� �� > js0
xxj ð4Þ

This relation has strong implications on the stability of the
surface pattern emerging from the dissolution process. The
far-field deviatoric stress is defined as

s0
s ¼ ðjs0

zzj � js0
xxjÞ ¼ ðs0

xx � s0
zzÞ ð5Þ

To express the force perturbation related to the curved nature
of the interface, we define the unit vector n̂ normal to the
surface pointing toward the fluid. This vector is assumed to
be close to the principal stress axis. In the following, we will
consider small-angle deviations from a straight surface, and
the results will therefore be valid for small surface slopes

only. The model presented below aims to describe the onset
of the stylolite propagation from a flat surface, and it will
also describe the evolution of large wavelength modes, if the
aspect ratio of such modes (ratio of the amplitude over the
wavelength) stays small, corresponding to small effective
slopes at large wavelength.
[18] The interface is described as a single-valued function

z(x) and the slopes are assumed to be of the order �, i.e.,
that |∂ x(z)| ∈ O(�) ≪ 1. Since the normal n̂ to the interface
of slope ∂ xz can be expressed by the conditions of normality
to the interface, n̂ � ð1; ∂xzÞT ¼ 0 (at any order or �), and

by its unitary norm n̂2 ¼ 1, it is in general n̂ ¼ ð�ð∂xzÞx̂ þ
ẑÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xzÞ2

q
. Using the above limit of small slopes,

developing in �, we obtain to leading order

n̂ ¼ ẑ � ð∂xzÞx̂ þ Oð�2Þ ð6Þ
(The order O(�) is absent from n̂).
[19] The local mechanical equilibrium at the solid-fluid

interface is expressed as

s � n̂ ¼ �pn̂ ð7Þ

And with equations (1)–(7) the force perturbation (illustrated
in Figure 3) becomes

df ðxÞ ¼ s1ðxÞ � n̂ ¼
� pn̂ � s0 � n̂

¼ s0
zz ½̂z � ð∂xzÞx̂� � s0

zzẑ þ s0
xxð∂xzÞx̂

¼ ðs0
xx � s0

zzÞð∂xzÞx̂
¼ s0

s ð∂xzÞx̂ ð8Þ

2.2. Chemicomechanical Coupling

[20] Next, we express the chemicomechanical coupling.
The dissolution speed normal to the solid/fluid interface
(in mol.m�2. s�1) is to the first order proportional to the
chemical potential Dm of the chemical product dissolving
[Kassner et al., 2001;Misbah et al., 2004; Schmittbuhl et al.,
2004; Koehn et al., 2007]:

v ¼ mDm ð9Þ

Figure 2. Solid-fluid interface: geometry considered.
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where

m ¼ k0W=RT ð10Þ

is the mobility of the dissolving species, R = 8.31 J.
mol�1. K�1 is the universal gas constant, T is the tempera-
ture in Kelvin, k0 is a dissolution rate which can be measured
experimentally, and W is a molar volume. For calcite,
W ≃ 4 � 10�5 m3.mol�1 and k0 ≃ 10�4 mol.m�2. s�1 for dis-
solution in water at atmospheric pressure and 298�K [De
Giudici, 2002; Schmittbuhl et al., 2004]. The difference in
chemical potential from the solid state to the fluid state is
[Kassner et al., 2001;Misbah et al., 2004; Koehn et al., 2007]

Dm ¼ DYs þ WDPn þ Wgk ð11Þ

Considering a solid state at given pressure and elastic free
energy in chemical equilibrium with the fluid, DYs and DPn
are defined respectively as the change in Helmoltz free energy
per mole and the change in stress normal to the interface. The
last term corresponds to the surface energy with k = ∂ xxz, the
surface curvature (the inverse of the radius curvature) and g
the surface tension between the solid and the fluid phase. In a
particular case, neglecting temperature variation effects and
assuming that the fluid composition is in chemical equilibrium
with a solid flat surface at normal pressure p and stress sref,
equation (11) reduces to

Dm ¼ 0 ð12Þ

k ¼ 0 ð13Þ

More generally, by definition [Kassner et al., 2001],

DYs þ WDPn ¼ WDue; ð14Þ

where

Due ¼ ueðsÞ � urefe ð15Þ

and

ue ¼ ½ð1þ nÞsijsij � nskksll�=4E ð16Þ

is the elastic free energy per unit volume with E the Young’s
modulus and n the Poisson’s ratio of the elastic solid [Kassner
et al., 2001; Landau and Lifchitz, 1986].
[21] To take into account the dissolution speed variations

associated to the morphology of the stylolite, we develop the
dissolution speed to the leading order as

v ¼ v0 þ v1 ð17Þ

With equations (9)–(16),

v0 ¼ k0W2

RT

½ð1þ nÞs0
ijs

0
ij � ns0

kks
0
ll�

4E
� urefe

 !

¼ k0W2

RTE
ðap20 � aref p

2
ref Þ ð18Þ

The geometrical factor a is computed assuming
sxx
0 = syy

0 = � p0 + ss/3 and szz
0 = � p0 � 2ss/3:

a ¼ 9ð1� 2nÞ þ 2ð1þ nÞs2
s=p

2
0

12
ð19Þ

aref is expressed with a similar expression and characterizes
the chemical equilibrium with the fluid at the referential state
as a function of the pressure pref and the shear stress sref.
Typically, for a limestone with a Young’s modulus
E = 80 GPa stressed at p0 ≃ 10 MPa (which corresponds to
a few hundred of meters deep in sedimentary rocks) and
for a fluid with a chemical composition in equilibrium with
the solid, the dissolution speed at the solid-fluid interface in
a limestone is of the order of

v0n≃10
�6 to10�6 m:yr�1:

Figure 3. Local mechanical equilibrium along the fluid-solid interface (equation (8)).
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2.3. Consequences for the Stability
of the Dissolution Process

[22] From the local mechanical equilibrium and the nature
of the chemicomechanical coupling, some important con-
siderations can be inferred about the morphological stability
of the dissolution surfaces. This behavior depends on the
orientation of the surfaces with respect to the far-field stress.
[23] Previously we have shown how to express the force

perturbation arising from the mismatch between the solid-
fluid interface orientation and the principal axis of the far-
field stress tensor x̂ (equation (8)).
[24] This relationship holds independently of the relative

magnitudes of the principal stresses sxx and szz. If the largest
principal stress is tangential to the interface, which is not the
case for stylolites, ss

0 < 0 and the sign of df ðxÞ � x̂ is opposite
to the slope of the interface ∂ xz. Such tangential force per-
turbation is concentrated at the points lying ahead of the
average dissolution front (Figure 4). The elastic forces con-
centrate stress at the valleys of the dissolution front where
the free energy is thus higher. This leads to an increased
dissolution speed at the points lying ahead of the averaged
front. The dissolution propagates downward. The points at
the crests, i.e., located behind the averaged dissolution front,
show a reduced rate of dissolution thus pushing them further
from the average front. The points lying out of the average
dissolution plane tend therefore to depart further from the
average position. The elastic force is in this situation a
destabilizing force. On the contrary, the surface tension
tends to stabilize the process by decreasing the surface area
by flattening the interface.
[25] The competition between the elastic long-range

destabilizing forces and the surface tension short-range sta-
bilizing forces leads to the ATG interface instability. The
fastest growing wavelength is determined by the balance
between these long-range destabilizing and short-range sta-
bilizing effects. Such instability arising in stressed solids
was studied theoretically [Asaro and Tiller, 1972; Grinfeld,
1986; Misbah et al., 2004] and observed experimentally in
stressed soluble crystals immersed in a saturated fluid [Den
Brok and Morel, 2001; Koehn et al., 2004].
[26] If the largest principal stress lies perpendicular to the

interface, as for stylolites, ss
0 > 0 and the sign of df ðxÞ � x̂ is

the same as the slope of the interface ∂ xz. Such tangential
force perturbation is concentrated at the points lying behind
of the average dissolution front (Figure 5). The elastic forces
concentrate stress at the crests of the dissolution front where
the free energy is thus higher. This leads to an increased
dissolution speed for the points lying behind the averaged
front. The dissolution propagates downward. The points at
the valleys, i.e., located ahead of the averaged dissolution
front, tend to come back to the average position. The elastic
force is a stabilizing force in this situation. Here, the surface
tension is again a stabilizing process.
[27] Since the long-range elastic force and the short-range

surface tension force are stabilizing forces, if the modeled
solid properties are purely homogeneous (i.e., homogeneous
elastic solid with homogeneous dissolution rate properties),
the model predicts the flattening of any initial nonplane
surface with time.
[28] Consequently, to model the morphogenesis of stylo-

lites, which are rough surfaces, we will take here into
account the disorder linked to the material properties.
2.3.1. Consequence on Initial Evolution of Trapped
Fluid Pocket
[29] In summary, the above arguments show that an ele-

mentary bump of a flat surface disappears for ss > 0, or grows
for ss < 0. Qualitatively, if the argument on the stability of
surfaces depending on their orientation on the principal stress
axis extends for more local orientations along trapped fluid
pockets, one should observe the following. The sides of a fluid
pocket lying tangentially to the largest stress should develop
instable grooves penetrating into the solid, similarly to the
ATG instability case. On the contrary, the sides normal to the
largest stress direction should remain relatively flat, apart from
the fluctuations due to the disorder. These small variations
along the surfaces normal to the principal stress axis, and the
penetrations of grooves of characteristic wavelength in the
rock along the direction of the weakest stress, should lead to
the development of elongated structures, and merge initially
separated fluid pockets (or clay-enriched pockets). This qual-
itative mechanism is illustrated on Figure 6. This expectation
of qualitative evolution is indeed compatible with the mecha-
nism of development of anticracks numerically obtained by
Koehn et al. [2003]. The experimental grooves observed along

Figure 4. Surface tangential to the largest stress (sxx) axis: unstable case, Azaro-Tiller-Grinsfeld
instability.
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the free surface on the sides of a fluid-filled cylindrical pocket
by Den Brok and Morel [2001] also displayed this trend.

2.4. Expression of the Dissolution Speed Perturbation
as a Function of the Interface Shape

[30] To model the disorder in the solid we assume that the
material properties (related to the solid grains) vary in a
random and spatially uncorrelated way. This disorder can
originate from the diversity of grain composition, grain size
or orientation; i.e., it represents the small-scale hetero-
geneities present in the rock. For example, the dissolution
rate k can be expressed as an averaged term k0 plus some
spatial variations of zero average h(x, z) � k0:

k ¼ k0ð1þ hðx; zðxÞÞÞ ð20Þ
The random variable h is a quenched disorder with no spatial
correlations and is characterized by its mean 〈h〉 = 0 and its
variance 〈h2〉 assumed to be small enough to keep small

local slopes. The dynamics of the dissolving interface z(x, t)
can be expressed from equations (9)–(17) as

v ¼ �∂tz ¼ kW2

RT
ðDue þ g∂xxzÞ;

¼ k0W2

RT
ð1þ hÞ

n
ð1þ nÞ½ðs0

ij þ s1
ijÞðs0

ij þ s1
ijÞ

� nðs0
kk þ s1

kkÞ2�=4E � ueref þ g∂xxz
o

¼ k0W2

RT
ð1þ nÞ½s0

ijs
0
ij � nðs0

kkÞ2�=4E � ueref

n o

þ k0W2

RT
h ð1þ nÞ½s0

ijs
0
ij � nðs0

kkÞ2�=4E � ueref

n o

þ k0W2

RT
ð1þ nÞ½2s0

ijs
1
ij � 2nðs0

kks
1
kkÞ�=4E þ g∂xxz

n o
ð21Þ

Figure 5. Surface normal to the largest stress (szz) axis: stable case.

Figure 6. Expected stability or instability of the dissolution front around a trapped fluid pocket.
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i.e., using equation (18) for the expression of
sij
0sij

0 � n(skk
0 )2, a dissolution speed separated between an

average homogeneous speed v0 and a leading order of the
perturbations v1, first order in � as

∂tzðx; tÞ ¼ �v0 � v1ðx; tÞ ð22Þ

with v0 the dissolution speed given by equation (18) and v1 a
deviation of the dissolution speed with respect to the average
dissolution speed v0 expressed as

v1 ¼ k0W2

RT

ðap20 � aref p2ref Þ
E

hðx; zðxÞÞ þ k0W2

RT
g∂xxzðxÞ

þ k0W2

RT

½ð1þ nÞs0
ijs

1
ij � ns0

kks
1
ll�

2E

 !
ð23Þ

s1 is the stress perturbation mentioned previously in
equation (2). It is generated by the surface distribution of the
tangential force perturbation df(x) due to the irregular nature
of the interface.
[31] The first term is a quenched disorder term leading to

the roughening of the interface. The second one is a stabi-
lizing quadratic short-range term arising from the surface
tension. The last term can be expressed via a nonlocal kernel
from the shape of the interface z(x) by integrating the elas-
tostatic equations in the solid half plane.

2.5. Detailed Form of the Elastic Long-Range
Interaction Kernel

[32] The stress perturbation induced by the force pertur-
bation df(x) (equation (8)) exerted on the surface can be
determined via the Green function method. Following
Landau and Lifchitz [1986], the displacement induced by an
elementary force x̂ applied at the origin (0, 0, 0) on a semi-
infinite solid is

axðx; y; zÞ ¼ 1þ n
2pE

2ð1� nÞr þ z

rðr þ zÞ þ ð2rðnr þ zÞ þ z2

r3ðr þ zÞ2 x2
( )

ayðx; y; zÞ ¼ 1þ n
2pE

2rðnr þ zÞ þ z2

r3ðr þ zÞ2 xy

( )

azðx; y; zÞ ¼ 1þ n
2pE

ð1� 2nÞx
rðr þ zÞ þ zx

r3

� �
ð24Þ

where r is the distance relatively to the force application
point at (0, 0, 0), i.e., r2 = x2 + y2 + z2. The associated strain
applied on the solid is

�eij ¼
1

2
ð∂iaj þ ∂jaiÞ ð25Þ

and the associated stress is

fijðx; y; zÞ ¼ E

1þ n
ð�eij þ

n
1� 2n

�ekkdijÞ ð26Þ

The stress associated to the point force x̂ applied on the
surface of normal ẑ at the origin is equal at the origin itself
to x̂ẑ þ ẑx̂.
[33] Since the model treated here is invariant by transla-

tion along y, the force perturbation df ðuÞ ¼ s0
s ð∂uzÞðuÞx̂ is

exerted at any v ∈] � ∞, ∞[ and the resulting displacement

field at (x, y, z), is solely dependent on (x, z) and can be
expressed, by linearity of the elastostatics equations (simi-
larly to the elastostatic Green function method detailed in
equation (8.14) by Landau and Lifchitz [1986]), as a dis-
placement field w of components

wiðx; y ¼ 0; zÞ ¼
Z ∞

u¼�∞

Z ∞

v¼�∞
aiðx� u;�v; zÞdudvdf ðuÞ:x̂

ð27Þ
[34] The associated strain perturbation is

�pij ¼
1

2
ð∂iwj þ ∂jwiÞ; ð28Þ

and the associated stress,

s1
ijðxÞ ¼

E

1þ n
ð�pij þ

n
1� 2n

�pkkdijÞ þ df ðxÞðdixdjz þ dizdjxÞdðzÞ;
ð29Þ

where the first term represents the stress induced by the
elastic deformation, and the second one the direct applica-
tion of the force perturbation on the surface. In the above,
the spatial derivative of equation (28) can be exchanged with
the integration in equation (27), to obtain

�pijðx; y ¼ 0; zÞ ¼
Z ∞

u¼�∞

Z ∞

v¼�∞
�eijðx� u;�v; zÞdudvdf ðuÞ:x̂:

ð30Þ

Recalling the expression of the force perturbation,
equation (8), from equation (29), the stress perturbation
along the surface, at z = 0, is thus,

s1
ijðxÞ ¼ s0

s � p:p:
"Z ∞

u¼�∞
duð∂uzÞðuÞ

∗
Z ∞

v¼�∞
fijðx� u;�v; 0Þdv

#

þ s0
s ð∂xzÞðxÞðdixdjz þ dizdjxÞ ð31Þ

where p.p. refers to the principal part of the integral. Taking
the derivatives of the displacement field (equation (25)), we
can calculate the associated stress. Integrating this result
along the y axis givesZ ∞

v¼�∞
fijðx;�v; 0Þdv ¼ � 2n

px
ðdixdjx þ diydjyÞ ð32Þ

and thus,

s1ðxÞ ¼ � 2ns0
s

p
� p:p:½

Z ∞

x′′¼�∞
du

ð∂uzÞðuÞ
x� u

�ðx̂x̂ þ ŷŷÞ

þ s0
s � ð∂xzÞðxÞðx̂ẑ þ ẑx̂Þ ð33Þ

The elastic energy perturbation associated to the interface
deformation can be computed using equation (33) and the
relation

s0 ¼ �ðp0 � s0
s=3Þðx̂x̂ þ ŷŷÞ � ðp0 þ 2s0

s=3Þ̂zẑ ð34Þ
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It results in

u1e ¼
½ð1þ nÞs0

ijs
1
ij � ns0

kks
1
ll�

2E

¼ 2n½ð1� 2nÞp0�
pE

∗s0
s � p:p:

"Z ∞

u¼�∞
du

ð∂uzÞðuÞ
x� u

#
ð35Þ

2.6. Dynamic Equation for the Dissolution Interface

[35] The equation (22) rules the dynamics of the interface
dissolution. When computed with equation (18), it gives

RT

k0W2 v
1 ¼ ðap20 � aref p2ref Þ

E
hðx; zðxÞÞ � g∂xxzðxÞ

þ b
p0s0

s

E
� p:p:

"Z ∞

u¼�∞
du

ð∂uzÞðuÞ
x� u

#
ð36Þ

where b is a geometrical factor:

b ¼ ½2nð1� 2nÞ�=p ð37Þ

Equation (23) can be expressed in a dimensionless form by
using length and time units as

L∗ ¼ gE=ðbp0ssÞ ð38Þ

t ¼ ðL∗Þ2RT=ðgk0W2Þ ð39Þ

We define the dimensionless variables in the reference frame
moving at the average velocity � v0 as

z′ ¼ ½zþ ðv0tÞ�=L∗ ð40Þ

x′ ¼ x=L∗ ð41Þ

t′ ¼ t=t ð42Þ

and the reduced quenched noise as

h′ðx′ ; z′ðx; tÞ � v0t=L
∗Þ ¼ ½ðap20 � aref p

2
ref Þ=ðbp0ssÞ�hðx; zðx; tÞÞ

ð43Þ

The dimensionless stochastic equation for the stylolite
growth process is then

∂t′z′ðx′ ; t′Þ ¼ h′ðx′ ; z′ðx′ ; t′Þ � v0tt′=L∗Þ þ ∂x′x′z′

� p:p:

"Z ∞

u¼�∞
du

ð∂uz′ÞðuÞ
x′ � u

#
ð44Þ

At large average dissolution speed, the term v0tt′/L
∗ takes

over z quickly and the noise is annealed, becoming mostly
time dependent. On the contrary, for sufficiently slow pro-
cesses such as the extend of the surface roughness over
several grains, the noise can be considered as quenched. This
is the case here as the changes in h′ arising from z(x, t) are
significantly larger than the changes due to some variations
of the average dissolution front position v0tt′/L

∗. To the first
order, the noise dependence is mainly h′(x′, z′(x′, t′)) and the
noise will therefore be considered here as quenched.

[36] The dynamic equation then becomes

∂t′z′ðx′ ; t′Þ ¼ h′ðx′ ; z′ðx′ ; t′ÞÞ þ ∂x′x′z′ � p:p:

"Z ∞

u¼�∞
du

ð∂uz′ÞðuÞ
x′ � u

#

ð45Þ

Alternatively, in some arbitrary spatial unit ‘, this can also
be written as

∂tzðx; tÞ ¼ h″ðx′ ; z′ðx′ ; t′ÞÞ þ ∂xxz� ‘
L∗

Z
dy

∂yz
x� y

ð46Þ

with L∗ = gE/(bp0ss) and t = ‘2RT/(gk0W
2), the time unit.

2.7. Small-Scale and Large-Scale Behavior
of the Model

[37] Elastic interactions can be neglected in equation (46)
for small scales such as ‘ ≪ L∗ (the lower limit corre-
sponds to the resolution of the analyzed signal) reducing the
model to a Laplacian description:

∂tz′ðx; tÞ ¼ ∂xxz′ þ hðx; z′ðxÞÞ ð47Þ

This equation is known as the Edwards Wilkinson model
[Edwards and Wilkinson, 1982] modified with a quenched
random noise. It has been studied in the literature and leads
to the growth of self-affine surfaces of roughness z � 1.2
[Roux and Hansen, 1994], in agreement with existing data
on stylolites where z � 1.1 [Schmittbuhl et al., 2004].
[38] Conversely, for large scales ‘ ≫ L∗ (the upper limit

corresponds to the system size), surface tension can be
neglected reducing equation (46) to a mechanical regime:

∂tz′ðx; tÞ ¼ � ‘
L∗

Z
dy

∂yz
x� y

þ hðx; z′ðxÞÞ ð48Þ

In this case, the model is similar to known models describing
the propagation of an elastic line on a disordered pinning
landscape or the propagation of a mode I fracture front in a
disordered solid. It leads to the growth of self-affine surfaces
of roughness z ≃ 0.5 [Tanguy et al., 1998]. In summary, the
model derived above predicts the growth of dissolution
surfaces with different self-affine characteristics at small
scale (z1 � 1.2) and large scale (z2 � 0.5). The transition
between these regimes is expected to occur at a certain
crossover length L*.

3. Numerical Approach: Dynamic Evolution
of the Interface

[39] From a purely analytical point of view and via the
similarity of asymptotic form of the dynamic equation with
known models for large and small scales, we have shown
that two different scaling laws are expected for small and
large scales, and that the crossover length should depend on
the far-field stress magnitude. Independently from this gen-
eral analytical analysis, we will now show how to solve the
problem numerically, i.e., implement the dynamic evolution
of the interface with all the large- and small-scale terms and
random variables to represent the disorder and analyze the
resulting morphogenesis.
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3.1. Practical Implementation of the Model

[40] We simulate the dissolution process for a calcite-water
interface. This is done in an event-driven discrete lattice code,
with algorithms corresponding to a discrete Langevin equation
leading to grains getting dissolved one at a time: for each grain
along the interface, a time to dissolution is computed from the
above Langevin equation, and the grain with the shortest dis-
solution time is removed. After what, the times are recomputed
for all grains along the interface, and the next grain with
shortest dissolution time is removed, and so on (see Renard
et al. [2004] for details of the practical implementation). The
selected constants correspond to a calcite-water system,
g = 0.27 J �m�2,W = 4 � 10�5m3 �mol�1, n = 0.25, E = 80GPa
and k0 = 10�4mol � m�2 � s�1 [Renard et al., 2004]. The
chosen physical conditions are T = 420 K, 〈p〉 = 10 MPa and
〈ss〉 = 40MPa. The amount of quenched noise is associated to
the natural variations of grain properties. The typical
scale associated to the quenched disorder (or typical grain
size) is considered here to be around ‘ = 10 mm, with
no correlation above this scale. This quenched disorder has
a standard deviation

ffiffiffiffiffiffiffiffi
h2h ip ¼ ½a‘p0=ðbL∗ssÞ� � ½ðdE=EÞ þ

ðdk=k0Þ þ ðda=aÞ� corresponding to some relative variations of
the dissolution rate of around 10% (i.e., dk/k0 � 0.1).
[41] The dimensionless surface dynamic equation without

disorder is

∂tzðx; tÞ ¼ v0 þ ∂xxz� ‘
L∗

Z
dy

∂yz
x� y

ð49Þ

where L∗ = gE/(bp0ss), ‘ is the unit length, and t = ‘2RT/
(gkW2) is the time unit.
[42] We assume a small disorder in the implied quantities

(e.g., Young’s modulus), that are quenched in the material
properties of the rock heterogeneity associated with micro-
metric grains, typically ‘ = 10 mm. The interface is supposed
to be normal to the largest stress direction (stabilizing elastic
interactions).
[43] Considering a perturbation to the first order, in the

referential frame of the homogeneously moving average front,
z′ = z � v0t, the equation ruling the surface growth becomes

∂tz′ðx; tÞ ¼ ∂xxz� ‘L∗
Z

dy
∂yz
x� y

þ hðx; zðxÞÞ ð50Þ

with a quenched random term h(x, z′(x)) = [a‘p0/
(bL∗ss)] � [(dE/E) + (dk/k) � (da/a)].
[44] The first and second terms are stabilizing terms.

The third term referring to the quenched disorder destabilizes
the interface. We perform the simulation of this dynamic
equation with both stabilizing terms and quenched noise.
[45] The prefactors in equation (50) depend on the rock

type and on the applied stress. In addition to these mappings,
the characteristic units are known as function of the rock
properties. The crossover scale L∗ = gE/(bp0ss) is function
of the pressure during the growth, through p0 and ss.
[46] Determining the crossover length L* for natural

samples allows to determine such stress value during the
growth, and consequently the depth of the rock during the
stylolite propagation. Assuming as an order of magnitude
p0 � ss and typical values for the limestone elastic proper-
ties and the water calcite reaction rates, L∗ � 1 mm leads to a

typical depth of 1 km. Stylolites can thus be considered as
fossils of the stress magnitude.
[47] We solved the dynamic equation (46) with an event-

driven algorithm where the fastest dissolving grain is removed
at each step. The problem is considered as L-periodic and the

long-range elastic kernel p:p:
R

dy ∂yz
x�y ¼ �p:p:

R
dy zðxÞ�zðyÞ

ðx�yÞ2

is replaced by its finite-size form �p:p:
R L
0 dy zðxÞ�zðyÞ

sin2ðpðx�yÞ=LÞ
p2
L2.

This standard form can be obtained by solving the elastostatic
equations in the Fourier space and performing an inverse
Fourier integration. When a new grain is reached, the realiza-
tion of its quenched disorder h is evaluated using a Gaussian
distribution. For the dissolution surface simulated which is
4096‘ long, 8,000,000 grains were dissolved.

3.2. Analysis of the Small-Scale and Large-Scale
Roughness of the Saturated Interface

[48] The simulation of the calcite-water system leads to
the growth of a dissolution interface. Starting from a flat
interface and after a certain transient time, the Fourier modes
saturate to a characteristic amplitude. A snapshot of the
developed stylolitic interface is shown in Figure 7.
[49] This interface fluctuates around the average pro-

gressing flat dissolution front. The Fourier power spectrum
Pðk; tÞ ¼ ‖~zðk; tÞ‖2 of each front z(x, t) is extracted, and the
ensemble average of this power spectrum PðkÞ ¼ ‖~zðkÞ‖2� �
is obtained for developed interfaces, by averaging over all
fronts after 80,000 grains have been dissolved. The expec-
ted small- and large-scale self-affine characteristics corre-
spond to the theoretical predictions, as shown in Figure 8.
Indeed, the power spectrum is a power law of scale, with
two different exponents at large and small scale, and a
crossover length around the scale L*: For k > 2p/L∗, i.e., at
small scale, we have P(k) � k�1 � 2z with zS = 1.2, and
for the large scales, the roughness exponent is found to
be around zL = 0.35. The straight lines in the bilogarithmic
axes (Figure 8) correspond to these power law behaviors,
determined by linear regression over the two domains
k > 2p/L∗ and k < 2p/L∗. The ensemble used for the
roughness estimate is the following: it corresponds roughly
to 100,000 grain being dissolved after the first 80,000 ones,
which are discarded. We thus compute the average power
spectral density profiles over all these states, representative
of a saturated situation with fluctuations of the Fourier
mode amplitude around some characteristic magnitude for
each wavelength. The linear regression have been performed
in bilogarithmic space on the ranges 0 < log 10(k) < 1.5 and
2 < log 10(k) < 3, with k unit of 2p/L, with L = 4096‘ and a
grain size ‘ = 10 mm. The standard error bar provided by the
linear regression over this two ranges is around�0.2 in slope
(i.e., �0.1 for the Hurst exponents z).
[50] Thus, we find that the scaling of saturated surfaces in

this model is compatible with observations made on natural
surfaces, and with the previous analytical predictions.
[51] In addition, the dynamic behavior of these models

(Edwards Wilkinson in a quenched noise [Roux and Hansen,
1994], or elastic string in a disordered landscape [Tanguy
et al., 1998]) is known. The prefactor (characteristic time)
associated with the dynamics can be evaluated through the
previous computations from the rock material properties.
The time to saturation at an observation scale of a few
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centimeters is estimated to be around a few thousands of
years. The stylolite roughness is hence always in a saturation
state for a geologist at small observation scale.
[52] However, for longer systems, e.g., decametric ones,

much longer times would be required for saturation. Such
long stylolites are sometimes observed but rarely analyzed in
terms of scaling of the height. To our knowledge, the only
analysis performed on decametric size stylolites [Laronne
Ben-Itzhak, 2011] showed that these large-scale structures
were not saturated. This means that the time during which

the stylolitization was active on such very long stylolites was
only enough to lead the small scales to saturated amplitude,
but not the large ones (above a few tenth of centimeters).

4. Example: Application of the Model
to Natural Data

[53] The model is applied to a sedimentary stylolite col-
lected in a core at the ANDRA (National Radioactive Waste
Management Agency) Underground Research Laboratory

Figure 7. Snapshot of the pressure solution profile.

Figure 8. Average power spectrum of simulated stylolitic fronts, in bilogarithmic representation.
The k unit is 2p/L, with L = 4096‘ and a grain size ‘ = 10 mm. The vertical unit is arbitrary.
The crossover is obtained at 2p/L∗.
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(URL) at Bure in eastern France. The selected sample comes
from the borehole EST433 at a depth of 720 m. The host
rock is a fine-grained, homogeneous grainstone from the
Dogger age. The core was cut in three parts thus giving four
profiles for analysis (Figure 9).
[54] Profiles 1 and 2 and profiles 3 and 4 are spaced by

3 mm (thickness of the drilling saw) and profiles 2 and 3 are
spaced by 30 mm. Each profile has a length around 90 mm.
The stylolites were photographed at a resolution of 30 mm.
A systematic method was used to extract profiles from the
photographs. It consists on isolating the black pixels con-
stituting the clay particles in the stylolite from photographs
converted in grey level pictures. The profiles will be used as
functions in the spectral analysis (integral transforms) and
thus are required to be single valued. Stylolites show a self-

affinity geometry [Schmittbuhl et al., 1995; Barabási and
Stanley, 1995] meaning that they are statistically invariant
under an affine transformation. Thus, for Dx and Dy the
horizontal direction amplitude and Dz the vertical direction
amplitude: Dx → lxD, Dy → lyD and Dz → lzDz, where
l can take any value and z is the Hurst exponent which
describes the scaling invariance [Schmittbuhl et al., 2004;
Renard et al., 2004]. As in Ebner et al. [2009b] we used
both the Fourier power spectrum [Schmittbuhl et al., 1995]
and the averaged wavelet coefficient [Simonsen et al., 1998]
signal processing methods to analyze the profiles
(Figure 10). We used two different methods to check the
repeatability of the results. First we calculated the Fourier
power spectrum P(k), which is the square of the modulus
of the Fourier transform, as a function of the wave number
k (k = 2p/L, where L is the wavelength). The power spectrum
expressed as a function of the length for a self-affine profile
behaves as P(L) ≃ L2z + 1. We calculated also the averaged
wavelet coefficient spectrum as a function of the scale a with
Daubechies 4 wavelets which behaves as W(a) ≃ a1/2 + z.
[55] The results show the two scaling regimes predicted by

the theory presented above, described by two different
power laws. Figure 11 shows the Fourier power spectrum for
the profile 1 as a function of the length L. The raw data are
more concentrated at small scale. The lower limit for the
length corresponds to the Nyquist length which is the reso-
lution multiplied by 2. As the profiles have a finite size, the
upper limit for the analysis (corresponding to small wave
number) is given by the size of the profile. To analyze the
data, we apply a logarithmic binning so that the weight on
each point is equal. To estimate the crossover length, we
used a linear-by-part fit with a crossover function changing
the scaling law from small to large scale as explained in
Ebner et al. [2009b]. The averaged wavelet coefficient
spectrum (Figure 12) does not require a binning. The same
kind of fitting was used to appraise the crossover length L*.
[56] The intersection between both regimes (whose slopes

are imposed by zS = 1 and zL = 0.5 for small and large scale,
respectively) gives the crossover length L*. We summarize the
estimated crossover length for all the analyzed profiles with
both methods in Table 1. The uncertainties on the crossover
length (68% and 44% for Fourier power spectrum and averaged
wavelet coefficient respectively) are due to the spatial vari-
ability of the intersection between the small and large regimes.

5. Discussion

5.1. Interpretations of the Estimated Paleostress

[57] We discuss three theories about the meaning of the
estimated paleostress for the studied sedimentary stylolite:
[58] 1. Present-day stress: If the conditions for pressure

solution (lithostatic pressure in competition with the presence
of a fluid at an appropriate state of equilibrium) are present, a
stylolite should show the present-day state of morphology and
is still evolving. This means that we should measure the cur-
rent applied stress and see the last evolution of the morphol-
ogy. This can be compared with recent studies where vertical
and horizontal stresses were measured in boreholes at Bure
[Wileveau et al., 2007; Gunzburger and Cornet, 2007] to
assess if the estimated stress corresponds to the measured ones.
[59] 2. Evolution stopped: This can occur if the lithostatic

stress becomes too small to encourage the process (change in

Figure 9. (a, b) A core from the Dogger formation
(EST433 well) was cut in three parts to obtain four profiles.
Each profile was photographed at high resolution. (c) A close-
up of profile 2.
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the magnitude due to a tectonic phase for example). It can
also be associated with the closing of the porosity by
recrystallization. Indeed, if the pore size decreases because
of recrystallization at the pore surface, the surface tension
increases preventing more recrystallization. Thus, the water
is getting more charged in dissolved materials and the
chemistry of the water changes and can stop the stylolite
evolution. Moreover, the decrease of the pore size can limit
or stop the fluid flow and close the system.
[60] 3. Reactivation: Both previous theories can act on the

history of a stylolite. After its initiation, a stylolite can see its
growth stopped by the kind of process we developed just
before. If in the geological history an event as emerged soil
and/or erosion allows to change the applied stress or to
meteoritic fluids to flow in the soil, the system can have its
properties changed and pressure solution process can start
again until it is stopped or it can still evolve.
[61] These three theories will be discussed with regard to

the paleostress results.

5.2. Estimation of the Paleostresses

5.2.1. Hypothesis on the Basin Evolution
[62] To estimate the paleostress from the model developed

in this study, we use the average of the crossover lengths

Figure 10. Functions obtained from profiles 1, 2, 3, and 4. A grey-level threshold was imposed on the
pictures to isolate the stylolites. The functions were then obtained by selecting the mean limit of the pixels.

Figure 11. Fourier power spectrum of profile 1. The raw
data were binned logarithmically to run a linear-by-part fit-
ting on the data [Ebner et al., 2009b]. Two different scaling
regimes are observed at small and large scale with the Hurst
exponent around 1 and 0.5, respectively. The fit reveals a
crossover length L* around 1.14 mm.
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determined for the four profiles. The crossover length is
related to the stresses by equation (38). However, this equa-
tion can be simplified by making assumptions on the sur-
rounding rock formation. We use the same assumptions as in
Ebner et al. [2009b] for the stylolites from Cirque de Nava-
celle (Cévennes, France) considering that the initiation of
stylolites occurs at the early stage of a basin. The major
principal stress is vertical (szz) as we analyzed a sedimentary
stylolite. The principal horizontal stresses are isotropic
(sxx = syy). Thus the mean stress p0 and the shear stress sS are

p0 ¼ �ð2sxx þ szzÞ=3 ð51Þ

sS ¼ sxx � szz ð52Þ

As stylolites are known to develop in the early stage of sed-
imentation of basins, the strain is assumed to be uniaxial:

sxx ¼ syy ¼ n
1� n

szz ð53Þ

Using equations (51)–(53), equation (38) becomes

s2
zz ¼

gE
abL∗

ð54Þ

where

a ¼ 1

3

ð1þ nÞ
ð1� nÞ

ð1� 2nÞ
ð1� nÞ ð55Þ

is a dimensionless geometrical factor. The geometrical factor
b (equation (37)) is b = n(1 � 2n)/p. Using the average
crossover length L� in equation (54), we can estimate the
main principal paleostress szz. The Poisson’s ratio n of the
host rock was determined by measuring the P and S elastic

wave velocities (n ¼ 0:5ðVP=VSÞ2�1

ððVP=VSÞ2�1Þ ). The relative errors for the
measurements of VP and VS are 1 and 2% respectively
[Benson et al., 2005]. The relative error for the Poisson’s
ratio is thus equal to 12%. Consequently, a and b have error
bars equal to 2% and 22%, respectively. The last constant to
be determined is the Young’s modulus. The next paragraph
details our choices for this matter.
5.2.2. Uncertainties on Young’s Modulus E
[63] In their paper, Ebner et al. [2009b] determined E

assuming the vertical stress is equal to the lithostatic stress as
in equation (56) where z is the current depth of their samples.
They plotted the determined stress as a function of L�1/2.
The slope of the curve is proportional toE1/2 (see equation (54)).
They found E = 15 GPa which is the lowest acceptable limit
for limestones [Clark, 1966]. Based on uniaxial loading made
in our laboratory, we determined E = 36.2 GPa for the rock
surrounding the analyzed stylolite. Considering that the
limestones from Bure replaced in the geological context of
the Paris basin cannot be excessively harder than what we
observe today, the value determined in the laboratory is taken
as the upper limit for E. Thus we can estimate the paleostress
in a small range of E. The values used for the calculation of
the paleostress are summarized in Table 2.
[64] To calculate the paleostress szz, we take into account

the error bars for each parameter. The computed error for the
calculation of szz is 66% for the Fourier power spectrum
method and 54% for the averaged wavelet coefficient
method. The results are summarized in Table 3.

Figure 12. Averaged wavelet coefficient spectrum of pro-
file 1. A linear-by-part fitting was run on the data [Ebner
et al., 2009b]. Two different scaling regimes are observed
at small and large scale with the Hurst exponent around 1
and 0.5, respectively. The fit reveals a crossover length L*
around 1.95 mm. This is in good agreement with the length
inferred using the Fourier power spectrum method.

Table 1. Summary of the Crossover Length Found for the Four
Profiles Analyzed by Fourier Power Spectrum (FPS) and Average
Wavelet Coefficient (AWC)

Profile

Average (�L∗)1 2 3 4

LFPS
∗ (mm) 1.14 0.37 0.37 1.13 0.75 � 0.51

LAWC
∗ (mm) 1.95 1.52 0.72 1.60 1.45 � 0.64

Table 2. Summary of the Estimated Paleostress for the Stylolites
From the Crossover Length

g(J � m�2) Eup(GPa) n a b

0.27 36.2 � 0.4 0.37 � 0.04 0.32 � 0.01 0.033 � 0.007

Table 3. Results for the Calculation of the Paleostress szz Using
the Averaged Crossover Length for the Fourier Power Spectrum
(FPS) and Average Wavelet Coefficient (AWC) Methodsa

Paleostress (MPa) �L∗;Elow �L∗;Eup

sFPS 22.6 � 14.9 35.1 � 23.2
sAWC 16.3 � 8.8 25.3 � 13.7

aWe calculated the paleostress taking into account the variability of the
Young’s modulus E where Elow is the lower limit for the Young’s
modulus for limestones and Eup is the determined Young’s modulus for
the studied sample.
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5.3. Geological Context

[65] By doing some assumptions on the sedimentary
overburden, the depth of development of the stylolite can be
assessed. The lithostatic pressure szz can be expressed as

szz ¼ rgh ð56Þ

where r is the density in g �m�3, g is the Earth’s gravity (g =
9.81 m � s�2) and h is the depth in m. We make the
assumption that at the initiation of the stylolite, linked to the
early stage of formation of the sedimentary basin, the over-
burden was made of limestones only. Thus, we consider the
density of limestones r = 2710 g � m�3. The estimated
depths of development of the stylolites are summarized in
Table 4. The error bars on h are of the same order as for the
paleostress.
[66] Now we can wonder what is the interpretation of the

estimated paleostress with regard to the three theories
exposed previously:
[67] 1. Wileveau et al. [2007] and Gunzburger and Cornet

[2007] measured the vertical stress at Bure which is equiv-
alent to the lithostatic pressure as in equation (56). Our
results show that the calculated depth corresponds to the
depth where we cored the analyzed stylolite. Thus the
studied stylolite is more likely to be still active and to show
the present-day stress.
[68] 2. André et al. [2010] discussed about a reactivation

of the stylolitization during the Tertiary age (end of Creta-
ceous more precisely) by the change in the stress orientation
or by the emergence of the Cretaceous sediments which
were eroded and permitted to meteoritic fluid to spread in the
sediments. This reactivation process could have acted on the
growth of the studied stylolite until today. But still it seems
that the theory of the present-day stress is more applicable
on that example.

6. Conclusions

[69] Analyzing the local boundary conditions due to the
fact that the inside of a stylolite does not sustain shear stress
and an elastic surrounding, we derived the dependence of the
free energy along a stylolite surface on the shape of the
stylolite. Adding up a surface energy term we derived a
dynamic surface evolution model for a stylolitic interface.
This model, in the situation where a stylolite is perpendicular
to the largest principal stress axis—as in most cases—
includes terms that lead to the stabilization of the surface
dynamics, i.e., to the vanishing of initial perturbations
toward a flattening surface. Hence, the presence of disorder
linked to the heterogeneities of the material properties is
required to explain the rough nature of stylolites. Introducing
such noncorrelated quenched disorder, the model predicts

the occurrence of two scaling laws. At small scale, a desta-
bilizing disorder competing with a stabilizing surface energy
term give a model similar to the Edwards Wilkinson model
in a quenched noise leasing to a saturated surface with a
Hurst exponent around 1. At large scale, the competition
between destabilizing disorder and stabilizing elastic inter-
actions is similar to models of evolution of an elastic inter-
face in quenched disorder leading to a Hurst exponent of 0.5.
[70] The crossover scale between these two scaling

regimes was shown to be directly linked to the stress mag-
nitude. Hence, the determination of this crossover and other
physical rock properties allows to use stylolites as markers
of the paleostress magnitude.
[71] Both scaling laws and the dependence of this cross-

over scale on the stress magnitude were derived in two ways:
by purely analytical derivation and similarity to known
models in section 2 and by numerical integration in section 3.
[72] Importantly, it should be noted that the elastic forces,

depending on the boundary conditions, can be stabilizing, as
here, or destabilizing. The existence of several models and
techniques of global or local calculation of the free energy
can raise the question of a stabilizing or destabilizing nature
of the elastic forces in the context of a stylolite. Indepen-
dently from the derivation carried out in details in this paper,
we note the following argument that can distinguish between
stabilizing and destabilizing terms. The only difference
between models with stabilizing or destabilizing elastic
kernel is the sign of the prefactor in front of the elastic
operator in the dynamic equation. However, when this sign
is reverted, all large-scale wavelength Fourier modes
become unstable (with a selection of fastest growing mode,
e.g., as shown in Misbah et al. [2004] or Bonnetier et al.
[2009]). Numerical simulations similar to the ones shown
above, with a destabilizing mode, do not lead to any satu-
ration of the amplitude of the large modes at long times, and
the Fourier power spectrum at a given time does not display
any scaling law at fixed time for the large scales. Thus, the
scaling laws observed in field stylolites are compatible with
a model where elastic forces are stabilizing: we take this as a
good sign of validity of the proposed approximations to take
the boundary conditions into account in the proposed model.
[73] The results from both analytical and numerical inde-

pendent resolutions presented in this study are also consis-
tent with three other independent observations:
[74] 1. The existence of two Hurst exponents at small and

large scales, as observed in Schmittbuhl et al. [2004], in the
stylolites from the log cores of Bure (section 4).
[75] 2. The results of recent molecular dynamic models of

dissolution with pressure reliance and surface energy terms
in the free energy displaying similar scaling laws and an
identical law for the dependence of the crossover length over
the applied stress [Koehn et al., 2012].
[76] 3. The model was applied in a previous study to sty-

lolites found at various depths in a limestone formation at
Cirques de Navacelles (Cévennes, France). The inferred
formation stresses were compatible with the derived weight
of overburden at the time of formation [Ebner et al., 2009b].
[77] We show finally on the example of sedimentary sty-

lolites in Bure, how the confinement stress can be derived
from morphological studies of stylolites. The ubiquitous
nature of these pressure solution features makes them a

Table 4. Results for the Calculation of the Depth for the Fourier
Power Spectrum (FPS) and Average Wavelet Coefficient (AWC)
Methodsa

Depth (m) L� , Elow L� *, Eup

hFPS 850.1 � 561.1 1320.3 � 871.4
hAWC 613.1 � 331.1 951.7 � 513.9

aWe consider an early stage of formation of a sedimentary basin with an
overburden made of limestones only.
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versatile marker for paleostress magnitude that can give
access to the stress during the growth of stylolites. This
easily available paleostress marker opens the way for sys-
tematic studies of paleostress in large rock formations for
different stylolite families. However, it must be used care-
fully as the error bars are not minor. An important number of
measurement is required to constrain the results. Together
with dating indications for the time of occurrence of such
stylolites (e.g., times of tectonic events) and current stress
assessment methods it opens the way for the determination
of stress evolution in large basins, which is a key to under-
stand their evolution.
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