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Abstract: By analyzing e+e− annihilation data corresponding to an integrated luminosity
of 2.93 fb−1 collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, the
first observation of the semileptonic decays D0 → K0

Sπ
−π0e+νe and D+ → K0

Sπ
+π−e+νe is

reported. In the hypothesis that all events correspond to K1(1270) decays, the branching
fractions are measured to be B(D0 → K1(1270)−(→ K0

Sπ
−π0)e+νe) = (1.69+0.53

−0.46±0.15)×10−4

and B(D+ → K̄1(1270)0(→ K0
Sπ

+π−)e+νe) = (1.47+0.45
−0.40 ± 0.14) × 10−4 with statistical

significance of 5.4σ and 5.6σ, respectively. When combined with measurements of the
K1(1270) → K+π−π decays, the absolute branching fractions are determined to be B(D0 →
K1(1270)−e+νe) = (1.08+0.14

−0.13
+0.08
−0.10±0.21)×10−3 and B(D+ → K̄1(1270)0e+νe) = (1.70+0.26

−0.23±
0.13 ± 0.35) × 10−3. The first and second uncertainties are statistical and systematic,
respectively, and the third uncertainties originate from the assumed branching fractions of
the K1(1270) → Kππ decays.
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1 Introduction

Semileptonic charm decays induced by the c→ se+νe process are dominated by pseudoscalar
(K) and vector (K∗(892)) mesons, i.e. contain a kaon and at most one pion in the final-state
hadronic systems [1, 2]. Semileptonic decays with higher multiplicity final states involving a
kaon and two pions are highly suppressed and are expected to be mostly mediated by the axial-
kaon system with a mixing angle θK1 [3]. Thus knowledge of θK1 is essential for theoretical
calculations describing the decays of D particles into strange axial-vector mesons [4–6]. The
D → K̄ππe+νe decays provide a unique opportunity to study K1(1270) and K1(1400) mesons
in a clean environment, without any additional hadrons in the final states. Such studies can
lead to a better determination of θK1 as well as of the masses and widths of the K1 mesons,
which currently all have large uncertainties [7]. By exploiting the measured properties of
D → K̄1(1270)ℓ+νℓ and B → K1(1270)γ decays, the photon polarization in b→ sγ can be
determined without considerable theoretical ambiguity, according to refs. [8, 9].

The BESIII collaboration, performing studies of the hadronic systems K−π+π− and
K−π+π0, reported the first observation of semileptonic D decays involving a K1(1270) [10, 11],
and measured the branching fractions (BFs) B(D0 → K1(1270)−e+νe) = (1.06 ± 0.12+0.09

−0.15 ±
0.21) × 10−3 and B(D+ → K̄1(1270)0e+νe) = (2.30 ± 0.26+0.18

−0.22 ± 0.50) × 10−3. Here the
first and second uncertainties are statistical and systematic, respectively, and the third
uncertainties originate from the assumed BFs of K1(1270)0,+ → K+π−π0,+ [7]. The decays
D0 → K0

Sπ
−π0e+νe and D+ → K0

Sπ
+π−e+νe have not yet been observed. In 2011, based on

the K+π+π− system in the decay of B+ → J/ψK+π+π−, the Belle collaboration found the
BFs of K1(1270) → Kρ,Kω, and K∗(892)π to be consistent with previous measurements,
but reported the measured BF of K1(1270) → K∗

0(1430)π to be significantly smaller [12].
Furthermore, measurements of the BF ratio RK1(1270) = BK1(1270)→K∗π

BK1(1270)→Kρ
yield different results

– 1 –



J
H
E
P
0
9
(
2
0
2
4
)
0
8
9

depending on the decay channels used [13–17], whereas they are expected to be identical
under the narrow width approximation for the K1(1270) meson assuming CP conservation
in strong decays [18]. Measurements of the BFs of D → K1(1270)(→ K0

Sππ)e+νe decays are
desirable, as they would improve the knowledge of the relative decay rates of K1(1270) into
final states with one kaon and two pions.

This paper presents the first observation of the semileptonic decays D0 → K0
Sπ

−π0e+νe

and D+ → K0
Sπ

+π−e+νe and measurements of the BFs of D0 → K1(1270)−e+νe and
D+ → K̄1(1270)0e+νe. The analysed data samples come from e+e− collisions at a center-
of-mass energy of 3.773 GeV, which were collected by the BESIII detector operating at the
BEPCII storage ring. These samples correspond to an integrated luminosity of 2.93 fb−1

accumulated at the ψ(3770) resonance [19]. Throughout this paper, charge conjugate channels
are always implied.

2 Detector and data sets

The BESIII detector [20] records e+e− collisions provided by the BEPCII storage ring [21]
in the center-of-mass energy range from 2.0 to 4.95 GeV, with a peak luminosity of 1 ×
1033 cm−2 s−1 achieved at

√
s = 3.773 GeV. BESIII has collected large data samples in this

energy region [22]. The cylindrical core of the BESIII detector covers 93% of the full solid
angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator
time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all
enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid
is supported by an octagonal flux-return yoke with resistive-plate-counter muon-identification
modules interleaved with steel. The charged-particle momentum resolution at 1 GeV/c is 0.5%,
and the dE/dx resolution is 6% for electrons from Bhabha scattering. The EMC measures
photon energies with a resolution of 2.5% (5%) at 1 GeV in the barrel (end-cap) region. The
time resolution in the TOF barrel region is 68 ps, while that in the end-cap region is 110 ps.
Details about the design and performance of the BESIII detector are given in ref. [20].

Monte Carlo (MC) simulated data samples produced with a geant4-based [23] software
package, which includes the geometric description of the BESIII detector and the detector
response [24], are used to determine detection efficiencies and to estimate background
contributions. The simulation models the beam-energy spread and initial-state radiation
(ISR) in the e+e− annihilation with the generator kkmc [25, 26]. An ‘inclusive’ MC event
sample includes the production of DD̄ pairs (including quantum coherence for the neutral D
channels), the non-DD̄ decays of the ψ(3770), the ISR production of the J/ψ and ψ(3686)
states, and the continuum processes incorporated in kkmc [25, 26]. All particle decays are
modeled with evtgen [27, 28] using BFs either taken from the Particle Data Group (PDG) [7],
when available, or otherwise estimated with lundcharm [29, 30]. Final-state radiation (FSR)
from charged final-state particles is incorporated using the photos package [31]. The total
size of the inclusive MC samples is approximately 10 times that of the data.

The D → K1(1270)e+νe decays are simulated with the ISGW2 model [2], and the
K1(1270) is allowed to decay through all intermediate processes leading to the final state
K0

Sππ. The K1(1270) resonance shape is parameterized by a relativistic Breit-Wigner function
with a mass of (1.253 ± 0.007) GeV/c2 and a width of (90 ± 20) MeV [7]. Using the BFs of
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K1(1270) measured by Belle [12] as input in the simulation gives good data/MC agreement
in the kinematic distributions [11]. The e+e− → DD̄ signal MC samples, in which the D
decays exclusively into signal modes while the D̄ decays inclusively, are used to determine
the detection efficiencies.

3 Measurement method and single-tag selection

At
√
s = 3.773 GeV, the ψ(3770) resonance is produced in electron-positron annihilation, and

then decays predominately into DD̄ pairs without accompanying hadron(s), thereby offering
a clean environment to investigate D decays with the double-tag (DT) method [32, 33]. In
these cases, when a D̄ meson is fully reconstructed, all of the remaining tracks and photons
in the event must originate from the accompanying D meson. The fully reconstructed meson
is called a single-tag (ST) D̄. The ST D̄ mesons are selected by reconstructing a D̄0 or D− in
one of the following decay modes: K+π−, K+π−π0, K+π−π+π−, K+π−π+π−π0 for neutral
tags, and K+π−π−, K0

Sπ
−, K+π−π−π0, K0

Sπ
−π0, K+K−π− and K0

Sπ
+π−π− for charged

tags. Using the ST D̄ samples, the decays of D → K0
Sππe

+νe can be reliably identified from
the recoiling tracks as DT events. The BF of the signal decay is then determined by

Bsig = NDT
N tot

ST · ϵsig
, (3.1)

where N tot
ST and NDT are the ST and DT yields, ϵsig = ∑

i

[(
εi

DTN
i
ST

)
/
(
εi

STN
tot
ST

)]
is the

efficiency of detecting the SL decay in the presence of the ST D̄ meson, reconstructed in any of
the tag modes. Here, i denotes the tag mode, and ϵST and ϵDT are the ST and DT efficiencies
of selecting the ST and DT candidates, respectively. Using the BF of K1(1270) → K0

Sππ

given in the PDG [7], the BFs of the D → K1(1270)e+νe decays can be obtained.
For the reconstruction and identification of K0

S , K±, π± and π0, the same criteria are used
as in refs. [34–39]. For any selected charged track, except for those used for reconstructing
K0

S decays, the polar angle θ with respect to the z-axis (defined as the symmetry axis of
the MDC) is required to satisfy |cos θ| < 0.93, and the point of closest approach to the
interaction point (IP) must be within 1 cm in the plane perpendicular to the z axis and
within ±10 cm along the z axis. Particle identification (PID) for charged tracks combines
measurements of the energy deposited in the MDC (dE/dx) and the flight time measured
in the TOF to form likelihoods L(h) (h = K,π) for each hadron hypothesis h. Charged
kaons and pions are identified by comparing the likelihoods for the kaon and pion hypotheses,
L(K) > L(π) and L(π) > L(K), respectively.

The K0
S candidates are selected via the K0

S → π+π− decays, and hence they are
reconstructed from pairs of oppositely charged tracks. For these two tracks, the distance of
closest approach to the IP is required to be less than 20 cm along the z axis. The two charged
tracks are constrained to originate from a common vertex that is required to be displaced
from the IP by a flight distance of at least twice the vertex resolution. The invariant mass
of the π+π− pair is required to be within (0.486, 0.510) GeV/c2.

The π0 candidates are reconstructed via π0 → γγ decays. Photon candidates are
reconstructed from isolated electromagnetic showers detected in the EMC crystals. The
deposited energy is required to be greater than 25 (50) MeV in the barrel (end-cap) region. To
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Tag mode ∆E (GeV) MBC (GeV/c2)

D̄0 → K+π− (−0.029, 0.027) (1.858, 1.874)

D̄0 → K+π−π0 (−0.069, 0.038) (1.858, 1.874)

D̄0 → K+π−π+π− (−0.031, 0.028) (1.858, 1.874)

D̄0 → K+π−π+π−π0 (−0.040, 0.025) (1.858, 1.874)

D− → K+π−π− (−0.025, 0.025) (1.863, 1.877)

D− → K+π−π−π0 (−0.055, 0.040) (1.863, 1.877)

D− → K0
Sπ

− (−0.025, 0.025) (1.863, 1.877)

D− → K0
Sπ

−π0 (−0.055, 0.040) (1.863, 1.877)

D− → K0
Sπ

+π−π− (−0.025, 0.025) (1.863, 1.877)

D− → K+K−π− (−0.025, 0.025) (1.863, 1.877)

Table 1. Summary of the ∆E requirements and MBC mass windows for the ten tag modes.

exclude showers that originate from charged tracks, the angle subtended by the EMC shower
and the position of the closest charged track at the EMC must be greater than 10 degrees as
measured from the IP. To further suppress fake photon candidates due to electronic noise
or beam-related background, the measured EMC time is required to be within [0, 700] ns
from the event start time. The invariant mass of a photon pair is required to be within
(0.115, 0.150) GeV/c2. To further improve the resolution of π0 momentum p⃗π0 , the invariant
mass of the photon pair is constrained to the known π0 mass [7] by applying a kinematic fit.

For the ST candidates D̄0 → K+π−, the background contributions from cosmic rays and
Bhabha events are rejected by using the analogue requirements as described in ref. [40]. First,
the two charged tracks used must have a TOF time difference less than 5 ns and they must
not be consistent with being a muon pair or an electron-positron pair. Second, there must
be at least one EMC shower with an energy larger than 50 MeV or at least one additional
charged track detected in the MDC.

The tagged D̄ mesons are selected using two variables, the energy difference

∆E = ED̄ − Ebeam (3.2)

and the beam-constrained (BC) mass

MBC =
√
E2

beam/c
4 − |p⃗D̄|2/c2, (3.3)

where Ebeam is the beam energy, and p⃗D̄ and ED̄ are the momentum and the energy of the D̄
candidate in the e+e− rest frame. For each tag mode, if there are multiple combinations in an
event, only the one giving the minimum |∆E| is retained for further analyses. Combinatorial
background contributions are suppressed with a requirement on ∆E for each tag mode as
described in refs. [10, 11]; the ∆E requirements are summarized in table 1.

To extract the yields of ST D̄ mesons for each tag mode, binned maximum-likelihood
fits are performed to the MBC distributions of the accepted ST candidates. The signal

– 4 –



J
H
E
P
0
9
(
2
0
2
4
)
0
8
9

E
v

e
n

ts
 /

 (
0

.2
5

 M
e
V

/c
2
)

 (GeV/c
2
)BCM

 (GeV/c
2
)BCM  (GeV/c

2
)BCM

5

10

3
10×

0
π

-
π

+
π

-
π

+
K

1.84 1.86 1.88

20

40

60

3
10×

-
π

+
π

-
π

+
K

0

20

40

60

3
10×

0
π

-
π

+
K

20

40
-

π
+

K

5

10

3
10×

-
π

-
π

+
πS

0
K

1.84 1.86 1.88

5

10

15

20

3
10×

0
π

-
π

-
π

+
K

20

40

60

-
π

-
π

+
K

2

4

6

3
10×

-
π

-
K

+
K

1.84 1.86 1.88

5

10

15

3
10×

0
π

-
πS

0
K

2

4

6

8
-

πS
0

K

(×
10

3 )

Figure 1. Fits to the MBC distributions of the ST D̄ candidates. The dots with error bars are the
real data, the red dashed lines denote the background and the blue solid lines represent the overall fit.
The arrows indicate the limits of the MBC signal window.

is modeled by the MC-simulated shape convolved with a double-Gaussian function. The
combinatorial background shape is described by an ARGUS function [41]. All parameters of
the double-Gaussian function and the ARGUS function are left free in the fit. The numbers of
ST D̄ mesons are obtained by integrating over the D̄ signal shape in the mass windows [10, 11]
which are listed in table 1. The MBC distributions of the accepted ST candidates in data
for the ten tag modes are shown in figure 1. The ST yield and the ST efficiency (ϵiST) for
each tag mode are summarized in table 2. The total ST yields of D̄0 and D− candidates
are (250.5 ± 0.4stat.) × 104 and (153.2 ± 0.3stat.) × 104, respectively.

4 Branching fractions

4.1 Selection of signal candidates

Candidates for the semileptonic decays D → K0
Sππe

+νe are reconstructed from the remaining
tracks and showers that have not been used for the ST D̄ reconstruction. The K0

S , π±

– 5 –



J
H
E
P
0
9
(
2
0
2
4
)
0
8
9

and π0 candidates are selected with the same criteria as on the tag side. Positron PID
uses the measured information in the MDC, TOF and EMC. Combined likelihoods (L′) are
calculated under the positron, pion, and kaon hypotheses. Positron candidates are required
to satisfy L′(e) > 0.001 and L′(e)/(L′(e) + L′(π) + L′(K)) > 0.8. To reduce background
from hadrons, the positron candidate is further required to have a deposited energy in the
EMC and momentum which satisfy E/|p⃗ |c > 0.18 ×χ2

dE/dx + 0.32 [11], where E and p⃗

are the energy and momentum of positrons, χ2
dE/dx is the difference between the measured

energy loss and the expectation from the Bethe-Bloch curve normalized by the resolution
for positrons. To partially compensate for the energy loss due to FSR and bremsstrahlung,
the four momenta of neighboring photons with an energy greater than 50 MeV and within
a cone of 5 degrees around the positron direction, are added back to the four-momenta of
the positron candidates (FSR recovery).

When reconstructing the D0 → K0
Sπ

−π0e+νe decay, the π0 mesons are required to have
an energy greater than 0.22 GeV and a decay angle θπ0 defined through |cos θπ0 | = |Eγ1 −
Eγ2 |/|p⃗π0 |c, less than 0.83 to effectively veto fake π0 candidates. Here, Eγ1 and Eγ2 are
the energies of the two daughter photons of the π0 candidate, and p⃗π0 is its reconstructed
momentum. To suppress the background from D0 → K0

Sπ
+π−π0 decays, MK0

Sπ−π0π+
e→π

<

1.78 GeV/c2 is required, where π+
e→π is the positron candidate reconstructed under the pion

mass hypothesis.
For the D+ → K0

Sπ
+π−e+νe decay, the positron must have the opposite charge to that

of the tagged D− meson and the two charged pions must have opposite charge. To suppress
the background from D+ → K0

Sπ
+π−π+ decays, the mass MK0

Sπ+π−π+
e→π

is required to be
less than 1.83 GeV/c2. In order to reject background events from D+ → K0

Sπ
+π0 with

the π0 Dalitz decay π0 → e+e−γ, the opening angle θα between e+ and π− is required to
satisfy cos θα < 0.95. To reject contamination from D+ → K0

Sπ
+π−π+π0 decays, the mass

MK0
Sπ+π−π+

e→ππ0 is required to satisfy MK0
Sπ+π−π+

e→ππ0 < 1.4 GeV/c2 when there is at least
one π0 candidate recoiling against the ST D− meson in the event. Furthermore, the opening
angle θβ between the missing momentum (defined below) and the most energetic unused
shower is required to satisfy cos θβ < 0.88.

4.2 Measurement of branching fractions

To obtain information about the undetected neutrino, a kinematic quantity is defined as

M2
miss = E2

miss/c
4 − |p⃗miss|2/c2, (4.1)

where Emiss and p⃗miss are the total energy and momentum of all missing particles in the event,
respectively. They are calculated using Emiss = Ebeam −

∑
iEi, p⃗miss = −p⃗D −

∑
i p⃗i where

Ei and p⃗i are the measured energy and momentum of particle i in the e+e− center-of-mass
frame, and i runs over K0

S , π±, π0 and e+ of the signal candidate. In order to improve
the M2

miss resolution, a four-constraint (4-C) kinematic fit is employed. Here energy and
momentum conservation is imposed, and the invariant masses of the D0 and D+ candidate
particles are constrained to their known values. Then the momenta and energies from the
kinematic fit are used to calculate M2

miss.
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Figure 2. Distributions of M2
miss versus MK0

S
ππ for the accepted semileptonic candidates (left column)

and the projections on M2
miss (middle column) and MK0

S
ππ (right column) of the two-dimensional fits.

The top row is for D0 → K0
Sπ

−π0e+νe and the bottom row is for D+ → K0
Sπ

+π−e+νe. The dots
with error bars are data. The blue solid line denotes the total fit. The red dashed line represents the
signal. The green dotted and purple dash dotted lines represent the combinatorial background and
peaking background of D → K0

Sπππ, respectively.

The distributions of M2
miss versus MK0

Sππ distributions of the candidate events for
D0 → K0

Sπ
−π0e+νe and D+ → K0

Sπ
+π−e+νe surviving in data are shown in figure 2 after

combining all tag modes for D0 or D+. Signal events concentrate around zero in M2
miss. They

are found to cluster around the K1(1270) nominal mass in the MK0
Sππ distribution. The

signal events are assumed to be from D → K̄1(1270)e+νe and potential contributions from
non-resonant K0

Sππ and D → K̄1(1400)e+νe will be discussed later. To determine the signal
yield, a two-dimensional unbinned extended maximum-likelihood fit is performed on the M2

miss
versus MK0

Sππ distributions of the accepted D0 → K0
Sπ

−π0e+νe and D+ → K0
Sπ

+π−e+νe

candidate events, respectively. The two-dimensional signal and background shapes are derived
from the signal and inclusive MC samples, respectively. The numbers of peaking background
events are fixed based on the estimation from the simulated samples, while the yields of signal
and combinatorial background are free parameters. The two-dimensional probability density
functions of signal and background are modeled by using RooNDKeysPdf [42].

The one-dimensional fit projections to the M2
miss and MK0

Sππ distributions of D0 →
K0

Sπ
−π0e+νe and D+ → K0

Sπ
+π−e+νe are shown in figure 2. The fits return event yields

of 16.5+5.1
−4.5 for the D0 → K1(1270)−e+νe signal and 20.2+6.2

−5.4 for the D+ → K̄1(1270)0e+νe

signal. The DT yields and signal efficiencies are summarized in table 2. The uncertainties in
table 2 are only statistical, and the systematic uncertainties will be discussed in section 5.
The statistical significance of the signal is estimated to be 5.4σ for D0 → K1(1270)−e+νe and
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Tag mode N i
ST (×103) ϵiST (%) ϵisig (%) ϵ̄sig (%) NDT

D̄0 → K+π− 540.7±0.8 66.57 ± 0.09 4.86±0.05

3.89±0.03 16.5+5.1
−4.5

D̄0 → K+π−π0 1066.8±1.2 34.76 ± 0.04 4.10±0.03
D̄0 → K+π−π+π− 736.3±1.2 41.22 ± 0.05 3.30±0.04
D̄0 → K+π−π+π−π0 162.0±0.4 15.94 ± 0.05 2.02±0.04
D− → K+π−π− 800.6±1.0 51.10 ± 0.06 9.99±0.11

8.96±0.09 20.2+6.2
−5.4

D− → K+π−π−π0 253.0±0.6 24.54 ± 0.06 7.83±0.17
D− → K0

Sπ
− 93.3±0.3 50.90 ± 0.17 9.99±0.33

D− → K0
Sπ

−π0 208.9±0.5 25.15 ± 0.06 7.88±0.21

D− → K0
Sπ

−π−π+ 107.5±0.4 29.47 ± 0.09 5.23±0.22

D− → K+K−π− 68.9±0.3 41.23 ± 0.18 9.00±0.35

Table 2. Summary of ST yields N i
ST, ST efficiencies ϵiST (%), signal efficiencies ϵisig of different tag

modes i, where the uncertainties are statistical. The last two columns are the weighted efficiencies ϵ̄sig
and signal yields NDT.

5.6σ for D+ → K1(1270)0e+νe, by comparing the likelihoods with and without the signal
component, and taking the change in the number of degrees of freedom into account. The
significances of D0 → K0

Sπ
−π0e+νe and D+ → K0

Sπ
+π−e+νe are 4.5σ and 4.0σ, respectively,

after accounting for systematic uncertainties associated with the 2D fits.
Inserting NDT, ϵ̄sig, and N tot

ST into eq. (3.1) yields the BF for each decay. Using the world
average BFs of B(K1(1270)− → K0

Sπ
−π0) = (16.00±3.45)% and B(K̄1(1270)0 → K0

Sπ
+π−) =

(11.67 ± 2.26)%,1 the absolute BFs of D0 → K1(1270)−e+νe and D+ → K̄1(1270)0e+νe are
also determined. The obtained BFs Bsig are summarized in table 3 and are in agreement with
those obtained from measurements with a charged kaon in the final state [10, 11]. Therefore
the two sets of the results are combined to yield the values Bcom, which are also given in table 3.

In addition to the D → K̄1(1270)e+νe contribution to the D → K0
Sππe

+νe signal, the
one from non-resonant K0

Sππ events could be sizeable. However, the latter component
cannot be accurately determined due to the lack of knowledge regarding its fraction and
limited statistics. To evaluate its effect on the nominal fit, a 10% contribution relative
to the K1(1270) component from non-resonant K0

Sππ is imposed in the fit. The shape of

1 BK0
1→K0

S
π+π− = BK0

1→K0π+π− × 1
2 × BK0

S
→π+π−

=
BK0

S
→π+π−

2 ×
(1

3 × BK1→Kρ + 4
9 × BK1→K∗(892)π + 4

9 × BK1→K∗
0 (1430)π × BK∗

0 (1430)→Kπ

+ BK1→K+ω × Bω→π+π−

)
,

B
K−

1 →K0
S

π−π0 = B
K−

1 →K0π−π0 × 1
2 × BK0

S
→π+π−

=
BK0

S
→π+π−

2 ×
(2

3 × BK1→Kρ + 4
9 × BK1→K∗(892)π + 4

9 × BK1→K∗
0 (1430)π × BK∗

0 (1430)→Kπ

)
,

where K1 denotes K1(1270) and K0
S is reconstructed via K0

S → π+π−.
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Decay mode Bsig (×10−4) Bcom (×10−4)

D0 → K0
Sπ

−π0e+νe (1.69+0.53
−0.46 ± 0.15) /

D+ → K0
Sπ

+π−e+νe (1.47+0.45
−0.40 ± 0.14) /

D0 → K1(1270)−e+νe (10.6+3.3
−2.8 ± 0.9 ± 2.3) (10.8+1.4+0.8

−1.3−1.0 ± 2.1)

D+ → K̄1(1270)0e+νe (12.9+4.0
−3.5 ± 1.0 ± 2.5) (17.0+2.6

−2.3 ± 1.3 ± 3.5)

Table 3. Summary of measured BFs Bsig for different decays and combined BFs Bcom for D →
K1(1270)e+νe decays. The first and second uncertainties are statistical and systematic, respectively.
For D → K1(1270)e+νe modes, the third uncertainty originates from the assumed BFs of K1(1270)
decays [7].

B(D → K0
Sππe

+νe) × 10−4 B(D → K̄1(1270)e+νe) × 10−4

D0
I 1.69+0.53

−0.46 10.6+3.3
−2.9

II 1.68+0.52
−0.45 9.6+3.0

−2.6

III 1.64+0.53
−0.45 9.4+3.0

−2.6

D+
I 1.47+0.45

−0.40 12.6+3.9
−3.5

II 1.60+0.46
−0.41 12.5+3.5

−3.2

III 1.56+0.42
−0.41 12.2+3.3

−3.2

Table 4. Summary of BFs obtained from the nominal fits (I), the fits with the inclusion of the
non-resonant contribution (II), and the fits with the inclusion of the K1(1400) contribution (III). All
the quoted uncertainties are statistical only.

the non-resonant component is modeled using simulated D → K0
Sππe

+νe events generated
evenly in the available phase space. The yields of non-resonant and K1(1270) contributions
are combined and treated as signal events to evaluate B(D → K0

Sππe
+νe). The yields of

D → K̄1(1270)e+νe are used to evaluate B(D+ → K1(1270)−e+νe). The obtained BFs with
the 10% non-resonant contribution are summarized in table 4, specifically in row II.

Furthermore, there is a possible contribution from D → K̄1(1400)e+νe decay. It is also
challenging to determine the fraction due to the large intrinsic width of K1(1400). A 10%
contribution relative to D → K̄1(1270)e+νe from D → K̄1(1400)e+νe decays is considered to
evaluate its effect on the nominal fit result. The D → K̄1(1400)(→ K0

Sππ)e+νe decays are
simulated with the ISGW2 model, and the K1(1400) resonance shape is parameterized by
a relativistic Breit-Wigner function with the mass and width fixed to the PDG values [7].
The yields of K1(1400) and K1(1270) are combined and treated as signal events to evaluate
B(D → K0

Sππe
+νe). The yields of D → K̄1(1270)e+νe are used to evaluate B(D+ →

K1(1270)−e+νe). The obtained BFs with the 10% K1(1400) contribution are summarized
in table 4, specifically in row III.
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5 Systematic uncertainties

While in the BF determination using eq. (3.1) the uncertainties associated with the ST
candidate selection cancel, the following sources of systematic uncertainties must be considered.

• The uncertainty in the total yield of ST D̄ mesons is assigned to be 0.5% [10, 11].

• π± tracking and PID efficiencies. The data/MC differences of π± tracking and PID
efficiencies are re-weighted by the corresponding π± momentum spectra of signal MC
events. The systematic uncertainty of tracking (PID) efficiency is assigned to be 0.2%
(0.3%) per π±, based on the residual statistical uncertainties of the measured data/MC
differences.

• e± tracking and PID efficiencies. The systematic uncertainties originating from e+

tracking and PID efficiencies are studied by using a control sample of e+e− → γe+e−

events. The tracking and PID efficiencies of MC are also re-weighted in momentum
and cos θ to match the D → K0

Sππe
+νe data. The systematic uncertainty of tracking

(PID) efficiency is assigned to be 0.3%(0.3%) per e±.

• K0
S reconstruction. The systematic uncertainty associated with K0

S reconstruction is
studied with control samples of the decays J/ψ → K∗±K∓ and J/ψ → ϕK0

SK
±π∓ [43].

The systematic uncertainty for each K0
S is assigned as 1.5%.

• π0 reconstruction. The systematic uncertainty of π0 reconstruction is assigned as 2.0%
per π0 from studies of the DT D0D̄0 hadronic decay samples [34].

• Two-dimensional fit. To estimate the uncertainty arising from the signal shape used
in the fit, the mass and width of K1(1270) are varied by ±1σ. To take into account
the potential resolution difference between data and MC simulation in the fit, a
convolution of a Gaussian function is considered for M2

miss and MK0
Sππ. The peaking

background yields are varied by 20.0% after considering their statistical fluctuations.
The uncertainties of combinatorial background shapes are estimated by varying the
smoothing parameters [42]. The associated systematic uncertainties are summarized
in table 5.

• Signal generator. To estimate the systematic uncertainty associated with the signal
generator, alternative signal MC events are generated using a phase-space model.
The changes in the measured BFs using this alternative MC simulation are 6.5% for
B(D0 → K0

Sπ
−π0e+νe) and 4.0% for B(D+ → K0

Sπ
+π−e+νe).

• K1(1270) subdecays. The uncertainties in the ratios of K1(1270) subdecays are assigned
by remeasuring the BFs based on PDG models [7]. A systematic uncertainty of 2.0% is
assigned both for B(D0 → K0

Sπ
−π0e+νe) and B(D+ → K0

Sπ
+π−e+νe).

• MC sample size. The systematic uncertainty due to the limited size of the MC sample

is assigned to be 1.0% by
√∑

i

(
fi

σϵi
ϵi

)2
, where fi is the tag yield fraction, and ϵi and

σϵi are signal efficiency and the corresponding uncertainty of tag mode i, respectively.

• FSR recovery. The uncertainty from FSR recovery is assigned to be 0.3% following
ref. [44].
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Uncertainty (%) K0
Sπ

−π0e+νe K0
Sπ

+π−e+νe

Signal shape 3.0 5.0
Resolution 2.4 3.3
Peaking background 1.3 2.1
Combinatorial background 1.0 3.8
Total 4.3 7.4

Table 5. Systematic uncertainties from the 2D fits.

Uncertainty (%) K0
Sπ

−π0e+νe K0
Sπ

+π−e+νe

NST 0.5 0.5
π±, e± tracking 0.5 0.7
π±, e± PID 0.6 0.9
K0

S reconstruction 1.5 1.5

π0 reconstruction 2.0 /
Two-dimensional simultaneous fit 4.2 7.4
Signal generator 6.5 4.0
K1(1270) subdecays 2.0 2.0
MC sample size 1.0 1.0
FSR recovery 0.3 0.3
Total 8.6 9.0

Table 6. Relative systematic uncertainties in the BF measurements. The systematical uncertainties
are evaluated under the assumption that all signal events are from the D → K̄1(1270)e+νe decays.
The uncertainties related to the possible non-resonant and K1(1400) contributions are not considered.

The systematical uncertainties are evaluated by assuming all signal events are from the
D → K̄1(1270)e+νe decays. As summarized in table 4, in the presence of the 10% non-resonant
component, the BFs values of B(D0 → K1(1270)−e+νe) and B(D+ → K̄1(1270)0e+νe) are
reduced by 9% and 1%, respectively. In the same way, if the 10% K1(1400) component
is considered, B(D0 → K1(1270)−e+νe) and B(D+ → K̄1(1270)0e+νe) will be reduced by
10% and 3%, respectively.

The total systematic uncertainty is estimated by adding all the individual contributions
in quadrature. The sources of the systematic uncertainties in the BF measurements are
summarized in table 6. They are assigned relatively to the measured BFs.

6 Summary

By analyzing a data sample corresponding to an integrated luminosity of 2.93 fb−1 collected
at

√
s = 3.773 GeV with the BESIII detector, the first observations of the semileptonic decays

D0 → K0
Sπ

−π0e+νe and D+ → K0
Sπ

+π−e+νe are obtained with statistical significances of
5.4σ and 5.6σ, respectively. Under the assumption that K1(1270) is the only contributing
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source, the resulting BFs are summarized in table 3. The measured BFs of D → K̄1(1270)e+νe

decays are consistent with previous measurements using K̄1(1270) → K−π+π(−,0) [10, 11].
The combined BFs of D → K̄1(1270)e+νe agree with the CLFQM and LCSR predictions
when θK1 ≈ 33◦ or 57◦ [4, 5] and contradict the predictions reported in ref. [6] when setting
the value of θK1 negative.

With approximately six times more data coming from BESIII at
√
s = 3.773 GeV in the

foreseen future [22, 45], a thorough investigation with the enlarged data samples in the four
K1 channels

(
K−π+π+,K0

Sπ
0π+,K0

Sπ
+π−,K−π+π0) will be possible to further elucidate

the knowledge on K1(1270) and K1(1400) meson in a systematic fashion.
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