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Abstract 

 

High angle annular dark field (HAADF) image simulations were performed on a series of 

AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general 

types of model were considered- perfect, vicinal/sawtooth and diffusion. These were chosen 

to demonstrate how HAADF image measurements are influenced by different interfacial 

structures in the technologically important III-V semiconductor system. For each model, 

interfacial sharpness was calculated as a function of depth and compared to aberration-

corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that 

the sharpness measured from HAADF imaging changes in a complicated manner with 

thickness for complex interfacial structures. For vicinal structures, it was revealed that the 

type of material that the probe projects through first of all has a significant effect on the 

measured sharpness. An increase in the vicinal angle was also shown to generate a wider 

interface in the random step model. The Moison diffusion model produced an increase in the 

measured sharpness with depth which closely matched the experimental results of the AlAs-

on-GaAs interface. In contrast, the measured sharpness decreased as a function of depth in 

the linear diffusion model. Only in the case of the perfect model was it possible to ascertain 

the underlying structure directly from HAADF image analysis.  
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1. Introduction 

 

The ability to control the growth of semiconductor layers to the width of a few atomic layers 

is becoming increasing important for the development of new high-speed semiconductor 

devices [1-3]. Growth techniques, such as molecular beam epitaxy (MBE), are often 

employed to deposit individual atomic layers to construct complex heterostructures [4]. High-

angle annular dark field (HAADF) imaging in scanning transmission electron microscopy 

(STEM) is regularly used to characterise these materials [5-6]. With the improved spatial 

resolution offered by aberration-corrected instruments, it is now standard practice to study the 

quality of interfacial structures at the atomic scale [7-8].  

 

The atom column intensities in a HAADF image are sensitive to the average atomic number 

(Z) [9-11]. In a simple model of image contrast, a column signal is generated by the high-

angle scattering from the channelled region of an atomic column [12-14]. In comparison, it is 

assumed that the underlying background signal is generated from the average scattering from 

the material volume that is sampled by the de-channelled probe and therefore provides non-

local information [12]. With consideration to this model, the background signal is often 

removed and analysis is only performed on the remaining column signals. Although this is a 

qualitative model, it does allow a quantitative comparison to be made between experiment 

and simulation once the background signal is removed from both. This circumvents the 

traditional contrast problem of the simulations and it is the approach taken in this paper. In 

order to take advantage of the high-spatial resolution information of the column signals, a 

method of analysis was developed for the III-V semiconductor system oriented in the <110> 

direction [15]. In this approach, interfacial sharpness was measured by examining the change 

in the ratio of the Group III and Group V column signals (without the background 

contribution) across each atomic row to give an average interfacial width.  

 

An improved analytical technique was also employed to investigate the sharpness of two 

types of AlAs/GaAs interface as a function of specimen thickness [16]. In the case of the 

GaAs-on-AlAs interface (i.e. GaAs grown on top of AlAs) it was found that the average 

interface width showed no variation with thickness. In contrast, it was shown that the 

opposite configuration of AlAs grown on top of GaAs (termed an AlAs-on-GaAs interface) 

revealed an interface width that was strongly dependent on the specimen thickness. Hence, it 

is not always sufficient to assess the quality of an interfacial structure from a single image 
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especially in cases where the composition changes in three dimensions. It is also unclear how, 

for example, different levels of elemental diffusion or stepping in each dimension would 

translate into image contrast and the final assessment of the interface. Thus, important details 

about the structure and arrangement of interfacial structures cannot be ascertained directly 

from the experimental results and image simulations are required for interpretation.  

 

HAADF image simulations must include both elastic and thermal diffuse scattering for a 

quantitative analysis [17-18]. The frozen-phonon multislice method incorporates both types 

of scattering and has been used extensively to make quantitative comparisons with 

experimental HAADF images for many types of material [19-20]. Moreover, it has been 

shown that if images are collected on an absolute intensity scale and the simulations include a 

finite effective source size an excellent agreement between simulation and experiment is 

obtained and there is no need for intensity scaling [21-24].  

 

In this paper, the frozen-phonon multislice technique is used to simulate a series of 

AlAs/GaAs models in order to examine how complex interfacial structures can affect 

HAADF imaging results. The AlAs/GaAs system was chosen for study to allow a comparison 

to be made with the previously reported experimental results and also due to its application in 

high-mobility semiconductor devices [16,25-27]. The models can be grouped into the three 

basic types of perfect, vicinal/sawtooth and diffusion. The range of models considered 

permits different interfacial characteristics to be investigated and whether the differences can 

be detected and distinguished using HAADF imaging. Each model is simulated at every 

atomic slice up to a thickness of 100nm and the variation in the measured interfacial width is 

displayed alongside the previous experimental results. This approach allows likely candidate 

models of interfacial structure to be selected for the experimental results and therefore an 

improved assessment of interface quality to be made. 

 

2. Method 

2.1 Experimental 

The 100kV SuperSTEM 1 instrument was used to obtain all of the experimental data [28-29]. 

This aberration-corrected microscope corrects aberrations up to 5th-order. The cold FEG of 

the instrument has a gun brightness of about 109Acm-2Sr-1 and an energy spread of 0.3eV. A 

Gatan-ENFINA spectrometer with an energy resolution ~0.35eV was used to collect electron 
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energy loss spectroscopy (EELS) data. All HAADF images were acquired using a probe 

semi-convergence angle of 24mrad, a pixel dwell time of 19µsec, a pixel size of 0.0146nm 

and were composed of 1024×1024 pixels. The inner and outer angles of the HAADF detector 

were 70mrad and 210mrad, respectively. The image intensity black level was set so that a 

few image counts (~5-10) were recorded above the noise in the absence of any specimen 

material. Image counts are typically of the order of several thousand in the presence of a 

specimen. Images were discarded that did not show Fourier reflections up to a spatial 

resolution of 1Å and that were not from a uniform and flat specimen area. In order to measure 

the specimen thickness of a particular image, the probe was scanned rapidly across the entire 

image area and 50 low loss EELS spectra were averaged together. The absolute specimen 

thickness was then calculated using the method described by Egerton [30]. 

 

AlAs/GaAs interfaces, bulk AlAs and bulk GaAs were grown epitaxially on a GaAs wafer 

along the [001] crystal direction by MBE. The conventional cross-section technique was 

employed to prepare the specimen which was finished with a low energy ion mill at 400eV 

and at an angle of 6o using a Technoorg GentleMill [31]. All of the experimental data was 

acquired with the specimen oriented along the [110] direction. This crystal projection forms 

the distinctive dumbbell configuration of zinc-blende materials in which a dumbbell is 

constructed from a column of Group III atoms (Al or Ga) and a column of Group V (As) 

atoms. Distances are given in terms of monolayers (ML) where 1ML is equal to distance 

between successive dumbbells along the [001] direction. The Z numbers of Al, Ga and As are 

13, 31 and 33, respectively. 

 

HAADF images of AlAs-on-GaAs and GaAs-on-AlAs interfaces were taken over a range of 

specimen thicknesses. The images were analysed and plots of the interfacial width as a 

function of specimen thickness were produced for both types of interface. The method of 

analysis is described in detail in [16]. In brief, each interface image was firstly converted into 

a map of the dumbbell column ratio which is defined as (IIII - IBD) / (IV - IBD). IIII and IV are 

the total HAADF signals at the Group III and Group V columns of a particular dumbbell, 

respectively [15]. IBD is the background signal for each column in the dumbbell. Line profiles 

of the column ratio were then taken across each atomic row of the interface (i.e. always along 

the [001] growth direction) and an analytical function was fitted to each profile. The 5% to 

95% width of the function was used as a measure of the interfacial width in each case. The 

interfacial width defines the extent of the transition region between the two bulk materials. In 
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addition, the inflection point of the fitted function was used to define the apparent position of 

the interface. The average interface width was then calculated and the process was repeated 

for each image in the thickness series. The plots of the interfacial width presented in this 

paper were replicated from [16].  

2.2 Simulation 

HAADF STEM calculations were performed using frozen-phonon multislice code adapted 

from Kirkland [32]. An effective source size was not included and the analysis implemented 

the background-removal technique in order to compare the column signals (via the column 

ratio) generated by the simulations with those from the experimental results. The exclusion of 

an effective source size will likely have a small effect on the simulated column ratio values 

but not on the interface widths or positions which are the important attributes under scrutiny 

in this paper. Simulated parameters were chosen to match the SuperSTEM 1 probe and the 

experimental conditions. The simulated probe was formed using an accelerating voltage of 

100kV, a convergence semi-angle of 24mrad and aberration coefficients up to and including 

C5,6 (6-fold astigmatism of C5). This generated a ~1Å probe at FWHM (full width at half 

maximum) with ~57% of the total probe intensity contained within the central peak. The 

HAADF detector angles also matched those of SuperSTEM 1. To simulate the effect of 

thermal vibrations on the HAADF signal, the Einstein model for phonon vibrations was 

implemented at a temperature of 300K [32]. 100 phonon configurations were chosen to give a 

smaller error in the simulated column ratio values than that measured experimentally (~1-

2%). The Debye-Waller factors and atomic displacements for the atoms in AlAs and GaAs 

were taken from [33]. Other sources of atomic displacement may exist for diffused and 

stepped interfaces such as strain and structural relaxation effects. These would also likely 

alter the HAADF signal in a manner similar to the Debye-Waller factor. However, due to 

difficulty in modelling these effects, they were not included in the simulations and their 

exclusion may introduce a small error in the diffused and stepped models. The calculations 

were performed using the ScotGRID computer system based at the University of Glasgow 

[34].  

 

The starting point for each interfacial model was a supercell made from a perfect AlAs/GaAs 

interface with the probe directed along [110]. The supercell was composed of 8×16 [110]-unit 

cells of AlAs joined to 8×16 [110]-unit cells of GaAs without any strain. Fig. 1 shows a 
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schematic of the supercell for reference. The supercell was 90.5Å×64.0Å (i.e. 

32×32dumbbells) in size, had a slice thickness of 2.0Å and was constructed from 

2048×2048pixels for adequate sampling in real and reciprocal space [32]. A custom script 

allowed the composition of an 8 dumbbell wide strip across the interface boundary to be 

varied in three dimensions to generate a particular model structure. Each model was 

constructed up to a thickness of 100nm (500 slices). 

 

Calculations were performed across each interface (at every slice thickness) for a 16 

dumbbell wide line trace along the central interleaved dumbbell row of the supercell (see Fig. 

1). In order to match the experimental column ratio analysis, discrete probe positions were 

chosen to be simulated along the line. This was also necessary to reduce the prohibitive CPU 

time required to simulate a full STEM profile for each model at every thickness [35]. For 

each of the 16 dumbbells, IIII, IV and IBD were simulated (the inset of Fig. 1 shows these 

positions for a particular dumbbell) and the column ratio calculated. The method of analysis 

previously outlined for the experimental data was then applied to the simulated column ratio 

profiles [16]. In this way, the interfacial width as a function of specimen thickness was 

determined for each model up to 100nm. It should be noted that at thicknesses greater than 

100nm, the scattered real space intensity within the crystal approaches the sides of the 

supercell for probe positions at either end of the simulated line trace. However, since 

dumbbells 1-4 and 13-16 along the simulated line trace are always either bulk AlAs or bulk 

GaAs it was verified that there was no change in the HAADF signals or column ratios of 

these end dumbbells. 

 

In order to test the validity of the simulated conditions, calculations of the column ratio for 

bulk AlAs and bulk GaAs were also performed and compared to experimental values. Fig. 

2(a) reveals that there is a good correspondence between the simulated and experimental 

column ratios for both materials as a function of thickness. This suggests that the exclusion of 

an effective source size and other possible sources of error in the simulations are not too 

significant in this case. Each experimental data point has a standard error of 1-2% and was 

obtained from averaging over 600 dumbbells. The increase in the AlAs column ratio is a 

result of the weakly scattering Al columns retaining a portion of the probe intensity to large 

crystal depths in contrast to the Ga columns. The difference in the channelling depths of Al, 

Ga and As (from GaAs) columns can be seen in Fig. 2(b) where the simulated real space 

intensity contained within a 0.2Å radius of the atom cores is shown as a function of thickness. 
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Whereas the Ga and As columns have a channelling depth of about ~20nm, Al columns still 

retain some probe intensity at 100nm. In addition, all columns focus the probe intensity to 

give a maximum value at a depth of ~3.5nm. 

3. Results and Discussion 

3.1 Perfect Model 

The perfect model was the first to be simulated and consisted of an ideal interface between 

AlAs and GaAs. The purpose of such a simple structure was to give a basic understanding of 

the simulated methods and to provide a benchmark for the other more complicated models. 

Fig. 3 presents a side view schematic of the perfect model down to a thickness of 100nm and 

along the 16 dumbbell wide simulation line. Fig. 3 shows that the perceived interface position 

remains at the boundary throughout the depth of the model. Fig. 4 is a plot of the interface 

width, measured in monolayers, versus specimen thickness and demonstrates that the 

sharpness of the perfect model remains constant. In this case, it would be a simple matter to 

interpret HAADF imaging results. The reason that the perfectly abrupt interface has a non-

zero interface width (~0.9ML) is the result of fitting an analytical function to discrete data 

points and using the 5% to 95% limits as a measure of the interface width. It is apparent that 

the perfect model does not match the experimental results indicating that the two types of 

interfaces do have an underlying interfacial structure. Furthermore, the perfect model 

confirms that the experimental behaviour is not simply the result of beam spreading across an 

ideal interface. 

3.2 Vicinal/Sawtooth Models 

During the MBE growth process, layers are deposited on a [001] oriented GaAs substrate 

which is polished to a tolerance of ±½o [1]. This can lead to a vicinal interface in which the 

layers are inclined at an angle θ with respect to the incident probe [26]. A vicinal structure is 

a specific case of a more general interface form termed a sawtooth in which the angle of 

inclination repeatedly changes direction through the thickness of the material. Fig. 5 shows a 

schematic of a sawtooth model which has a characteristic step length (L) of 7.2nm (36 slices) 

and a repeat length (R) of ~108nm which is slightly greater than the maximum simulation 

depth. This particular step length was chosen to match previous observations of the average 

step length in the AlAs/GaAs system [25]. For the top half of the repeat, the model behaves 
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like a vicinal structure with θ=2.2o which is larger than the usual polishing tolerance. 

Nonetheless, simulation of this model is instructive for establishing the likely behaviour of 

vicinal interfaces. The two interfaces illustrated in the schematic were simulated separately 

using an independent supercell to set up each standalone interface. Due to the geometry of the 

model, the probe either projects through a top section of AlAs (AlAs-projection) or GaAs 

(GaAs-projection) at the interfaces (see Fig. 5).  

The apparent interface position of the AlAs-projection follows the inclination of the stepping 

to a thickness of ~57nm. This behaviour is due to the introduction of heavier Ga atoms to the 

bottom of the 100% Al columns which increases the high angle scattering to produce a 

column signal similar in strength to a bulk Ga column in the neighbouring GaAs. Hence, the 

dumbbells across the stepped interface appear to become part of the GaAs region as the 

thickness is increased and the interface position shifts towards the bulk AlAs region. This 

means that the apparent size of the GaAs layer (given by the distance between the interface 

positions) also expands with thickness as can be seen in Fig. 5. Thus, the measurement of 

layer sizes using HAADF imaging is not a straightforward matter for vicinal/sawtooth 

structures. At a depth of ~57nm, the maximum lateral protrusion of the repeat is reached and 

the structure then acts in a similar manner to a flat interface positioned between dumbbells 

27-28. In the GaAs-projection case, the initial overhang of GaAs causes the columns to 

generate a column signal similar to a bulk Ga column at much lower depths and the interface 

position only marginally shifts towards the GaAs layer. This demonstrates that compositional 

changes at large depths cannot be probed and detected in a standard HAADF image if a 

significant amount of a high Z material is projected through first of all. This is related to the 

relatively short channelling depths of high Z atomic columns such as Ga. 

The change in the interface width for the two projection cases can be seen in Fig. 4. They 

behave exactly like the perfect interface up to the depth at which the first step is introduced 

(7.2nm) as expected. For the AlAs-projection case, the interface width then rises to a value of 

~4ML at a depth of ~28nm (the depth at which 3 steps are present) which is a fair reflection 

of the underlying stepped structure. At greater thicknesses, the interfacial dumbbells become 

GaAs-like and the interfacial width decreases. On the other hand, the interfacial width for the 

GaAs-projection case rises to a value of ~2.3ML at a depth of ~28nm and then gently rises up 

to a value of ~3ML at a depth of ~80nm. It is clear that the two simulated interfaces do not 

produce the variation in the width observed for the AlAs-on-GaAs experimental data but both 
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could be a potential candidate for GaAs-on-AlAs. However, since the vicinal angle of the 

model is larger than that expected of the MBE process, it is unlikely that the experimental 

interfaces have such a structure.  

A second sawtooth model was considered with a very short step length of 1.2nm (6 slices) 

and a repeat length of 19.2nm which is similar to the Ga channelling depth. Fig. 6 displays 

the schematic for this model. In a similar fashion to the previous sawtooth model, the 

apparent interface position of the AlAs-projection generally follows the inclination in the top 

half of the first repeat and shifts towards the bulk AlAs region as Ga is added into the 

columns. After a depth of ~12nm, the interface position stops moving towards the AlAs 

region as not enough Ga is present in dumbbells 24-27 to generate a bulk Ga column signal. 

Correspondingly, the interface width at this depth reaches a maximum value of ~5ML as 

shown in Fig. 4. At greater depths, the interface width tends towards a value of ~3-4ML as 

dumbbells 25-27 always form the transition region between AlAs and GaAs. In this thickness 

range the AlAs-projection shows a similar behaviour to the GaAs-on-AlAs experimental data. 

For the GaAs-projection case, the small entry steps of GaAs near the top surface are not 

enough to generate a bulk Ga column signal from dumbbells 6-11. Hence, the interface 

position shifts towards the GaAs layer as the interfacial region widens at depth. This is unlike 

the first sawtooth model in which the longer GaAs-projected steps generated bulk Ga column 

signals quite readily. At a thickness of ~20-40nm, dumbbells 5-11 form the transition region 

and the interface width reaches a maximum value of ~8ML which is much wider than the 

AlAs-projection case. Dumbbell 12 acts like bulk GaAs at all depths of the model. As the 

thickness increases, dumbbells 5-8 appear to become more AlAs-like and the interface 

position shifts towards the GaAs layer and the interface width shrinks accordingly. Fig. 4 also 

illustrates that the GaAs-projection plot does not match any of the experimental data sets.  

The behaviour of dumbbells 5-8 can be explained by examining the effect of the periodic 

introduction of Ga on the HAADF column signals. Fig. 7 gives the (background-removed) 

HAADF signal of the Group III column of dumbbell 7 with the position of the GaAs steps 

overlaid. Also shown are the equivalent plots of bulk Al and Ga columns. As more Ga is 

added into the column of dumbbell 7, dynamical re-scattering effects start to dominate (in the 

same way as with the bulk Ga column) and the HAADF column signal drops off. As the 

thickness increases, the column signal from dumbbell 7 approaches the rising Al column 
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signal and it eventually becomes indistinguishable from a bulk Al column. Above ~80nm, the 

dumbbell 7 column signal then drops below that of bulk Al despite the possessing a larger 

average Z number. 

Both sawtooth models demonstrate that variations in step and repeat lengths can be 

differentiated using HAADF imaging although simulations are required to estimate the likely 

underlying structure. It is also apparent that significant differences in the measured interfacial 

quality can arise if low or high Z material is projected through first of all. In addition, 

although three of the sawtooth interfaces did show some agreement with the GaAs-on-AlAs 

experimental data, it is unlikely that structures with such regular and consistent stepping are 

formed by MBE. For instance, it has been reported that under certain growth conditions a 

range of step lengths can exist in the AlAs/GaAs system [25].  

To simulate a more realistic vicinal structure, models were created in which random stepping 

was overlaid onto vicinal interfaces. Vicinal angles of θ=0.2o, 0.3o and 0.6o were considered. 

Individual step lengths were chosen from a Gaussian distribution with mean value of 7.2nm 

and were randomly positioned along each interface. To ensure that the results were not 

sensitive to one particular random arrangement, 10 independent configurations for each 

interface were simulated separately and then averaged together during analysis. This is 

equivalent to averaging over many different dumbbell rows in the experimental analysis. To 

limit the required computational time, only the AlAs-projection case was simulated.  

The schematic of the random step 0.6o interface is shown in Fig. 8(a). As was the case for the 

previous sawtooth models, the interface position shifts towards the AlAs region as the 

column signals become similar to bulk Ga columns with increasing thickness. The shift in the 

interface position also continues up to the maximum simulation depth as the projection 

through low Z AlAs allows the compositional changes of the deeper steps to be detected. Fig. 

8(b) reveals the variation in the interface width for the 0.2o, 0.3o and 0.6o models. It can be 

seen that the random step models produce plots of the interface width that better resemble the 

behaviour of the experimental AlAs-on-GaAs interface in contrast to the previous models. 

The vicinal angle also has an effect on the interface width with the 0.6o model generating the 

largest values due to the presence of more steps in the structure compared to the lower angle 

models. Hence, differences in the degree of vicinality of interfacial structures can be detected 

and explored using HAADF imaging. Nevertheless, the 0.6o model still does not generate 
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interface widths that are as large as the AlAs-on-GaAs experimental plot. If the vicinal angle 

is increased it is likely that a suitable match would be produced but the vicinal angle would 

larger than the expected tolerance of the MBE process. 

3.3 Diffusion Models 

The presence of a chemical potential gradient during MBE growth can lead to the formation 

of a diffused interface in which the Group III atoms intermix over a certain range [1]. The 

schematic of a simple linear diffusion model is given in Fig. 9(a). The change in 

concentration of Al and Ga across the interface is provided in Fig. 9(b). A random number 

generator was used to populate each interfacial dumbbell with the required concentration of 

Al and Ga. The calculation results from 10 independent configurations were averaged 

together in a similar fashion to the random step models.  

Fig. 10 demonstrates that the interface width does not match any of the experimental data 

sets. For instance, the modelled interface is very wide (~8ML) for very thin crystals and 

progressively narrows as the thickness is increased. This is due to the high Ga content 

columns of dumbbells 5-7 generating column signals comparable to bulk Ga columns as the 

thickness is increased. This effect is also reflected in the shift of the interface position 

towards the AlAs region as shown in Fig. 9(a). The simple linear diffusion model highlights 

that columns that contain up to 33% Al (i.e. dumbbells 5-7) will be indistinguishable from 

bulk Ga columns for HAADF experiments conducted at typical specimen thicknesses 

(~30nm). Hence, it would be difficult to properly characterise this type of interface using a 

single HAADF image. 

A more realistic model of diffusion in the AlAs/GaAs system was developed by Moison et al 

in which the AlAs-on-GaAs interface exhibited a gradual compositional change over 8ML 

and the GaAs-on-AlAs interface displayed a more abrupt change over 4ML [27]. The 

simulated schematic for the Moison model is given in Fig. 11(a) and the Al and Ga 

concentration profiles are shown in Fig. 11(b). As with the simple linear diffusion model, 

atomic sites were populated randomly and the results from 10 independent configurations 

were averaged together. Each interface was simulated separately using a different supercell 

for each. 
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Fig. 10 shows that there is a good agreement between experiment and simulation for both 

types of interface and that the Moison model provides the closest match to the experimental 

results of all the models considered. For instance, the GaAs-on-AlAs model produces a 

constant interface width of ~3ML over the entire thickness range. Dumbbells 11-12 are 

interfacial at small depths but, as the thickness increases, dumbbell 12 becomes GaAs-like 

and dumbbell 10 slowly becomes interfacial. Thus, the interface position slowly drifts by 

1ML from between dumbbells 11-12 to between dumbbells 10-11. In comparison, the 

interface width of the AlAs-on-GaAs model increases from ~2ML up to ~8ML over the 

thickness range. At small depths it is unlikely that any Ga atoms are present in the Group III 

columns of dumbbells 22-27 due to the small percentage of Ga and the interface width is 

dominated by dumbbells 20-21. However, as the thickness is increased, the number of Ga 

atoms in dumbbells 22-27 slowly rises and the interface widens accordingly. In contrast, the 

interface position only shifts by 2ML into the AlAs region due to the asymmetrical 

concentration profile i.e. the inflection point of the fitted function is kept close to dumbbell 

20 due to the large drop in Ga concentration in that dumbbell. The Moison model therefore 

demonstrates that different diffusion profiles can be identified by HAADF imaging if 

experiments are conducted over a thickness series. 

4. Conclusions 

 

Complex interfacial structures can exhibit a range of characteristics which are difficult to 

interpret directly from HAADF imaging. For instance, the various models of the AlAs/GaAs 

system showed that the measured interface width can change with thickness in a complicated 

manner. Hence, the combination of atomic-resolution HAADF imaging with the simulation 

of interfacial models is necessary for a deeper and more complete analysis of interfacial 

structures. Such analysis should be performed over a range of experimental thicknesses using 

likely candidate models for comparison. In this paper, a series of models were simulated to 

demonstrate the behaviour of some common types of interfacial structures in the AlAs/GaAs 

system and the results were compared to experiment. 

 

The perfect model confirmed that an abrupt interface would be characterised as such if 

analysed by HAADF imaging. In comparison, the vicinal/sawtooth models illustrated that the 

nature of the stepping and the vicinal angle can produce significant differences in the 

measured attributes. These models also established that the interface width is dependent on 
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the type of material that is present in the top part of the specimen. This has implications for 

the way in which a specimen of a vicinal structure is prepared and how it is positioned in the 

microscope as this determines which type of material is projected through first of all. In 

addition, it was also shown that the projection through a low Z material, such as AlAs, allows 

deep compositional changes to be detected due to the long channelling depths of low Z 

columns.  

 

Although three of the vicinal/sawtooth interfaces produced behaviour similar to the 

experimental GaAs-on-AlAs interface, it is unlikely that regular steps are created by the MBE 

process. The more realistic random step model generated a variation in the interface width 

that resembled the experimental AlAs-on-GaAs plot. However, a vicinal angle larger than the 

usual tolerance in MBE is probably required for a better match with experiment. The simple 

linear diffusion model revealed that the interface width decreases substantially with 

thickness. In contrast, the non-linear concentration profile of the Moison diffusion model 

gave the closest agreement with experiment. This model replicated the variation in the 

interface width observed for both types of interface and is the most likely candidate for the 

underlying structure of the interfaces. 
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Figure captions 

Fig. 1. Schematic of the perfect AlAs/GaAs supercell viewed down the [110] direction. Inset 

shows an enlarged view of 2×1 [110]-unit cells with probe positions highlighted for one 

dumbbell.  
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Fig. 2. (a) The variation of the column ratio for bulk GaAs and bulk AlAs as a function of 

specimen thickness for simulation and experiment. (b) Simulated real space intensity as a 

function of thickness for Al, Ga and As (from GaAs) columns. Intensity was integrated over a 

radius of 0.2Å around each column. 

Fig. 3. Side view schematic of the perfect model. The simulated interface position is overlaid.  

Fig. 4. The variation of interface width as a function of specimen thickness for the perfect, 

108nm repeat length (R=108nm) sawtooth and 19.2nm repeat length (R=19.2nm) sawtooth 

simulated models. For each sawtooth model, GaAs-projection and AlAs-projection cases are 

provided. Also shown are the experimental data points for the AlAs-on-GaAs and GaAs-on-

AlAs interfaces. 

Fig. 5. Side view schematic of the 108nm repeat length sawtooth model. The step length is 

7.2nm. The simulated interface position is overlaid for the GaAs-projection and AlAs-

projection interfaces. 

Fig. 6. Side view schematic of the 19.2nm repeat length sawtooth model. The step length is 

1.2nm. The simulated interface position is overlaid for the GaAs-projection and AlAs-

projection interfaces. 

Fig. 7. Simulated HAADF column signal (i.e. minus background) as a function of thickness 

for the Group III column of dumbbell 7 in the 19.2nm repeat length sawtooth model. The 

position of the GaAs steps are overlaid. Also shown are the equivalent column signals for 

bulk Ga (from GaAs) and bulk Al (from AlAs) columns. 

Fig. 8. (a) Side view schematic of the random step 0.6o interface model. The simulated 

interface position is overlaid for the AlAs-projection case. (b) The variation of interface 

width as a function of specimen thickness for the random step interface model with vicinal 

angles of 0.2o, 0.3o and 0.6o. Also shown are the experimental data points for the AlAs-on-

GaAs and GaAs-on-AlAs interfaces. 
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Fig. 9. (a) Side view schematic of the simple linear diffusion model. The simulated interface 

position is overlaid. (b) The change in concentration of Al and Ga across the simple linear 

diffusion model. 

Fig. 10. The variation of interface width as a function of specimen thickness for the simple 

linear diffusion and the Moison diffusion models. Also shown are the experimental data 

points for the AlAs-on-GaAs and GaAs-on-AlAs interfaces. 

Fig. 11. (a) Side view schematic of the Moison diffusion model. The simulated interface 

position is overlaid for the GaAs-on-AlAs and AlAs-on-GaAs interfaces. (b) The change in 

concentration of Al and Ga across the Moison diffusion model. 
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Figures 

 

 

Fig. 1. Schematic of the perfect AlAs/GaAs supercell viewed along the [110] direction. Inset 

shows an enlarged view of 2×1 [110]-unit cells with probe positions highlighted for one 

dumbbell. 
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Fig. 2. (a) The variation of the column ratio for bulk GaAs and bulk AlAs as a function of 

specimen thickness for simulation and experiment. 

 

 

Fig. 2. (b) Simulated real space intensity as a function of thickness for Al, Ga and As (from 

GaAs) columns. Intensity was integrated over a radius of 0.2Å around each column. 
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Fig. 3. Side view schematic of the perfect model. The simulated interface position is overlaid.  
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Fig. 4. The variation of interface width as a function of specimen thickness for the perfect, 

108nm repeat length (R=108nm) sawtooth and 19.2nm repeat length (R=19.2nm) sawtooth 

simulated models. For each sawtooth model, GaAs-projection and AlAs-projection cases are 

provided. Also shown are the experimental data points for the AlAs-on-GaAs and GaAs-on-

AlAs interfaces. 
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Fig. 5. Side view schematic of the 108nm repeat length sawtooth model. The step length is 

7.2nm. The simulated interface position is overlaid for the GaAs-projection and AlAs-

projection interfaces. 
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Fig. 6. Side view schematic of the 19.2nm repeat length sawtooth model. The step length is 

1.2nm. The simulated interface position is overlaid for the GaAs-projection and AlAs-

projection interfaces. 
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Fig. 7. Simulated HAADF column signal (i.e. minus background) as a function of thickness 

for the Group III column of dumbbell 7 in the 19.2nm repeat length sawtooth model. The 

position of the GaAs steps are overlaid. Also shown are the equivalent column signals for 

pure Ga (from GaAs) and pure Al (from AlAs) columns. 
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Fig. 8(a). Side view schematic of the random step 0.6o interface model. The simulated 

interface position is overlaid for the AlAs-projection case. 

 

Fig. 8(b). The variation of interface width as a function of specimen thickness for the random 

step interface model with vicinal angles of 0.2o, 0.3o and 0.6o. Also shown are the 

experimental data points for the AlAs-on-GaAs and GaAs-on-AlAs interfaces. 
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Fig. 9(a). Side view schematic of the simple linear diffusion model. The simulated interface 

position is overlaid. 

 

 

Fig. 9(b). The change in concentration of Al and Ga across the simple linear diffusion model. 
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Fig. 10. The variation of interface width as a function of specimen thickness for the simple 

linear diffusion and the Moison diffusion models. Also shown are the experimental data 

points for the AlAs-on-GaAs and GaAs-on-AlAs interfaces. 
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Fig. 11(a). Side view schematic of the Moison diffusion model. The simulated interface 

position is overlaid for the GaAs-on-AlAs and AlAs-on-GaAs interfaces. 

 

 

Fig. 11(b). The change in concentration of Al and Ga across the Moison diffusion model. 
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