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Abstract

Implicit statistical learning, whereby predictable relationships between stimuli are detected

without conscious awareness, is important for language acquisition. However, while this

process is putatively implicit, it is often assessed using measures that require explicit reflec-

tion and conscious decision making. Here, we conducted three experiments combining an

artificial grammar learning paradigm with a serial reaction time (SRT-AGL) task, to measure

statistical learning of adjacent and nonadjacent dependencies implicitly, without conscious

decision making. Participants viewed an array of six visual stimuli and were presented with

a sequence of three auditory (nonsense words, Expt. 1; names of familiar objects, Expt. 2)

or visual (abstract shapes, Expt. 3) cues and were asked to click on the corresponding visual

stimulus as quickly as possible. In each experiment, the final stimulus in the sequence was

predictable based on items earlier in the sequence. Faster responses to this predictable

final stimulus compared to unpredictable stimuli would provide evidence of implicit statistical

learning, without requiring explicit decision making or conscious reflection. Despite previous

positive results (Christiansen et al. 2009 and Misyak et al. 2010) we saw little evidence of

implicit statistical learning in any of the experiments, suggesting that in this case, these

SRT-AGL tasks were not an effective measure implicit statistical learning.

Introduction

The environment in which we live is richly structured; events do not occur randomly, but

some events predict others. For example, rain can typically be predicted by the presence of

dark clouds, or the sound of a car horn may predict a traffic accident. We often learn about

this structure via implicit statistical learning, whereby knowledge is acquired automatically,

without explicit awareness of the relationships between objects, events or actions. This same
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process of acquiring structure based on statistical cues is also central to language learning,

where grammatical rules are often acquired implicitly and without conscious awareness [1–3].

In a series of seminal studies, Saffran and colleagues showed that infants learn to recognise

word boundaries in a continuous speech stream based only on statistical regularities from

both artificial stimuli [4–7] and in natural languages [8]. Beyond detecting word boundaries,

similar processes are assumed to be involved in implicitly learning grammatical relationships

between words or phrases [9–13]. These artificial grammar learning experiments can be used

to assess the learning of both relationships between adjacent words in a sentence, and also

more complex nonadjacent dependencies [14, 15]. These types of tasks have provided valuable

insights into how grammatical knowledge can be acquired based on the statistical regularities

in the input to which we are exposed, without conscious awareness of these grammatical rules

[12].

Artificial grammar learning studies typically consist of two phases. First is an exposure or

learning phase in which a participant is presented with many sequences of stimuli (normally

auditory or visual), which conform to certain rules and thus contain predictable statistical reg-

ularities (e.g., some stimuli co-occur more frequently than others). In this phase participants

might be asked to attend to the stimuli but are usually not told to search for any particular

rules or patterns, only to passively view or listen to the stimuli. In a subsequent testing phase,

participants are presented with some sequences which follow the same rules as the exposure

sequences that they previously heard (grammatical sequences) and some sequences which vio-

late these rules (ungrammatical sequences). Different responses to the grammatical sequences

compared to the ungrammatical sequences can be taken as evidence that the participant

learned at least some of the rules or statistical regularities during the initial exposure phase.

The inability to identify any of the rules or relationships within the grammar suggests that this

knowledge is implicit [12, 16, 17].

The testing phase of artificial grammar learning experiments often rely on methods that, at

least to some extent, assess explicit knowledge. In these studies, following exposure, partici-

pants typically complete a grammaticality judgement task, in which they are told that the

sequences that they have just heard followed certain rules or patterns. They are then told that

they must indicate whether the testing sequences that they are about to hear are “well-formed”,

in other words, whether they follow the same or different patterns [7, 12]. These ‘reflection-

based’ methods require participants to consciously think about what they have learned and

make explicit decisions about the grammaticality of a sequence. This may not be an appropri-

ate way of measuring implicit statistical learning, as these tasks are potentially tapping into

other, more explicit decision-making processes [18]. To avoid this, some studies have used

‘processing-based’ measures of learning, which measure other variables that are facilitated by

implicit statistical learning, and avoid any interference from explicit decision-making pro-

cesses [2, 18–23].

One processing-based approach that avoids relying on explicit decision-making uses reac-

tion times to measure implicit learning. One of the reasons that it is beneficial to learn statisti-

cal regularities in our environment is because it allows us to better predict future events, and

thus react faster to them. Serial Reaction Time (SRT) tasks have demonstrated implicit learn-

ing by showing that if participants are asked to make sequences of motor responses (e.g., touch

stimuli in different spatial locations), they become faster at producing predictable sequences

than random sequences [24–26]. In these tasks, faster reaction times demonstrate implicit

learning of action sequences.

The learning observed in traditional SRT tasks may be somewhat different to the statistical

learning found in artificial grammar learning tasks and indeed in natural language, in which

participants must learn dependencies between sensory stimuli rather than between spatial
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locations. Moreover, traditional SRT tasks are thought to rely on different cognitive and neural

mechanisms than artificial grammar learning tasks, for example procedural memory [27].

However, SRT tasks have been adapted to better assess artificial grammar learning, and to

measure the learning of associations between stimuli, rather than the relationships between

specific spatial locations. For example, Misyak et al. [20] presented participants with a visual

array containing two rows of three nonsense word stimuli (see Fig 1 for a similar design). Par-

ticipants were then presented with a sequence of three auditory nonsense words, each corre-

sponding to one of the nonsense words on screen and asked to click on the matching

nonsense word stimulus as quickly as possible. Unbeknownst to the participants, the first non-

sense word of the sequence always predicted the final nonsense word, by way of a nonadjacent

dependency. Over the course of the experiment participants became faster at responding to

this final predictable nonsense word, and reaction times were slower in a ‘Testing Block’ when

they were presented with sequences that did not contain the predictable relationships [19]

(although see [28–30] for other instances of SRT-like measures for SL, and [31], for an early

adaptation of the SRT paradigm). Importantly, in this task although the nonsense word

sequences always unfolded from left to right across the screen, the vertical position of the sti-

muli was randomised, and was not predictable based on the previous nonsense words. This

removes the reliance on motor learning of action sequences, and required that the participants

learn relationships between the nonsense words themselves.

There has been much discussion relating to the types of processing that are involved in

implicit statistical learning tasks, and whether these tasks are effective and reliable measures

[32]. Indeed, many tasks measuring implicit statistical learning rely on both implicit and

explicit processing, and separating these processes presents challenges [33]. Indeed, a related,

although not wholly analogous, line of research has used a range of measures (including sub-

jective confidence ratings, gambling tasks and target detection paradigms) to ask whether the

knowledge acquired in these tasks may actually be available to explicit, conscious awareness,

and therefore may not truly be ‘implicit’ knowledge (see [34–39]). This is undoubtedly an

important question, although it is somewhat different to the goal of the current study. Here,

rather than asking if the learning that is observed is explicitly available, we instead ask whether

it is possible to elicit and measure learning without requiring any conscious reflection. One of

the key benefits of combining SRT and AGL paradigms over other ‘implicit’ paradigms (e.g.,

[39]) is that these tasks retain the flexibility of traditional AGL paradigms, in that they can be

used to measure learning of a variety of types of grammatical dependencies, from simpler adja-

cent dependencies to more complex hierarchical relationships.

Although it was beyond the scope of the current experiments, the long-term aim of this

project was to design a task that could be used in the future to assess individual differences in

implicit statistical learning in individuals with language and reading difficulties, such as dys-

lexia. To achieve this goal, we first aimed to broadly replicate the original results ([20]; Experi-

ment. 1), then to design an SRT-AGL task more suitable for those with language difficulties or

disorders by removing the requirement to read nonsense words (Experiment 2) or respond to

phonological stimuli (Experiment 3), the processing of which is thought to be impaired in dys-

lexia [40].

Following the SRT-AGL task, participants completed reflection-based tasks to investigate

more explicit awareness of the dependencies within the sequences. In Experiments 1 and 2,

participants completed a ‘Sequence Completion’ task and a ‘Grammaticality Judgement’ task,

and in Experiment 3 they also completed a novel ‘Sequence Generation’ task. In the Sequence

Completion task, participants were presented with the first two stimuli in a sequence, as in the

SRT-AGL task. However, the final stimulus was omitted, and the participant was asked to

complete the sequence without the cue, by selecting the appropriate final stimulus based on
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Fig 1. Trial design for Experiment 1. A) SRT-AGL task. On each trial participants were presented with an array of 6 visual nonsense word stimuli. Every

trial contained 2 ‘A’ elements in the left column, 2 ‘X’ elements in the middle column, and 2 ‘B’ items in the right column. Participants were presented with

an auditory cue corresponding to one of the two visual stimuli in each column, and were asked to click on the matching visual stimulus as quickly as

possible (see Methods). Following their final response, participants were given a score corresponding to their total reaction time across the whole sequence.

B) Sequence Completion task. As in the SRT-AGL task, participants were presented with a visual array of stimuli and responded to the first two auditory

cue stimuli. However, the final auditory cue stimulus was replaced with a ‘beep’ sound, and the participants were asked to guess the nonsense word stimulus

that they felt completed the sequence. C) Grammaticality Judgement Task. In this task participants were shown a blue fixation spot and were presented with

an auditory sequence that was either ‘grammatical’ or ‘ungrammatical’. When the spot changed colour, they pressed one of two keys on the keyboard to

indicate whether the sequence followed the same pattern as the sequence they had heard previously or not.

https://doi.org/10.1371/journal.pone.0308653.g001
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what they had learned during the experiment. In this task, rather than using reaction times as

a processing-based measure of learning, response accuracy in selecting this final element was

analysed to assess learning that might be somewhat more explicit, and based on conscious

reflection. The Grammaticality Judgement task was very similar to those used in previous

experiments [19, 20]. Participants were presented with a sequence and explicitly asked whether

the sequence followed the same pattern as the sequences they had previously been exposed to,

requiring further explicit reflection on their knowledge of the underlying structure of the

sequences. In the Sequence Generation task in Experiment 3, participants were tasked with

creating their own sequences, without any cues, based on what they had learned. The Sequence

Generation task was designed to provide more information regarding the extent to which par-

ticipants are consciously aware of any implicitly acquired knowledge, as the ability to generate

sequences relies on gaining explicit access to knowledge of the dependencies [41, 42]. Taken

together, these tasks were included to assess the extent to which participants had access to the

information they had (presumably) implicitly learned, in order to make more explicit

decisions.

If SRT-AGL tasks are an effective measure of implicit statistical learning, then we would

predict that participants would show faster reaction times to the predictable sequences than to

unpredictable sequences. If this learning was consciously accessible, we would also predict that

those participants who showed implicit learning during the SRT-AGL tasks should also show

above chance performance during the subsequent, more explicit tasks. By contrast, if implicitly

learned knowledge is inaccessible for immediate conscious decision-making, we would predict

no correlation between the SRT-AGL task and the explicit tasks [43, 44].

General methods

Stimuli

In three experiments, we used an artificial grammar to assess whether participants implicitly

learn nonadjacent dependencies [20, 45]. This grammar generates sequences of three elements

of the form ‘AXB’, where the initial ‘A’ element (e.g., ‘A1’) predicts the final ‘B’ element (‘B1’)

forming a nonadjacent dependency (‘A1XB1’) while the intervening ‘X’ element is not depen-

dent on either the ‘A’ or the ‘B’ stimuli. In Experiment 3, we also assessed adjacent dependency

learning using a similar grammar of the form ‘XAB’, where the ‘A’ elements still predicted the

‘B’ elements, but these items occurred adjacent to one another in a sequence, rather than being

separated by the intervening ‘X’ element.

Procedure

We conducted three experiments based on previous Serial Reaction Time-Artificial Grammar

Learning (SRT-AGL) experiments [19, 20, 46]. All three experiments shared the same general

procedure, including an SRT-AGL task, followed by a Sequence Completion task and a Gram-

maticality Judgement task (see below for details). All participants provided informed consent

before taking part.

All experiments took place in testing labs either within the Institute of Neuroscience at

Newcastle University or the Department of Psychology at Emory University. Participants were

seated approximately 60cm in front of a 24 inch computer monitor (screen resolution

1920*1200 pixels). All experiments were coded using Matlab and PsychToolbox. Responses

were made either with the mouse (in the SRT-AGL and Sequence Completion tasks) or by

pressing one of two keys on the keyboard (in the Grammaticality Judgement tasks, see below).

All experiments had ethical approval from the Newcastle University Human Ethics Committee
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for Faculty of Medical Sciences or Emory University Institutional Review Board, and all the

participants provided informed consent before taking part in the experiment.

Serial Reaction Time-Artificial Grammar Learning task

In the SRT-AGL task, participants were presented with an array of 6 visual stimuli arranged in

two rows of three images (Fig 1). The vertical position of the stimuli (upper or lower) was

pseudo-randomised so that all items occurred equally frequently in the upper and lower posi-

tions, and so that the matching ‘A’ and ‘B’ elements occurred in the same row 50% of the time,

so the correct responses could not be predicted based on the position of the stimuli. 250ms

after the visual stimuli appeared, we presented a cue stimulus which corresponded to one of

the two visual stimuli in the left-hand column on the screen (see Fig 1, and below for details of

stimuli for each experiment) and the participant was instructed to click on the matching stim-

ulus as quickly as possible. Immediately following their response, a cue stimulus correspond-

ing to one of the visual stimuli in the middle column was presented, and again participants

reacted as quickly as possible, before a cue corresponding to a stimulus in the right column

was presented in the same way. At the end of each trial, after the participant made their final

response, participants were given feedback based on their reaction time (see below). The

mouse cursor remained in the control of the participant throughout the experiment.

In each experiment the final element of the sequence was predictable based on the previous

elements in the sequence (see Stimuli). Therefore, if participants had learned the dependency,

they should be able to respond more quickly to this predictable element than the preceding,

unpredictable stimuli [19, 20]. Therefore, we calculated the difference in reaction time between

the first (RTA) and last element (RTB). This difference (RTA-B) gives a measure of the speed

increase provided by the predictable stimulus. We also calculated a similar measure of reaction

time based on the unpredictable ‘X’ element (RTX-B). The results of these analyses did not dif-

fer from those using RTA-B, (see S1 Fig in S1 File), so we primarily report the RTA-B results.

In each experiment participants were also presented with ungrammatical sequences in

which the final ‘B’ element in the sequence did not correspond to the ‘A’ element (e.g.,

‘A1XB2’). In Experiments 1 and 2 these ungrammatical sequences were all presented in a single

‘Testing Block’ of 24 trials towards the end of the experiment, while in Experiment 3 we used

an oddball design, in which the ungrammatical sequences were infrequently presented

throughout the experiment (see individual experiment Methods, below). In both cases, we pre-

dicted that if participants had learned the dependencies (e.g., A1! B1), they should implicitly

anticipate the predictable ‘B’ stimulus and therefore when they are asked to click on an unex-

pected element (e.g., B2) they should show slower reaction times.

Sequence Completion task

Following the SRT-AGL task each participant took part in a Sequence Completion task con-

sisting of 12 trials. Each trial in this task began identically to the SRT-AGL task: the partici-

pants were presented with an array of 6 visual stimuli, after which the first two cue stimuli

were presented and participants responded by clicking on the matching stimuli, as before.

However, instead of presenting the final cue stimulus (corresponding to the final element in

the sequence), participants were presented with either a ‘beep’ sound (Experiment 1 and 2) or

a question mark (Experiment 3) in place of the final cue stimulus (see Fig 1). They were

instructed to choose which of the two possible final stimuli they thought completed the

sequence. We predicted that if the participants had learned the sequence dependencies in the

earlier part of the task, they should be more likely to select the correct stimulus. As the partici-

pants were asked to make a conscious decision in this task, this may rely on more explicit
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processes, similar to grammaticality judgement tasks. However, unlike the grammaticality

judgement tasks, the participants were not informed that the sequences followed any patterns

or rules within the sequences prior to this task, and therefore this might offer a more implicit

alternative to the grammaticality judgement task.

Grammaticality Judgement task

We then conducted a more traditional grammaticality judgement task. In this task, partici-

pants were presented with 24 sequences of three stimuli (drawn from the SRT-AGL stimuli,

with each stimulus (e.g., A1, A2, A3), presented equally frequently) and asked whether or not

these sequences ‘followed the same pattern’ as the sequences they had heard or seen previously,

by pressing one of two keys on the keyboard. They were told that if they were not certain they

should respond based on their gut feeling. This approach is similar to many other AGL studies,

particularly testing adult participants [12].

Data analysis

In all SRT-AGL task trials, if participants made an error the trial was omitted from the reaction

time analysis (<4% of trials contained an incorrect response). We predicted that participants

may also make more errors in their selection of the final ‘B’ elements for the ungrammatical

sequences than for the grammatical sequences, although analysis of the data from all three

tasks showed that errors were minimal. To remove outliers, we also omitted trials with reaction

times that exceeded the mean reaction time + 3SDs, for each participant.

Experiment 1: Nonsense word SRT-AGL task

Participants

Twenty-eight adult participants (17 female, 11 male; ages 19–52 years, mean age: 31 years)

were recruited using the Institute of Neuroscience participant pool at Newcastle University.

All participants had normal or corrected to normal hearing and vision.

Stimuli

In this experiment the stimuli were monosyllabic consonant-vowel-consonant (CVC) non-

sense words (e.g., ‘bek’, ‘kiv’, ‘jat’; see Table 1), presented in the form ‘AXB’. We used 3 ‘A’ and

3 ‘B’ elements, which consistently co-occurred with one another (e.g., ‘A1XB1’; if a sequence

began with ‘bek’ it always ended with ‘jat’). We included 24 ‘X’ elements (see Table 1), based

on the finding that more variability in these uninformative stimuli facilitates the learning of

nonadjacent dependencies [45]. The ‘X’ elements used in this experiment were monosyllabic

Table 1. Stimuli for Experiment 1. Sequences all took the form ‘AXB’ (e.g., ‘bek kiv jat’), in which the ‘A’ and ‘B’ elements always co-occurred. There were 3 ‘A’ and ‘B’

elements and 24 possible ‘X’ elements giving a total of 72 possible grammatical sequences. Each sequence was presented once in each Learning Block and in the Recovery

Block (see Methods). In the Testing Block, ungrammatical pairs of A and B elements (i.e., A1_B2, A1_B3, A2_B1, A2_B3, A3_B1, A3_B2) were presented four times and each

‘X’ element was presented once.

‘A’ Elements ‘B’ Elements ‘X’ elements

bek - jat biz heb lod rik
dil jup lun ruj

hix - tef fal kay mep sap
fip kiv mot taz

pob - zad gak kug naj vup
gol lar raz yun

https://doi.org/10.1371/journal.pone.0308653.t001
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(rather than bisyllabic ‘X’ as in the original Misyak et al. study [20]) to more closely mimic nat-

ural language, where nonadjacent dependencies may not be denoted by perceptual cues. All

sequences took the form ‘AXB’, however for the ungrammatical testing sequences the ‘A’ and

‘B’ elements did not match (e.g., A1XB2, ‘bek kiv tef’ instead of ‘bek kiv jat’).
On each trial, participants were presented with both auditory and visual nonsense word sti-

muli (see Procedure). The auditory stimuli were naturally spoken by a female native English

speaker recorded with an Edirol R-09HR (Roland) sound recorder and their amplitude was

root-mean-square (RMS) balanced. The stimuli were presented at 70dB. The duration of all

nonsense word stimuli was 600ms. The visual stimuli were presented on a computer monitor

in white on a black background in courier font at font size 48 within a 300 by 300-pixel square

(Fig 1).

Procedure

Participants completed the SRT-AGL task first, which consisted of several different blocks.

First were 6 ‘Learning Blocks’, in which participants were presented only with grammatical

sequences. Every possible ‘AXB’ sequence was presented once per block for a total of 72 trials,

and the order of the sequences was randomised. These blocks gave the participants the oppor-

tunity to implicitly learn the nonadjacent dependencies. Following the 6 Learning Blocks there

was a ‘Testing Block’ of 24 trials, in which participants were presented with only ungrammati-

cal sequences (e.g., A1XB2). In the Testing Block all ungrammatical pairs of ‘A’ and ‘B’ ele-

ments (i.e., A1_B2, A1_B3, A2_B1, A2_B3, A3_B1, A3_B2) were presented equally frequently and

each ‘X’ element was presented once. Finally, there was a ‘Recovery Block’ of 72 trials consist-

ing only of grammatical sequences. This block was identical to the first 6 Learning Blocks.

There were no pauses or information screens separating the different blocks, so participants

were unaware that they were transitioning to or from the Testing Block. There was one

optional pause halfway through the experiment, between Learning Blocks 4 and 5, to give the

participants an opportunity to take a short break, if they desired. There was no relationship

between break duration and learning (see S1 Table in S1 File).

In all the blocks, after completing each trial participants were given a score from 0–100

based on their reaction times, to encourage them to respond as quickly as possible (1/sum of

reaction times (in seconds) multiplied by 100). This score was based on their total reaction

time across the whole sequence, not specifically to the final, predictable ‘B’ element. This was

to avoid any possibility that participants might preferentially respond quickly only to certain

elements in the sequence to receive a higher score.

Following the SRT-AGL task, participants took part in the Sequence Completion and

Grammaticality Judgement tasks (see General Methods).

Data analysis

In the SRT-AGL task, participants completed 6 Learning Blocks, containing grammatical

sequences only, followed by an ungrammatical Testing Block, followed by a final grammatical

Recovery Block. We conducted repeated measures ANOVAs to compare reaction times across

blocks. As in previous studies using this methodology, if learning had occurred during the

SRT-AGL task, then we would predict faster reaction times to the final, predictable ‘B’ element

(RTA-B) in Learning Block 6 compared to Learning Block 1, as well as faster reaction times in

Learning Block 6 compared to the Testing Block and faster reaction times in the Recovery

Block compared to the Testing Block. Therefore, we also conducted planned comparisons

using paired sample t-tests to compare reaction time differences between these blocks of the

SRT-AGL task. Performance in the Sequence Completion and Grammaticality Judgement task
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was compared to chance (50%) using one sample t-tests. To correlate performance on the

implicit SRT-AGL task with the more explicit tasks, Pearson’s correlation coefficients were

calculated.

Results

In this experiment we used an SRT-AGL task to assess the implicit learning of nonadjacent

dependencies between nonsense words, based on the paradigm developed by Misyak et al.

[20]. Misyak and colleagues found that participants got faster at responding to predictable ‘B’

elements over the course of the experiment (RTA-B increased from Learning Block 1 to Learn-

ing Block 6), and that responses slowed when presented with ungrammatical sequences in the

Testing Block (Block 7), before increasing again in the Recovery Block (Block 8). We predicted

similar effects in this experiment; however, the results were less clear.

We conducted a repeated measures ANOVA (with Greenhouse-Geisser corrections) with

Block (8 blocks) as a within-subjects factor. There was no significant main effect of Block

(F2.49,67.29 = 2.757, p = .059, η2
p = 0.093, 90% CIs = [0, 0.189]). Planned comparisons indicate

that there was no increase in the reaction time difference (RTA-B) from the first Learning

Block to the final Learning Block, (paired-sample t-tests; t27 = 0.138, p = 0.89, d = 0.026, 95%

CI = [-0.345, 0.396]; Fig 2A, see S2 Table in S1 File for descriptive statistics), showing that the

participants did not get faster at responding to the predictable stimuli over the course of the

experiment. After completing the 6 Learning Blocks during which participants were only pre-

sented with grammatical sequences containing the predictable ‘A-B’ transitions, participants

completed the Testing Block, in which all the sequences ended with an unexpected ‘B’ element

(e.g., A1XB2). We compared response times in the final Learning Block with this Testing Block

and found a trend towards slower responses (t27 = 2.00, p = 0.056, d = 0.378, 95% CI = [-0.009,

0.759]), and to the subsequent Recovery Block where we found no significant differences (t27 =

-1.48, p = 0.15, d = -0.279, 95% CI = [-0.655, 0.101]). While the pattern of results is visually

somewhat similar to the findings of previous studies using a similar paradigm [20], our data

provide little evidence of implicit learning of the nonadjacent dependencies. Note, one poten-

tial explanation for the lack of an effect using the RTA-B measure may be that the task was suffi-

ciently simple that participants’ reaction times showed a floor effect, whereby it was not

possible to respond any faster. We therefore calculated average reaction times to the ‘A’, ‘X’

and ‘B’ elements for each block of the experiment (see S2 Fig in S1 File). Average reaction

times exceeded 800ms in all cases, suggesting that the lack of any differences in reaction times

to the ‘A’ and ‘B’ elements was not driven by a floor effect. Moreover, reaction times to each

element type were highly consistent (Cronbach’s alpha reliabilities > 0.9 in all cases).

Following the SRT-AGL task, participants took part in the Sequence Completion task and

the Grammaticality Judgment task. Performance was at chance levels in both the Sequence

Completion task (t27 = -0.22, p = 0.83, d = -0.042, 95% CI = [-0.412, 0.329]; Fig 2B) and the

Grammaticality Judgement task (t27 = 0.97, p = 0.34, d = 0.182, 95% CI = [-0.193, 0.554]; Fig

2C), again failing to demonstrate learning of the nonadjacent dependencies.

While at a group level we see little evidence of implicit learning, both the sequence comple-

tion task and grammaticality judgement task reveal a bimodal distribution of responses, with

some participants performing at very high levels (green circles in Fig 2B and 2C) while the

majority do not differ from chance (red circles). We categorised learners as participants who

performed significantly above chance using binomial tests based on performance on the

explicit tasks. The same three participants performed above chance on both the Grammatical-

ity Judgment task and the Sequence Completion task. Interestingly, although only three partic-

ipants fell into this category (rendering statistical analyses impossible), they all showed the
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patterns of performance on the prior SRT-AGL task that we predicted (Fig 2D). However,

despite this, the majority of participants showed no evidence of learning in the SRT-AGL task

(Fig 2E), or in the Sequence Completion or Grammaticality Judgement tasks.

Although based on good learning in only three participants, it is interesting that perfor-

mance on the Sequence Completion task and Grammaticality Judgement task corresponds

well with the implicit learning measured by the SRT-AGL task. This may suggest that these

few participants had some conscious awareness of the regularities that they had learned during

the SRT-AGL task. To directly assess the relationship between our implicit and explicit mea-

sures of learning, we calculated composite measures of SRT-AGL performance (based on the

mean of the key measures of implicit learning: the mean of the difference between Learning

Block 6 and Learning Block 1; Learning Block 6 vs Testing Block; Recovery Block vs Testing

Block), and explicit task performance (based on the mean performance on the Sequence Com-

pletion task and Grammaticality Judgement Task). These two measures were highly correlated

(r = 0.71, p< 0.001). However, a substantial amount of this effect was driven by the three good

Fig 2. Experiment 1 results. A) Mean reaction time differences (RTA-B ± SEM, thick blue line) for all participants for

the 6 Learning Blocks, the Testing Block containing ungrammatical sequences (highlighted in pink), and the Recovery

Block. Individual data is shown in grey. B) Mean (± SEM) performance on the sequence completion task. Individual

performance is shown in circles. Good learners are shown in green (based on individual binomial tests, p< 0.05), non-

learners are shown in red (p > 0.05). C) Mean performance (± SEM) on the grammaticality judgement task, including

learners and non-learners, as in B. D) Mean reaction time differences (RTA-B ± SEM) highlighting the good learners

(green) based on the sequence completion and grammaticality judgement tasks, showing the predicted pattern of

responses. E) Mean reaction time differences (RTA-B ± SEM) for the non-learners (red) on the sequence completion

and grammaticality judgement tasks, showing no learning on the SRT-AGL task.

https://doi.org/10.1371/journal.pone.0308653.g002
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learners and removing them from the analysis reduces the correlation substantially (r = 0.47,

p = 0.02). However, given that no learning occurred in the SRT-AGL task in the majority of

the participants, any correlations are unlikely to be informative, as they mostly reflect noise in

the learning data.

At a group level, these results provide no clear evidence of nonadjacent dependency learn-

ing using either processing-based measures (SRT-AGL task) or reflection-based tasks

(Sequence Completion and Grammaticality Judgement tasks). Evidence of learning of the

nonadjacent dependencies was found in only a small minority of the participants, and while

the correlation between implicit and explicit performance in these participants is intriguing,

the majority of the sample showed no evidence of learning in either the SRT-AGL or subse-

quent Sequence Completion and Grammaticality Judgement tasks.

Discussion

In Experiment 1, we found no evidence of learning across the SRT-AGL task at a group level.

Participants’ reaction times to the predictable ‘B’ elements did not decrease across grammatical

blocks, and there was no difference in reaction times to these predictable ‘B’ elements between

the grammatical and ungrammatical blocks. In the subsequent Sequence Completion and

Grammaticality Judgement task, group performance was at chance levels. However, despite

not finding evidence of learning at a group level, we did see very high levels of performance in

the sequence completion and grammaticality judgement tasks in a small subset of participants

(3 out of 28). These three participants also performed as predicted in the implicit SRT-AGL

task. This bimodal distribution of performance is somewhat surprising, suggesting an almost

binary distinction between those who learn the dependencies (most likely explicitly) and per-

form well on all the tasks, compared to those who show no measurable learning in either the

implicit or more explicit tasks. Although the learners were defined based on their performance

in the explicit tasks, these participants also showed learning in the prior SRT-AGL task. This

suggests that these learners had acquired some knowledge that benefitted them in the

SRT-AGL task, and which they could access more explicitly in the subsequent Sequence Com-

pletion and Grammaticality Judgement tasks. We do not highlight this pattern of results to

suggest that this experiment successfully elicited learning. Rather, we aim to highlight the

opposite point, that even if our results had been significant at the group level, had this bimodal

pattern of results persisted we would be unwilling to claim that we found evidence for learning

at the population level, when the majority of the population actually showed no such effect.

When a group level effect is driven by a small number of (outlier) participants, we believe it is

prudent to be sceptical of this task as an effective measure of learning.

At a group level we saw no evidence of learning in the Sequence Completion and Grammat-

icality Judgement tasks, even though such tasks have been used successfully in more traditional

AGL paradigms. These AGL experiments typically consist of an exposure phase, where partici-

pants are exposed to grammatical sequences, followed by testing using a Grammaticality

Judgement task. In the exposure phase, participants are instructed to attend to the stimuli with

no distractions, to provide an opportunity for learning to take place. In the present experiment

there was no passive exposure phase, instead participants were exposed to the dependencies

during the SRT-AGL task’s learning blocks. It is possible that the design of the task—in which

participants attended to an auditory cue, identified its visual counterpart, then selected it,

before moving on to the next element in the sequence–resulted in participants processing each

element individually, rather than processing the sequence as a whole, as they might during a

passive exposure phase. This may lead to the lack of learning we observed in this experiment

(as we consider further in the General Discussion).
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The findings from this experiment differed from those of Misyak et al [20], upon which this

experiment was based. One other possible explanation for the conflicting results is the slight

difference in the intervening ‘X’ elements used in this study: in Misyak et al.’s experiment, the

‘X’ elements were bisyllabic, meaning that they were perceptually distinct from the ‘A’ and ‘B’

elements, a difference which is thought to facilitate learning of the dependencies between the

‘A’ and ‘B’ elements [15]. In the current experiment, the ‘A’, ‘X’ and ‘B’ elements were all

monosyllabic, meaning there were fewer perceptual cues that could be used to make the

dependencies between the ‘A’ and ‘B’ elements more salient. While some previous research has

suggested that nonadjacent dependencies are difficult for adults to learn without these addi-

tional cues (for a review, see [15]), many studies have shown successful learning of nonadja-

cent dependencies without using these bisyllabic stimuli (in adults: [47–49] and in infants: [50,

51]). Nevertheless, it is possible that the lack of any cues that differentiated the ‘A’, ‘X’, and ‘B’

elements could have made learning more difficult. Therefore, in Experiment 2, we used stimuli

drawn from three different categories for the different element types.

In Experiment 1, we aimed to adapt Misyak et al. [20], to establish an effective processing-

based measure of implicit statistical learning that could, in the future, be used to measure indi-

vidual differences in learning, particularly in individuals with language difficulties, where non-

sense words may not be appropriate. Given that this experiment failed to show implicit

learning, we made several adaptations to the task, both to try and increase the chances that the

task would elicit and measure implicit learning, and to make it more appropriate for individu-

als with language difficulties. Therefore, in Experiment 2 we aimed to improve the SRT-AGL

task by using familiar objects as stimuli. We also introduced perceptual categories for the ‘A’,

‘X’ and ‘B’ elements with the goal of making the relationship between the ‘A’ and ‘B’ elements

more salient. Furthermore, this modification removes the requirement for reading in the task,

which makes it more appropriate when testing individuals with language difficulties.

Experiment 2: Non-linguistic audio-visual SRT-AGL task

The key aim of these experiments was to develop a task, based on the original SRT-AGL para-

digm [19, 20], that can be used to measure individual differences in implicit statistical learning,

particularly in individuals with language difficulties. People with language difficulties like dys-

lexia often have problems reading, and particularly reading nonsense words that depend more

heavily on phonological decoding [40]. Therefore, in this experiment we modified the task to

remove the requirement to read the nonsense word stimuli, using familiar objects (i.e., ani-

mals, plants and food objects) instead of non-words. This allowed us to present auditory cues

while the participant responded to visual stimuli, without requiring reading. Moreover, we

used different categories of objects for the ‘A’, ‘X’ and ‘B’ stimuli, in an attempt to add percep-

tual cues that may facilitate learning (see General Discussion, and [15]).

The predictions for Experiment 2 remain the same as in Experiment 1: If the SRT-AGL task

can effectively measure implicit statistical learning, then we would predict faster reaction times

to the ‘B’ elements relative to the ‘A’ elements across Learning Blocks, followed by slower reac-

tion times in the ungrammatical Testing Block, before restoration to faster reaction times in

the final Recovery Block. Following the SRT-AGL task, participants completed the same

Sequence Completion and Grammaticality Judgement tasks, using the new familiar object sti-

muli. As in Experiment 1, if learning had occurred and was consciously accessible, we would

also predict that performance on the SRT-AGL tasks would correlate with performance during

the subsequent, more explicit tasks. By contrast, if implicitly learned knowledge is inaccessible

for conscious decision making, we would predict no correlation between the SRT-AGL task

and the explicit tasks [43, 44].
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Methods

Participants. Thirty-eight adult participants (29 female, 7 male; mean age = 21.1) were

recruited for Experiment 2. Sixteen participants were recruited using the Institute of Neurosci-

ence participant pool at Newcastle University. An additional 22 participants were recruited

through the Department of Psychology participant pool at Emory University. Testing methods

and stimuli were identical regardless of testing location. All participants had normal or cor-

rected to normal hearing and vision.

Stimuli. Experiment 2 used the same grammar as Experiment 1 (based on Gómez et al.

[45]). To remove the requirement that participants must read the visual nonsense words, we

replaced these stimuli with familiar objects drawn from the Bank of Standardized Stimuli

Phase 2 [52] (Fig 3). As in Experiment 1, we used 3 ‘A’, 3 ‘B’ and 24 ‘X’ elements, all repre-

sented by familiar objects. In this experiment, in an attempt to improve learning by providing

additional cues to the categories of stimuli, all of the ‘A’ elements corresponded to plants, the

‘B’ elements corresponded to foods, and the ‘X’ elements corresponded to animals (see Fig 3).

The auditory stimuli were the names of the images, naturally spoken by a female native English

speaker recorded with an Edirol R-09HR (Roland) sound recorder and their amplitude was

root-mean-square (RMS) balanced. The stimuli were presented at 70dB. The duration of all

auditory stimuli was 600ms. The visual stimuli were presented at a size of 300 by 300-pixels, in

colour on a white background, displayed against a black screen (Fig 3).

Procedure. Other than the new stimuli, the SRT-AGL task was identical to in Experiment

1, consisting of 6 Learning Blocks of 72 trials each, a Testing Block (24 trials) and finally a

Recovery Block (72 trials). The sequences used in each block were designed and balanced iden-

tically to Experiment 1. The Sequence Completion Task and Grammaticality Judgement Tasks

were also identical to that in Experiment 1, except using the new stimuli.

Data analysis. The data were analysed in the same way as in Experiment 1.

Fig 3. Experiment 2 stimuli. The ‘A’, ‘B’ and ‘X’ elements corresponded to plants, foods and animals respectively. The ‘A’ and ‘B’ elements always co-

occurred, and sequences were presented in the form ‘AXB’ (e.g., ‘tree cat bread’). There are 3 ‘A’ and ‘B’ elements and 24 possible ‘X’ elements giving a total

of 72 possible grammatical sequences. Each sequence was presented once in each Learning and Recovery Block (see Methods).

https://doi.org/10.1371/journal.pone.0308653.g003
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Results

As in Experiment 1, we conducted a repeated measures ANOVA with Block (8 blocks) as a

within-subjects factor to assess whether there were any changes in reaction time across blocks.

We predicted that reaction times (measured as RTA-B) would decrease from Learning Block 1

to Learning Block 6 as the participants implicitly learned the nonadjacent dependency between

‘A’ and ‘B’ elements, and that reaction times would increase in the Testing Block before

decreasing again in the Recovery Block. There was a significant main effect of Block

(F3.52,130.07 = 7.212, p< .001, η2
p = 0.163, 90% CIs = [0.0616, 0.240]): planned comparisons

showed participants’ reaction times were faster in Learning Block 6 compared to Learning

Block 1 (t37 = -3.84, p< .001, d = -0.623, 95% CIs = [-0.967, -0.271]; Fig 4A), showing that par-

ticipants responded faster to the final ‘B’ elements at the end of the experiment. However, we

saw no differences in reaction times between Learning Block 6 and the Testing Block (t37 =

1.92, p = 0.062, d = -0.312, 95% CIs = [-0.016, 0.636]) or the Testing Block and the Recovery

Block (t37 = -1.49, p = 0.145, d = -0.242, 95% CIs = [-0.563, 0.083]). Therefore, again, these data

do not provide convincing evidence that participants learned the dependencies in the

SRT-AGL task.

Fig 4. Experiment 2 results. A) Mean reaction time differences (RTA-B ± SEM, thick blue line) for the 6 Learning

Blocks, the Testing Block containing ungrammatical sequences (highlighted in pink), and the Recovery Block.

Individual data is shown in grey. B) Mean (± SEM) performance on the sequence completion task. Individual

performance is shown in circles. Good learners are shown in green (based on individual binomial tests, p< 0.05), non-

learners are shown in red (p> 0.05). C) Mean performance (± SEM) on the grammaticality judgement task, including

learners and non-learners, as in B. D) Mean reaction time differences (RTA-B ± SEM) highlighting the good learners

based on the sequence completion and grammaticality judgement tasks, showing the predicted pattern of responses. E)

Mean reaction time differences (RTA-B ± SEM) for the non-learners on the sequence completion and grammaticality

judgement tasks, showing no learning on the SRT-AGL task.

https://doi.org/10.1371/journal.pone.0308653.g004

PLOS ONE Assessing processing-based measures of implicit statistical learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0308653 September 20, 2024 14 / 27

https://doi.org/10.1371/journal.pone.0308653.g004
https://doi.org/10.1371/journal.pone.0308653


In the Sequence Completion task, we observed performance somewhat above chance levels

(t37 = 2.582, p = 0.014, d = 0.419, 95% CIs = [0.084, 0.748]; Fig 4B), suggesting that some learn-

ing may have occurred. However, as in Experiment 1, there was a clear bimodal distribution of

responses with some participants (5 out of 16) performing at ceiling levels, while the rest per-

formed near chance. In the Grammaticality Judgement task group performance was no better

than chance levels (t37 = 1.57, p = 0.125, d = 0.255, 95% CIs = [-0.070, 0.576]; Fig 4C). How-

ever, the same five participants performed at very high levels (>90% correct). This pattern of

results is very similar to those observed in Experiment 1, with the majority of participants

showing no learning effects, while a subset of participants performed at very high levels. As in

Experiment 1, we examined performance on the SRT-AGL task separately for these learners

and non-learners based on their performance on the sequence completion and grammaticality

judgement tasks. The ‘learners’ (7 out of 38 participants) showed the predicted pattern of

learning in the SRT-AGL task (Fig 4D and 4E), mirroring the findings from Experiment 1. We

again compared performance on composite measures of performance on the SRT-AGL task

(the mean of the difference between Learning Block 6 and Learning Block 1; Learning Block 6

vs Testing Block; Recovery Block vs Testing Block) and the two more explicit tasks (mean of

performance on the Sequence Completion and Grammaticality Judgement tasks). As in Exper-

iment 1, these measures were highly correlated (r = 0.69, p = 0.003). However, this again driven

by the seven participants who showed good learning, and when they were removed from the

analysis the correlation disappeared (r = -0.24, p = 0.47). Once again, given that we found little

evidence of learning, a lack of correlation between this performance and any other measure is

unsurprising; if we were largely only measuring noise in the data, no correlations should be

expected.

Discussion

The results of Experiment 2 are very similar to those of Experiment 1, with no evidence of

learning in the SRT-AGL task (no significant differences between Learning Block 6 and the

Testing Block, or the Testing Block and the Recovery Block). Mixed evidence of learning was

found for the explicit tasks, as group performance was above chance in the Sequence Comple-

tion task, but not above chance in the Grammaticality Judgement task. As in Experiment 1,

any evidence of learning at a group level across the tasks was driven by a small subset of partic-

ipants who performed very well across all the tasks.

In Experiment 2, we used new stimuli, familiar objects from three distinct categories, to

provide additional cues to the ‘A’, ‘X’ and ‘B’ elements. However, despite these changes we

found no convincing evidence of learning at the group level. This raises the question about

whether the lack of effects in Experiments 1 and 2 are due to the stimuli we selected, or the

design of the SRT-AGL task itself. Therefore, we designed a final experiment that contained

several modifications, with the goal of trying to elicit implicit statistical learning.

In Experiment 3 we adapted the stimuli of the SRT-AGL task to avoid the requirement that

participants read nonsense words (as in Experiment 1) or possess any prior linguistic knowl-

edge (the names of objects in Experiment 2), by using abstract visual stimuli. As the abstract

shapes do not have names, we used visual instead of auditory cues to indicate which stimuli

the participants should choose. The participants were shown the target image in the centre of

the screen, and the participants was asked to select the matching image. We also modified the

design of the experiment so that instead of initially presenting several blocks of grammatical

trials before a testing block, we now interspersed ungrammatical trials throughout each block,

which may allow us to observe the trajectory of learning throughout the experiment. Finally,

we also created two conditions: the first containing nonadjacent dependencies, as in
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Experiments 1 and 2; and the second containing dependencies between adjacent stimuli. It is

possible that the use of nonadjacent dependencies, which can be difficult to learn [15], may

account for the poor performance across Experiments 1 and 2. Therefore, we included a condi-

tion with adjacent dependencies, which are typically easier to learn [6, 10, 12, 53], to ensure

that the difficulty of the dependencies was not hindering performance in the SRT-AGL task.

Experiment 3: Visual SRT-AGL task

Although beyond the scope of the current experiments, we hoped to design an SRT-AGL task

that could in future be used to measure implicit statistical learning in individuals with language

difficulties, such as dyslexia. In Experiment 3, in order to create a version of the SRT-AGL task

that does not rely on processing auditory linguistic information, we created a completely visual

version of the task, using abstract shapes as stimuli, and replacing auditory cues with visual

cues. By using abstract shapes, the participants could not rely on knowing the names of objects,

removing individual differences in familiarity with the object names.

We also revised the design of the SRT-AGL task: in the original [20] task, and in our Experi-

ments 1 and 2, the SRT-AGL task comprised of 6 Learning Blocks, followed by one Testing

Block, and one Recovery Block. Using this design, reaction times for grammatical and

ungrammatical sequences cannot be compared until the testing block close to the end of the

experiment. To assess the trajectory of learning across the SRT-AGL task, in Experiment 3 we

implemented an oddball design, removing the Testing and Recovery Blocks and interspersing

a small number of ungrammatical sequences (hereafter referred to as ‘low frequency’ sequences

due to the removal of discrete learning and testing phases), into each of the Learning Blocks

containing primarily “grammatical” (high frequency) sequences.

We also introduced an additional reflection-based measure of learning, the ‘Sequence Gen-

eration’ task, which was completed after the Sequence Completion and Grammaticality Judge-

ment tasks. In this task, participants were asked to create their own 3-element-long sequences

that fit the same pattern they had seen previously. In this task, participants were not provided

with any cues as to which stimuli to select. The Sequence Generation task was included to

assess the extent to which any sequence knowledge that was obtained was available to con-

sciousness, as the ability to generate and complete sequences would suggest more explicit

knowledge of the structure [41, 42]. If the participants had conscious awareness of the depen-

dencies, then performance on the Sequence Generation task should correlate with perfor-

mance on the other tasks.

To ensure that poor performance in Experiments 1 and 2 could not be attributed to difficul-

ties in learning nonadjacent dependencies, we also tested learning of adjacent dependencies.

We also reduced the number of ‘A’ and ‘B’ elements in this task from three to two. This meant

that both pairs of stimuli (A1 and B1, and A2 and B2) were always shown on the screen in each

trial (one as the target and one as the foil). This change was made so that both dependencies

could be displayed on the screen throughout the experiment, with the goal of increasing their

salience and facilitating learning by helping participants track the relationships between these

consistently presented elements.

We predicted faster reaction times to the ‘B’ elements relative to the ‘A’ elements across

Learning Blocks for high frequency sequences, but not low frequency sequences. More specifi-

cally, we predicted that there would be an interaction between Learning Block and the gram-

maticality of the sequence: in the initial Learning Blocks, there would be no difference between

reaction times for high and low frequency sequences, however as learning occurs, we predicted

that reaction times for the predictable ‘B’ element relative to the unpredictable ‘A’ element

would decrease for high frequency sequences, but not low frequency sequences. As in the

PLOS ONE Assessing processing-based measures of implicit statistical learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0308653 September 20, 2024 16 / 27

https://doi.org/10.1371/journal.pone.0308653


previous two experiments, we predicted above chance performance in the sequence comple-

tion and grammaticality judgement tasks. If learning is consciously accessible, we would expect

participants who showed evidence of learning in the SRT-AGL task to also show above chance

performance in the subsequent, more explicit Sequence Completion, Grammaticality Judge-

ment and Sequence Generation tasks. If implicitly learned knowledge is not accessible for

explicit processing, we would predict no correlation between the SRT-AGL task and the

explicit tasks.

Methods

Participants. 32 participants (23 female, 9 male; mean age: 21.86) were recruited using

both the School of Psychology and Institute of Neuroscience participant pools at Newcastle

University. 17 participants completed the adjacent condition, and 15 participants completed

the nonadjacent condition.

Stimuli. We used 28 abstract shapes (2 ‘A’, 2 ‘B’ and 24 ‘X’ stimuli) based on shapes from

[5], shown in Fig 5. Unlike the Experiments 1 and 2, there were no auditory stimuli in this

experiment, instead the abstract shapes were used as cues, with the participants being

instructed to select the matching shape to the cue. The use of these abstract shapes meant that

it was difficult to categorise the ‘A’, ‘B’ and ‘X’ stimuli in the same way as in Experiment 2,

meaning there were no additional category-based cues in Experiment 3 that could facilitate

learning.

Procedure. First, participants completed the visual SRT-AGL task, followed by the

Sequence Completion, Grammaticality Judgement and Generation tasks.

SRT-AGL task. In the visual SRT-AGL task, participants completed 8 blocks of 24 trials,

consisting of 20 high frequency and 4 low frequency sequences. As in Experiments 1 and 2, in

Fig 5. Experiment 3 stimuli. The ‘A’ and ‘B’ elements always co-occurred, and sequences are presented in the form ‘AXB’ in the nonadjacent version of the

task, and ‘XAB’ in the adjacent version. There are 2 ‘A’ and ‘B’ elements, and 24 ‘X’ elements. 24 sequences were presented per block, with each ‘X’ element

presented once per Learning Block. 20 of the sequences in each block were high frequency (e.g., A1XB1), and for the 4 low frequency sequences, the

dependencies between the ‘A’ and ‘B’ elements were switched around (e.g. A1XB2; A2XB1).

https://doi.org/10.1371/journal.pone.0308653.g005
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each trial, 6 abstract shapes (Fig 5) were presented on the screen (Fig 6). For each of the three

horizontal positions in the sequence in turn, a cue stimulus matching one of the target shapes

appeared between the targets after a 500ms delay (Fig 6). Participants were told to click on the

matching shape as quickly as possible. The cue remained on the screen until the participant

had selected a shape. As in Experiments 1 and 2, feedback on the speed of participant’s

responses was given after every trial, however in this experiment, happy or unhappy ‘smiley

faces’ were presented on screen instead of scores. This was to remove the need to read any text

during the task, which may not be suitable for any potential future testing with individuals

with language difficulties. Participants were provided with the opportunity to take a break

half-way through the experiment between blocks 5 and 6.

Sequence Completion task. The SRT-AGL task was immediately followed by the

Sequence Completion task. As in Experiments 1 and 2, an array of 6 target elements was pre-

sented on the screen, and the first two cue elements were presented and responded to as nor-

mal. Instead of the final cue stimulus, the participants were presented with a question mark

and asked to guess which target stimulus correctly completed the sequence (see Fig 6 and S3

Fig in S1 File). Participants completed 24 trials: each of the ‘X’ elements was presented once,

and half of the sequences contained A1 (with the correct response being B1) and the other half

of the sequences containing A2 (with the correct response being B2).

Grammaticality Judgement task. The Grammaticality Judgement task consisted of 24 tri-

als in total, half of which were high and half low frequency sequences. In each trial, the entire

visual sequence was presented simultaneously on screen. The method of response was identical

to the previous two experiments, and the sequence remained on screen until the participant’s

response had been made.

Sequence Generation task. In this task participants were instructed to create 3 element

long sequences, following the same pattern they had seen previously. In each of 24 trials, the

participants were presented with 8 elements arranged in a circle on the screen: the 2 ‘A’ and ‘B’

elements were always shown, as well as 4 randomly selected, non-repeating ‘X’ elements. Par-

ticipants created their sequences by clicking on stimuli in order. Each trial was separated by a

500ms inter-trial interval. No feedback was given.

Data analysis. In the visual SRT-AGL task, for both the non-adjacent and adjacent condi-

tions, we calculated reaction time differences: RTDifference = low frequency RTA-B−high fre-

quency RTA-B. We used a repeated measures ANOVA to compare reaction time differences to

high and low frequency sequences across blocks. Performance in the Sequence Completion

and Grammaticality Judgement task was compared to chance (50%) using one sample t-tests.

To correlate performance on the implicit SRT-AGL task with the more explicit tasks, Pearson’s

correlation coefficients were calculated.

Results

In this experiment, there was no evidence of learning of the adjacent or nonadjacent depen-

dencies across any of the tasks. We hypothesised that implicit learning would result in

quicker responses to the predictable ‘B’ element than to the unpredictable ‘A’ element on

high frequency trials relative to low frequency trials. The inclusion of high and low frequency

sequences within every block of the SRT-AGL task differs from the SRT-AGL tasks in Exper-

iments 1 and 2, which consisted of either grammatical or ungrammatical blocks. Therefore,

within each block of the SRT-AGL task, for both the non-adjacent and adjacent conditions,

we calculated reaction time differences: RTDifference = low frequency RTA-B−high frequency

RTA-B. If learning had occurred, then this difference would increase across blocks. We con-

ducted a 2x8 ANOVA, with Blocks (1 to 8) as within-subjects factors, and the Task
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Fig 6. Trial design for Experiment 3. A) Visual SRT-AGL task showing the nonadjacent condition (for an example of the adjacent condition, see S3 Fig in

S1 File). On each trial participants were presented with an array of 6 visual abstract shapes. In the nonadjacent condition, every trial contained 2 ‘A’

elements in the left column, 2 randomly selected ‘X’ elements in the middle column, and 2 ‘B’ items in the right column. In the adjacent condition, we

presented 2 randomly ‘X’ elements in the left column, 2 ‘A’ elements in the middle column, and 2 ‘B’ elements in the right column. Participants were

sequentially presented with a visual cue corresponding to one of the two visual stimuli in each column, and were asked to click on the matching visual

stimulus as quickly as possible (see Methods). B) Sequence Completion task. As in the SRT-AGL task, participants were presented with a visual array of

stimuli and responded to the first two visual cue stimuli as before. However, the final visual cue stimulus was replaced with a question mark, and the

participants were asked to guess the shape that they felt completed the sequence. C) Generation task. In each of the 24 trials, the participants were presented

with 8 elements arranged in a circle on the screen: the 2 ‘A’ and ‘B’ elements were always shown, as well as 4 randomly selected, non-repeating ‘X’ elements.

Participants created their sequences by clicking on the desired elements in order.

https://doi.org/10.1371/journal.pone.0308653.g006
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(nonadjacent or adjacent) as between subject factors. We found no significant effect of Block

(F7,210 = .498, p = .758, η2
p = 0.016, 90% CIs = [0, 0.016]) or Task (F1,30 = .431, p = .516, η2

p =

0.014, 90% CIs = [0, 0.014]), or a Block*Task interaction (F4,135 = 1.133, p = .345, η2
p = 0.036,

90% CIs = [0, 0.053]),), which suggests that there were no differences in reaction times

between the high and low frequency sequences in either the adjacent or nonadjacent condi-

tions (see Fig 7). To determine whether reaction times were faster for high frequency over

low frequency sequences across the experiment, we added an additional within-subjects fac-

tor of Grammaticality to the mixed ANOVA. There was no significant main effects (Gram-

maticality: F1,30 = 0.024, p = .878, η2
p = 0.00079, 90% CIs = [0, 0.053]; Block: F4.7,141.3 = .301,

p = .953, η2
p = 0.009, 90% CIs = [0, 0.011]; Task: F1,30 = 2.27, p = .143, η2

p = 0.070, 90% CIs =

[0, 0.238]) or interactions between conditions (Grammaticality*Block: F4.5,134.9 = .498, p =

.758, η2
p = 0.016, 90% CIs = [0, 0.0311]; Grammaticality*Task: F1,30 = .431, p = .516, η2

p =

0.014, 90% CIs = [0, 0.140]; Block*Task: F4.7,141.3 = 1.18, p = .322, η2
p = 0.038, 90% CIs = [0,

0.0708]; Grammaticality*Block*Task: F4.5, 134.9 = 1.13, p = .345, η2
p = 0.036, 90% CIs = [0,

0.0703]).

Participants also did not perform above chance in any of the explicit tasks. In the adja-

cent condition, participants performed slightly below chance on the Sequence Completion

task (t16 = -2.27, p = .037, d = -0.551, 95% CI = [-1.055,-0.032]). In the subsequent Gram-

maticality Judgement task, participants performed at chance levels (t16 = -.965, p = .348, d =

-0.234, 95% CI = [-0.713, 0.252]). In the nonadjacent condition, participants did not per-

form significantly above chance in either the Sequence Completion task (t14 = 1.438,

p = 0.172, d = 0.371, 95% CI = [0.159, 0.889]) or Grammaticality Judgement task (t14 = 1.00,

p = .334, d = 0.258, 95% CI = [-0.261, 0.769]). Unlike Experiments 1 and 2, we did not see a

bimodal distribution in which some participants showed learning whereas others did not.

Although two participants performed well in the nonadjacent Grammaticality Judgement

task, this was not reflected in their performance across the SRT-AGL and Sequence Comple-

tion tasks.

Participants completed the Sequence Generation task to assess the extent to which any

sequence knowledge that was obtained was available to conscious evaluation. As mentioned

previously, the ability to generate and complete sequences would suggest more explicit knowl-

edge of the structure [41, 42]. The Sequence Generation task required participants to create

their own 3-element-long sequences based on the pattern they had seen previously. Although

participants’ performance was generally poor in this task, unlike the previous reflection-based

tasks, there was no clear chance level that we could use to compare their performance to.

Therefore, we examined whether participants who showed good performance on the explicit

tasks were also more likely to produce grammatical sequences in the Sequence Generation

task. We found no correlations between performance in the Sequence Generation task and

performance in either the Sequence Completion (adjacent: r = .28, p = .269; nonadjacent: r =

.24, p = .395) or Grammaticality Judgement (adjacent: r = .16, p = .529; nonadjacent: r = .479,

p = .071) tasks. This was unsurprising given that only one participant showed evidence of

learning across the experiment.

We also calculated composite measures of SRT-AGL performance based on the RT(A-B)

difference between high and low frequency trials between Learning Block 1 and Learning

Block 8, and explicit task performance (based on the mean performance in the Sequence

Completion, Grammaticality Judgement, and Sequence Generation tasks). These measures

were not correlated in either the nonadjacent (r = -.308, p = .264) or adjacent conditions (r
= .122, p = .640), although this is again not surprising given the lack of learning across all

tasks.
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Fig 7. Experiment 3 results. Participants completed either the adjacent (A-D) or nonadjacent (E-H) task. Panels A and E show the

difference in mean A—B reaction times (RTdifference ± SEM) between high and low frequency sequences across blocks in the adjacent and

nonadjacent tasks respectively. Individual data is shown in grey. Panels B and F show mean (± SEM) performance in the Sequence

Completion task in the adjacent and nonadjacent tasks respectively. Individual performance is shown in circles: ‘good learners’ are shown

in green (based on individual binomial tests for the Grammaticality Judgement task, p< 0.05), non-learners are shown in red (p> 0.05).

Panels C and G show mean performance (± SEM) on the Grammaticality Judgement task in the adjacent and nonadjacent tasks

respectively. Panels D and H show mean performance (± SEM) in the Sequence Generation task in the adjacent and nonadjacent tasks

respectively.

https://doi.org/10.1371/journal.pone.0308653.g007
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Discussion

In this experiment we aimed to assess implicit statistical learning using a visual serial reaction

time task that did not rely on any prior semantic or linguistic knowledge, with the hope of

developing a task that could be used in other groups, including people with language difficul-

ties. However, as in Experiments 1 and 2, we found no evidence of learning in the SRT-AGL

task or the more explicit Sequence Completion, Grammaticality Judgement and Sequence

Generation tasks, in either the nonadjacent or even very simple adjacent condition. Moreover,

we only identified a single participant who showed good performance across the Sequence

Completion, Grammaticality Judgement and Sequence Generation tasks, and this participant

showed no evidence of learning in the visual SRT-AGL task. This may suggest that participat-

ing in the SRT-AGL task may inhibit learning that may have otherwise occurred during a stan-

dard AGL task.

We assessed learning using more explicit testing methods: the Sequence Completion,

Grammaticality Judgement and Sequence Generation tasks. As in Experiments 1 and 2, there

was no evidence of learning at the group level across these tasks in either the nonadjacent or

adjacent condition. This could again be attributed to the lack of exposure phase that is typically

found in artificial grammar learning paradigms. As in the audio-visual versions of the task

(Experiments 1 and 2), completing the visual SRT-AGL task may act as a distraction, and draw

attention away from the dependencies, resulting in a lack of learning and therefore poor per-

formance across tasks. The lack of nonadjacent dependency learning in this task could be

attributed to the more general inconsistency of learning of these dependencies reported in the

literature (for a review, see [15]). However, lack of learning of simple adjacent relationships,

particularly in the Grammaticality Judgement task, is unexpected, as previous research using

these tasks has shown that adjacent relationships are typically learned readily without any

additional cues [6, 10, 12, 53]. These findings strongly suggest that the complexity of nonadja-

cent relationships is not responsible for the lack of learning across these experiments. Instead,

as outlined above, completing the SRT-AGL task itself may have inhibited learning of both

types of dependency.

Experiment 3 showed no evidence of learning in a visual SRT-AGL task, or in subsequent

explicit tasks, mirroring the findings of the previous two experiments. We made changes to

the design of the SRT-AGL task to measure the trajectory of learning of the dependencies,

which failed. The fact that participants did not learn the simple adjacent dependencies as well

as the more complex nonadjacent dependencies suggests that the SRT-AGL paradigm failed to

induce or measure learning of even simple relationships, as we discuss further in the General

Discussion.

General discussion

Implicit statistical learning has been studied using a wide range of paradigms over the course

of the last 50 years [6, 12, 54]. However, many of these studies directly asked participants to

categorise stimuli based on their grammaticality or ‘well-formedness’. It is possible that these

reflection-based measures might not capture some of the important aspects of implicit learn-

ing, which could be more accurately measured using more implicit, processing-based mea-

sures of learning. Therefore, in three experiments, we aimed to assess artificial grammar

learning implicitly, using reaction time data, as well as more explicitly using both novel and

more traditional assessments of implicit learning.

In all three experiments, we found no evidence of learning in either the SRT-AGL task or

more explicit Grammaticality Judgement, Sequence Completion and Sequence Generation

tasks. Additionally, as the majority of the participants in each experiment showed no evidence
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of learning across any of the tasks, it is difficult to draw conclusions as to whether the tasks

measure similar processes.

At a group level, the data from all three experiments support the null hypothesis that

implicit statistical learning of the dependencies did not occur. However, at an individual level,

there is evidence that a small number of participants did learn the grammar and performed

very well across all tasks. Moreover, in Experiments 1 and 2, their performance on the process-

ing-based SRT-AGL task and the subsequent reflection-based tasks were highly correlated.

This suggests that in Experiments 1 and 2, we do not see evidence of learning in the process-

ing-based tasks without also seeing evidence of learning in the reflection-based tasks, which

may suggest that participants explicitly learned the dependencies during the SRT-AGL task, or

that they did learn this information implicitly but were then subsequently able to explicitly

access this during the explicit tasks. However, the results from these experiments are not able

to separate these two possibilities. In either case, the vast majority of our participants failed to

show any learning across all of the tasks. Therefore, we cannot conclude that this is an effective

measure of implicit statistical learning, or that it is suitable for characterization of individual

differences in implicit statistical learning in people with or without language difficulties.

SRT-AGL tasks aim to use reaction times to provide a processing-based measure of implicit

statistical learning which is not confounded by spatial information. Previous research has

shown that they can be effective measures of implicit statistical learning [19, 20, 46], and in our

experiments we aimed to adapt the task to be more suitable for testing individuals with lan-

guage difficulties in the future. We failed to show learning at a group level in all three experi-

ments, despite a small number of participants showing predicted patterns of learning. The

findings from these experiments raise the question of why these SRT-AGL tasks did not induce

implicit statistical learning for most individuals. In traditional serial reaction time (SRT) tasks,

participants are required to respond based on spatial positions [24], where one location pre-

dicts another, which relies on motor learning [27, 55, 56]. However, in SRT-AGL tasks, whilst

the participants must still locate the elements on the screen, it is the stimuli that predict one

another, not the location. This design was to ensure that participants learned the relationships

between the stimuli, however it also meant that the participants only need to attend to the

shapes enough to identify their key features, which could be less salient. It is possible that

matching auditory or visual cues to their respective visual stimuli in the SRT-AGL task did not

cause participants to take notice of the dependencies between stimuli, resulting in a lack of

learning in the SRT-AGL tasks compared to more traditional SRT tasks. Specifically, the

design of this task required that participants attend to an auditory or visual cue, then identify

the appropriate target, then select it, before moving on to the next element in the sequence. It

is possible that this design caused them to attend to each element of the sequence separately,

rather than processing the whole sequence holistically, which might be more likely in a passive

exposure condition. Therefore, attention to each individual element of the sequence may have

hindered learning of the relationships between the elements, leading to the lack of learning of

either adjacent or nonadjacent dependencies observed here. We note that SRT-AGL tasks

have been used successfully in the past [19, 20], and we cannot fully account for why we found

different results here. Rather, we note that despite three experiments and many modifications

of the experimental design, we were unable to elicit learning via SRT-AGL tasks.

Although there was little evidence of learning across these three experiments, it is important

to ensure that this data is available to contribute to the literature. Recent research has stressed

the importance of publishing null results for the progression of science [57] and to avoid file

drawer problems and publication bias [58], both of which have been reported within the

implicit statistical learning literature [59–62]. Furthermore, in order to reveal more about the
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key mechanisms underlying implicit statistical learning, it is important to understand which

tasks do not induce or measure learning as well as those that do.

Identifying an implicit method of measuring implicit statistical learning abilities remains

highly important, as many current measures of implicit statistical learning are primarily reflec-

tion-based, and therefore any attempt to measure the mechanisms underlying implicit statisti-

cal learning using such tasks may actually reflect explicit, conscious decision-making processes

[18]. Although these SRT-AGL tasks find no evidence of learning, there is still a need for pro-

cessing-based measures of implicit statistical learning that are not affected by conscious reflec-

tion. Recently, serial recall tasks have been used to measure implicit statistical learning more

implicitly [21–23, 60]. As there was little evidence of implicit statistical learning across these

SRT-AGL tasks, serial recall tasks may be a more useful processing-based measure that is able

to provide a graded measure of performance over the course of the experiment, to better reflect

the mechanisms underlying implicit statistical learning and reveal more about individual dif-

ferences in these abilities.

Supporting information

S1 File. This file contains all supporting information for this manuscript including: S1 Table:

duration of breaks taken during experiment; S2 Table: descriptive statistics; S1 Fig: analyses of

reaction times based on X element (RTX-B); S2 Fig: reaction times for each element (A, X and

B) for all experiments; S3 Fig: methods for Experiment 3, adjacent condition.

(DOCX)

Acknowledgments

We thank Chris Petkov and Morten Christiansen for useful discussion.

Author Contributions

Conceptualization: Holly E. Jenkins, Faye Smith, Nick Riches, Benjamin Wilson.

Data curation: Holly E. Jenkins, Phyllis Leung.

Formal analysis: Holly E. Jenkins, Benjamin Wilson.

Methodology: Holly E. Jenkins, Nick Riches.

Writing – original draft: Holly E. Jenkins, Benjamin Wilson.

Writing – review & editing: Holly E. Jenkins, Phyllis Leung, Faye Smith, Nick Riches, Benja-

min Wilson.

References
1. Kidd E. Implicit statistical learning is directly associated with the acquisition of syntax. Dev Psychol.

2012; 48: 171–184. https://doi.org/10.1037/a0025405 PMID: 21967562

2. Misyak JB, Christiansen MH. Statistical learning and language: An individual differences study. Lan-

guage Learning. 2012; 62: 302–331.

3. Romberg AR, Saffran JR. Statistical learning and language acquisition. Wiley Interdisciplinary Reviews:

Cognitive Science. 2010; 1: 906–914. https://doi.org/10.1002/wcs.78 PMID: 21666883

4. Aslin RN, Saffran JR, Newport EL. Computation of conditional probability statistics by 8-month-old

infants. Psychological science. 1998; 9: 321–324.

5. Fiser J, Aslin RN. Unsupervised statistical learning of higher-order spatial structures from visual scenes.

Psychological science. 2001; 12: 499–504. https://doi.org/10.1111/1467-9280.00392 PMID: 11760138

PLOS ONE Assessing processing-based measures of implicit statistical learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0308653 September 20, 2024 24 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0308653.s001
https://doi.org/10.1037/a0025405
http://www.ncbi.nlm.nih.gov/pubmed/21967562
https://doi.org/10.1002/wcs.78
http://www.ncbi.nlm.nih.gov/pubmed/21666883
https://doi.org/10.1111/1467-9280.00392
http://www.ncbi.nlm.nih.gov/pubmed/11760138
https://doi.org/10.1371/journal.pone.0308653


6. Saffran JR, Aslin RN, Newport EL. Statistical learning by 8-month-old infants. Science. 1996; 274:

1926–1928. https://doi.org/10.1126/science.274.5294.1926 PMID: 8943209

7. Saffran JR. The Use of Predictive Dependencies in Language Learning. Journal of Memory and Lan-

guage. 2001; 44: 493–515. https://doi.org/10.1006/jmla.2000.2759

8. Statistical Learning in a Natural Language by 8-Month-Old Infants—Pelucchi—2009—Child Develop-

ment—Wiley Online Library. [cited 5 Sep 2024]. https://srcd.onlinelibrary.wiley.com/doi/full/10.1111/j.

1467-8624.2009.01290.x?casa_token=FwjA1EZe3eUAAAAA%3AxF9MR_

heHhJEKyiFbk7mjUPGdCvJTbkUq2tpgRdj7_upVMDE9AePOXMZXJQY-GJxGp_HKUX5u0rt92pl4Q

9. Fiser J, Aslin RN. Statistical learning of higher-order temporal structure from visual shape sequences.

Journal of Experimental Psychology: Learning, Memory, and Cognition. 2002; 28: 458. https://doi.org/

10.1037//0278-7393.28.3.458 PMID: 12018498

10. Gebhart AL, Newport EL, Aslin RN. Statistical learning of adjacent and nonadjacent dependencies

among nonlinguistic sounds. Psychonomic bulletin & review. 2009; 16: 486–490. https://doi.org/10.

3758/PBR.16.3.486 PMID: 19451373

11. Gomez RL, Gerken L. Artificial grammar learning by 1-year-olds leads to specific and abstract knowl-

edge. Cognition. 1999; 70: 109–135. https://doi.org/10.1016/s0010-0277(99)00003-7 PMID: 10349760

12. Reber AS. Implicit learning of artificial grammars. Journal of verbal learning and verbal behavior. 1967;

6: 855–863.

13. Saffran J, Hauser M, Seibel R, Kapfhamer J, Tsao F, Cushman F. Grammatical pattern learning by

human infants and cotton-top tamarin monkeys. Cognition. 2008; 107: 479–500. https://doi.org/10.

1016/j.cognition.2007.10.010 PMID: 18082676

14. Gomez RL, Gerken L. Artificial grammar learning by 1-year-olds leads to specific and abstract knowl-

edge. Cognition. 1999; 70: 109–135. https://doi.org/10.1016/s0010-0277(99)00003-7 PMID: 10349760

15. Wilson B, Spierings M, Ravignani A, Mueller JL, Mintz TH, Wijnen F, et al. Non-adjacent dependency

learning in humans and other animals. Topics in cognitive science. 2020; 12: 843–858. https://doi.org/

10.1111/tops.12381 PMID: 32729673

16. Conway CM, Pisoni DB. Neurocognitive basis of implicit learning of sequential structure and its relation

to language processing. Ann N Y Acad Sci. 2008; 1145: 113–131. https://doi.org/10.1196/annals.1416.

009 PMID: 19076393

17. Reber AS. Implicit learning of synthetic languages: The role of instructional set. Journal of Experimental

Psychology: Human Learning and Memory. 1976; 2: 88.

18. Christiansen MH. Implicit statistical learning: A tale of two literatures. Topics in cognitive science. 2019;

11: 468–481. https://doi.org/10.1111/tops.12332 PMID: 29630770

19. Christiansen MH, Misyak JB, Tomblin JB. Statistical learning of nonadjacencies predicts on-line pro-

cessing of long-distance dependencies in natural language. 2009.

20. Misyak JB, Christiansen MH, Tomblin JB. On-line individual differences in statistical learning predict lan-

guage processing. Frontiers in psychology. 2010; 1: 1618. https://doi.org/10.3389/fpsyg.2010.00031

PMID: 21833201

21. Isbilen ES, McCauley SM, Kidd E, Christiansen MH. Testing statistical learning implicitly: A novel

chunk-based measure of statistical learning. Cognitive Science Society; 2017. pp. 564–569.

22. Isbilen ES, McCauley SM, Kidd E, Christiansen MH. Statistically induced chunking recall: A memory-

based approach to statistical learning. Cognitive science. 2020; 44: e12848. https://doi.org/10.1111/

cogs.12848 PMID: 32608077

23. Kidd E, Arciuli J, Christiansen MH, Isbilen ES, Revius K, Smithson M. Measuring children’s auditory sta-

tistical learning via serial recall. Journal of Experimental Child Psychology. 2020; 200: 104964. https://

doi.org/10.1016/j.jecp.2020.104964 PMID: 32858420

24. Nissen MJ, Bullemer P. Attentional requirements of learning: Evidence from performance measures.

Cognitive psychology. 1987; 19: 1–32.

25. Reber PJ, Squire LR. Parallel brain systems for learning with and without awareness. Learning & mem-

ory. 1994; 1: 217–229. PMID: 10467599

26. Thomas KM, Hunt RH, Vizueta N, Sommer T, Durston S, Yang Y, et al. Evidence of developmental dif-

ferences in implicit sequence learning: an fMRI study of children and adults. Journal of cognitive neuro-

science. 2004; 16: 1339–1351. https://doi.org/10.1162/0898929042304688 PMID: 15509382

27. Conway CM. An odyssey through sight, sound, and touch: Toward a perceptual theory of implicit statis-

tical learning. Cornell University; 2005.

28. Lammertink I, Boersma P, Wijnen F, Rispens J. Children with developmental language disorder have

an auditory verbal statistical learning deficit: Evidence from an online measure. Language Learning.

2020; 70: 137–178.

PLOS ONE Assessing processing-based measures of implicit statistical learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0308653 September 20, 2024 25 / 27

https://doi.org/10.1126/science.274.5294.1926
http://www.ncbi.nlm.nih.gov/pubmed/8943209
https://doi.org/10.1006/jmla.2000.2759
https://srcd.onlinelibrary.wiley.com/doi/full/10.1111/j.1467-8624.2009.01290.x?casa_token=FwjA1EZe3eUAAAAA%3AxF9MR_heHhJEKyiFbk7mjUPGdCvJTbkUq2tpgRdj7_upVMDE9AePOXMZXJQY-GJxGp_HKUX5u0rt92pl4Q
https://srcd.onlinelibrary.wiley.com/doi/full/10.1111/j.1467-8624.2009.01290.x?casa_token=FwjA1EZe3eUAAAAA%3AxF9MR_heHhJEKyiFbk7mjUPGdCvJTbkUq2tpgRdj7_upVMDE9AePOXMZXJQY-GJxGp_HKUX5u0rt92pl4Q
https://srcd.onlinelibrary.wiley.com/doi/full/10.1111/j.1467-8624.2009.01290.x?casa_token=FwjA1EZe3eUAAAAA%3AxF9MR_heHhJEKyiFbk7mjUPGdCvJTbkUq2tpgRdj7_upVMDE9AePOXMZXJQY-GJxGp_HKUX5u0rt92pl4Q
https://doi.org/10.1037//0278-7393.28.3.458
https://doi.org/10.1037//0278-7393.28.3.458
http://www.ncbi.nlm.nih.gov/pubmed/12018498
https://doi.org/10.3758/PBR.16.3.486
https://doi.org/10.3758/PBR.16.3.486
http://www.ncbi.nlm.nih.gov/pubmed/19451373
https://doi.org/10.1016/s0010-0277%2899%2900003-7
http://www.ncbi.nlm.nih.gov/pubmed/10349760
https://doi.org/10.1016/j.cognition.2007.10.010
https://doi.org/10.1016/j.cognition.2007.10.010
http://www.ncbi.nlm.nih.gov/pubmed/18082676
https://doi.org/10.1016/s0010-0277%2899%2900003-7
http://www.ncbi.nlm.nih.gov/pubmed/10349760
https://doi.org/10.1111/tops.12381
https://doi.org/10.1111/tops.12381
http://www.ncbi.nlm.nih.gov/pubmed/32729673
https://doi.org/10.1196/annals.1416.009
https://doi.org/10.1196/annals.1416.009
http://www.ncbi.nlm.nih.gov/pubmed/19076393
https://doi.org/10.1111/tops.12332
http://www.ncbi.nlm.nih.gov/pubmed/29630770
https://doi.org/10.3389/fpsyg.2010.00031
http://www.ncbi.nlm.nih.gov/pubmed/21833201
https://doi.org/10.1111/cogs.12848
https://doi.org/10.1111/cogs.12848
http://www.ncbi.nlm.nih.gov/pubmed/32608077
https://doi.org/10.1016/j.jecp.2020.104964
https://doi.org/10.1016/j.jecp.2020.104964
http://www.ncbi.nlm.nih.gov/pubmed/32858420
http://www.ncbi.nlm.nih.gov/pubmed/10467599
https://doi.org/10.1162/0898929042304688
http://www.ncbi.nlm.nih.gov/pubmed/15509382
https://doi.org/10.1371/journal.pone.0308653


29. Lammertink I, Van Witteloostuijn M, Boersma P, Wijnen F, Rispens J. Auditory statistical learning in chil-

dren: Novel insights from an online measure. Applied Psycholinguistics. 2019; 40: 279–302.
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