

Citation for published version: Ahmed, S, Nur-e-Alam, M, Parveen, I, Threadgill, M, Orton, JB, Hafizur, RM, Khan, I, Al-Oqail, M & Al-Rehaily, AJ 2023, 'Erratum: Compounds Related to Saudin and Three New Series of Diterpenoids from Clutia lanceolata (Journal of Natural Products (2023) 86: 5 (1129–1149) DOI: 10.1021/acs.jnatprod.2c00761)', *Journal of Natural Products*, vol. 86, no. 10, pp. 2421-2422. https://doi.org/10.1021/acs.jnatprod.3c00807

10.1021/acs.jnatprod.3c00807

Publication date: 2023

Document Version Peer reviewed version

Link to publication

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Natural Products, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jnatprod.3c00807

University of Bath

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 28. Sep. 2024

Correction to "Compounds Related to Saudin and Three New Series of Diterpenoids from *Clutia*lanceolata"

Sarfaraz Ahmed, Mohammad Nur-e-Alam, Ifat Parveen, Michael D. Threadgill, James B. Orton, Rahman M. Hafizur, Israr Khan, Mai Al-Oqail, and Adnan J. Al-Rehaily*

J. Nat. Prod. **2023**, 86, 1129–1149, DOI: 10.1021/acs.jnatprod.2c00761

Re-examination and re-interpretation of the NOESY NMR data for **11** and **12** has led to reassignment of the relative stereochemical configurations at C-5 and C-10 for both compounds.

The text discussing the relative configurations for compound **11** (lanceolide K) (p 1139) should be replaced with the following: A strong NOESY cross-peak between H-5 and H₃-18 established these as being cis (β -oriented) on the cyclohexane ring. Thus, the γ -lactone ring was established as being fused cis on the cyclohexane ring. A NOESY cross-peak was also observed H-5 to H-6_{Pro-R} (δ H 4.23) (β -oriented) but not to H-6_{Pro-S} (δ H 4.27) (α -oriented), helping to assign the signals for these diastereotopic protons. In the δ -lactone ring, a strong NOESY interaction between H-8 and H-12 indicated that these are both cis and that the ring must be in a (flattened) conformation for this strong prow–stern interaction. Thus, the methyl at C-8 and the furan ring at C-12 must both be on the β -face (the configuration at C-12 having been assumed from earlier analogs). Strong NOESY cross-peaks were also evident from both H-8 and H-12 to H-9, so H-9 was assigned as α -oriented, and the bond from C-9 to the cyclohexane must be β -oriented. This single C-C bond allows rotation, and so the other NOESY interactions between the two six-membered rings would be reasonable (e.g., H₃-20 to H₃-17 H-8, H-9, and both H2-11; H-5 to H-8). The NOESY cross-peak

from H-5 to only one H-11 proton signal (δ_{H} 1.98) shows that this proton is on the β -face of the δ -lactone. The MM2-minimized model has this proton equatorial, which is consistent with its signal having only one large coupling (J_{gem} = 9.9 Hz). Thus, H-11 (δ_{H} 1.89) is α -oriented/axial, which was supported by its signal having three large couplings (J_{gem} and 2 × J_{ax-ax}).

The text discussing the relative configurations for compound 12 (lanceolide L) (pp 1140-1141) should be replaced with the following: The configuration of 12 was assigned using MM2minimized models of the various possible diastereoisomers, the NOESY spectrum, and ¹H-¹H coupling constants. In the cyclohexane/ γ -lactone bicyclic ring, H-19 (δ_H 3.79) gave strong NOESY cross-peaks with H₃-18 and with H-5. Accordingly, H-5, H-19_{Pro-S} (δ_H 3.79), and Me-18 were all found to be cis to each other and on the β -face. This placed H-19_{Pro-R} (δ_H 4.09) on the α -face, and a strong NOESY cross-peak to H₃-20 located the latter on the α -face also. In the δ -lactone, a NOESY connection was seen between H-8 and H-12, showing that they were *cis* (and α -oriented); so, the furan ring and Me-17 are β -oriented. The models used suggested H-11 (δ_H 1.96) and H-12 as being almost eclipsed in the deformed boat conformation of the δ -lactone ring. This was consistent with the former resonating as a broad quartet with a J value appropriate for being eclipsed with H-9 and H-12. Thus, H-11 ($\delta_{\rm H}$ 2.12) was assigned as being on the β -face. NOESY interactions were observed from H-9 to H-8 and to H-11 (δH 1.96), confirming that all are on the α -face. The absolute configuration of compound 12 was assigned by analogy with those of 1 and 2.

Figure 1 should be replaced to show the correct configurations of compounds 11 and 12.

Figure 1. Structures of saudin and of the new diterpenoids **1-12**, isolated from *C. lanceolata*.

We are grateful to Prof. Chao Li (National institute of Biological Sciences. Beijing, China) for bringing this to our attention initially.