
Citation:
Nguyen, QD and Nguyen, KT and Tran, TK and Lee, K and Huynh, AT (2024) Fracture be-
haviour assessment of high-performance fibre-reinforced concrete at high strain rates us-
ing interpretable modelling approaches. Heliyon, 10 (2). pp. 1-20. ISSN 2405-8440 DOI:
https://doi.org/10.1016/j.heliyon.2024.e24704

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/11350/

Document Version:
Article (Published Version)

Creative Commons: Attribution 4.0

c© 2024 The Authors

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/11350/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk


Heliyon 10 (2024) e24704

Available online 17 January 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Research article 

Fracture behaviour assessment of high-performance 
fibre-reinforced concrete at high strain rates using interpretable 
modelling approaches 

Quang Dang Nguyen a, Khoa Tan Nguyen b, Tuan Kiet Tran c, Kihak Lee d, An 
Thao Huynh e,* 

a Centre for Complex Systems, Faculty of Engineering, The University of Sydney, New South Wales, Australia 
b Institute of Research and Development, Duy Tan University, 550000, Da Nang, Viet Nam 
c Department of Civil Engineering, Ho Chi Minh City University of Technology and Education, Ho Chi Minh, 700000, Viet Nam 
d Deep Learning Architectural Research Center, Department of Architectural Engineering, Sejong University, Seoul, 05006, South Korea 
e School of Built Environment, Engineering and Computing, Leeds Beckett University, City Campus, Leeds, LS1 3HE, UK   

A R T I C L E  I N F O   

Keywords: 
High-performance fibre-reinforced concrete 
Machine-learning-based modelling 
Global sensitivity analysis 
Fracture strength analysis 
Interpretable approach 
Proactive failure analysis 

A B S T R A C T   

High-performance fibre-reinforced concrete (HPFRC), a type of cementitious composite material 
known for its exceptional mechanical performance, has widespread applications in structures 
exposed to severe dynamic loading conditions. However, understanding nonlinear HPFRC frac
ture behaviour, particularly under high strain rates, remains challenging given the complexities of 
assessment procedures and cost-intensive nature of experiments. This study presents an inter
pretable framework for modelling and analysing HPFRC fracture strength at high strain rates. A 
wide range of machine learning methods, including ensemble techniques, were employed to 
capture multivariate effects of eight essential input features (e.g., mortar compressive strength, 
fibre physical and mechanical properties, cross-sectional area, and strain rate) on fracture 
strength response. To assess the derived models, a novel evaluation procedure was proposed 
involving a data-based analysis, employing established metrics (i.e., coefficient of determination, 
root mean squared error, and mean absolute error via K-fold cross-validation) and a domain 
experts-involved evaluation utilising global sensitivity analysis to discern first-order and higher- 
order interactions among input factors. The proposed approach efficiently yielded both quanti
tative and qualitative insights into crucial input factors governing HPFRC fracture strength with 
limited experimental data. The obtained findings highlight the significance of multivariate effects, 
such as the interaction between strain rate and fibre tensile strength, and between fibre volume 
and fibre diameter, on fracture behaviour. The proposed interpretable framework aims to provide 
a powerful tool for proactive material failure analysis by understanding fracture behaviour and 
identifying potential weak and strong interactions among input factors of HPFRC-based samples. 
Moreover, the utilisation of the proposed approach enables researchers and civil engineers to 
efficiently focus on the most critical input parameters during the early design stage and ensuring 
the structural integrity and safety of HPFRC-based constructions.  
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1. Introduction 

High-performance fibre-reinforced concrete (HPFRC) has become a widely used material in the construction industry due to its 
exceptional energy absorption capacity [1]. This material incorporates natural or synthetic fibres into the cementitious matrix of 
concrete to enhance its mechanical properties. Steel fibres, in the form of straight, twisted, or hooked shapes, are often integrated into 
HPFRC to bridge cracks and prevent crack growth, compensating for typical issues associated with low tensile strength and resistance 
to impact forces in plain concrete structures. HPFRC containing less than 2.5 % by volume of randomly oriented steel fibres was 
reported to possess high compressive strength within the range of 160–250 MPa and tensile strength exceeding 8 MPa [2–7]. 
Therefore, its outstanding durability enables a reduction in size of structural elements, of up to 30 % by weight compared to con
ventional reinforced concrete structures [8]. HPFRC has been used in various applications including beams [3] and façade panels [9] 
which require high impact resistance, particularly to mitigate the adverse consequences of extreme events such as typhoons, earth
quakes, tsunamis, and explosions [3,4]. 

Fracture strength describing the fracture behaviours of HPFRC structures is considered as a quantitative parameter to analyse their 
brittleness and cracking resistance. Previous studies [10,11] indicate that fracture strength primarily depends on physical and me
chanical properties of fibres, cementitious matrix strength and strain rate. HPFRC specimens exhibit tensile-hardening behaviour at 
high strain rates ranging from 5 to 92 s− 1, with improved strength due to the rate-sensitive interfacial bond characteristics between the 
cementitious matrix and fibres [12]. To measure HPFRC fracture strength at high strain rates, Tran and Kim [13] proposed the use of a 
strain energy frame impact machine (SEFIM). This testing system, comprising a high-speed camera and dynamic strain gauges, was 
developed to analyse direct tensile behaviour of HPFRC beams at high strain rates of up to 92 s− 1. Another testing system to evaluate 
HPFRC fracture strength is the fibre optics brag grating sensor introduced by Wahba and Marzouk [14], where fibre optic strain gauges 
were attached to a testing machine to determine the stress-strain relationship of large-sized HPFRC beams with length of up to 1 m. 
Uniaxial tensile tests were also conducted on double-bell-shaped HPFRC specimens to examine their tensile behaviour [15–17]. 

While laboratory experiments are effective in providing direct insights into HPFRC fracture behaviour under high-rate loading, 
significant challenges remain due to limitations in standardising testing criteria, expensive equipment and materials and other issues 
related to machine frame stability, gripping and eccentricities [18]. Dang and Kim [19] assessed the effect of strain rate, fibre volume 
and types on fracture behaviour of ultra-high-performance fibre-reinforced concrete (UHPFRC) incorporating nanoparticles under 
high strain rate ranging from 0.000333 to 156.55 s− 1. The testing UHPFRC beams showed high rate-sensitive fracture resistance when 
strain rate increased. This experimental study focused solely on the impact of individual input features without considering the 
combined effects of multiple input features. Multivariate effects of various factors such as fibre content, mortar compressive strength 
and curing age on UHPFRC properties were investigated in the study by Zou et al. [20]. However, this study primarily focused on 
UHPFRC compressive strength at static loading conditions. Designing UHPFRC structures to withstand dynamic loading conditions 
requires a comprehensive understanding of their fracture behaviour under high strain rate. This highlights the need for an efficient 
approach to evaluate effects of multiple input features on HPFRC fracture strength. 

Despite extensive research on quasi-static behaviour of HPFRC structures [21–23], findings on fracture properties of such material 
under high-rate loading is limited due to the complexity of experiments involved. A thorough literature search revealed that there has 
been no comprehensive research on the use of data-driven approaches to analyse HPFRC fracture behaviour subjected to high strain 
rates. One of the major barriers to this adoption is the scarcity of data available to facilitate this investigation. Specifically, evaluating 
the performance of machine learning (ML) models with small sample sizes poses a significant challenge. Randomly selecting training 
and validation data [22,23] may not eliminate data biasing and randomness in assessing prediction models. Other techniques, such as 
K-fold cross-validation, were employed to eliminate randomness from performance evaluation [5,24–26], but they were still limited by 
small-size data constraints that prevent them from overcoming the potential problem of data biasing and overfitting. As a result, such 
schemes may not provide a reliable indication of the accuracy of prediction models on unobserved data, thereby limiting their ap
plications on predicting HPFRC properties. Moreover, existing data-driven ML models are often regarded as ‘black boxes’ with no 
explanation of their internal inference. In short, the application of conventional data-driven approaches to analyse HPFRC fracture 
behaviour may be ineffective due to the limited number of samples and the difficulty in conducting experiments. It is therefore 
essential to validate and comprehend the applicability of novel approaches, such as using interpretable modelling approaches for 
HPFRC. 

In this context, sensitivity analysis has emerged as an advanced technique for gaining insights into the input-output relationships in 
prediction models. It measures the impact of input variables on the output by observing how the output changes with varying inputs. 
Two primary methods, known as local and global analysis, are employed for sensitivity analysis. The local approach is deemed suitable 
for linear models since it examines the effect of individual input variables by changing one variable at a time [27]. Local sensitivity 
analysis is preferred in various material studies due to its simplicity, minimal data requirements and low computation costs [26, 
28–30]. However, applying local sensitivity analysis to nonlinear models can sometimes lead to unreliable conclusions [27,31]. On the 
other hand, global approaches (such as the Sobol method) provide a more accurate and intricate analysis of nonlinear and non-additive 
models [32]. As such, global sensitivity analysis is deemed to be more suitable for evaluating ML-based prediction models incorpo
rating human domain knowledge. Despite its advantages over local sensitivity analysis, global sensitivity analysis has not been 
effectively employed to interpret ML models using for characterising HPFRC. 

This paper aims to address two major gaps in the analysis of HPFRC fracture behaviour at high strain rates: (a) the challenges 
associated with conducting experimental studies due to their expensive and complicated setups, and (b) the limitations in applying ML 
approaches to assess HPFRC fracture behaviour. A number of ML models (i.e., Random Forest, Extreme Gradient Boosting, Deep Neural 
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Network, and Deep Residual Network) were implemented both with and without ensemble techniques. These models underwent 
training using small-scale datasets obtained from our prior experiments, as detailed in relevant experimental works [1,3,12,13,18]. 
Furthermore, a novel assessment method that combined data-based evaluation and human-involved evaluation was proposed in this 
study. Specifically, a hybrid procedure was developed in which the performance of derived prediction models was evaluated in two 
different ways (i) a conventional data-based approach (i.e., using error metrics such as coefficient of determination, root mean squared 
error and mean absolute error): under a K-fold cross-validation scheme; and (ii) a human-involved assessment approach with global 
sensitivity analysis. In the latter approach, domain experts evaluated the multivariate effects between input and output parameters in 
the derived prediction model. More importantly, the proposed interpretable modelling framework provides a powerful tool for pro
active material failure analysis for HPFRC structures, offering numerous insights into nonlinear HPFRC fracture behaviour, particu
larly under high strain rates. 

The remainder of this paper is organised as follows. Section 2 outlines the proposed methods for constructing HPFRC prediction 
models, both with and without ensemble techniques. This section also provides a detailed description of the hybrid validation 
approach using an interpretable machine learning approach. In Section 3, the findings obtained from applying these proposed methods 
to the analysis of HPFRC fracture behaviour is presented, together with a discussion on their applicability. Finally, Section 4 presents 
the key conclusions from this research, its limitations and discusses directions for future work. 

2. Methodology 

2.1. Data collection 

The HPFRC investigated in this study comprised high strength mortar matrix and various types of steel fibres. Specimen preparation 
and test setup are presented in Fig. 1. A strain energy frame impact machine (SEFIM) [18] was used to transfer tensile stress wave at 
high rate to the HPFRC beams by releasing strain energy in the frame. Tensile stresses were recorded by two strain gauges attached to 
the transmitter bar while displacements were obtained by a high-speed camera system. Additional information on the material 
components, mixture formulation, specimen preparation, and testing setup can be found in our previously published works [1,3,12, 
18]. 

ML-based modelling approaches were developed based on data obtained from laboratory experiments using SEFIM machine [1,3, 
12,18] to assess HPFRC fracture behaviour under high strain rates. A set of 147 datasets was collected from the aforementioned studies 
for training process of the proposed frameworks in Section 2. Each dataset includes eight independent variables representing physical 
and mechanical properties of fibre, mortar compressive strength, specimen’s cross-sectional area and strain rate, and a dependent 
variable indicating fracture strength. Input variables include compressive strength of mortar matrix (M.Comp), specimen 
cross-sectional area (S.Cross), fibre diameter (F.Dia), fibre shape (F.Shape), fibre length (F.Length), fibre volume (F.Volume), fibre 

Fig. 1. Test setup of HPFRC specimens with the Strain Energy Frame Impact Machine.  
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tensile strength (F.TStr) and strain rate (S.Rate). HPFRC beams were subjected to strain rates of up to 100 s1, with specimens having 
cross-sectional areas ranging ranging from 625 to 1250 mm2, composed of mortar with compressive strengths ranging from 56 to 180 
MPa, and various types of fibre, including hooked, twisted, and short smooth shapes. Two input parameters, fibre density and modulus, 
are omitted from the proposed machine-learning-based model due to their constant setup in the experiments. Table 1 summarises the 
ranges of each variable included in this study. 

2.2. Regression models for fracture strength of HPFRC at high strain rates 

Multivariate regression models were used to assess HPFRC fracture behaviour subjected to high strain rates based on the datasets 
described in the preceding section. To model and analyse the relationships between the selected independent variables and the fracture 
strength, multiple machine learning techniques were employed as a class of regression analysis. The following subsections provide a 
brief mathematical background and description of the proposed approaches. 

2.2.1. Regression analysis 
The modelling of HPFRC fracture strength was developed based on input variables including mortar strength, specimen cross- 

sectional area and fibre physical/mechanical properties along with strain rate. The problem of estimating fracture strength was 
formulated as a regression task, which involved learning an estimation function f(x1,x2, …,xn) mapping input variables X={x1,x2, …, 
xn} to the output y, i.e., fracture strength. Regression analysis infers the model of the independent input variables X={x1,x2, …,xn} and 
output dependent variable ŷ (Eq. (1)), with the error term e representing the noise in observable data. 

ŷ = f (X) + e (1) 

The objective of regression analysis is to minimise the loss function L (ŷ ≈ f(X), y), where y represents the observed output. 
Commonly used loss functions for regression problems are the squared error and the absolute error functions (Eqs. (2) and (3) 
respectively). 

L (ŷ, y)=
∑

i

⃒
⃒yi − f (X)

⃒
⃒2 (2)  

L (ŷ, y)=
∑

i

⃒
⃒yi − f (X)

⃒
⃒ (3) 

Regression analysis can provide forecasts and predictions based on recorded observations (Xi,yi) by inferring the causal relation
ships between independent (input) variables and dependent (output) variables. Various methods, such as ML models, were investi
gated to optimise the representation for f by minimising the loss function L : 

f ∗ = argmin
f

E(X,y)L (y, f (X)) (4)  

where L is the loss function chosen based on the optimisation method, and E(X,y) is the expectation over the entire set of independent 
variables X and dependent variable y. 

2.2.2. Machine learning-based prediction models 
Conventional regression modelling of material properties has relied on ML techniques [22,23,28,33–39]. This strategy typically 

requires a substantial quantity of training and evaluation data. In this study, these approaches were extended by (i) employing a wide 
range of ML models to construct such data-driven ML models with limited data and (ii) proposing an advanced method for evaluating 
these models. A comprehensive evaluation of numerous ML models representing various ML method categories was conducted with (i) 
ensemble-based algorithms (Bootstrap Aggregating approach with Random Forests and Gradient Boosting approach with eXtreme 
Gradient Boosting) and (ii) feed-forward gradient-based neural networks (Deep Learning approach with Deep Neural Network and 
Deep Residual Neural Network). 

Random Forest: Developed from Decision Tree [39,40], Random Forest (RF) [41] is a ML method using to build multiple 

Table 1 
Description of input and output variables considered in this study.  

Variable Unit Nomenclature Investigated values 

Input Mortar compressive strength MPa M.Comp [56− 180] 
Specimen cross-sectional area mm2 S.Cross 25 × 25, 25 × 50 
Fibre diameter mm F.Dia [0.2–4.3] 
Fibre shape – F.Shape Hooked, twisted, long smooth, short smooth 
Fibre length mm F.Length [13–18,21–32] 
Fibre volume % F.Volume [1–1.5] 
Fibre tensile strength MPa F.TStr [2311–2788] 
Strain rate s− 1 S.Rate [0.000167–100] 

Output Fracture strength MPa – [6.2–45]  
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independent trees to address the generalisation of bias problem. RF applies the Bootstrap Aggregating (Bagging) methods [42], 
involving the creation of multiple parallel independent trees and a discriminant function to combine the predictions of these trees 
while still maintaining their accuracy in making the prediction. The tree construction in the RF algorithm [43] is based on randomly 
selecting subspaces from the entire feature space. Each tree is built with the whole training data of corresponding selected features with 
the option with and without bootstrapping, i.e., drawing samples with and without replacement [43]. In this way, each tree follows its 
own optimisation paths with different sets of input features. The use of all these predictions from multiple trees, therefore, eliminates 
the bias of a single decision tree. 

Utilising a discriminant function, the predictions generated by multiple decision trees are aggregated to yield a final outcome. Chou 
et al. [34], for instance, employed an averaging function to amalgamate the independent predictions from each individual tree within 
the "forest", in order to build a comprehensive model for high-performance concrete compressive strength: 

f̂ =
1
B

∑B

b=1
fb(Xb) (5)  

where B is the number of decision trees that the RF algorithm generates, Xb is the subset of input features used to build decision tree b, 
fb(Xb) is the estimated output from decision tree b given input Xb, and f̂ is the bagging output for the RF algorithm. 

Extreme Gradient Boosting Algorithm: In contrast to the Bagging approach [42], Friedman [44] proposed an alternative 
decision-tree solution in which multiple trees were sequentially constructed from the residuals of their predecessors. Chen and 
Guestrin [45] implemented eXtreme Gradient Boosting (XGBoost), which significantly enhanced system scalability and parallel 
out-of-core tree learning with regularisation. Typically, XGBoost uses an additive model with the addition of K weak prediction models 
fk(Xi)|k = 1..K to accurately predict output y [44,45]: 

ŷi =φ(Xi)=
∑K

k=1
fk(Xi) (6)  

where (Xi,yi) exemplifies the training data, and fk represents the space of regression trees. Regularisation can also be incorporated into 
XGBoost objective function to prevent overfitting and reduce the model complexity [45]. The loss function is then adjusted accordingly 
to Eq. (7). 

L (φ)=
∑

i
l(ŷi, yi) +

∑

k
Ω(fk) (7)  

where Ω(f) = γT + 1
2 λ‖ω‖2 with T representing the number of leaves in a tree fk, ω representing the weights associated with the fk tree, 

and l representing the loss function of the difference between the target value yi and its prediction ̂yi. Using the assumptions that t is the 
iteration index and ft(Xi) is the addition function at t-iteration ŷ(t− 1)

i , the loss function L at t-iteration is rewritten in Eq. (8) [45]. 

L
t
=
∑

i
l
(

yi, ŷ(t− 1)
i + ft(Xi)

)
+ Ω(ft) (8) 

Chen and Guestrin [45] used a second-order approximation for ft(.) to ascertain the optimal weights for the tree: 

ft(Xi)≈ gift(Xi) +
1
2
hif 2

t (Xi) (9)  

where gi = ∂ŷ(t− 1) l(yi, ŷ(t− 1)) and hi = ∂2
ŷ(t− 1) l(yi, ŷ(t− 1)). 

The weights of the leaf j, ωj, is then optimised by considering the loss function L t
(q): 

L
t
(q)= −

1
2
∑T

j=1

(
∑

i∈Ij

gi

)2

∑

i∈Ij

hi + λ
+ γT (10)  

where q represents the tree’s structure, and Ij represents the instance set for the leaf j. 
To improve the prediction accuracy, branches are added to the tree (by continuously split leaves) from candidate split points 

identified using the loss function in Eq. (11) [45]: 

L split = −
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(
∑

i∈IL

gi

)2

∑

i∈IL

hi + λ
+

(
∑

i∈IR

gi

)2

∑

i∈IR

hi + λ
−

(
∑

i∈I
gi

)2

∑

i∈I
hi + λ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+ γ (11)  

where I is the instance set of all nodes, while IL and IR are the instance sets of left and right nodes respectively. 
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Deep Neural Network. Deep Neural Network (DNN), also known as Deep Feed Forward Network, constitutes a deep learning 
model characterised by the presence of numerous layers of perceptron. DNN models the mapping y = f(x;θ), where x is the input 
features, y is the output, and θ represents the model’s parameters. In DNN models, information flows in a forward direction, from the 
first layer to the final layer without any feedback links [46]. 

DNN comprises multiple processing units, or single perceptron, characterised by three essential components: weights (w), bias (b), 
and activation function (g(.)). Fig. 2 depicts an example of a conventional processing unit in a DNN model. Denoting that a(t)

j is an 

output value of the j-th unit in the previous layer (t-1), w(t)
ji is the weight coefficient associated with the j-th input and the i-th unit in the 

layer t, and g(.) is the activation function of the unit, the output of the described processing unit is calculated following Eq. (12): 

a(t+1)
i = g

(
∑

j
w(t)

ji a(t)
j + b(t)

i

)

(12) 

The network structure of DNN is constructed by interconnecting multiple layers, where each layer consists of multiple processing 
units. In the specific case of a 3-layer network structure depicted in Fig. 3, the output is computed in matrix form using Eq. (13). 

Ŷ = g
(
W(2)T A(2) + b(2))

= g
(
W(2)T g

(
W(1)T A(1) + b(1))+ b(2))

= g
(
W(2)T g

(
W(1)T X + b(1))+ b(2))

(13)  

where g(.) is an element-wise activation function, W(t)T is the transposed weight matrix for layer t, b(t) is the bias terms associated with 
layer t, X is the input vector, and Ŷ is the prediction output of DNN. 

To optimise the performance of DNN, the backpropagation algorithm and chain rule [47] were used to compute the gradient of 
coefficients (weights and biases) for each processing unit. These coefficients were then updated using the gradient descent method [48, 
49]. For regression problems, the backpropagation loss function is typically the squared error, as defined by Eq. (14). 

J(θ)=
1
2
‖Y − Ŷ‖

2 (14) 

Multiple methods were proposed to improve the performance of DNN, such as increasing the network’s complexity [46,50], 
applying regularisation methods [51–53], employing normalisation techniques [54], or substituting canonical gradient descent with 
other optimisation methods [55–57]. 

Despite DNN being widely applied to address numerous regression and classification problems, it is susceptible to the issue of 
gradient vanishing, a challenge shared by other network structures trained with the backpropagation algorithm [58,59]. Several 
proposed solutions to this problem include unsupervised pre-training [60], using dropout [51], utilising sigmoid-alternative activation 
functions such as a rectified linear function [61], or employing deep residual networks [36,62]. 

Deep Residual Network. Deep residual networks (ResNet) [62] have demonstrated their effectiveness in addressing the persistent 
challenge of gradient vanishing in DNN, particularly when dealing with increased network complexity [59]. The key to this 
improvement lies in the incorporation of shortcut links between layers within the network architecture [62], enabling the neural 
network to proficiently learn novel mapping functions. Specifically, Fig. 4 (left) presents a simplified ResNet configuration featuring an 
identity shortcut originating from the input. Without the skip connection, Fig. 4 closely resembles a two-hidden-layer DNN aiming to 
learn the mapping function H(X). By employing the skip connection in ResNet, H(X) can be partitioned into two distinct components: X 
(from the skip connection) and F(X) (a mapping function formed by the two weight layers), as depicted in Eq. (15), assuming that the 
input and output dimensions are identical. 

H(X)=F(X) + X (15) 

He et al. [62] proposed a generalised formulation (derived from Eq. (15)) for the ResNet structure, which accounts for discrepancies 
in input and output dimensions (see Eq. (16)). In Fig. 4 (right), an additional layer is incorporated to ensure alignment between the 
dimensions of the skip connection and the output of F(X) before their summation [36]. 

H(X)=F(X) + WsX (16) 

Nguyen et al. [36] showcased the enhanced performance of ResNet in systems featuring network structures comparable to DNN. In 
addition, some variants of ResNet architecture for regression problems were also presented, incorporating standard implementations 

Fig. 2. Anatomy of the i-th processing unit in layer t, depicting inputs from units in the previous layer (t-1) and output to the next layer (t+1).  
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of dropout and regularisation techniques into the ResNet framework. 

2.2.3. Hybrid evaluation method for fracture strength prediction models 
This section introduces a hybrid approach to evaluate prediction models for HPFRC fracture strength under high strain rates. The 

approach encompassed two evaluation methods: a data-based method and a sensitivity-analysis-based method. The data-based method 
employed a validation set of data to quantify the error between the predicted and target values. Sensitivity-analysis-based method 
utilised global sensitivity analysis to explore the relationship between independent input and dependent output features. This method 
allowed interpretation of the models and their validation using empirical knowledge obtained from experiments or domain experts. 
The combination of both methods provides a more comprehensive evaluation of the model’s accuracy and reliability, especially for 
models derived from limited experimental data. 

2.2.3.1. Data-based evaluation method. In order to evaluate the accuracy of the proposed models using data-based evaluation method, 
multiple error measures were employed to compare the predicted output values generated by the models with the target values ob
tained from physical experiments in the prepared datasets. Statistical error metrics, including the coefficient of determination (R2), 
root mean square error (RMSE), and mean absolute error (MAE), were utilised to assess the performance of the prediction models. 

To ensure proper evaluation and avoid overfitting models, data-based assessment of regression models requires random division of 
the original dataset into training and evaluation datasets. It is important to note that for small datasets, the arrangement of data 
samples into training and testing sets has a significant impact on the statistical error metrics. In such cases, the utilisation of the K-fold 

Fig. 3. A 3-layer network architecture depicting each processing node described in Fig. 2. The leftmost layer, comprising input features, is referred 
to as the input layer. The two intermediate layers, positioned in the middle and containing network values, are denoted as hidden layers. The 
rightmost layer is designated as the output layer. 

Fig. 4. (Left) A simple ResNet block structure comprising 2 wt layers and an identity shortcut connection from input to output. (Right) A generalised 
ResNet block structure featuring an additional weight layer to ensure matching of input and output dimensions. 
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cross-validation method may be necessary to account for the randomness in testing model performance, considering the limitations 
posed by the size of the data. 

Error metrics: Three commonly used error metrics, namely R2, RMSE, and MAE, were utilised to assess the accuracy of regression 
models in predicting fracture strength (Eq. (17)–(19)). These metrics have a well-established presence in the literature for evaluating 
the performance of models in predicting concrete’s properties. 

R2 = 1 −

∑

i
(yi − ŷi)

2

∑

i
(yi − y)2 (17)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)

2

√

(18)  

MAE=
1
n

∑n

i=1

⃒
⃒
⃒
⃒
⃒
yi − ŷi

⃒
⃒
⃒
⃒
⃒

(19)  

where n is the sample size, yi is the observed output value of the i-th sample, ŷi is the predicted output value of the i-th sample, and y =
1
n
∑n

j=1yj is the mean of observed output values. 
K-fold cross-validation scheme: The K-fold cross-validation method involves dividing the original dataset into K folds and 

performing K independent training iterations with (K-1) folds used for training various prediction models, and the last fold reserved for 
validation. Fig. 5 illustrates a fundamental example of the K-fold cross-validation scheme. In this study, K=10 was chosen as the 
number of folds. Average values of R2, RMSE, and MAE obtained from K-training and evaluation iterations were used to assess the 
performance of prediction models. The evaluation of the prediction models’ performance was carried out using the following equation: 

MK− fold =
1
K
∑K

k=1
mk (20)  

where MK− fold denotes a general metric measurement when K-fold cross validation scheme is applied, and mk is the metric mea
surement in the k-th iteration of the procedure. 

2.2.3.2. Global sensitivity analysis-based evaluation method. In addition to data-based evaluation method, a global sensitivity analysis 
approach was also developed to further evaluate the performance of HPFRC fracture strength. This method allows for a more 
comprehensive investigation of the effects of individual independent variables, as well as their interactions, on the dependent variable 
compared to local analyses. The Sobol sensitivity analysis [32] was chosen as a typical global sensitivity analysis as it offers a 
model-agnostic strategy treating prediction models as black boxes with a general mapping function of Y = f(X), where X = {x1,x2, …, 
xd}. In this approach, the variance of f(.) is decomposed as shown in Eq. (21) [63]: 

Var(Y)=
∑d

i=1
Di(Y) +

∑d

i<j
Dij(Y) + ...+ D123..d(Y) (21)  

where Var(Y) is the variance of Y = f(X), Di(Y) = Var(E[Y|xi]), Dij(Y) = Var(E[Y
⃒
⃒Xi,Xj]) − Di(Y) − Dj(Y) and similarly for other higher- 

order components of Var(Y). Sobol variance-based indices are measured based on Eq. (22) [63]: 

Si =
Di(Y)

Var(Y)
, Sij =

Dij(Y)
Var(Y)

, ... (22) 

Fig. 5. An example of K-fold cross-validation scheme with K = 5.  
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The total effects of an input feature i to the variance of the output is then calculated in Eq. (23): 

STi =
∑

l⊂#i
Sl (23)  

where #i denotes all subsets of {1,2,3,..,d} containing i. Sobol method [32] also includes a Monte-Carlo approximation approach for 
calculating Sobol indices, which estimates Sobol indices based on the model’s response to given inputs according to a predetermined 
scheme. 

While local sensitivity analysis has been commonly used in developing prediction models for concrete materials [26,28–30], its 
limitations in assessing nonlinear models have been reported in several studies [27,31]. In contrast, global sensitivity analysis, such as 
the Sobol method [32], offers a more comprehensive and accurate analysis of nonlinear models. This approach proves particularly 
valuable in validating machine learning-based prediction models by incorporating human domain knowledge. However, despite the 
potential advantages of global sensitivity analysis in the application of machine learning models to concrete, its full potential remains 
underutilised, necessitating further investigation to fully harness its capabilities. 

2.2.4. Learning framework for fracture strength assessment 
The proposed framework for constructing and validating regression models to assess HPFRC fracture strength comprises four 

primary steps: (i) collecting and pre-processing data from experiments; (ii) selecting the most effective learning technique using the K- 
fold cross-validation scheme and data-based evaluation methods; (iii) interpreting the models from step (ii) using sensitivity analysis 
and expert validation; and (iv) exploring the possibility of integrating an ensemble method with K model instances from step (ii). Step 
(iii) can also be used to identify interesting input-output relationships for further experimental investigation. 

2.2.4.1. Framework for machine learning model selection. The application of ML models on predicting material mechanical properties 
has been explored by previous studies in the current literature. Yeh [33] used artificial neural network (ANN) and 4-fold 
cross-validation method to model compressive strength of high-performance concrete (HPC). Chou et al. [34,35,64] investigated 
different data-mining techniques to improve the accuracy of HPC compressive strength models, using a 10-fold cross-validation 
strategy to evaluate the regression models. Other studies [23,28,37,65] trained various ML models using a simple training/testing 
data split or a K-fold cross-validation scheme to minimise the loss function between predicted and target values of the dependent 
variable. Although these models were evaluated with different error metrics, only a few models underwent sensitivity analysis after 
data-based evaluation phase [28]. 

To mitigate the risk of inferring spurious correlations between independent and dependent variables in datasets with limited 

Fig. 6. Framework for machine learning model selection in predicting high strain rate behaviour of HPFRC.  
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sample sizes, a hybrid evaluation method was employed to assess the performance of learned prediction models. Fig. 6 depicts the 
proposed framework for comparing and selecting the optimal prediction model using diverse ML techniques. Notably, an additional 
phase encompassing global sensitivity analysis and validation based on empirical knowledge extracted from experiments was 
incorporated into the K-fold cross-validation scheme to evaluate prediction models alongside error metric measurements. 

The proposed framework facilitated the comparison and selection process of prediction models using various ML techniques, 
augmented by domain-specific expertise and global sensitivity analysis. While ML techniques excel at capturing complex and non- 
linear relationships between inputs and outputs, a notable drawback is the lack of interpretability in the resulting models. In addi
tion, the scarcity of validation data in laboratory-based studies, particularly for HPFRC under high strain rates, due to costly and 
lengthy preparation of specimens has raised concerns about the reliability and applicability of ML models. To address these concerns, 
the suggested framework incorporated a hybrid validation procedure including global sensitivity analysis (i.e. Sobol sensitivity 
analysis) to comprehensively investigate the impact of inputs and their interactions on the output. 

One objective of the proposed framework is to address the prevalent data limitations in experimental domains and establish 
interpretable relationships between inputs and outputs, thereby enhancing confidence in the utilisation of ML-based "black-box" 
prediction models. In situations where peculiar interactions among input variables are detected, targeted and efficient supplementary 
experiments may be suggested to elucidate these relationships and ensure the validity of the models. 

2.2.4.2. An ensemble approach to improve machine learning-based models. In the final step, upon selecting the ML algorithms for 
modelling fracture behaviour, the possibility of further improving the performance of the selected model was considered by examining 
two approaches: (i) optimising the model using the entire dataset (referred to as "Train-All"), and (ii) constructing a K-fold ensemble 
model by bootstrapping K model instances from a K-fold cross-validation scheme (referred to as "K-fold Ensemble"). Fig. 7 presents a 
framework with two hierarchical levels of K-fold cross-validation for generating and comparing these models. Specifically, the first K- 
fold scheme (Level 1) compares the performance of the model trained with all available data to the ensemble model created by 
bootstrapping all model instances from the second K-fold scheme. The model instances from the second K-fold scheme (Level 2), 
obtained with an early-stopping feature based on RMSE measurement, are combined using bagging technique [42,44] to generate the 
K-fold ensemble model. 

3. Results and discussion 

This section provides an analysis and interpretation of various ML models applied for predicting HPFRC fracture strength using four 
ML approaches, including ensemble-based methods represented by RF and XGBoost, and feed-forward gradient-based neural network 
solutions represented by DNN and ResNet. These ML models were configured using diverse settings, and the ensemble technique was 
used to improve their prediction performance. Several additional trials with extended results are presented in Appendix A. To assess 
the trials, a hybrid validation process that combined data-based evaluation with global sensitivity analysis-based evaluation was 
utilised. The data-based evaluation allowed for a quantitative assessment of the prediction performance of the derived ‘black-box’ 
models from ML modelling approaches. Due to the limited sample size in experimental fields, global sensitivity analysis, particularly 
Sobol scoring, was utilised in this study to further qualitatively assess and analyse prediction models. It is important to note that this 
evaluation method focused on assessing the model itself, rather than examining the relationships between the inputs and the output 
from collected datasets. 

Fig. 7. Framework to compare 2 directions: (i) optimising the model using the entire dataset, and (ii) bootstrapping K model instances from a K-fold 
cross-validation scheme. 
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3.1. Data-based validation for fracture strength prediction models 

To assess the performance of ML approaches in modelling HPFRC fracture strength subjected to high strain rates, a 10-fold cross- 
validation scheme was utilised to eliminate biases produced by splitting the training and evaluation sets. The error metrics, including 
R2, RMSE, and MAE, were calculated on different evaluation sets under the K-fold cross-validation scheme, and the results are dis
played in the boxplots of Fig. 8. The length of each box in Fig. 8 represents the interquartile interval, illustrating the range of mea
surement results obtained from a K-fold cross-validation scheme, spanning from the 25 % quartile to the 75 % quartile. The feed- 
forward gradient-based neural network group, represented by DNN and ResNet, demonstrated superior prediction ability on 
HPFRC fracture strength compared to ensemble-based techniques such as RF and XGBoost. However, the obtained error metrics were 
found to vary among folds in all models, indicating significant impact of limited datasets and biases in selecting data for training and 
evaluation sets on the derivation of prediction models. These results verify the necessity of using a K-fold cross-validation scheme when 
testing models with insufficient datasets. In other words, simple random splitting for training and validation sets is not an appropriate 
method for evaluating models with limited datasets. 

As shown, the ResNet model (referred to as configuration 6 in Table A1 in appendix A) had the lowest average RMSE/MAE (RMSE 
= 2.956; MAE = 2.297) and the highest average R2 = 0.886, making it the most accurate model for predicting fracture strength. This 
model also demonstrated a more stable and consistent performance in all K-fold iterations compared to the others, as evidenced by its 
smaller interquartile ranges for all metric measures (Fig. 8). 

The results shown in Fig. 8 demonstrate the effectiveness of the ResNet model in learning the mapping between input features and 
HPFRC fracture strength. This modelling approach was selected to be considered in constructing the final models, referred to as "Train- 
All" and "K-fold Ensemble." A boxplot comparison of these implementation options is shown in Fig. 9. In training and testing these 
models, "K-fold Ensemble" outperformed "Train-All" with the exact data folds. Mean values of error metrics with the "K-fold Ensemble" 
model were R2 = 0.863, RMSE = 3.350, and MAE = 2.519, which were higher compared to those with "Train-All" model (R2 = 0.840, 
RMSE = 3.631, and MAE = 2.699). This result highlights the effectiveness of using a combined model constructed with distinct subsets 
of data, similar to the method employed by RF and XGBoost. 

The sample size for each fold was smaller than those split in Fig. 9 because these comparisons relied on the testing method with two 
K-fold cross-validation schemes, as shown in Fig. 7. Therefore, the error metrics between Figs. 8 and 9 cannot be compared. Instead, 
both schemes can be considered two crucial steps to the proposed strategy. 

The accuracy of the proposed model, “K-Fold Ensemble” with the better performance compared to “Train-All”, was compared to 
other ML models in previous studies as shown in Table 2. Since the application of ML models in the literature of UHPFRC fracture 
behaviour under high strain rate is scarce, there is insufficient numbers of articles with similar topics. Therefore, ML models used to 
predict different types of mechanical properties, including tensile and flexural strength, reported in previous studies [66–71] were 
considered for comparison purposes. As shown, the proposed model “K-Fold Ensemble” presented better performance than other ML 
models for predicting UHPFRC tensile strength including ANN and CBR with small-sized samples of up to 157 dataset Ramezansefat 
[67], with gain in percentage of up to 425.7 %. Regarding the studies with more datasets [68–71], “K-Fold Ensemble” model showed 
moderate positive outcome with higher R2 compared to ANN, SVM and GPR models (a gain of 4.3 %–15 %), and lower accuracy (up to 
9.9 %) than other ML models including XGBoost, SVR and GB. This observation can be explained by the fact that these studies [66–71] 
only assessed tensile and flexural behaviours of various fibre-reinforced concrete types under normal loading condition with greater 
data availability. Characterising fracture behaviour of brittle materials such as HPFRC at high strain rate is deemed to be more 
challenging due to the complexity of testing setup to satisfy stress equilibrium requirements [72], leading to a scarcity of data needed 
for ML model development. Thus, the prediction accuracy of the proposed ML model is deemed to be acceptable for estimating HPFRC 
fracture strength at high strain rate. 

Fig. 8. Boxplots for data-based evaluation results for the four selected models: RF, XGBoost, DNN and ResNet under different error measures: (a) R2, 
(b) RMSE and (c) MAE. The Interquartile Range (IQR) in the boxplots represents the middle 50 % of the accuracy measures of the models, spanning 
from the 25th to the 75th percentiles. 
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3.2. Global sensitivity analysis-based evaluation of fracture strength prediction models 

To increase the validity of the derived ML prediction models, global sensitivity analysis and human domain expertise were 
employed to further validate these models. Fig. 10 illustrates the contribution of each input variable to two scopes - first-order effect 
and total effect - for the four prediction models. The first-order effect indicates the effect of each input on output without considering 
the interaction between inputs, while the total effect identifies the impact of each input on output, considering the interaction between 
inputs. This study considered eight selected input variables, including concrete mortar compressive strength, specimen cross-sectional 
area, fibre diameter, fibre shape, fibre length, fibre volume, fibre tensile strength and strain rate. 

In Fig. 10 (a), the RF model indicates that the compressive strength of cementitious mortar and fibre characteristics had minor roles 
in explaining the output variation, while the most influential factors on HPFRC fracture strength were fibre volume, strain rate, and 
specimen cross-sectional area. The sensitivity score of their first-order effects indicated that roughly 67.9 % of the output variation can 
be explained by first-order input variation, with fibre volume having the highest score at 37.7 %. Considering interactions between 
inputs, the total-effect score for fibre volume was approximately 59.1 %, followed by strain rate (37.7 %) and specimen cross-sectional 
area (25.5 %). Similarly, for the XGBoost model, Fig. 10 (b) shows high sensitivity scores ranging from 11.1 % to 35.7 % for the first- 
order effect and from 16.7 % to 44.2 % for the total effect, indicating the significance of the same set of input variables (i.e., fibre 
volume, strain rate, and specimen cross-sectional area) in explaining output variation. The remainder of the inputs in XGBoost model 
had negligible effects on predicting HPFRC fracture strength, similar to RF model. 

In contrast to RF and XGBoost models, feed-forward gradient-based models involved more inputs in configuring the model, 
resulting in a more uniformed distribution of input’s impact on the output. In DNN model, except for strain rate, which has the highest 
sensitivity score (26.1 % for the first-order effect and 44.4 % for the total effect), the remaining inputs, including fibre shape and 

Fig. 9. Data-based evaluation results of the two implementation approaches for ResNet models: (i) Using all the data to train the neural network 
("Train-All") and (ii) Bootstrapping by combining K model instances from a K-fold cross-validation scheme ("K-fold Ensemble"). 

Table 2 
Performance comparisons with previous studies [66–71].  

References Prediction models Material 
properties 

Material type Numbers of 
datasets 

R2 Gain in 
(%) 

Khosravani et al. [66] CBR Tensile strength UHPFRC 55 0.234 
−

0.702 

22.9 −
268.7 

Ramezansefat et al. 
[67] 

ANN Tensile strength Fibre reinforced concrete 157 0.006 
−

0.758 

13.8 −
425.7 

Khokhar et al. [68] ANN, SVM, CART, XGBoost, 
GPR 

Tensile strength Fibre reinforced concrete 438 0.740 
−

0.950 

− 9.2 −
16.6 

Guo et al. [69] ANN, SVR, CART, XGBoost Tensile strength UHPFRC 387 0.827 
−

0.957 

− 9.9 −
4.3 

Qian et al. [70] SVM, MLP, GB Flexural strength UHPFRC 317 0.710 
−

0.910 

− 5.2 −
21.5 

Kulasooriya et al. [71] DT, GB, LGB Flexural strength Basalt fibre reinforced 
concrete 

– 0.803 
−

0.893 

− 2.2 −
7.4 

Note: ANN = Artificial Neural Networks; SVM = Support Vector Machine; CART = Classification And Regression Tree; GPR = Gaussian process of 
regression; MLP = Multi-Layer Perceptron; GB = Gradient Boosting; DT = Decision Tree; LGB = Light Gradient Boosting; SVR = Support Vector 
Regression; CBR = Case-based Reasoning. 
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mortar compressive strength were the least influential parameters with the lowest first-order and total effect scores ranging from 1.5 % 
to 3.4 % and 2.6 %–6.4 %, respectively. ResNet model identified the contribution from most inputs including fibre volume and 
properties, specimen cross-sectional area and strain rate with sensitivity scores ranging from 7.3 % to 26.1 % and 7.9 %–32.2 % for the 
first-order and total effects, respectively. Fibre volume was the most critical variable in explaining output variation with the highest 
sensitivity scores. Unlike other models, the effect of fibre shape on HPFRC fracture strength obtained in ResNet model was not 
generally negligible with total sensitivity score of 7.9 %, thus varying fibre geometry in the specimens might cause variations in their 
fracture behaviour. This observation is in agreement with other experimental studies [73–75]. 

The second-order sensitivity analysis results for all machine learning models are presented in Fig. 11 as a heat map, which illus
trates the interaction between pairs of eight input parameters. They highlighted the impact of one factor on another for the investi
gated inputs investigated. For both RF and XGBoost models, the input pairs (F.Volume, S.Cross) and (F.Volume, S.Rate) played the 
dominant role among all the pairs, respectively, as shown in Fig. 11(a and b). In contrast, the pair (S.Rate, F.TStr) was the most 
influential pair for both DNN and ResNet models, with a second-order score of up to 0.094 (or 9.4 % in output variation), demon
strating that their interaction was important for controlling the variability of fracture strength. The consistency of DNN and ResNet was 
then highlighted in comparison to RF and XGBoost models in fracture strength prediction. The pronounced effect of high strain rate on 
HPFRC fracture behaviour was also observed, in line with expectations, as both concrete and steel are known to be strain-rate sensitive 
materials [76]. Unlike limited scope in previous studies [1,3,6,73], the obtained results also revealed the interaction between various 
input factors such as strain rate and fibre tensile strength. The input pair (S.Rate, F.TStr) with a second-order score of 0.057 (or 5.7 % in 
output variation) was important in controlling the variability of fracture strength. Additionally, the mutual effect between the pair (F. 
Volume, F.Dia) in DNN and ResNet models, with a sensitivity score of up to 0.032 (or 3.2 % in output variation), was also detected 
significant for HFPRC fracture behaviour. 

Fig. 10. First-order and total effect sensitivity scores of models trained using various data-driven methods: (a) RF, (b) XGBoost, (c) DNN and 
(d) ResNet. 
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Sensitivity scores from total effect measurements indicated that strain rate, fibre volume, and specimen cross-sectional area were 
the most influential inputs for modelling HPFRC fracture strength in the four selected models. This result was consistent with previous 
experimental studies [12,77–79] employing SIFIM to investigate HPFRC fracture behaviour subjected to high strain rates. These 
studies discovered that a higher fracture strength associated with a higher strain rate due to rate-sensitive interfacial bond strength 
between mortar matrix and fibre, as well as the physical and mechanical properties of fibres (i.e., shape, length and tensile strength). 
The alignment of the findings obtained from this study with those studies supports the proposed approach of integrating ML and global 
sensitivity analysis for small-scale datasets. 

From the validation process using global sensitivity analysis, the ML modelling approach leveraging ResNet architecture was 
considered the most effective method for modelling HPFRC fracture behaviour due to its high reliability in terms of statistical error 
metrics (Fig. 8) and its interpretation of input factors (from sensitivity analysis results in Fig. 10). Validation results for the ResNet 
model, demonstrating the best error metrics on the validation sets using the K-fold cross-validation scheme, are presented in Fig. 12. In 
addition, sensitivity scores for the first-order and total effects of ResNet models trained in the first, third, fifth, and seventh K-fold 
iterations were included in this figure. The sensitivity scores for the "Train-All" and "K-fold Ensemble" models are shown in Fig. 13, 
following the process outlined in Fig. 7. The alignment of the results across multiple models and validation methods strengthened the 
reliability and robustness of this ML modelling approach. 

As shown, fibre volume, tensile strength, strain rate, and specimen cross-sectional area remained the most critical input features. 
The sensitivity score distribution of the "K-fold Ensemble" model presented in Fig. 13 (a) closely resembled that of "Train-All" model in 
Fig. 13 (b), derived from the training procedure with all available data. Both of these models demonstrated that all input features 
significantly contribute to output variation, i.e., fracture strength. In contrast to ResNet models presented in Fig. 12, "Train-All" and "K- 
fold Ensemble" models consistently presented the influence of fibre physical properties (i.e., shape, length, and diameter) on fracture 
strength. This result is consistent with other experimental studies [12,77–79], in which HPFRC fracture strength was highly sensitive to 
these variables. The fact that the sensitivity analysis of the proposed ML models matches those of expert-designed experiments 
consolidated the confidence in employing the ensemble models derived from the method illustrated in Fig. 7. 

Fig. 11. Second-order sensitivity scores obtained from Sobol sensitivity analysis for: (a) RF, (b) XGBoost, (c) DNN and (d) ResNet models.  
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4. Conclusion 

This study proposed a novel framework for modelling HPFRC fracture behaviour subjected to high strain rates ranging from 
0.000167 to 100 s− 1 by utilising interpretable machine learning modelling approaches. The following highlights a summary of the 
findings:  

• Among the four approaches, ResNet model demonstrated the highest performance with the lowest average RMSE/MAE and the 
highest average R2 (R2 = 0.886, RMSE = 2.956 and MAE = 2.297). Therefore, this model was selected to construct the final models, 
"Train-All" and "K-fold Ensemble”, in which the later outperformed the former with R2 = 0.863, RMSE = 3.350, and MAE = 2.519.  

• Deviations in data-based evaluation results for derived machine learning models were observed across different K-fold iterations, 
which highlighted the challenges associated with training and evaluating modes with limited experimental data. The proposed 
framework, which incorporates data-driven approaches and Sobol global sensitivity analysis, provided insights into the con
struction and validation of prediction models in such situations. In addition, the hybrid evaluation procedure and data-driven 
modelling approaches can be adapted to similar tasks associated with small dataset collections.  

• HPFRC fracture strength were significantly influenced by various input factors, including fibre volume and mechanical/physical 
properties, strain rate, specimen cross-sectional area, and their interactions with other inputs.  

• HPFRC specimens were sensitive to various input pairs including strain rate – fibre tensile strength and fibre volume – fibre 
diameter. To prevent fracture failure, the inclusion of high tensile strength fibres correspondingly to strain rate or adjusting fibre 
dosage and its physical properties in HPFRC is recommended. 

Fig. 12. First-order-effect and total-effect sensitivity scores for Resnet models trained under K-fold cross-validation scheme: (a) Fold 1, (b) Fold 3, 
(c) Fold 5 and (d) Fold 7. 
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The proposed framework is deemed to serve as a valuable starting point for improving both accuracy and reliability of ML models 
performance in predicting HPFRC mechanical properties, especially when confronted with limited datasets from laboratory-based 
experiments. The integration of human expert feedback proves crucial, underscoring its significance relative to dataset size. The 
necessity of validating the model through both a data-based approach (utilising error metrics) and a global sensitivity analysis-based 
approach (including validation from domain experts) was emphasised through the obtained findings. The final model, built based on 
the Resnet architecture and K-fold Ensemble approach, was shown to meet both these validation criteria. 

5. Limitation and future research 

The proposed interpretable framework demonstrates the capability to model mechanical characterisation of HPFRC under high rate 
loading. A diverse adoption of ML models leads to variations in prediction accuracy as well as the impact of input parameters on 
HPFRC fracture strength. Regarding the fine-tuning process described in Appendix A, it is important to note that further optimisation of 
hyperparameters, changes in ML algorithms and architectures, and the inclusion of additional input features may enhance the accuracy 
in predicting HPFRC fracture strength. The selection of machine learning models in the proposed framework, although intentionally 
diverse, remains flexible and may pave the way for future research endeavours, incorporating a hybrid evaluation system with 
continuous human feedback in the loop to develop a more sophisticated interactive prediction model. 

Finally, it is important to acknowledge that the data collection used in this study relied on published data from established ex
periments with HPFRC at high strain rates [1,3,12,13,18]. Consequently, the findings of this study may be subject to the experimental 
designs employed in these sources. A future study with a more extensive collection of data may be needed to further validate the 
obtained findings. The establishment of computational simulation for HPFRC samples should be considered as a potential method for 
comparison with the results obtained from machine learning approaches. Further investigation on the application of the proposed 
framework on different types of mechanical properties (e.g., fracture energy, crack growth rate) is suggested for future research to 
develop a more comprehensive approach to characterise HPFRC structures. 
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Appendix A. Tuning hyperparameters for HPFRC fracture strength models 

Four exemplary machine learning techniques were utilised to model the fracture strength of HPFRC subjected to high strain rates. 
Ensemble-based techniques, including RF and XGBoost, and feed-forward neural network solutions, such as DNN and ResNet, were 
employed. The hyperparameters for RF and XGBoost were optimised using grid search on popular ranges of key hyperparameters, 
while those for DNN and ResNet were determined based on the performance of six configurations listed in Table A1. A conventional 
two-hidden-layer ReLU-activated neural network with 256 and 128 nodes per layer was designed for the DNN model, while ResNet was 
constructed with an additional skip-connection weight layer containing 128 nodes (as shown in Fig. 4). The configurations with the 
Adam optimiser and LayerNorm normalisation appeared to be the optimal settings for DNN and ResNet, based on the average accuracy 
of the model’s predictions under the K-fold cross-validation scheme (Table A1). The greatest accuracy among their respective types 
was achieved by RF and XGBoost models using the hyperparameters listed in Table A2. However, it should be noted that further 
optimisation of the hyperparameters and/or inclusion of additional input features may lead to even higher accuracy in predicting 
HPFRC fracture strength using the proposed machine learning models. Therefore, the framework presented in this study serves as a 
valuable starting point for future investigations aiming to improve the prediction performance and reliability of these models in 
material property analysis with limited datasets collected from small-scale experiments.  

Table A.1 
Validation results of multiple deep learning models for predicting HPFRC fracture strength under the K-fold cross-validation scheme.  

Config. Number Network Architecture Optimisation Method Dropout Normalisation Method R2 RMSE MAE 

1 DNN Adam Yes None 0.849 3.372 2.591 
2 DNN Adam Yes Batchnorm 0.848 3.388 2.586 
3 DNN Adam Yes Layernorm 0.886 3.059 2.221 
4 Resnet Adam Yes None 0.874 3.158 2.416 
5 Resnet Adam Yes Batchnorm 0.810 3.212 2.494 
6 Resnet Adam Yes Layernorm 0.886 2.956 2.297   

Table A.2 
Optimised hyperparameters of RF and XGBoost models for predicting HPFRC fracture strength using 
grid search, implemented with the scikit-learn library [45].  

Method Hyperparameters 

Random Forest criterion = mse 
bootstrap = True, 
max features = auto 

n_estimators = 1000 
min_samples split = 2 
min_samples leaf = 1, 

XGBoost objective = reg:squarederror 
n_estimators = 1000 
nsubsample = 0.3, 
learning rate = 0.01, 

max depth = 6, 
gamma = 0, 
colsample_bytree = 1.0,  
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Appendix B. Global sensitivity analysis for remaining models obtained from K-fold cross validation scheme 

Fig. B.14. Sensitivity scores of first-order and total-order effects for ResNet models derived from multiple K-fold iterations in a K-fold cross- 
validation scheme.. 
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