
A Proposal to Delegate GUI Implementation using a Source Code based Model

Marco Monteiro
School of Technology and Management, Polytechnic Institute of Leiria

Campus 2, Morro do Lena - Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
marco@estg.ipleiria.pt

Paula Oliveira
Engineering Department, University of Trás-os-Montes e Alto Douro

Quinta de Prados, Apartado 1013, 5001-801 Vila Real, Portugal
poliveir@utad.pt

Ramiro Gonçalves
Engineering Department, University of Trás-os-Montes e Alto Douro

Quinta de Prados, Apartado 1013, 5001-801 Vila Real, Portugal
ramiro@utad.pt

Abstract

In this paper we propose an architecture whose main
goal is to improve productivity in user interface develop-
ment for data-intensive applications. This objective is to be
achieved by defining a high level model that describes the
user interface structure. That model will be integrated in the
source code through non-functional language extensions.
Our final goal is allowing developers to define user inter-
face model by adding language extensions to the source
code and then acquiring an external software package to
which they delegate the implementation of the concrete user
interface.

1. Introduction

As the size and complexity of information systems in-
creases, building maintaining and integrating its applica-
tions is getting harder. To keep up with that complexity,
there’s a constant need to improve productivity of the de-
velopment process in the software industry.

Driven by that need, in this paper we propose an architec-
ture whose main goal is to improve productivity in Graph-
ical User Interface (GUI) development for data-intensive
applications. Nowadays developers tend to create GUI by
composition of various components. Our final goal is allow-
ing developers to define GUI using language extensions and
then acquiring an external software package (which we’ll

call smart template) to which they delegate the implemen-
tation of the concrete GUI.

This paper is organized as follows. Research problem
and alternative solutions are discussed in section 2. Pro-
posed solution is presented in section 3 and conclusions on
section 4.

2. Overview

Currently, a large number of projects use Component
Based Development (CBD), which allows applications de-
velopment by assembling a set of pre-manufactured com-
ponents. Each component is a black-box entity, which can
be deployed independently and is able to deliver specific
services [1].

GUIs are composed of various graphical elements, such
as buttons or input fields. When developing GUIs, both the
presentation and behavior aspects of those elements are to
be considered. Presentation aspects concern the appearance
and layout of GUI elements and behavior is related to the in-
teraction between themselves or between them and the un-
derlying code. Using CBD, each GUI element is mapped
to a component and presentation or behavior aspects are de-
fined by its properties, methods and events. Also, by us-
ing Rapid Application Development (RAD) tools, GUI lay-
out design is made visually through composition of com-
ponents. Compared to older processes and methodologies
the advent of CBD and RAD tools has certainly increased
the productivity of GUI development. However, CBD still

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IC-online

https://core.ac.uk/display/61796027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

hasn’t redeemed its promises of reuse and flexibility [2] and
there’s still a lot of risks, challenges and unresolved issues
in CBD [3].

The issue that drove us to study and propose a solu-
tion to improve productivity in this area, is related to the
process of components composition and configuration. On
large or very large applications, the same component can
be reused several times on different contexts, which is the
main factor for the productivity improvement accomplished
by CBD. However, as the number of instances and complex-
ity of components increases, developers time is increasingly
spent on the tedious tasks of composing layouts, configur-
ing components and maintaining consistency in presenta-
tion and behavior aspects of the GUI components through
the entire application.

Next, we’ll present some alternative solutions for the de-
scribed problem, namely Cascade Style Sheets and Tem-
plates on section 2.1, Frameworks on section 2.2 and Auto-
matic GUI generation on section 2.3.

2.1. Cascade Style Sheets and Templates

In 1994, Håkon Wium Lie [4] proposed the Cascading
Style Sheets (CSS) language, to describe the presentation
of a document written in a markup language, usually Hyper-
text Markup Language (HTML). It enables the separation of
document presentation from document content and ensures
visual consistency through central configuration. Another
concept used in web applications development is the page
template, that’s a pre-developed page layout used to create
new pages from the same design. It’s a concept adapted by
Microsoft ASP.Net 2 Master Pages. As CSS, page templates
also allows developer to create consistent layout and presen-
tation through entire sites or group of pages. Unlike CSS
that acts on individual HTML elements, templates acts on
entire pages. Both CSS and page templates are great to de-
fine presentation aspects, but very limited when defining be-
havior or interactions between graphical elements. Håkon
Wium Lie himself stated that ”CSS was primarily designed
to present documents, not user interfaces” [5].

2.2. Frameworks

The word framework has a lot of meanings, depending
of the context. Within Object-Oriented (OO) design per-
spective, a framework is a set of cooperating classes that
makes up a reusable design for a specific kind of software.
A framework provides architectural guidance by partition-
ing the design into abstract classes and defining their re-
sponsibilities and collaborations. A developer customizes
the framework to a particular application by subclassing and
composing instance of framework classes [6][7].

Frameworks are used in several application domains and

at different levels of abstractions. In GUI development
context, frameworks can control components creation, de-
ployment, layout and configuration, leaving developer free
of those repetitive tasks. Contrary to CSS and page tem-
plates, frameworks aren’t limited to presentation issues, as
they can handle GUI behavior aspects. In the GUI domain,
frameworks can be generic, like Apache Struts or Mono-
Rail (Model-View-Controller based frameworks), they can
be available from commercial supplier to complement and
integrate with their own components catalog or they can be
custom made for a specific application or set of applica-
tions. In any of those cases, frameworks are proprietary,
each having its own architecture, interface, classes and id-
iosyncrasies, therefore, requiring long learning processes.
Also, code produced is interconnected with frameworks hi-
erarchy of classes, which is against separation of concerns
and creates non portable code.

2.3. Automatic GUI generation

Automatic generation is potentially the most productive
method to develop GUI, since by definition it allows de-
velopers to delegate GUI creation to an external applica-
tion. Proposed solutions to generate GUI automatically are
mainly model-based systems, that attempt to formally de-
scribe the tasks, data, and users that an application will
have, and then use this formal models to guide the gener-
ation of the GUI. Some systems automatically design the
GUI and others provide design assistance to developers[8].
These models are abstract models, meaning that they don’t
specify exactly how the GUI is going to look, but rather
what elements are to be shown and how they should be-
have. Systems will then use that abstract description to
generate concrete interfaces for various devices. Trying to
fit the same application on different devices with different
capabilities [9], is what makes automatic GUI generation
so complex. Despite a lot of research, model-based auto-
matic GUI generation still hasn’t become common in GUI
development, in part because building models is an abstract
process and better results are often achievable by a human
designer in less time [10]. Abstract models can be complex
to build and maintain, thus keeping models and applications
concrete GUI synchronized can be problematic.

There are also some commercial tools, like Oracle De-
signer, that generates not only the GUI but complete appli-
cations, embracing all development cycle, which is not ap-
propriated to development methodologies like extreme pro-
gramming [11], where constant changes and very fast pro-
totyping are required. They’re usually based on relational
database (DB), and use its metadata to generate layouts for
data representation. However, resulting applications have
behavior limitations, because DB are typically restricted to
create, retrieve, update and delete (CRUD) operations.

3. Proposed solution

According to our initial motivation, main goal is to im-
prove productivity in GUI development for data-intensive
applications. Based on that premise and on preliminary
studies, it was defined a set of 5 guidelines for the solu-
tion. First, it should integrate seamlessly with GUI com-
mercial components, avoiding the need to recreate code to
generate GUI elements. Second, it should be as easy to use
as possible, allowing developers to concentrate on produc-
ing business related code. Separation of concerns should
be encouraged. Third, it should be flexible, allowing rapid
changes at any phase of the product development. Fourth,
it should produce very fast prototypes, preferably in a fully
automated manner. Fifth, it can’t be limited to work with
relational DB or XML as data source. Data persistence
shouldn’t be of any concern to the solution, as stated by
separation of concerns principle.

Next, we’ll present a description of the proposed solu-
tion, namely the general architecture in section 3.1, the GUI
Model in section 3.2, the Binding Framework in section 3.3
and Smart Templates in section 3.4.

3.1. Architecture

There are 2 main characteristics for the proposed system
architecture that distinguish it from others. First, it’ll use
an abstract model to characterize GUI, but instead of rely-
ing on specialized GUI models, based on XML or any other
format, it’ll be integrated with the source code through lan-
guage extensions, which we’ll call Graphical User Interface
Language eXtensions (GUILX). Second, instead of gener-
ating GUI automatically, system will delegate that responsi-
bility to external software packages, which we’ll call smart
templates (check Figure 1). System will provide the neces-
sary resources to bind the source code model with external
smart templates, who will handle GUI implementation for
the business code included in the model.

GUI Model

Extensions (GUILX)

Language (C#)

Smart Template (A)

. . .B
in

di
n

g
F

ra
m

ew
or

k

Smart Template (B)

Smart Template (Z)

Figure 1. Proposed architecture.

3.2. GUI Model

Although it’s not a common technique, using the source
code as a model to generate GUI is not original. For in-
stance, in 2004 Jelinek [9], used annotated source code
to generate GUI. Despite some similar concepts, Jalinek
model uses a tree-rewrite based language, as our model will

use a mainstream OO language. That choice was made
to facilitate integration with comercial GUI components.
We’ll use C#, but all concepts are also applicable to the
Java language. Source code based models main advantage
is the proximity between the model and the code we want
to execute. This approach turns development process more
flexible, as synchronization between business code and GUI
model is no longer required. In our solution, the GUI model
is composed of standard C# source code that defines busi-
ness operations and GUILX language extensions to define
the GUI related aspects. These extensions are declarative as
they allow developers to define what GUI they want, instead
of defining how to build it.

To better comprehend the model, lets analyze data-
intensive applications. In those applications, GUI elements
such as textboxs or grids, provide data for the user to read
or write. Also, users can perform operations by activating
events on GUI elements, like clicking on a button or a menu
item. Comparing this reality with OO languages, such as
C#, there are some similarities, as objects also have data,
which can be encapsulated as properties and have associ-
ated operations called methods. Objects data and behavior
can be mapped in GUI elements or set of elements. For
example, considering a business class called ”Book” with
a read-only string property called ”ISBN”, a string prop-
erty called ”Title”, a boolean property called ”Rented” and a
method called ”Sell”. By analyzing source code at run-time
through applications metadata, we can generate the GUI el-
ements and layout needed to represent instances of Book
objects. GUI elements are chosen by the kind of language
elements and accordantly to properties types and accessabil-
ity (check Figure 2).

public class Book {
 public string ISBN {
 get { ... } }
 public string Title {
 get { ... }
 set { ... } }
 public bool Rented {
 get { ... }
 set { ... } }
 public void Sell { . . .}
}

Figure 2. Generation GUI from source code.
Although language metadata has already some useful in-

formation, it’s not enough for defining a model to gener-
ate GUI. Filling that gap is GUILX language extensions
responsibility, by enriching the metadata with structural
information about GUI. This extensions are implemented
by annotating the source code through .Net custom at-
tributes, which provide a way for developers to extend na-
tive language by associating declarative information within
the source code. ”Show” is the first attribute defined on
GUILX, indicating which language elements are meant to
be available and with what description. If we analyze

second example in Figure 3 and compare it with the first
one, we can verify that the checkbox is not shown because
”Rented” property doesn’t have the ”Show” attribute. Also,
”Title” property and ”Sell” method have different descrip-
tions.

public class Book {
 [Show]
 public string ISBN
 { get { ... } }
 [Show("Books title")]
 public string Title
 { get { ... }
 set { ... } }
 public bool Rented
 { get { ... }
 set { ... } }
 [Show("Sell this book")]
 public void Sell() { ... }
}

Figure 3. Usage of GUILX ”Show” attribute.

Definition of GUILX is still in progress but is critical for
the success of the solution. It must be rich enough to ensure
that a complete prototype (even if a very basic one) can be
generated from the GUI model but simple enough to avoid
cluttering the source code with GUI related details.

3.3. Binding Framework

The ”Binding Framework” will be responsible for the
connection of smart templates and the GUI model. It’ll
allow the smart template to query the GUI model, to cre-
ate object instances and to invoke methods of that objects.
Also, it’ll serve as a controller, maintaining the execution
context for the GUI elements, thus controlling navigation
through entire application. It must always know what ob-
ject instance is the user viewing and where to go or what
to show next. Every time there’s a need to map an object
instance to some GUI element, framework will notify the
smart template to change interface accordantly.

3.4. Smart Templates

Proposed solution is designed to support various smart
templates, one at a time. The idea is allowing develop-
ers to define a GUI model and then adquire a smart tem-
plate to which they delegate all GUI implementation. Smart
templates are specialized frameworks, developed by exter-
nal entities that provide complete GUI services to the GUI
model, by complying with the rules specified by the binding
framework. There can be smart templates developed by dif-
ferent suppliers, for different devices and using completely
different methods. One can generate GUI automatically,
other can generate GUI partially and another can generate
GUI from manual definitions.

4. Conclusion

Although the proposed solution is still in a embryonic
state, we’re expecting productivity improvements by allow-
ing developers to focus on business code development and
reducing the repetitive tasks of composing layouts and con-
figuring GUI components. Proposed solution is expected
to be easier to use than custom frameworks, because learn-
ing a declarative language (GUILX) is easier than learning
a complete class hierarchy. Also, in the proposed solution,
business code doesn’t use any direct code related to GUI
development, thus ensuring the separation of concerns prin-
ciple. Compared to other methods of automatic GUI gener-
ation, we’re also expecting easier development, due to the
fact that the model is integrated in the source code, therefore
being easier to create and maintain that an abstract model.
However, the success of the proposed solution depends on
the definition of the GUILX language, which requires a cor-
rect balanced between simplicity and flexibility.

References

[1] C. Szyperski, Component Oriented Programming. Springer,
1998.

[2] H. de Bruin and H. van Vliet, “The future of component-
based development is generation,” 2002.

[3] P. Vitharana, “Risks and challenges of component-based
software development,” Communications of the ACM,
vol. 46, no. 8, pp. 67–72, 2003.

[4] H. W. Lie, “Cascading html style sheets; pro-
posal.” published 10 Oct 1994. Available from:
http://www.w3.org/People/howcome/p/cascade.html;
accessed on 28/01/2007.

[5] H. W. Lie, Cascading Style Sheets. PhD thesis, Faculty of
Mathematics and Natural Sciences, University of Oslo, 2005.

[6] I. Jacobson, M. Griss, and P. Jonsson, Software reuse: archi-
tecture, process and organization for business success. ACM
Press/Addison-Wesley Publishing Co. New York, NY, USA,
1997.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1995.

[8] J. Nichols and A. Faulring, “Automatic interface generation
and future user interface tools,” ACM CHI 2005 Workshop
on The Future of User Interface Design Tools, 2005.

[9] J. Jelinek and P. Slavik, “Gui generation from annotated
source code,” in TAMODIA ’04: Proceedings of the 3rd an-
nual conference on Task models and diagrams, (New York,
NY, USA), pp. 129–136, ACM Press, 2004.

[10] B. Myers, S. Hudson, and R. Pausch, “Past, present, and fu-
ture of user interface software tools,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 7, no. 1, pp. 3–
28, 2000.

[11] K. Beck, “Embracing change with extreme programming,”
Computer, vol. 32, no. 10, pp. 70–77, 1999.

