
Diploma de Estudios Avanzados

Evolutionary Unit-Testing Of Third-Party

Object-Oriented Java Software

José Carlos Bregieiro Ribeiro

Universidad de Extremadura

España 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IC-online

https://core.ac.uk/display/61795991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Organization:

Dept. de Tecnoloǵıas, Computadores y Comunicaciones; Escuela Politécnica;
Universidad de Extremadura

Title:

Evolutionary Unit-Testing Of Third-Party Object-Oriented Java Software

Author:

José Carlos Bregieiro Ribeiro

Supervising Teacher:

Francisco Fernandéz de Vega

Line of Investigation:

Techniques for Planning the Improvement of the Efficiency of Evolutionary
Algorithms (Técnicas de Planificación para la Mejora de la Eficiencia de
Algoritmos Evolutivos)

Period:

2005/2007

i

ii

Abstract

Evolutionary Testing is an emerging methodology for automatically generat-
ing high quality test data. The focus of this work is on presenting a search-
based approach for the the unit-testing of third-party object-oriented Java
software.

Test cases are represented and evolved using the Strongly Typed Genetic
Programming paradigm, which effectively mimics the inheritance and poly-
morphic properties of object-oriented programs and enables the maintenance
of call dependences when applying tree construction, mutation or crossover.

Our strategy for evaluating the quality of test cases includes instrument-
ing the test object for basic block analysis and structural event dispatch,
and executing the instrumented test object using the generated test cases as
“inputs” – in order to collect trace information and derive coverage metrics.

Static analysis, instrumentation and execution tracing is performed solely
with basis on the high-level information extracted from the Java Bytecode of
the test object. Given that the test object’s source code is often unavailable,
working at the Bytecode level allows broadening the scope of applicability of
our approach; it can be used, for instance, to perform structural testing on
third-party Java components.

Test objects are represented internally by weighted control-flow graphs;
strategies are introduced for favouring test cases that exercise problematic
structures and difficult control-flow paths, which involve dynamic weight
reevaluation. The aim is that of efficiently guiding the search process to-
wards achieving full structural coverage – which often involves promoting
the definition of complex and intricate test cases that define elaborate state
scenarios.

The work performed so far allowed us to develop the prototype of a test
case generation tool, called eCrash. Experiments have been carried and qual-
ity solutions have been found, proving the pertinence of our methodology and
encouraging further studies.

iii

iv

List of Publications

Publications:

• José Carlos Bregieiro Ribeiro, Francisco Fernandéz de Vega, and Mário
Zenha-Rela. “Using Dynamic Analysis of Java Bytecode for Evolution-
ary Object-Oriented Unit Testing”, in Proceedings of the 8th Work-
shop on Testing and Fault Tolerance of the 25th Brazilian Symposium
on Computer Networks and Distributed Systems (SBRC WTF 2007),
pages 143-156. ISBN:85-766-0119-1. Belém, Brazil, May 2007.

• José Carlos Bregieiro Ribeiro, Mário Zenha-Rela, and Francisco Fer-
nandéz de Vega. “eCrash: a Framework for Performing Evolutionary
Testing on Third-Party Java Components”, in Proceedings of the I Jor-
nadas sobre Algoritmos Evolutivos y Metaheuristicas of the II Congreso
Español de Informática (CEDI JAEM 2007), pages 143-156. ISBN:978-
84-9732-593-6. Zaragoza, Spain, September 2007.

• José Carlos Bregieiro Ribeiro, Mário Zenha-Rela, and Francisco Fer-
nandez de Vega. “An Evolutionary Approach For Performing Struc-
tural Unit-Testing On Third-Party Object-Oriented Java Software”, in
Proceedings of International Workshop on Nature Inspired Cooperative
Strategies for Optimization (NICSO 2007). Studies in Computational
Intelligence Book Series, Springer-Verlag (to appear). Acireale, Italy,
November 2007.

Related Work:

• José Carlos Bregieiro Ribeiro, Bruno Miguel Lúıs, and Mário Zenha-
Rela. “Error propagation monitoring on windows mobile-based de-
vices”, in Proceedings of the Third Latin-American Symposium on
Dependable Computing (LADC 2007), volume 4746/2007 of Lecture
Notes in Computer Science, pages 111-122. ISBN:978-3-540-75293-6.
Morelia, Mexico, September 2007.

v

vi

Acknowledgements

I would like to start by thanking Professor Francisco Vega for giving me the
privilege of working with him and for guiding me half-way towards the goal.

I also express my deepest gratitude to Professor Mário Zenha-Rela. I owe
much of my research to his availability, his support, his enthusiasm.

I take opportunity for thanking mum, dad, and my (not so) little brother.
I wish I could express my gratitude in words, but I wouldn’t know where to
begin.

Finally, I would like to send a big kiss to my girlfriend Marta, who has
put up with more than her fair share throughout these last two (or should I
say ten...) years.

vii

viii

Contents

1 Introduction 1

2 Background 3
2.1 Software Testing . 3

2.1.1 Structural and Functional Testing 3
2.1.2 Static Analysis and Dynamic Analysis 4
2.1.3 Levels of Testing . 5
2.1.4 Unit Testing . 6
2.1.5 Object-Oriented Unit Testing 6

2.2 Evolutionary Algorithms . 7
2.2.1 Genetic Algorithms . 8
2.2.2 Genetic Programming 9
2.2.3 Strongly Typed Genetic Programming 9

2.3 Evolutionary Testing . 10
2.3.1 The State Problem . 10

2.4 Java Bytecode . 11

3 Related Work 13

4 Methodology and Framework 17
4.1 Methodology . 18

4.1.1 Static Analysis and Intrumentation 18
4.1.2 Test Case Generation 20
4.1.3 Test Case Evaluation 20

Weight Reevaluation 23
Evaluation of Feasible Test Cases 24
Evaluation of Unfeasible Test Cases 24

4.2 Framework Overview . 24

5 Experimental Studies 27
5.1 Case Study: Controller & Config 28

ix

5.1.1 Setup . 30
5.1.2 Results . 32

5.2 Case Study: Stack . 34
5.2.1 Setup . 35
5.2.2 Results . 35

Probabilities of Operators 35
Evaluation Parameters 37

5.3 Discussion . 38

6 Future Work 41
6.1 Method Call Sequence Separation 42
6.2 Input Domain Reduction . 42
6.3 Search Domain Sampling . 44

7 Conclusions 47

A Teaching and Investigation Periods 55
A.1 Design and Implementation of Reconfigurable Systems and

Parallel Architectures . 55
A.2 Grid Computing and Evolutionary Algorithms 57
A.3 Robotics and Artificial Vision 57

B Planning 59

C Publications 63
C.1 Using Dynamic Analysis of Java Bytecode for Evolutionary

Object-Oriented Unit Testing (SBRC WTF 2007) 65
C.2 eCrash: a Framework for Performing Evolutionary Testing on

Third-Party Java Components (CEDI JAEM 2007) 81
C.3 An Evolutionary Approach For Performing Structural Unit-

Testing On Third-Party Object-Oriented Java Software (NICSO
2007) . 91

D Certification Document – Grades Obtained During the Teach-
ing and Investigation Periods 103

x

List of Figures

4.1 Methodology overview. 19
4.2 Genotype example – Strongly Typed Genetic Programming tree. 21
4.3 Phenotype example – Method Call Sequence. 21
4.4 Example test case. 22
4.5 Framework overview. 25

5.1 Source code of the “Controller & Config” test object. 28
5.2 Bytecode of the reconfigure method. 30
5.3 Control-Flow Graph of the reconfigure method. 31
5.4 Percentage of unfeasible test cases per generation. 33
5.5 Results for the “Evaluation Parameters” experiment. 37

xi

xii

List of Tables

5.1 Function Set for the “Controller & Config” case study. 29
5.2 Mapping table between the Bytecode instructions and the

Control-Flow Graph nodes for the reconfigure method. . . . 31
5.3 Number of generations required to attain full coverage. 33
5.4 Function Set for the Stack case study. 35
5.5 Statistics for the “Probabilites of Operators” experiment. . . . 36

6.1 Improved Function Set for the Stack case study. 44

A.1 Teaching Period. 56
A.2 Investigation Period. 56

B.1 High-level goals for the development of the thesis. 59
B.2 Low-level tasks for the development of the thesis. 61

xiii

xiv

List of Abbreviations

ATOA Automatic Test Object Analyzer
CFG Control Flow Graph
COTS Commercial Off The Shelf
CUT Class Under Test
ECJ Evolutionary Computation in Java
EMCDG Extended Method Call Dependence Graph
GP Genetic Programming
GUI Graphical User Interface
JML Java Modeling Language
JVM Java Virtual Machine
LIFO Last In First Out
MCS Method Call Sequence
MUT Method Under Test
SAIM Static Analysis and Instrumentation Module
SBTCG Search-Based Test Case Generation
STGP Strongly Typed Genetic Programming
TCEM Test Case Evaluation Module
TCGM Test Case Generation Module

xv

xvi

Chapter 1

Introduction

Software testing is an expensive process, typically consuming roughly half of
the total costs involved in the software development process – while adding
nothing to the raw functionality of the final product. Yet, it remains the
primary method through which confidence in software is achieved.

Test data selection and generation deals with locating good test data for
a particular test criterion [38]. In industry, this process is often performed
manually – with the responsibility of assessing the quality of a given software
product falling on the software tester. However, locating suitable test data
can be time-consuming, difficult and expensive; automation of test data gen-
eration is, therefore, vital to advance the state-of-the-art in software testing.

The application of evolutionary algorithms to test data selection and gen-
eration is often referred to as “Evolutionary Testing” [23, 21] or “Search-
Based Test Case Generation” [5, 10]. The search space is the input domain
of the program under test, and the problem is to find a set of input data –
called test cases – that satisfies a certain test criterion [6].

The focus of our on-going work [29, 31, 32] is precisely on presenting a
search-based approach for automatically generating test cases for the unit-
testing of object-oriented programs. This report aims to provide an overview
of the goals attained so far, while setting ground for future work.

Being an interdisciplinary area, there are key concepts related to both
software testing and evolutionary algorithms that must be introduced; these
subjects are addressed in Chapter 2. In Chapter 3 related work is reviewed,
with the topic of object-oriented evolutionary testing receiving special atten-
tion.

In Chapter 4, our approach to the evolutionary testing of object-oriented
software is described in detail. The work performed so far allowed us to
develop a prototype of a test case generation tool, which we baptized with
the name eCrash; its framework is outlined in Section 4.2.

1

2

Experiments have been carried out and quality solutions have been found,
proving the pertinence of our approach and encouraging further research;
Chapter 5 describes the cases studies implemented so far, and discusses the
results obtained in terms of their impact and relevance.

Still, several open problems persist in the area of search-based test case
generation, and further advances must still be made in order to achieve full
automation. Chapter 6 sets ground for future work and presents some topics
for research. Finally, Chapter 7 resumes the key ideas and contributions of
this work.

Chapter 2

Background

This Chapter provides background information on the topics addressed dur-
ing the remaining of this document.

The following Section overviews software testing, by introducing different
test approaches from the point of view of test case design (structural and
functional), techniques employed to assemble the metrics required for test
evaluation (static and dynamic analysis) and possible levels of testing (re-
gression testing, integration testing, etc.). Next, special attention is paid to
unit-testing of object-oriented programs and its terminology.

Section 2.2 presents key concepts related with evolutionary algorithms,
starting by briefly exploring the genetic algorithm and genetic programming
paradigms, and finally focusing on Strongly Typed Genetic Programming.

The last Section of this Chapter is devoted to explaining the concepts of
Java Bytecode, presenting its main properties and demonstrating, by exam-
ple, its most relevant aspects to our studies.

2.1 Software Testing

The general aim of testing is to affirm the quality of software systems by sys-
tematically exercising the software in carefully controlled circumstances [22].
Despite advances in formal methods and verification techniques, a system
still needs to be tested before it is used. Testing remains the truly effective
means to assure the quality of a software system of non-trivial complexity.

2.1.1 Structural and Functional Testing

Distinct test approaches – from the point of view of test case design – include
Structural (or White-Box) Testing, Functional (or Black-Box) Testing, and

3

4 CHAPTER 2. BACKGROUND

Grey-Box testing.

• Functional Testing is concerned with showing the consistency between
the implementation and its functional specification.

• Structural Testing performs test case design with basis of the program
structure.

• Grey-box testing is a combination of Black-Box and White-Box testing;
in practice, many testing problems fall into this class. With this ap-
proach, tests are derived from a specification of the desired behaviour
but with reference to the implementation details.

When white-box testing is performed, the metrics for measuring the thor-
oughness of a given test set can be extracted from the structure of the target
object’s source code, or even from compiled code. Traditional white-box
criteria include structural (e.g. code, statement, branch) coverage and data-
flow coverage. The basic idea is to ensure that all of the control elements in
a program are executed by a given test set, providing evidence of the quality
of the testing activity.

The evaluation of test data suitability using structural criteria generally
requires the definition of an underlying model for program representation
– usually a Control-Flow Graph (CFG). A CFG is a representation, using
graph notation, of all the paths that might be traversed through a program
during its execution. Each node in the graph represents a basic block, i.e. a
straight-line piece of code. Directed edges are used to represent jumps in the
control flow.

2.1.2 Static Analysis and Dynamic Analysis

The observations needed to assemble the metrics required for the evalua-
tion can be collected by abstracting and modeling the behaviours programs
exhibit during execution, either by static or dynamic analysis techniques.

Static analysis involves the construction and analysis of an abstract math-
ematical model of the system [9]; it focuses on the range of methods that are
used to determine or estimate software quality without reference to actual ex-
ecutions. Techniques in this area include code inspection, program analysis,
symbolic analysis and model checking.

In contrast, dynamic analysis involves executing the actual test object
and monitoring its behaviour [14]; it deals with specific methods for ascer-
taining and/or approximating software quality through actual executions –
i.e. with real data and under real (or simulated) circumstances. Techniques

2.1. SOFTWARE TESTING 5

in this area include synthesis of inputs, the use of structurally dictated testing
procedures and the automation of testing environment generation.

Dynamic monitoring of structural entities can be achieved by instrument-
ing the test object, and tracing the execution of the structural entities tra-
versed during execution.

Instrumentation is performed by inserting probes in the test object. In
Java software, this operation can be effectively performed at the Java Byte-
code level.

2.1.3 Levels of Testing

Although testing is involved in every stage of software life cycle, the testing
done at each level of software development is different in terms of its nature
and objectives [17].

• Unit testing tests individual application objects or methods in an iso-
lated environment. It verifies the smallest unit of the application to
ensure the correct structure and the defined operations.

• Integration testing is used to evaluate proper functioning of the inte-
grated modules (objects, methods) that make up a subsystem. The
focus of integration testing is on cross-functional tests rather than on
unit tests within one module.

• System testing should be executed as soon as an integrated set of mod-
ules has been assembled to form the application; it verifies the product
by testing the application in the integrated system environment.

• Regression testing ensures that code modification, bug correction, and
any postproduction activities have not introduced any additional bugs
into the previously tested code.

• Usability testing ensures that the presentation, data flow, and general
ergonomics of the application meet the requirements of the intended
users.

• Stress testing makes sure that the features of the software and hardware
continue to function correctly under a pre-designed set and volume of
test scenarios, in order to certify that the system can hold and operate
efficiently under different load conditions.

• Performance (or Timing) testing measures the response times of the
system to complete a task and the efficiency of the algorithms under
varied conditions.

6 CHAPTER 2. BACKGROUND

2.1.4 Unit Testing

The primary aim of unit testing is to uncover errors within a given unit (the
test object) or, if no errors can be found, to gain confidence in its correct-
ness [43]. In order to do so, the test object is executed in different scenarios
using relevant and interesting test cases.

A test set is said to be adequate with respect to a given criterion if the en-
tirety of test cases in this set satisfies this criterion; test set adequacy criteria
include code or branch coverage, and are used to answer the question of what
interesting test scenarios are and when the process of test case generation
can be terminated.

Recent surveys [33] show that companies conduct unit testing on the basis
of the programs structure (that is, white-box or grey-box testing), and that
they want the test cases to be repeatable and also automated with respect
to test execution and result checking.

2.1.5 Object-Oriented Unit Testing

In the case of object-oriented unit-testing, a sequence of method invocations
that realizes a particular test scenario is required to cover the test goal, and
the sequence search space is an explosive space.

Most work in testing has been done with “procedure-oriented” software
in mind; nevertheless, traditional methods – despite their efficiency – cannot
be applied without adaptation to object-oriented systems.

In an object-oriented system, the basic test unit is a class instead of a
subprogram; hence, testing should focus on classes and objects. Testing a
single class involves other classes, i.e. classes that appear as parameter types
in the method signatures of the class under test (CUT); it is not possible to
test the operations of a class in isolation, as they interact with each other
by modifying the state of the object which invokes them. The transitive set
of classes which are relevant for testing a particular class is called the test
cluster for this class.

A unit test case for object-oriented software consists of a method call
sequence (MCS), which represents the test scenario. During its execution,
all objects participating in the test are created and put into a particular state
by calling several instance methods for these objects.

Each test case focuses on the execution of one particular method, the
method under test (MUT). Consequently, the entirety of adequate test cases
for each method of the CUT satisfies the given adequacy criterion for the
whole class.

2.2. EVOLUTIONARY ALGORITHMS 7

In summary, the process of performing unit testing on object-oriented
programs usually requires [42]:

• at least, an instance of the CUT;

• additional objects, which are required (as parameters) for the instan-
tiation of the CUT and for the invocation of the MUT – and for the
creation of these additional objects, more objects may be required;

• putting the participating objects into particular states, in order for the
test scenario to be processed in the desired way – and, consequently,
method calls must be issued for these objects.

Sometimes, software testing can benefit from object-oriented technology
– for instance, by capitalizing on the fact that a superclass has already been
tested, and by decreasing the effort to test derived classes, which reduces the
cost of testing in comparison with a flat class structure.

However, the object-oriented paradigm can also be a hindrance to testing,
due to some aspects of its very nature [4]:

• Encapsulation – in the presence of encapsulation, the only way to ob-
serve the state of an object is through its operations; there is therefore
a fundamental problem of observability.

• Inheritance – inheritance opens the issue of retesting: should opera-
tions inherited from ancestor classes be retested in the context of the
descendant class?

• Polymorphism – polymorphic names induce difficulties because they in-
troduce undecidability in program-based testing. Moreover, erroneous
casting (type conversions) are also prone to happen in polymorphic
contexts and can lead non-easily detectable to errors.

2.2 Evolutionary Algorithms

Evolutionary Algorithms use simulated evolution as a search strategy to
evolve candidate solutions, using operators inspired by genetics and natural
selection. The best known algorithms in this class include Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms and Genetic Program-
ming.

8 CHAPTER 2. BACKGROUND

All of these methodologies try to solve problems for which no reasonable
fast algorithms have been developed, and they are especially fit for opti-
mization problems [8]. Independently of its class, any evolutionary program
should possess the following attributes [25]:

• a genetic representation for potential solutions to the problem;

• a way to create an initial population of potential solutions;

• an evaluation function that plays the role of the environment, rating
solutions in terms of their “fitness”;

• genetic operators that alter the composition of children;

• values for various parameters that the genetic algorithm uses (popula-
tion, size, probabilities of applying genetic operators, etc.).

2.2.1 Genetic Algorithms

Genetic Algorithms are the most well known form of Evolutionary Program-
ming, having been conceived by John Holland [13] during the late sixties
and early seventies. The term “Genetic Algorithm” comes from the analogy
between the encoding of candidate solutions as a sequence of simple com-
ponents and the genetic structure of a chromosome; continuing with this
analogy, solutions are often referred to as individuals or chromosomes. The
components of the solution are referred to as genes, with the possible values
for each component being called alleles and their position in the sequence
being the locus. The encoded structure of the solution for manipulation by
the genetic algorithm is called the genotype, with the decoded structure being
known as the phenotype.

Genetic algorithms maintain a population of solutions rather than just
one current solution; in consequence, the search is afforded many starting
points, and the chance to sample more of the search space than local searches.
The population is iteratively recombined and mutated to evolve successive
populations, known as generations. Various selection mechanisms can be
used to decide which individuals should be used to create offspring for the
next generation; key to this is the concept of the fitness of individuals.

The idea of selection is to favour the fitter individuals, in the hope of
breeding better offspring; however, too strong a bias towards the best indi-
viduals will result in their dominance of future generations, thus reducing
diversity and increasing the chance of premature convergence on one area of
the search space. Conversely, too weak a strategy will result in too much

2.2. EVOLUTIONARY ALGORITHMS 9

exploration, and not enough evolution for the search to make substantial
progress.

Traditional genetic algorithm operators include selection, crossover, and
mutation [13]:

• Selection (or Reproduction) is the process of copying the individuals
which are going to participate in the posterior crossover phase. They
are chosen according to their fitness value; selection methodologies in-
clude Fitness-Proportionate Selection, Linear Ranking or Tournament
Selection;

• Crossover is the procedure of mating the members of the new popula-
tion, in order to create a new set of individuals. As genetic material is
being combined, new genotypes will be produced;

• Mutation modifies the values of one or several genes of an individual.

2.2.2 Genetic Programming

Genetic Programming is a machine-learning approach usually associated with
the evolution of tree structures; it focuses on automatically creating computer
programs by means of evolution. Its foremost objective is to instruct the
computer on what we want it to perform [8].

In most genetic programming approaches, the programs are represented
using tree genomes – mostly due to the influence of Koza’s work [15]. The
leaf nodes are called terminals, whereas the non-leaf nodes are called non-
terminals. Terminals can be inputs to the program, constants or functions
with no arguments; non-terminals are functions taking at least one argument.
The function set is the set of functions from which the genetic programming
system can choose when constructing trees. A set of programs is manipu-
lated by applying reproduction, crossover and mutation until the optimum
program is found or other termination criteria is met.

2.2.3 Strongly Typed Genetic Programming

The nodes of a Genetic Programming tree can be typed or non-typed: when
using non-typed nodes, the functions of the function set are able to accept
every conceivable argument; if using a typed mechanism when applying tree
construction, mutation or crossover, the types specify which nodes can be
used as a child of a node and which nodes can be exchanged between two
individuals.

10 CHAPTER 2. BACKGROUND

Genetic programming is a powerful method for automatically generating
computer programs via the process of natural selection. However, one serious
constraint on the user-defined terminals is called “closure” – i.e. all the non-
terminals must accept arguments of a single data type and return values of
the same data-type. This means that all non-terminals return values can be
used as arguments for any other non-terminal.

In order to overcome this limitation, Montana [26] proposed the “Strongly
Typed Genetic Programming” (STGP) paradigm. In STGP, variables, con-
stants, arguments and returned values can be of any data type, with the
provision that the data type for each such value be specified beforehand.
This allows the initialization process and the genetic operators to only gen-
erate syntactically correct parse trees. STGP has already been extended to
support type inheritance and polymorphism [12].

2.3 Evolutionary Testing

In Evolutionary Testing – also known as “Search-Based Test Case Genera-
tion” [5], a sub-area of “Search-Based Software Engineering” [10] – compu-
tational evolutionary methods are employed for test data generation.

The test objective has to be defined numerically – i.e. the test data
generation process must be transformed into an optimization problem – and
suitable fitness functions, that provide guidance to the search by telling how
good each candidate solution is, must be defined. The fitness values are
based on the monitoring results for test data.

In the particular case of object-oriented evolutionary testing, a suitable
representation of object-oriented test programs must be defined; the search
space of the evolutionary search is the set of all conceivable test programs
for a given test object. The hidden state is, however, a serious barrier to the
evolutionary approach, because of the complexity of observing the effects of
method execution; this issue is usually referred to as the State Problem.

2.3.1 The State Problem

The State Problem [24] occurs with methods that exhibit state-like qualities
by storing information in internal variables; such variables are hidden from
the optimization process because they are not available to external manipu-
lation.

In procedural software this can occur through the use of the static stor-
age class; in object-oriented languages, through variables that are protected
from external manipulation using access modifiers (most notably “getter”

2.4. JAVA BYTECODE 11

and “setter” methods), and the only way to change their values is through
execution of statements that perform assignments to them.

2.4 Java Bytecode

Java Bytecode is an assembly-like language that retains much of the high-
level information about the original source program [39]. Class files (i.e.
compiled Java programs containing Bytecode information) are a portable
binary representation that contains class related data, such as information
about the variables and constants and the Bytecode instructions of each
method.

Given that the target object’s source code is often unavailable, working
at the Bytecode level allows broadening the scope of applicability of software
testing tools; they can be used, for instance, to perform structural testing on
third-party and COTS Java components.

To understand the details of the Bytecode, a preliminary discussion on
how a Java Virtual Machine (JVM) works regarding the execution of the
Bytecode [18] must take place. A JVM is a stack-based machine. Each
thread has a JVM stack which stores frames. A frame is created each time
a method is invoked, and consists of an operand stack, an array of local
variables, and a reference to the runtime constant pool of the class of the
current method.

The array of local variables contains the parameters of the method and
the values of the local variables. The size of the array of local variables is
determined at compile time and is dependent on the number and size of local
variables and formal method parameters. The parameters are stored first,
beginning at index 0. If the frame is for a constructor or an instance method,
the this reference is stored at location 0; location 1 contains the first formal
parameter, location 2 the second, and so on. For a static method, the first
formal method parameter is stored in location 0, the second in location 1,
and so on.

The operand stack is a last-in-first-out (LIFO) stack used to push and
pop values. Its size is also determined at compile time. Certain opcode
instructions push values onto the operand stack; others take operands from
the stack, manipulate them, and push the result. The operand stack is also
used to receive return values from methods.

For example, in Figure 5.2 (Section 5.1), the aload 1 instruction at lo-
cation 0 pushes the value from the index 1 of local variable table onto the
operand stack – i.e. it pushes the parameter cfg of the econfigure method
onto the top of the operand stack (a reference to an object of type Config).

12 CHAPTER 2. BACKGROUND

The invokevirtual instruction at location 1 invokes the instance method
getSignalCount on the object cfg (popped from the top of the operand
stack); the value returned by this method is pushed onto the top of the
operand stack. The iconst 5 instruction loads the integer value onto the
top of the operand stack. At this point, the operand stack contains two
values: the integer 5 on top, and the value returned by the getPort on the
bottom. The if icmple opcode loads both those values from the operand
stack, and compares them: if 5 is lower than or equal to the value returned
from the getPort method, instruction flow is transferred to instruction 18.

In fact, as the analysis of this example attests, Bytecode instructions
contain enough information for coverage criteria to be applied at the Byte-
code level. In addition, it can be regarded as an intermediate language, so
the analysis performed at this level can be mapped back to the high-level
language that generated the Bytecode.

Chapter 3

Related Work

This Chapter presents relevant work in the area of evolutionary testing, focus-
ing on the approaches that employ structural testing techniques and address
the object-oriented paradigm.

Xanthakis et al. [44] presented what is considered to be the first appli-
cation of heuristic optimization techniques for test-data generation. Ran-
dom testing was firstly employed to generate test-data, with the intention of
achieving as much structural coverage as possible; then, a genetic algorithm
was used to fill any gaps.

A first approach to the field of evolutionary testing of object-oriented
software was presented [37]; in this work, input sequences are generated
using evolutionary algorithms for the white-box testing of classes. Genetic
algorithms are the evolutionary approach employed, with possible solutions
being represented as chromosomes. A source-code representation is used, and
an original evolutionary algorithm, with special evolutionary operators for
recombination and mutation on a statement level – i.e. mutation operators
insert or remove methods from a test program – is defined. A population
of individuals, representing the test cases, is evolved in order to increase a
measure of fitness accounting for the ability of the test cases to satisfy a
coverage criterion of choice. New test cases are generated as long as there
are targets to be covered or a maximum execution time were reached.

However, the encapsulation problem was not addressed, and this proposal
only dealt with a simple state problem. Additionally, with this approach,
Universal Evolutionary Algorithms (i.e. evolutionary algorithms, provided
by popular toolboxes, which are independent from the application domain
and offer a variety of predefined, probabilistically well-proven evolutionary
operators) could not be applied due to the usage of custom-made operators
and original evolutionary algorithms.

An approach which employed an Ant Colony Optimization algorithm was

13

14 CHAPTER 3. RELATED WORK

presented in [19]. The focus is on the generation of the shortest method
call sequence for a given test goal, under the constraint of state dependent
behaviour and without violating encapsulation. Ant PathFinder, hybridizing
Ant Colony Optimization and Multiagent Genetic Algorithms are employed.
To cover branches enclosed in private/protected methods without violating
encapsulation, call chain analysis on class call graphs was introduced.

In [42] the focus was put on the usage of Universal Evolutionary Algo-
rithms. An encoding is proposed that represents object-oriented test cases
as basic type value structures, allowing for the application of various search-
based optimization techniques such as Hill Climbing or Simulated Annealing.
The generated test cases can be transformed into test classes according to
popular testing frameworks. Still, the suggested encoding does not prevent
the generation of individuals which cannot be decoded into test programs
without errors; the fitness function uses different penalty mechanisms in or-
der to penalize invalid sequences and to guide the search towards regions
that contain valid sequences. Due to the generation of invalid sequences, the
approach lacked efficiency for more complicated cases.

In [36], a methodology for creating test software for object-oriented sys-
tems using a genetic programming approach was proposed. Experiments were
carried out on five different classes. The author states that this methodology
is advantageous over the more established search-based test-case generation
approaches because the test software is represented and altered as a fully
functional computer program. However, it is pointed out that the number of
different operation types is quite limited, and that large classes which contain
many methods will lead to huge hierarchical trees.

In [43] an approach in which potential solutions were encoded using a
STGP methodology was presented, with MCS being represented by method
call trees; these trees are able to express the call dependences of the methods
that are relevant for a given test object. To account for polymorphic rela-
tionships which exist due to inheritance relations, the STGP types used by
the function set are specified in correspondence to the type hierarchy of the
test cluster classes.

The emphasis of this work is on sequence validity; the usage of STGP
preserves validity throughout the entire search process, with only compil-
able test cases being generated. The fitness function does need, however, to
incorporate a penalty mechanism for test cases which include method call
sequences that generate runtime exceptions. The issue of runtime exceptions
was precisely the main topic in [41].

The methodology proposed by Wappler et al. [43, 41] yielded very en-
couraging results. For a custom-tailored test cluster, the set of generated
test cases achieved full (100%) branch coverage: during the search, 11966

15

test programs were generated and evaluated, and the resulting test set con-
tained 3 test cases; a control run, in which random test cases where produced
for comparison purposes, stopped after having evaluated 43233 test programs
(in accordance to the specified termination criteria), and the generated test
set achieved a coverage of 66%. In a more complex scenario, four classes
where tested and full coverage was achieved for all of the test objects.

Lately, Arcuri et al. [2, 1, 34] have developed work focused on the test-
ing of Container Classes (e.g. Vector, Stack and Red-Black Tree). Besides
analysing how to apply different search algorithms (Random Search, Hill
Climbing, Simulated Annealing, Genetic Algorithms, Memetic Algorithms
and Estimation of Distribution Algorithms) to the problem and exploiting
the characteristics of this type of software to help the search, more general
techniques that can be applied to object-oriented software were studied –
such as an improved branch distance that solves an issue regarding the eval-
uation of conjunctions of predicates.

In all of the abovementioned approaches, the underlying model for pro-
gram representation (i.e. CFG) is built with basis on the test object’s source-
code; moreover, instrumentation of the test object for extracting tracing
information is also performed at the source-code level. To the best of our
knowledge, there are no evolutionary approaches to the unit-testing of object-
oriented software that employ dynamic Bytecode analysis to derive structural
testing criteria.

The application of evolutionary algorithms and Bytecode analysis for test
automation was, however, already studied in different scenarios. In [7] an at-
tempt to automate the unit-testing of object-oriented programs is described.
A functional approach for investigating the use of genetic algorithms for test
data generation is employed, and program specifications written in JML are
used for test result determination. The JML compiler was extended to make
Java Bytecode produce test coverage information.

In [27] the layout of a symbolic JVM, which discovers test cases using
a definable structural coverage criterion with basis on static analysis tech-
niques, is described. The Bytecode is executed symbolically, and the decision
whether to enter a branch or throw an exception is based on the earlier con-
straints, a constraint solver and current testing criterion. The symbolic JVM
has been implemented in a test tool called GlassTT. This work, however,
does not address exception-related and method interaction-related criteria,
and only procedural software scenarios are described.

Interesting review articles on the topic of evolutionary testing include [23,
21, 5, 3], which overview the meta-heuristic techniques that have been used
in software test data generation, such as Hill Climbing, Simulated Annealing
and – most interestingly – Evolutionary Algorithms. Namely, some of the

16 CHAPTER 3. RELATED WORK

achievements in automating test data generation in the areas of structural
testing, functional testing, and grey-box testing have been summarized.

In [3], particularly, several issues in the current state-of-art of test data
generation for object-oriented software are pinpointed, namely:

• little work has been done using optimisation algorithms;

• empirical tests have always been done on very small clusters of classes,
which reduces the reliability of the results;

• there is no common benchmark cluster which can be used to test and
compare different techniques;

• there are no comparisons between different optimisation algorithms on
the testing of the same classes;

• no theoretical work on test data generation for object-oriented software
exists – all articles are of empirical nature.

When comparing evolutionary-based approaches over random testing [21]
several prominent advantages arise, which include: less need for human anal-
ysis, as the evolutionary algorithm pre-analyses the software in accordance
to the fitness function; the ability to automatically test combinations of sus-
picious parameters; and the possibility of finding combinations of inputs
that lead to a more severe fault behaviour. Drawbacks include the difficulty
of detecting solitary errors (“needles in a haystack”) with greater efficiency
than random testing, and the impossibility of guaranteeing code coverage in
black-box testing.

Chapter 4

Methodology and Framework

This Chapter presents our strategy for employing evolutionary algorithms
for the automatic generation of unit-test cases for third-party object-oriented
software.

The ideas that lead to this approach were greatly inspired by the previ-
ous works of [43, 41]. Their proposals included representing MCS as STGP
trees, which are able to express the call dependences of the methods that
are relevant for a given test object. This encoding is especially suited, as
it effectively mimics the inheritance and polymorphic properties of object-
oriented programs and enables the maintenance of call dependences when
applying tree construction, mutation or crossover. This means that only
compilable test cases – i.e. test cases that do not throw exceptions during
the compilation process – are generated.

Our conceptualization of the problem, however, involves performing static
analysis and instrumentation of the test objects at the Java Bytecode tier; it
is, in fact, possible to extract coverage metrics and derive various structural
criteria without access to the source code of the program under test [40, 39].
This strategy broadens the scope of applicability of our approach, given that
the test object’s source code is often unavailable; it allows us, for example,
to perform structural testing on third-party Java components.

The most pressing challenge to be addressed by researchers in this field is,
however, the state problem; strategies for the evaluation of test cases must
allow both the exploration and the exploitation of the search space if full
coverage is to be attained. We propose tackling this particular hindrance by
defining weighted CFG nodes, and having their weights being reevaluated
each generation. This novel approach actually allows the search to consider
unfeasible test cases at certain points of the search process, thus favouring
diversity.

This research also hopes to contribute to increase the level of automation

17

18 CHAPTER 4. METHODOLOGY AND FRAMEWORK

of test case generation. In order to do so, the task of performing static anal-
ysis on the test object is of paramount importance, since the dependences
of the test cluster and the constraints of the search space must be specified
beforehand. With our approach, these are encoded in the function set; un-
suitable definition of the terminal and non-terminal nodes, data-types and
functions may result in the impossibility of achieving full coverage or, at
least, of accomplishing it in a reasonable amount of computational time.

Our proposal includes applying existing methodologies [16, 30] for re-
ducing the input domain of native data type values; on-going work is also
focused on proposing strategies for Input Domain Reduction and Search Do-
main Sampling to reference data types.

Thus far, the focus of this project was put on developing the eCrash
prototype tool for generating test data by employing evolutionary search
techniques; the following Section starts by providing an in-depth description
of the methodology, while Section 4.2 outlines the scheme of the framework.
The experiments described in Chapter 5 complement this overview by illus-
trating the process.

4.1 Methodology

Figure 4.1 summarizes the main phases of the process, which involves the
static analysis and instrumentation of the test object, the reevaluation of
the CFG nodes’ weights, the tasks of generating and evolving test cases, and
the test case evaluation phase. The Subsections that follow describe these
procedures in detail.

4.1.1 Static Analysis and Intrumentation

The first phase is that of performing static analysis on test objects’s Java
Bytecode; it is at this step that the test cluster, the function set and the CFG
are defined, and hence it must precede the test set evolving and evaluation
phases.

The first task is that of extracting the list of public methods from the test
object’s Bytecode by means of the Java Reflection API; this list comprises
the set of MUTs that are to be the subject of the unit-testing process. Sec-
ondly, the transitive set of classes which are relevant for testing the MUTs
are computed so as to define the test cluster. Next, the Extended Method
Call Dependence Graph (EMCDG) [43], which describes the method call de-
pendences involved in the test case construction, is build with basis on the

4.1. METHODOLOGY 19

1. Static Analysis and Instrumentation Phase
1.1. Test Object Analysis
1.1.1. Test Cluster Definition
1.1.2. Function Set Definition
1.1.3. CFG Definition
1.2.4. Parameter and Function Files Generation
1.2. Test Object Instrumentation
2. foreach MUT
2.1. Weight Initialization
2.2. foreach Generation
2.2.1. Weight Reevaluation Phase
2.2.2. foreach Individual
2.2.2.1. Test Case Generation Phase
2.2.2.1.1. foreach STGP tree
2.2.2.1.1.1. STGP tree linearization
2.2.2.1.1.2. MCS generation
2.2.2.1.2. Test Case Generation
2.2.2.1.3. Test Case Compilation
2.2.2.2. Test Case Evaluation
2.2.2.2.1. Test Case Execution
2.2.2.2.2. Structural Event Tracing
2.2.2.2.3. Feasible/Unfeasible Test Case Evaluation
2.2.2.2.4. Individual’s Fitness Definition

Figure 4.1: Methodology overview.

test cluster. Finally, the EMCDG is evaluated in order to define the function
set.

For the definition of terminal nodes representing native data types in the
function set, the Ballista fault injection methodology [16] is employed. With
the Ballista methodology, testing is performed by passing combinations of
acceptable, boundary and exceptional inputs as parameters to the test object
– with the intentions of sampling the search space for native data types and
reducing the input domain, which has been proved to improve results in many
cases [11, 30].

This strategy is emulated by identifying the definition of constants in the
test object’s Bytecode; these values are considered to be potential bound-
aries for numerical condition evaluation, and hence they – and their imme-
diate neighbours – are included as terminal nodes in the function set. The
rationale for this heuristic is the perception that this constitutes a common
programming pattern; the experiment described in Section 5.1 will help il-
lustrating this procedure.

CFGs are used as the underlying model for program representation, and

20 CHAPTER 4. METHODOLOGY AND FRAMEWORK

are built with basis on the information extracted from the Java Bytecode
of the test object; assessing the quality of test cases involves identifying the
CFG nodes traversed in the MUT. The CFG building procedure involves
grouping Bytecode instructions into a smaller set of Basic Instruction CFG
nodes and Call CFG nodes, with the intention of easing the representation
of the test object’s control flow. Additionally, other types of CFG nodes,
which represent virtual operations, are defined: Entry nodes, Exit nodes,
and Return nodes. These Virtual nodes encompass no Bytecode instructions;
they are used to represent certain control flow hypothesis.

Finally, the test object’s Bytecode is instrumented for basic block analysis
and structural event dispatch, so as to enable the observation of the CFG
nodes traversed during a given program execution.

4.1.2 Test Case Generation

Test cases are represented as STGP individuals; individuals are implemented
as forests of STGP trees (Figure 4.2), with each individual containing a
number of trees equal to the number of arguments of the MUT – i.e. each
STGP tree provides an object that will be used as an argument for MUT’s
call.

Each tree subscribes to a function set which defines the STGP nodes
legally permitted in the tree. Similarly, a STGP node is permitted to be the
root if its return value type symbol matches the return value type symbol of
the tree.

The first step involved in the generation of the test cases’ source-code is
the linearization of the trees using a depth-first transversal algorithm. The
tree linearization process yields the ordered MCS. Source-code generation is
performed by translating the linearized GP trees into MCS, using the method
signature information encoded into the Function Files that correspond to
each GP node.

Figure 4.3 depicts the MCS obtained by the translation of the STGP tree
shown in Figure 4.2; Figure 4.4 presents an example of a test case generated
by the eCrash tool for the case study depicted in Section 5.2.

4.1.3 Test Case Evaluation

Metaheuristic algorithms require a numerical formulation of the test goal,
from which a fitness function can be derived. The purpose of the fitness
function is to guide the search into promising, unevaluated areas of the search
space [11].

4.1. METHODOLOGY 21

Figure 4.2: Genotype example – Strongly Typed Genetic Programming tree.

Controller controller0 = new Controller();
Controller controller1 = new Controller();
Config config2 = controller1.getConfig();
controller0.reconfigure(config2);
Controller controller3 = new Controller();
Config config4 = controller3.getConfig();
int int5 = 4;
config4.setPort(int5);
int int6 = 7999;
config4.addSignal(int6);
controller0.reconfigure(config4);

Figure 4.3: Phenotype example – Method Call Sequence.

22 CHAPTER 4. METHODOLOGY AND FRAMEWORK

public class G0I4 {

static int seqLen = 0, exInd = 0;

public static void main(String[] args)

throws TCGeneException {

Stack stack0 = paramGenerator_Stack0();

Object object1 = paramGenerator_Object1();

if (exInd != seqLen) { // unfeasible

throw new TCGeneException(exInd, seqLen);

} else { // feasible

stack0.search(object1); // call to MUT

}

}

private static Stack

paramGenerator_Stack0() {

Stack parameter = null;

int c = 0;

seqLen += 7;

try {

Stack stack0 = new Stack(); c++;

String string1 = ‘‘HelloWorld!’’; c++;

int int2 = stack0.search(string1); c++;

Object object3 = stack0.pop(); c++;

Object object4 = stack0.pop(); c++;

Object object5 = stack0.peek(); c++;

Object object6 = stack0.peek(); c++;

parameter = stack0;

}catch (RuntimeException e) {

System.err.println(‘‘paraExInd:’’+c);

} finally {

exInd += c;

}

return parameter;

}

private static Object

paramGenerator_Object1() {

Object parameter = null;

int instcount = 0;

seqLen += 7;

try {

Stack stack0 = new Stack(); c++;

String string1 = ‘‘HelloWorld!’’; c++;

int int2 = stack0.search(string1); c++;

boolean boolean3 = stack0.empty(); c++;

Object object4 = stack0.peek(); c++;

Object object5 = stack0.pop(); c++;

Object object6 = stack0.peek(); c++;

parameter = object6;

}catch (RuntimeException e) {

System.err.println(‘‘paramExInd:’’+c);

} finally {

exInd += c;

}

return parameter;

}

}

Figure 4.4: Example test case.

With our approach, the quality of a given test case is related to the CFG
nodes of the MUT which are the targets of the evolutionary search at the
current stage of the search process. Test cases that exercise less explored (or
unexplored) CFG nodes and paths must be favoured, with the objective of
attaining the primary goal of the test case generation process – finding a set
of test cases that achieves full structural coverage of the test object.

However, the execution of test cases may abort prematurely if a runtime
exception is thrown during execution. When this happens, it is not possible
to trace the structural entities transversed in the MUT because the final
instruction of the MCS is not reached. Test cases can thus be separated in
two classes:

• feasible test cases are effectively executed, and terminate with a call to
the MUT;

• unfeasible test cases terminate prematurely because a runtime excep-
tion is thrown by an instruction of the MCS.

4.1. METHODOLOGY 23

As a general rule, longer and more intricate test cases are more prone
to throw runtime exceptions; however, complex method call sequences are
often needed for defining elaborate state scenarios and transversing certain
problem nodes. If unfeasible test cases are blindly penalized, the definition
of elaborate state scenarios will be discouraged.

The issue of steering the search towards the traversal of interesting CFG
nodes and paths was address by assigning weights to the CFG nodes; the
higher the weight of a given node the higher the cost of exercising it, and
hence the higher the cost of transversing the corresponding control-flow path.

Additionally, the weights of CFG nodes are reevaluated at the beginning
of every generation using a stigmergic process – i.e. nodes which are being
recurrently traversed in previous generations and/or lead to uninteresting
paths are penalised.

Weight Reevaluation

Let N be the set of Basic Block nodes of a given CFG graph; then, each CFG
node n ∈ N represents a linear sequence of computations (i.e. Bytecode
instructions) of the MUT, and each CFG edge eij represents the transfer of
the execution control of the program from node ni to the node nj.

Conversely, nj is a successor node of ni if an edge eij between the nodes
ni and nj exists. The set of successor nodes of ni is defined as Nni

s , Nni
s ⊂ N .

The weight of transversing node ni is identified as Wni. At the beginning
of the evolutionary search the weights of nodes are initialized with a prede-
fined value Winit. Wmax corresponds to the maximum value for the weight
existing in N .

The CFG nodes’ weights are reevaluated at the beginning of every gen-
eration according to Equation 4.1.

Wni = (αWni)

(
hitCni

|T |
+ 1

)(∑
x∈Nni

s
Wx

|Nni
s | × Winit

2

)
(4.1)

The hitCni parameter is the “Hit Count”, and contains the number of
times a particular CFG node was exercised by the test cases of the previ-
ous generation. T represents the set of test cases produced in the previous
generation.

The constant value α, α ∈]0, 1] is the “weight decrease constant”.
After being reevaluated, weights of all the nodes are normalized in accor-

dance to Equation 4.2:

Wni =
Wni ×Winit

Wmax

(4.2)

24 CHAPTER 4. METHODOLOGY AND FRAMEWORK

Evaluation of Feasible Test Cases

Let t be the test case being currently evaluated. For feasible test cases,
the fitness is computed by with basis on their trace information; relevant
trace information includes the the “Hit List” – i.e. the set Ht, Ht ⊆ N of
transversed CFG nodes.

The fitness of feasible test cases is evaluated in accordance to Equa-
tion 4.3:

Fitnessfeasible(t) =

∑
h∈Ht

Wh

|Ht|
(4.3)

Evaluation of Unfeasible Test Cases

For unfeasible test cases, the fitness of the individual is calculated in terms of
the distance between the “runtime exception index” exIndt (i.e. the position
of the method call that threw the exception) and the “method call sequence
length” seqLent. Also, an “unfeasible penalty constant” value β is added to
the final fitness value, so as to penalise unfeasibility.

Equation 4.4 depicts the formula for evaluating unfeasible test cases.

Fitnessunfeasible(t) = β +
(seqLent − exIndt)× 100

seqLent

(4.4)

The seqLent is the number of instructions that make the MCS of test
case t; the exception index exIndt parameter refers to the sum of instructions
actually executed in t before a runtime exception is thrown.

With this methodology, and depending on the value of β and on the fitness
of feasible test cases, unfeasible test cases may be selected for breeding at
certain points of the evolutionary search, thus favouring the diversity and
complexity of method call sequences. This will happen if feasible test cases
always transverse recurrently hit nodes, thus increasing their weight and
worsening the fitness of the corresponding test cases.

4.2 Framework Overview

The focus of this project was put on developing the eCrash prototype tool
for generating test data by employing evolutionary search techniques; this
tool is composed by the following main modules:

• Automatic Test Object Analyzer (ATOA) – the test object analysis is
performed by this module; it’s main tasks are those of defining the test

4.2. FRAMEWORK OVERVIEW 25

cluster, and automatically generating Parameter and Function Files
which define the Function Set and contain the constraints of the STGP
algorithm.

• Static Analysis and Instrumentation Module (SAIM) – executes the
task of building the CFG and instrumenting the Bytecode of the test
object.

• Test Case Generator Module (TCGM) – evolves and linearizes STGP
trees, and constructs test cases.

• Test Case Evaluator Module (TCEM) – evaluates test cases and pro-
vides the TCGM with feedback on their quality.

A graphical outline of the eCrash tool’s framework is depicted in Fig-
ure 4.5.

Figure 4.5: Framework overview.

The tasks carried out by ATOA and TCGM are performed off-line; they
both receive the test object’s Bytecode as an input, and yield the files and

26 CHAPTER 4. METHODOLOGY AND FRAMEWORK

structures required for the test cases to be evolved – namely the Parameter
and Function files, the CFG of the test object, and the instrumented test
object.

The TCGM and TCEM employ the information received by the above-
mentioned modules to perform the search-based generation of test cases.
Finally, when a predefined termination criteria is met (i.e. full structural
coverage is achieved or a maximum number of generations is reached), the
eCrash tool returns the test set generated for the test object.

The process of CFG building, bytecode instrumentation and event trac-
ing is achieved with the aid of Sofya [14], a dynamic Java Bytecode analysis
framework. The Sofya package provides implementations and tools for the
construction of various kinds of graphs – most notably CFGs – and native
capabilities for dispatching event streams of specified program observations,
which include instrumentators, event dispatchers, and event selection filters
for semantic and structural event streams. Additionally, it contains tools
to perform various analises using the outputs generated by its components
(statistics, coverage reports, ...) and to visualize the trace information pro-
duced by the executions of instrumented programs.

For evolving the set of test cases, the Evolutionary Computation in Java
(ECJ) package [20] is used. ECJ is a research package that incorporates
several Universal Evolutionary Algorithms, and includes built-in support for
Set-Based STGP. It is highly flexible, having nearly all classes and their set-
tings being dynamically determined at runtime by user provided Parameter
Files and Function files.

Chapter 5

Experimental Studies

In order to validate and clarify our approach, experiments were performed
on two distinct test objects:

• The custom-made “Controller & Config” test cluster proposed in [41].
This test cluster encompasses 2 classes and 7 public methods, but only
the Controller.reconfigure(Config) method was used as a MUT.

• The Stack class of the java.util package of JDK 1.4.2. The public
API of this class is composed by 5 public methods, and all of them
were subjected to the test case generation process.

The “Controller & Config” test object was used throughout the devel-
opment process of the eCrash tool and, in addition to providing interesting
data for research, it constituted a precious aid during the process of debug-
ging. The main goals of the experiment were those of demonstrating and
proving the feasibility of the approach, while gathering preliminary results
with which to fine-tune our methodology.

The Stack case study was developed with the following intentions: exper-
imenting with different configurations for the probabilities of the evolutionary
operators mutation, reproduction and crossover; investigating the impact of
using distinct values for the “weight decrease constant” α (Equation 4.1) and
the “unfeasible penalty constant” β (Equation 4.4) – which will henceforth
be referred to as test case evaluation parameters. Additionally, it allowed
demonstrating the applicability of the approach to a “real world” problem.

The Sections that follow describe both these experiments in detail: firstly,
the configurations and parameterizations defined for each case study are de-
scribed; secondly, the results obtained are presented. This Chapter ends with
a discussion on the main achievements attained, while pointing out occasional
flaws in our methodology and/or framework.

27

28 CHAPTER 5. EXPERIMENTAL STUDIES

5.1 Case Study: Controller & Config

In this case study, the simple test cluster proposed in [41] is employed; its
source code is reproduced in Figure 5.1.

The Controller.reconfigure(Config) public method was used as the
MUT; the Bytecode instructions for this method are depicted in Figure 5.2.

public class Controller {

protected final static int MAX_SIGNALS = 5;

protected final static int MIN_PORT = 8000;

protected final static int MAX_PORT = 8005;

private Config cfg = null;

private int[] signals = null;

public Controller() {

cfg = new Config(-1);

signals = new int[cfg.getSignalCount()];

}

public void reconfigure(Config cfg)

throws Exception

{

if(cfg.getSignalCount() > MAX_SIGNALS)

throw new Exception(‘‘Too many signals.’’);

if(cfg.getPort()<MIN_PORT ||

cfg.getPort()>MAX_PORT)

throw new Exception(‘‘Invalid port.’’);

this.cfg = cfg;

signals = new int[cfg.getSignalCount()];

}

public int retrieve(int signal) {

if(signal<0 || signal>signals.length-1)

throw new IllegalArgumentException

(‘‘Invalid signal.’’);

return signals[signal];

}

public Config getConfig() {

return cfg;

}

}

public class Config {

private Vector signals;

private int port;

public Config(int port) {

this.port = port;

signals = new Vector();

addSignal(0);

}

public void addSignal(int signalType) {

signals.add(new Integer(signalType));

}

public int getSignalCount() {

return signals.size();

}

public int getPort() {

return port;

}

public void setPort(int port) {

this.port = port;

}

}

Figure 5.1: Source code of the “Controller & Config” test object.

The static analysis phase yielded the function set depicted in Table 5.1. It
should be noted that the integer value terminal set Tn = {Integer.MAXVALUE,
Integer.MINVALUE, 0, 4, 5, 6, 7999, 8000, 8001, 8004, 8005, 8006} was de-
fined as a result of the test object’s Bytecode analysis, and in accordance to
the Ballista methodology [16] described in Section 4.1.1.

The Ballista methodology was emulated by identifying the definition of
constants in the MUT’s Bytecode (Figure 5.2). Namely, instructions at posi-
tions 4, 22 and 32 (iconst 5; sipush 8000; sipush 8005) push the constant
integer values 5, 8000 and 8005 onto the top of the operand stack. These

5.1. CASE STUDY: CONTROLLER & CONFIG 29

Function Name Return
Type

Child
Types

Controller class
Controller() Controller -
void reconfigure(Config cfg) Controller Controller,

Config
void reconfigure(Config cfg) Config Controller,

Config
void printSignals() Controller Controller

Config class
public Config() Config -
void addSignal(int signalType) Config Config, int
int retrieveSignal(int signalIndex) Config Config, int
int retrieveSignal(int signalIndex) int Config, int
int getSignalCount() Config Config
int getSignalCount() int Config

Integer Value Terminal Set (Tn)
Integer.MAXVALUE int -
Integer.MINVALUE int -
0 int -
4 int -
5 int -
6 int -
7999 int -
8000 int -
8001 int -
8004 int -
8005 int -
8006 int -

Table 5.1: Function Set for the “Controller & Config” case study.

30 CHAPTER 5. EXPERIMENTAL STUDIES

public void reconfigure(Config cfg)

throws Exception

0: aload_1

1: invokevirtual

cfg.Config.getSignalCount ()I

4: iconst_5

5: if_icmple #18

8: new <java.lang.Exception>

11: dup

12: ldc ‘‘Too many signals.’’

14: invokespecial Exception (String)

17: athrow

18: aload_1

19: invokevirtual cfg.Config.getPort ()I

22: sipush 8000

25: if_icmplt #38

28: aload_1

29: invokevirtual cfg.Config.getPort ()I

32: sipush 8005

35: if_icmple #48

38: new <Exception>

41: dup

42: ldc ‘‘Invalid port.’’

44: invokespecial Exception (String)

47: athrow

48: aload_0

49: aload_1

50: putfield Controller.cfg Lcfg/Config;

53: aload_0

54: aload_1

55: invokevirtual Config.getSignalCount ()I

58: newarray <int>

60: putfield Controller.signals[I

63: return

Figure 5.2: Bytecode of the reconfigure method.

values were considered to be potential boundaries for numerical condition
evaluation, and hence their inclusion and that of their immediate neighbours
(4, 6; 7999, 8001; 8004, 8006) into the Tn set. The same heuristic was em-
ployed for including Integer.MAXVALUE, Integer.MINVALUE and 0 numerical
values into Tn.

The CFG definition phase yielded the graph depicted in Figure 5.3. The
bytecode instructions of the MUT (Figure 5.2) were mapped to the CFG
nodes in accordance to Table 5.2; relevant information includes the mapping
between the MUT’s Bytecode instructions, and Basic Instruction and Call
CFG node types and sub-types, and CFG node numbers.

Attaining full structural coverage of the MUT requires the transversal of
all the Basic Instruction (4, 5, 8, 11, 12, 15) and Call (2, 6, 9, 13) CFG nodes.

5.1.1 Setup

The test case evaluation parameters were defined as follows: the MUT’s CFG
nodes were initialized with Winit = 200; the “weight decrease constant” α
was set to 0.9, and the “unfeasible penalty constant” β was defined as 150.

ECJ was configured using a single population of 5 individuals. Each
individual was composed by 2 STGP trees – with the first returning an
instance of Controller (required to call the reconfigure instance method),
and the second returning an object of type Config (required as an argument
for the reconfigure method).

For the generation of individuals a multi-breeding pipeline was used,

5.1. CASE STUDY: CONTROLLER & CONFIG 31

Figure 5.3: Control-Flow Graph of the reconfigure method.

Initial Final Node Node Node
Bytecode Bytecode Type Subtype Number

0 1 Call 2
4 5 Basic If 4
8 17 Basic Throw 5
18 19 Call 6
22 25 Basic If 8
28 29 Call 9
32 35 Basic If 11
38 47 Basic Throw 11
48 55 Call 13
58 63 Basic Return 15

Table 5.2: Mapping table between the Bytecode instructions and the Control-
Flow Graph nodes for the reconfigure method.

32 CHAPTER 5. EXPERIMENTAL STUDIES

which stored 3 child sources; each time an individual had to be produced,
one of those sources was selected with a predefined probability. The available
breeding pipelines were the following:

• Reproduction pipeline – simply makes a copy of the individuals it re-
ceives from its source.

• Crossover pipeline – performs a strongly-typed version of “Subtree
Crossover” [15]. Two individuals are selected, and a single tree is cho-
sen in each such that the two trees have the same constraints; then a
random node is chosen in each tree such that the two nodes have the
same return type, and the swap is performed.

• Mutation pipeline – implements a strongly-typed version of the “Point
Mutation” [15]. An individual is selected, a random node is selected,
and the subtree rooted at that node is replaced by a new valid tree.

The probability of choosing the crossover, mutation and reproduction
were given the values of 0.6, 0.2 and 0.2, respectively.

The selection method employed was Tournament Selection with a size
of 2.0, which means that first 2 individuals (out of 5) are chosen at random
from the population, and then the one with the best fitness is selected. STGP
trees were grown (for the purposes of initialization and mutation) using the
“Ramped Half-And-Half” tree building method described in [15].

The search stopped if an ideal individual was found or after 200 gener-
ations. The remaining configurations used were the Koza-style parameters
defined in ECJ by default.

It should be noted that the probabilities for the evolutionary operators
and the configurations of the test case evaluation parameters were defined
empirically, as no experiments had yet been implemented that could provide
guidance for their selection; the case study described in Section 5.2 will,
however, provide guidelines for their choice.

5.1.2 Results

Full structural coverage was achieved in all of the runs in an average of
27.6 generations (Table 5.3). The worst run found the ideal individual in 91
generations (seed 0), whilst in the best one all of the CFG nodes of the MUT
were exercised in 4 generations (seeds 4 and 9).

It could, however, be observed that 90% code coverage was achieved in
an average of 2.3 generations; the remaining search process was spent trying
to traverse problem CFG node 5. In fact, the CFG node 5 is paradigmatic

5.1. CASE STUDY: CONTROLLER & CONFIG 33

Seed 0 1 2 3 4 5 6 7 8 9 Average

normal 91 29 5 29 49 13 36 4 16 4 27.6
random 32 42 96 86 198 76 46 n/a n/a 92 83.5

Table 5.3: Number of generations required to attain full coverage.

of a problem node: its transversal accounts for only 10% of the fitness, and
the branch that leads to it must be taken at Basic Instruction node 4 (sub-
type if); however, a test case requires 5 calls to the Config.addSignal(int

signal) method of the Config object that will be used as an argument in
the MUT call for this condition to be evaluated favourably.

Our methodology does, nevertheless, provide guidance towards the transver-
sal of less explored paths and allows for unfeasible test cases to be produced
at certain points of the evolutionary search, thus increasing diversity and
promoting the definition of more complex scenarios.

This phenomenon was particularly visible in the longest run, with seed 0
(Figure 5.4). In the initial generations, a high percentage of unfeasible test
cases was produced; the search was then steered towards the generation of
feasible test cases. 90% structural coverage was achieved in the 5th genera-
tion, with only CFG node 5 missing. Around generations 45-50, the weight
of feasible test cases crossed the threshold defined by β, thus allowing for
unfeasible test cases to be selected for breeding.

Figure 5.4: Percentage of unfeasible test cases per generation.

The usefulness of the our methodology is particularly visible if the results
are compared to those obtained using random search (Table 5.3). In order
to perform random search, the fitness was set to a constant value (in order
to deprive the evolutionary search from guidance) with the remaining con-
figurations and parameters being left unchanged. 10 runs were executed; full

34 CHAPTER 5. EXPERIMENTAL STUDIES

structural coverage was not achieved in 20% of them. In the remaining, the
average number of generations required to find an ideal individual was 83.5.

Finally, a battery of 10 runs was performed to validate the adequateness
of using the Ballista methodology. In order to do so, the Tn terminal set was
replaced a random integer value generator; the remaining configurations were
left unaltered. In 6 of the 10 runs, 80% code coverage was achieved – CFG
nodes 13 and 15 were never traversed; in the remaining 4 runs, the results
yielded 70% code coverage – CFG nodes 5, 13 and 15 were not exercised.

5.2 Case Study: Stack

This case study was developed with the intentions of demonstrating the ap-
plicability of the approach to a “real world” problem, while experimenting
with different parameters and configurations; another interesting property
of the Stack class is that, being a container class, it contains explicit state,
which is only controlled through a series of method calls.

All of the public methods of this class were subjected to the automated
test case generation process, namely:

• boolean empty()

• Object peek()

• Object pop()

• Object push(Object item)

• int search(Object o)

Two distinct studies were made:

• the Probabilities of Operators case study was performed with the in-
tention of assessing the implications of evolutionary operators’ proba-
bilities on the test case generation process;

• the Evaluation Parameters case study took place with the objective of
analyzing the impact of the test case evaluation parameters α and β
on the evolutionary search.

The static analysis process yielded the function set depicted in Table 5.4.

5.2. CASE STUDY: STACK 35

Function Name Return Type Child Types

boolean empty() boolean Stack
boolean empty() Stack Stack
Object peek() Object Stack
Object peek() Stack Stack
Object pop() Object Stack
Object pop() Stack Stack
Object push(Object item) Object Stack, Object
Object push(Object item) Stack Stack, Object
int search(Object o) int Stack, Object
int search(Object o) Stack Stack, Object
int search(Object o) Object Stack, Object
Stack() Stack -
Object() Object -
‘‘HelloWorld!’’ Object -

Table 5.4: Function Set for the Stack case study.

5.2.1 Setup

ECJ was configured using a single population of 5 GP individuals; the number
of GP trees per individual was equal to the number of child types of the MUT
(Table 5.4), as each tree provided the method with an argument. The MUTs’
CFG nodes were initialized with a weight Winit of 200. The search stopped
if an ideal individual was found or after 200 generations.

For the generation of individuals, a multi-breeding pipeline similar to the
one described in Section 5.1 was used, which included strongly-typed versions
of “Subtree Crossover” and “Point Mutation”, and a simple reproduction
operator. Tournament selection, with a size of 2.0, was employed as the
selection method, and trees were grown using the “Ramped Half-And-Half”
tree building method.

5.2.2 Results

Probabilities of Operators

This particular experiment was performed with the intention of assessing the
implications of evolutionary operators’ probabilities on the test case genera-
tion process.

In order to do so, 4 distinct parameterizations of the multi-breeding

36 CHAPTER 5. EXPERIMENTAL STUDIES

pipeline were defined, having:

1. a high probability of selecting the mutation breeding pipeline;

2. a high probability of selecting the crossover breeding pipeline;

3. a high probability of selecting the reproduction breeding pipeline;

4. equal probabilities of selecting either of the above breeding pipelines.

The “weight decrease constant” α was set to 0.9, and the “unfeasible
penalty constant” β was defined as 150.

For each of the above multi-breeding pipeline parameterizations, 20 runs
were executed for each of the 5 MUTs. Table 5.5 summarizes the results ob-
tained. Relevant data includes the probabilities of choosing reproduction (r),
crossover (c) and mutation (m) pipelines and, for each configuration, per-
centage of runs in which full coverage was achieved (%full) and the number
of generations required attain full coverage (#gens).

r:0.1 c:0.1 m:0.8 r:0.8 c:0.1 m:0.1 r:0.1 c:0.8 m:0.1 r:0.33 c:0.33 m:0.34
MUT %full #gens %full #gens %full #gens %full #gens
empty 100% 10.2 100% 11.2 100% 17.5 100% 4.5
peek 100% 6.6 100% 10.7 100% 9.4 100% 2.8
pop 100% 6.5 100% 8.9 100% 8.6 100% 2.8
push 100% 20.6 57% 16.4 95% 37.2 100% 2.5
search 95% 48.9 57% 48.2 82% 98.8 100% 18.7

Table 5.5: Statistics for the “Probabilites of Operators” experiment.

The results depicted clearly show that the strategy of assigning balanced
probabilities to the all of the breeding pipelines yields better results: this
configuration was the only one in which full coverage was achieved in all of the
runs (in, at most, 200 generations), and in beat all the other configurations
in terms of the average number of generations required to attain it.

The worst results were obtained for the parameterization in which the
reproduction breeding pipeline was given a high probability of selection. For
the Object push(Object item) and int search(Object o) MUTs, which
pose the most challenging state problems, 43% of the runs failed to attain
full coverage within 200 generations.

5.2. CASE STUDY: STACK 37

Evaluation Parameters

In this experiment, different combinations of values for the α and β param-
eters were tried out, with the intention of analyzing the impact of the test
case evaluation parameters on the evolutionary search particular.

Namely, the following values were used:

• α – 0.1, 0.5, and 0.9;

• β – 0, 150, and 300.

The probabilities of choosing the 3 breeding pipelines were chosen in ac-
cordance to the results yielded by the Probabilities of Operators case
study – i.e. the probabilities for reproduction, crossover an mutation param-
eters were set to 0.33, 0.33 and 0.34 respectively.

All the 9 combinations of the α and β values were employed, and 20 runs
were executed for each (in a total of 180 runs); full coverage was achieved in
all of the runs.

The results obtained are summarized in Figure 5.5, which includes the
average number of generations required to attain full coverage for each of the
5 MUTs using each combination.

Figure 5.5: Results for the “Evaluation Parameters” experiment.

These results clearly show that the best configuration for the test case
evaluation parameters is that of assigning a low value to α (0.1 and 0.5
yielded the best results) and a value of 150 to β.

38 CHAPTER 5. EXPERIMENTAL STUDIES

5.3 Discussion

Automatic test case generation using search-based techniques is a difficult
subject, especially if the aim is to implement an “universal” solution that
is adaptable to a wide range of test objects. Key to the definition of a
good strategy is the configuration of parameters so as to find a good balance
between the intensification and the diversification of the search.

With our approach, test case evaluation parameters α and β, and the
evolutionary operators’ selection probabilities, play a central role in the test
case generation process.

The main task of the mutation and crossover operators is that of diver-
sifying the search, allowing it to browse through a wider area of the search
landscape and to escape local maximums; the task of intensifying the search
and guiding it towards the transversal of unexercised CFG nodes is performed
as a result of the strategy of assigning weights to CFG nodes.

Nevertheless, to strong a bias towards the breeding of feasible test cases
will hinder the generation of more complex test cases, which are sometimes
needed to exercise problem structures in the test object; on the other hand, if
feasible test cases are not clearly encouraged, the search process will wander.

This issue was addressed by allowing the fitness of feasible test cases to
fluctuate throughout the search process as a result of the impact of the α
and β parameters, in order to allow unfeasible test cases to be selected at
certain points of the evolutionary search.

The results described for the Stack case study (Section 5.2), in particu-
lar, allow us to draw some preliminary conclusions. Firstly, the assumption
we made on previous studies, in which we considered α = 0.9 as being an
adequate value, was wrong. Using lower values for this evaluation parame-
ter yields better results. Secondly, it was also possible to conclude that the
strategy of assigning balanced probabilities to the selection of the mutation,
crossover and breeding pipelines is better suited that that of clearly favouring
the choice of one of the evolutionary operators.

On the other hand, it is possible to affirm that the strategy of assigning
the value of 150 to the “unfeasible penalty constant” β shows good results.
An explanation for this behaviour follows.

The worst value a CFG node can have is 200 – since the weights of CFG
nodes are normalized at the beginning of each generation. If all the nodes
exercised by a feasible test case have the worst possible value – because they
are being recurrently exercised by test cases, i.e. because the search is stuck
in a local maximum – the fitness of the corresponding test case will also be
200.

However, for a given unfeasible test case t, if exIndt ≤ seqLent

2
and β =

5.3. DISCUSSION 39

150, then Fitnessunfeasible(t) ∈ [150, 200] – i.e. if the exception index of a
given unfeasible test case is lower or equal to half of its MCS length, and if
the value 150 is used for β, then the fitness of that test case will belong to
the interval 150 to 200.

This means that, with β = 150, some good unfeasible test cases may be
selected for breeding; conversely, if β = 0, all unfeasible test cases will be
evaluated with relatively good fitness values, and if β = 300, none of the
unfesible test cases will be evaluated as being interesting. The concept of
good unfeasible test cases, in this context, can thus be verbalized as being a
test case in which at least half of the MCS is executed without an exception
being thrown.

Assigning the value β = Winit − 50 is, thus, a good compromise between
the need to penalize unfeasible test cases and the need to consider them at
some points of the evolutionary search.

It is also possible to affirm that the Ballista methodology for sampling
the integer value search space effectively reduced the input domain for this
particular data type; by comparing the results attained using this strategy to
those yielded by the usage of a random integer value generator, we can con-
clude that this strategy allowed achieving full coverage within an acceptable
number of generations.

40 CHAPTER 5. EXPERIMENTAL STUDIES

Chapter 6

Future Work

There are still many enhancements to be made in order to achieve full au-
tomation, and several open problems persist in the area of search-based test
case generation.

An underlying principle of our investigation involves the continuous re-
search on the definition and parameterization of fitness functions that can
effectively and efficiently overcome the state problem of object-oriented pro-
grams.

In the near future, it is also of paramount importance to perform further
experimental studies on different test objects and using various evolutionary
parameters, as well as comparing the results obtained with those of existing
automation methodologies.

In order to do so, further developments to the ATOA module of the eCrash
framework are in order. Although this module is already partly automated,
some bugs persist that hinder the generation of fully functional Function
Files and Parameter Files. Some minor corrections and additions to these
files must still be made manually, which make the process of generating the
data needed to experiment on new test objects awkward and time-costly.

The implementation of a Graphical User Interface (GUI), that enables
the eCrash tool to be utilized by users unfamiliar with its intricacies, is also
in the horizon. So far, only the ATOA module incorporates a visual interface.

However, the most promising research-related challenges that lie ahead
of us seem to be the following:

• Method Call Sequence Separation – deals with generating independent
method call sequences for each argument of the MUT.

• Input Domain Reduction – deals with removing irrelevant variables
from a given test data generation problem, thereby reducing the size
of the search space.

41

42 CHAPTER 6. FUTURE WORK

• Search Space Sampling – deals with the inclusion of all the relevant
variables to a given test object into test data generation problem, so
as to make enable the coverage of the entire search space.

The pertinence of investigating these particular topics is addressed in the
following subsections.

6.1 Method Call Sequence Separation

In preliminary approaches to problem at hand, test cases were composed by
a single MCS, in a similar fashion the the methodology proposed by [43, 41].

However, alongside our work, we realized that this constituted a hindrance
to the evaluation of unfeasible test cases. We thus proceeded to employing a
different approach, which included using a number of STGP trees – and, con-
sequently, generating a number of MCS – equal to the number of arguments
in the MUT. This way, it is possible to evaluate the MCS that generate each
argument independently, thus allowing for a more realistic definition of the
exIndt (Equation 4.4).

The example described below, based on the sample test case depicted on
Figure 4.4, helps exemplifying the rationale of performing MCS separation.

With our current approach, a method call sequence is generated for each
argument (of types Stack and Object) by the parameter generator meth-
ods paramGenerator Stack0 and paramGenerator Object1. However, both
these method throw runtime exceptions (EmptyStackExceptions) at instruc-
tions 4 and 5, respectively. The exception index is thus exIndt = 7 – i.e. it
is equal to the number of instruction actually executed – with seqLent being
14.

However, if a single tree was used, it would be linearized into a single
MCS, and the exception index would thus be 3 and not 7, as the instructions
related with setting the state of the second argument would never be called.

Our current approach obviously yields more realistic and reliable results
than that of using a single MCS; however, further data must be collected and
analyzed in order to support this claim.

6.2 Input Domain Reduction

For search-based test data generation, the search space is the input domain
of the test object under consideration, which include the formal parameters
to the function containing the structure of interest. As such, it is possible

6.2. INPUT DOMAIN REDUCTION 43

that not every input variable will be responsible for determining whether
each structure will be covered or not.

The Ballista approach technique [16] for domain reduction has been proven
to be effective for native data types [30, 31], and techniques for extending this
procedure for reference types are yet to be investigated; nevertheless, recent
research on procedural software provides evidence to support the claim that
domain reduction has significant implications for practical search-based test
data generation [11].

Future work thus includes the definition of strategies for reducing the
input domain of reference argument types, in a similar fashion to that de-
scribed in Section 5.1 for native data types. This can be achieved by removing
irrelevant elements from the function set of a given problem.

Let us consider the Stack case study (Section 5.2). By studying the
documentation of the Stack class, the following observations can be made:

• the empty method simply tests if the stack is empty without changing
the state of the stack;

• the peek method looks at the object at the top of the stack without
removing it, and thus it does not alter the stack;

• the push method pushes an item onto the top of the stack, and it does
not change the state of the pushed item;

• the search method returns the position where an object is on the stack
– if it is on the stack – and it does not change the state of either the
stack or the object being searched.

Therefore, the search domain for the Stack case study could effectively
be reduced by employing the function set shown in Table 6.1. Five entries
were removed from the original function set (Table 5.4).

However, these observations were made for demonstration purposes only.
Our approach to software testing is a structural one, and it does not include
considering any kind of specification, neither formal nor informal; we be-
lieve that doing so would narrow the scope of applicability and the level of
automation of our testing tool.

There are, however, systematic approaches to execute this type of verifi-
cation – ex. by performing “Purity Analysis” [35, 45] on the methods that
compose the function set. Basically, a pure method has no externally visible
side effects; purity analysis checks, for each method, what fields they poten-
tially modify. Future research includes embedding this particular technique
into our framework.

44 CHAPTER 6. FUTURE WORK

Function Name Return Type Child Types

boolean empty() boolean Stack
Object peek() Object Stack
Object pop() Object Stack
Object pop() Stack Stack
Object push(Object item) Stack Stack, Object
int search(Object o) int Stack, Object
Stack() Stack -
Object() Object -
‘‘HelloWorld!’’ Object -

Table 6.1: Improved Function Set for the Stack case study.

6.3 Search Domain Sampling

The failure to acknowledge the importance of the polymorphic relationship
between objects can significantly hinder the evolutionary search, and may
result in the impossibility of attaining full coverage.

In order to demonstrate the reason for this claim, one more experiment
was developed using the Stack test object (Section 5.2). The objective was
that of demonstrating the importance of the polymorphic relationships of
the object types when defining the function set: the “HelloWorld!” function,
depicted in the last row of Table 5.4, was removed from the function set, and
a battery of 20 runs was performed.

Reproduction, crossover an mutation probabilities were set to 0.34, 0.33
and 0.33 respectively, and the test case evaluation parameter were configures
with α = 0.1 and β = 150.

For the first four MUTs, the results attained were similar to those de-
picted in Figure 5.5. However, for the search method, full coverage was not
achieved in any of the 20 runs.

In fact, including the default constructor Object() as the sole provider
of Object data types does not suffice to achieve full coverage. The reason
for this is that the equals method is used internally to compare argument
o to the items in the stack; however, the equals method of class Object

implements the most discriminating possible equivalence relation on objects;
that is, for any non-null reference values x and y, this method returns true
if and only if x and y refer to the same object.

With our approach instances are not reused, and hence the search for
argument o always fails.

6.3. SEARCH DOMAIN SAMPLING 45

The String class, however, overrides the equals method so that the
result is true if and only if the argument is not null and is a String object
that represents the same sequence of characters as the this object.

Therefore, the inclusion of the Object’s subclass String as an Object

type provider enables the equals method to evaluate favourably.
However, the test cluster cannot include all the subclasses of the transitive

set of classes which are relevant for the test object. The Object type is
paradigmatic: all classes inherit from the Object class, and hence all classes
would have to be included, which is – obviously – impossible.

Future research thus includes studying the polymorphic relationships of
function set types in order to define an adequate strategy for sampling the
search domain. Tuning our test case generation process for reusing instances
is also in order, since some scenarios may require this particular functionality.

46 CHAPTER 6. FUTURE WORK

Chapter 7

Conclusions

This thesis presents an evolutionary approach for the structural unit-testing
of third-party object-oriented software. Relevant contributions include (but
are not limited to) the introduction of novel methodologies for automation
and search guidance, and the presentation of the eCrash prototype test case
generation tool.

With our approach, CFG nodes are weighted; additionally, their weight
is dynamically reevaluated each generation, in order to cause the fitness of
feasible test cases to fluctuate throughout the search process. This strategy
allows unfeasible test cases to be considered at certain points of the evolu-
tionary search – once the feasible test cases that are being bred cease to be
interesting. In conjunction with the impact of the evolutionary operators, a
good compromise between the intensification and diversification of the search
can be achieved.

Test cases are evolved using the STGP paradigm, which effectively mimics
the inheritance and polymorphic properties of object-oriented programs and
enables the maintenance of call dependences when applying tree construction,
mutation or crossover.

The methodology for evaluating the test set includes instrumenting the
Bytecode for basic block analysis and structural event dispatch, and execut-
ing the instrumented test object using the generated test cases as inputs, with
the intention of collecting trace files with which to derive coverage metrics.
Static analysis, instrumentation and execution tracing is performed solely
with basis on the high-level information extracted from the Java Bytecode
of the test object.

Throughout our work we have come across – and tackled – complex chal-
lenges. Alas, because many of them were technical problems that gravitate
around the central “core” of this research, their impact on the development
process may not have been efficiently mirrored in this report. Special refer-

47

48 CHAPTER 7. CONCLUSIONS

ences should be made to the integration of the third-party components (ECJ
and Sofya) into our framework, the automatic generation of syntactically
correct Function and Parameter files, the “on-the-fly” compilation and exe-
cution of test programs, the translation of the information encoded in STGP
individuals into fully functional test cases – and, especially, to the process of
“gluing together” the whole process.

We have managed, all the same, to achieve a very high level of automation,
which allowed us to experiment our prototype tool and develop pertinent case
studies, attaining very encouraging results which pointed us towards future
endeavours.

There is, in fact, much uncharted territory in the area of evolutionary
testing, and we hope to keep contributing to the advance the state-of-the-art
in years to come. The “holy grail” is, of course, the implementation of a fully
functional tool that can be integrated in the software development process,
providing a precious aid to the often tiresome – although incommensurably
important – process of software testing.

Bibliography

[1] Andrea Arcuri and Xin Yao. A memetic algorithm for test data gener-
ation of object-oriented software. In Dipti Srinivasan and Lipo Wang,
editors, 2007 IEEE Congress on Evolutionary Computation, pages –,
Singapore, 25-28 September 2007. IEEE Computational Intelligence So-
ciety, IEEE Press.

[2] Andrea Arcuri and Xin Yao. Search based testing of containers for
object-oriented software. Technical Report CSR-07-3, University of
Birmingham, School of Computer Science, April 2007.

[3] Andrea Arcuri and Xin Yao. On test data generation of object-oriented
software. In Testing: Academic and Industrial Conference, Practice and
Research Techniques (TAIC PART), 2007 (to appear).

[4] Stéphane Barbey and Alfred Strohmeier. The problematics of testing
object-oriented software. In M. Ross, C. A. Brebbia, G. Staples, and
J. Stapleton, editors, SQM’94 Second Conference on Software Qual-
ity Management, Edinburgh, Scotland, UK, July 26-28 1994, volume 2,
pages 411–426, 1994.

[5] Antonia Bertolino. Software testing research: Achievements, challenges,
dreams. In FOSE ’07: 2007 Future of Software Engineering, pages 85–
103, Washington, DC, USA, 2007. IEEE Computer Society.

[6] Yoonsik Cheon and Myoung Kim. A specification-based fitness function
for evolutionary testing of object-oriented programs. In GECCO ’06:
Proceedings of the 8th annual conference on Genetic and evolutionary
computation, pages 1953–1954, New York, NY, USA, 2006. ACM Press.

[7] Yoonsik Cheon, Myoung Kim, and Ashaveena Perumandla. A complete
automation of unit testing for java programs. In Hamid R. Arabnia
and Hassan Reza, editors, Software Engineering Research and Practice,
pages 290–295. CSREA Press, 2005.

49

50 BIBLIOGRAPHY

[8] Francisco Fernandez de Vega. Distributed Genetic Programming Models
with Application to Logic Synthesis on FPGAs. PhD thesis, University
of Extremadura, 2001.

[9] Michael D. Ernst. Static and dynamic analysis: Synergy and duality.
In WODA 2003: ICSE Workshop on Dynamic Analysis, pages 24–27,
Portland, OR, May 9, 2003.

[10] Mark Harman. The current state and future of search based software
engineering. In FOSE ’07: 2007 Future of Software Engineering, pages
342–357, Washington, DC, USA, 2007. IEEE Computer Society.

[11] Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil McMinn, and
Joachim Wegener. The impact of input domain reduction on search-
based test data generation. In ESEC-FSE ’07: Proceedings of the the 6th
joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering,
pages 155–164, New York, NY, USA, 2007. ACM Press.

[12] Thomas D. Haynes, Dale A. Schoenefeld, and Roger L. Wainwright.
Type inheritance in strongly typed genetic programming. In Peter J.
Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Program-
ming 2, pages 359–376. MIT Press, Cambridge, MA, USA, 1996.

[13] John H. Holland. Adaptation in Natural and Artificial Systems: An In-
troductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. The MIT Press, April 1992.

[14] A. Kinneer, M. Dwyer, and G. Rothermel. Sofya: A flexible framework
for development of dynamic program analysis for java software. Techni-
cal Report TR-UNL-CSE-2006-0006, University of Nebraska, Lincoln, 4
2006.

[15] John R. Koza. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection (Complex Adaptive Systems). The
MIT Press, December 1992.

[16] Nathan P. Kropp, Philip J. Koopman Jr., and Daniel P. Siewiorek. Au-
tomated robustness testing of off-the-shelf software components. In Sym-
posium on Fault-Tolerant Computing, pages 230–239, 1998.

[17] Kanglin Li and Mengqi Wu. Effective Software Test Automation: De-
veloping an Automated Software Testing Tool. SYBEX Inc., Alameda,
CA, USA, 2004.

BIBLIOGRAPHY 51

[18] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[19] Xiyang Liu, Bin Wang, and Hehui Liu. Evolutionary search in the
context of object-oriented programs. In MIC’05: Proceedings of the
Sixth Metaheuristics International Conference, 2005.

[20] Sean Luke. ECJ 16: A Java evolutionary computation library.
http://cs.gmu.edu/∼eclab/projects/ecj/, 2007.

[21] Timo Mantere and Jarmo T. Alander. Evolutionary software engineer-
ing, a review. Appl. Soft Comput., 5(3):315–331, 2005.

[22] John J. Marciniak, editor. Encyclopedia of software engineering. Wiley-
Interscience, New York, NY, USA, 1994.

[23] P. McMinn. Search-based software test data generation: A survey. Soft-
ware Testing, Verification and Reliability, 14(2):105–156, 2004.

[24] P. McMinn and M. Holcombe. The state problem for evolutionary test-
ing, 2003.

[25] Zbigniew Michalewicz. Genetic algorithms + data structures = evolution
programs (2nd, extended ed.). Springer-Verlag New York, Inc., New
York, NY, USA, 1994.

[26] David J. Montana. Strongly typed genetic programming. Technical
Report #7866, 10 Moulton Street, Cambridge, MA 02138, USA, 7 1993.

[27] Roger A. Müller, Christoph Lembeck, and Herbert Kuchen. A
symbolic java virtual machine for test case generation. In M. H.
Hamza, editor, IASTED Conf. on Software Engineering, pages 365–371.
IASTED/ACTA Press, 2004.

[28] Estelle M. Phillips and Derek S. Pugh. How to get a PhD: a handbook for
students and their supervisors. Open University Press, Milton Keynes,
1987.

[29] José Carlos Bregieiro Ribeiro, Francisco Fernandez de Vega, and
Mário Zenha Rela. Using dynamic analysis of java bytecode for evolu-
tionary object-oriented unit testing. In SBRC WTF 2007: Proceedings
of the 8th Workshop on Testing and Fault Tolerance of the 25th Brazil-
ian Symposium on Computer Networks and Distributed Systems, pages
143–156. Brazilian Computer Society (SBC), 2007.

52 BIBLIOGRAPHY

[30] José Carlos Bregieiro Ribeiro, Bruno Miguel Lúıs, and Mário Zenha-
Rela. Error propagation monitoring on windows mobile-based devices.
In LADC 2007: Third Latin-American Symposium on Dependable Com-
puting, volume 4746/2007 of Lecture Notes in Computer Science, pages
111–122. Springer Berlin / Heidelberg, 2007.

[31] José Carlos Bregieiro Ribeiro, Mário Zenha-Rela, and Francisco Fernan-
dez de Vega. ecrash: a framework for performing evolutionary testing
on third-party java components. In JAEM CEDI 2007: Proceedings of
the 1st Jornadas sobre Algoritmos Evolutivos y Metaheuristicas of the
2nd Congreso Español de Informática, pages 137–144, 2007.

[32] José Carlos Bregieiro Ribeiro, Mário Zenha-Rela, and Francisco Fer-
nandez de Vega. An evolutionary approach for performing structural
unit-testing on third-party object-oriented java software. In NICSO
2007: International Workshop on Nature Inspired Cooperative Strate-
gies for Optimization (to appear), Studies in Computational Intelligence.
Springer-Verlag, 11 2007.

[33] Per Runeson. A survey of unit testing practices. IEEE Softw., 23(4):22–
29, 2006.

[34] Ramon Sagarna, Andrea Arcuri, and Xin Yao. Estimation of distribu-
tion algorithms for testing object oriented software. In Dipti Srinivasan
and Lipo Wang, editors, 2007 IEEE Congress on Evolutionary Compu-
tation, pages –, Singapore, 25-28 September 2007. IEEE Computational
Intelligence Society, IEEE Press.

[35] A. Salcianu and M. Rinard. A combined pointer and purity analysis for
Java programs. Technical Report MIT-CSAILTR-949, MIT, May 2004.

[36] Arjan Seesing and Hans-Gerhard Gro. A genetic programming approach
to automated test generation for object-oriented software. ITSSA,
1(2):127–134, 2006.

[37] Paolo Tonella. Evolutionary testing of classes. In ISSTA ’04: Proceed-
ings of the 2004 ACM SIGSOFT international symposium on Software
testing and analysis, pages 119–128, New York, NY, USA, 2004. ACM
Press.

[38] Nigel Tracey, John Clark, John McDermid, and Keith Mander. A search-
based automated test-data generation framework for safety-critical sys-
tems. pages 174–213, 2002.

BIBLIOGRAPHY 53

[39] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and W. E. Wong.
Establishing structural testing criteria for java bytecode. Softw. Pract.
Exper., 36(14):1513–1541, 2006.

[40] A. M. R. Vincenzi, J. C. Maldonado, W. E. Wong, and M. E. Delamaro.
Coverage testing of java programs and components. Sci. Comput. Pro-
gram., 56(1-2):211–230, 2005.

[41] S. Wappler and J. Wegener. Evolutionary Unit Testing Of Object-
Oriented Software Using A Hybrid Evolutionary Algorithm. In CEC’06:
Proceedings of the 2006 IEEE Congress on Evolutionary Computation,
pages 851–858. IEEE, 2006.

[42] Stefan Wappler and Frank Lammermann. Using evolutionary algorithms
for the unit testing of object-oriented software. In GECCO ’05: Proceed-
ings of the 2005 conference on Genetic and evolutionary computation,
pages 1053–1060, New York, NY, USA, 2005. ACM Press.

[43] Stefan Wappler and Joachim Wegener. Evolutionary unit testing of
object-oriented software using strongly-typed genetic programming. In
GECCO ’06: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, pages 1925–1932, New York, NY, USA, 2006.
ACM Press.

[44] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, and S. Katsikas andd
K. Karapoulios. Application of genetic algorithms to software testing
[application des algorithmes génétiques au test des logiciels]. In Proceed-
ings of the 5th International Conference on Software Engineering, pages
625–636, 1992.

[45] Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. Dynamic
purity analysis for java programs. In PASTE ’07: Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 75–82, New York, NY, USA, 2007. ACM.

54 BIBLIOGRAPHY

Appendix A

Teaching and Investigation
Periods

The first biennium of the PhD Program in Information Technologies (Pro-
grama de Doctorado en Tecnoloǵıas Informáticas) consisted on two distinct
periods:

• a teaching period, with a value of 20 credits, in which the student took
a set of courses related with the available research areas;

• a supervised investigation period, with a value of 12 credits, in which
the student chose a line of investigation and did research in that area.

Table A.1 enumerates the courses taken during the teaching period, and
depicts credits and grades obtained in each course.

Table A.2 presents the line of investigation chosen, and the grade obtained
at the end of the research period.

The following Sections outline the contents of the courses taken during
the teaching period, summarizing the main topics addressed and the novel
competences acquired.

A.1 Design and Implementation of Reconfig-

urable Systems and Parallel Architectures

This course was ministered by professors D. Juan Antonio Gómez Pulido and
Miguel Ángel Vega Rodŕıguez. The main topics addressed were the following:

55

Course Credits Classification

Design and Implementation of Reconfigurable
Systems and Parallel Architectures (Diseño y
Śıntesis Reconfigurable de Sistemas y Arqui-
tecturas Paralelas)

8 9 out of 10

Grid Computing and Evolutionary Algorithms
(Computación en Grid y Algoritmos Evolu-
tivos)

8 9.5 out of 10

Robotics and Artificial Vision (Robótica y
Visión Artificial)

4 9 out of 10

Average Classification: 9.2 out of 10

Table A.1: Teaching Period.

Course Credits Classification

Techniques for Planning the Improvement
of the Efficiency of Evolutionary Algorithms
(Técnicas de Planificación para la Mejora de
la Eficiencia de Algoritmos Evolutivos)

8 9 out of 10

Table A.2: Investigation Period.

Field-Programmable Gate Arrays (FPGAs). FPGAs are semicon-
ductor devices containing programmable logic components and programmable
interconnects. Logic blocks can be programmed to perform the function of
basic logic gates or more complex combinational functions such as decoders
or simple mathematical functions. FPGAs can be employed, for example,
for rapid prototyping and for implementing algorithms that can make use of
the inherent parallelism offered by their architecture.

Reconfigurable Computing. Reconfigurable computing is a computing
paradigm which combines the flexibility of software with the high perfor-
mance of hardware by making use of flexible high speed computing fabrics –
like FPGAs. The main differences, when compared to using ordinary micro-
processors or custom hardware, are the ability to make substantial changes
to the data path itself (in addition to the control flow) and the possibility
of adapting the hardware during runtime by “loading” a new circuit on the
reconfigurable fabric.

56

A.2 Grid Computing and Evolutionary Algo-

rithms

This course was ministered by professors Juan Manuel Sanchez Perez and
Francisco Fernándes de Vega.

A State-of-the-art paper on the topic of Evolutionary Testing, entitled
“A Primer On Evolutionary Testing”, was written as a part of this course.

The main topics addressed were the following:

Algorithms and Optimization. An algorithm is a finite list of well-
defined instructions for accomplishing some task that, given an initial state,
will proceed through a well-defined series of successive states, eventually
terminating in an end-state. Algorithms can be classified according to sev-
eral criteria, including implementation (parallelism, determinism, ...), design
paradigm (greedy, linear, divide and conquer, ...), field of study (search, com-
binatorial, criptographic, ...) and, most interestingly, complexity – which
deals with the amount of time they need to complete compared to their in-
put size. Optimization is, thus, the process of modifying an algorithm to
make some aspect of it work more efficiently or use fewer resources.

Grid Computing. Grid computing is a method of computer processing
in which different parts of a program are run simultaneously on two or more
computers that are communicating with each other over a network; it is a
type of segmented or parallel computing, and can be used to enhance the
performance of algorithms.

Evolutionary Computation. Evolutionary Computation uses simulated
evolution as a search strategy to evolve candidate solutions, using operators
inspired by genetics and natural selection. The best known algorithms in
this class include evolution strategies, evolutionary programming, genetic
algorithms and genetic programming. All of these methodologies try to solve
problems for which no reasonable fast algorithms have been developed, and
they are specially fit for optimization problems.

A.3 Robotics and Artificial Vision

This 8 credit course was ministered by professors Pablo Bustos Garćıa de
Castro and José Moreno del Pozo ministered.

57

A report, entitled “Object Recognition from Local Scale-Invariant Fea-
tures”, was written as a part of this course.

The main topics addressed were the following:

Artificial Vision. As a scientific discipline, Artificial Vision is concerned
with the theory and technology for building artificial systems that obtain
information from images. The image data can take many forms – such as
video sequences, views from multiple cameras, or multi-dimensional data
from a medical scanner.

Pattern Recognition and Image Processing. Pattern Recognition is,
in general, the act of taking in raw data and taking an action based on
the category of the data; however, this analysis can be too complex to be
performed without further processing on the data. Feature extraction thus
involves simplifying the amount of resources required to describe a large set of
data accurately. With Image Processing, in particular, the data is composed
by images, and it involves treating those images as a two-dimensional signals
and applying standard signal-processing techniques to it. Scale invariant
feature transform (SIFT) is one of several computer vision algorithms for
extracting distinctive features from images; it can be used for tasks like
matching different views of an object or scene and image recognition. The
features obtained by SIFT are invariant to image scale, rotation, and partially
invariant to changing viewpoints, and change in illumination.

58

Appendix B

Planning

In this Chapter, the high-level objectives and low-level tasks which will guide
this research until the deposit of the PhD thesis in June of 2009 will be
discussed. Table B.1 depicts the calendarization for the main goals that
will be underlying our studies; it can be thought of as a kind of “mission
statement”.

Deadline Goals

January 2008 Low-level goals must be clearly defined; partial results
with originality, relevance and scientific interest must
have been obtained.

June 2008 Relevant results must have been published and dis-
cussed in top conferences in the area of research.

December 2008 The main results of the investigation must have been
attained; publication must be attempted in relevant
international journals with high impact index.

January 2009 The writing of the final thesis must begin.
June 2009 Deposit of the Thesis.
December 2009 Discussion of the Thesis.

Table B.1: High-level goals for the development of the thesis.

In section 6, the main topics of investigation that we will be addressing
in following biennium were outlined. Our approach for achieving those ob-
jectives includes addressing the research as a phased process, which includes
the following stages [28]:

• State-of-the-art phase - consists on studying the highest degree of de-
velopment of a technique at a particular time, which includes testing

59

different tools, methods of research and data gathering, prototype im-
plementation processes and, mainly, reviewing the existing bibliography
on the subject; one must also have the capacity of understanding and
employing previously published techniques from different sources, test-
ing ideas, and be familiar with different theories and empirical studies.

• Prototyping phase - aims not only to prove the feasibility of the task,
but also to discover new problems and challenges that can be (or must
be) dealt with.

• Data Collection phase - its purpose is that of transforming raw data
into insight. During this process, one must take the time to analyze
the data generated during the Prototyping tasks from different angles;
with any luck, innovative ideas, that can contribute positively to the
investigation process, will be found.

• Writing phase - its main objective is that of compiling the results of
the work developed in order to enable its reviewing by the scientific
community. The process of writing the thesis must include publishing
papers in relevant conferences or journals, so that concepts and theories
can be validated and proved to be relevant.

Table B.2 discriminates both the future tasks and the on-going jobs, and
proposes a schedule for performing them.

60

Task Description Start Finish Duration

Experiments with new Test Objects
Prototyping 2007/11/15 2008/01/15 2 months
Data Collection 2007/12/15 2008/01/15 1 month
Writing 2007/12/15 2008/01/15 1 month

Method Call Sequence Separation
Prototyping 2007/12/01 2008/12/15 1 fortnight
Data Collection 2007/12/15 2008/01/15 1 month
Writing 2007/12/15 2008/01/15 1 month

Input Domain Reduction
State-of-the-art 2008/01/01 2008/02/01 2 months
Prototyping 2008/01/15 2008/03/15 2 months
Data Collection 2008/03/01 2008/05/01 2 months
Writing 2008/04/01 2008/06/01 2 months

Search Domain Sampling
State-of-the-art 2008/01/01 2008/02/01 2 months
Prototyping 2008/02/01 2008/04/01 2 months
Data Collection 2008/03/01 2008/05/01 2 months
Writing 2008/04/01 2008/06/01 2 months

Assembling a Fully Functional Tool
State-of-the-art 2008/06/01 2008/06/15 1 fortnight
Prototyping 2008/06/15 2008/09/15 3 months
Data Collection 2008/08/01 2008/09/15 1 month
Writing 2008/08/01 2008/09/01 2 months

Thesis Writing
Data Collection 2009/01/01 2008/03/01 3 months
Writing 2009/01/01 2008/06/01 6 months

Table B.2: Low-level tasks for the development of the thesis.

61

62

Appendix C

Publications

63

64

C.1 Using Dynamic Analysis of Java Byte-

code for Evolutionary Object-Oriented

Unit Testing (SBRC WTF 2007)

65

66

Using Dynamic Analysis Of Java Bytecode
For Evolutionary Object-Oriented Unit Testing

José Carlos Bregieiro Ribeiro1, Francisco Fernández de Vega2, Mário Zenha-Rela3

1Polytechnic Institute of Leiria (IPL)
Campus 2, Morro do Lena, Alto do Vieiro – Leiria – Portugal

2University of Extremadura (UNEX)
C/ Sta Teresa de Jornet, 38 – Mérida – Spain

3University of Coimbra (UC)
CISUC, Department of Informatics Engineering, P 3030-290 – Coimbra – Portugal
jose.ribeiro@estg.ipleiria.pt, fcofdez@unex.es, mzrela@dei.uc.pt

Abstract. The focus of this paper is on presenting a methodology for
generating and optimizing test data by employing evolutionary search
techniques, with basis on the information provided by the analysis and
interpretation of Java bytecode and on the dynamic execution of the
instrumented test object.

The main reason to work at the bytecode level is that even when the source
code is unavailable, structural testing requirements can still be derived and
used to assess the quality of a given test set and to guide the evolutionary
search towards reaching specific test goals.

Java bytecode retains enough high-level information about the original source
code for an underlying model for program representation to be built. The
observations required to select or generate test data are obtained by
employing dynamic analysis techniques – i.e. by instrumenting, tracing and
analysing Java bytecode.

1. Introduction
Software testing is an expensive process, typically consuming roughly half of the total
costs involved in the software development process while adding nothing to the raw
functionality of the final product. Yet, it remains the primary method through which
confidence in software is achieved. In industry, this process is often done manually –
with the responsibility of assessing the quality of a given software product usually
falling on the software tester. However, locating suitable test data can be time-
consuming, difficult and expensive; automation of test data generation is, therefore,
vital to advance the state-of-the-art in software testing.

 Test data selection, generation and optimization deals with locating good test
data for a particular test criterion. The application of evolutionary algorithms to test
data generation is often referred to in literature as Evolutionary Testing (Mantere and
Alander 2005). In evolutionary testing, meta-heuristic search techniques are employed
to select or generate test data. The search space is the input domain of the test object,

and the problem is to find a (minimal) set of input data – test cases – that satisfies a
certain test criterion. In particular case of object-oriented programs, a sequence of
method invocations is required to cover the test goal, and the sequence search space is
an explosive space. The application of search-based strategies for object-oriented unit
testing has not yet been investigated comprehensively.

 In this paper, we present an approach for guiding the evolutionary search
towards generating test sets using coverage metrics derived from the test object’s Java
bytecode. The main reason to work at the bytecode level is that even when the test
object’s source code is unavailable, structural testing requirements can still be derived
and used to assess the quality of a given test set. The observations required to extract
such metric are obtained by employing dynamic analysis techniques – i.e. by
instrumenting, tracing and analysing Java bytecode.

 In the following section, background on the topics of testing methodologies,
quality criteria, evolutionary search techniques and fitness evaluation is provided;
related work is reviewed in Section 4. In section 5, we present our methodology for
employing dynamic analysis of Java bytecode for test quality assessment and
optimization and, on Section 6 the complete framework of our tool is outlined. The
concluding chapter resumes the key ideas of this paper and presents some topics for
future research.

2. Background
The assessment of the quality of a given test set can be achieved functionally (black-box
testing) or structurally (white-box testing). Black-box testing is concerned with showing
the conformity between the implementation and its functional specification; with white-
box testing techniques, test case design is performed with basis on the program
structure. Black-box testing is the most widely used testing approach; however, its
applicability is often hindered by the need for a formal specification of the test object to
be available. With white-box testing, the metrics for measuring the thoroughness of a
given test set can be extracted from the structure of the target’s source code, or even
from compiled code (e.g. Java bytecode).

 Traditional white-box criteria include structural (e.g. statement, branch)
coverage and data flow coverage. The basic idea is to ensure that all of the control
elements in a program are executed by a given test set, providing evidence of the quality
of the testing activity; a test set that contains test cases that exercise all such elements is
said to be adequate with respect to the corresponding criterion.

 The evaluation of the quality of a given test set and the guidance to the test case
selection using white-box criteria generally requires the definition of an underlying
model for program representation – usually a control-flow graph (CFG). The CFG is an
abstract representation of a given method in a class; control-flow testing criteria can be
derived based on such a program representation to provide a theoretical and systematic
mechanism to select and assess the quality of a given test set.

 Two well known control-flow testing standards to derive testing requirements
from the CFG are the all-nodes and all-edges criteria (Vincenzi, Delamaro et al. 2006).
The all-nodes criterion requires that each node of a given CFG is executed at least once.
To distinguish between instructions that are executed under the normal execution of the

program from others that require an exception to be executed, this criterion can be
subdivided into two non-overlapping testing criteria so that the testing activity can
focus on different aspects of a program at a time:

• all-nodes-exception-independent (All-Nodesei): requires every node of the CFG
reachable through an exception-free path to be executed at least once.

• all-nodes-exception-dependent (All-Nodesed): requires every node of the CFG
not reachable through an exception-free path to be executed at least once.

 Conversely, the all-edges criterion requires that each control-flow deviation is
executed at least once. To consider the control-flow in relation to the exception-
handling mechanism, this criterion also is subdivided into two non-overlapping testing
criteria: all-edges-exception-independent (All-Edgesei) and all-edges-exception-
dependent (All-Edgesed).

 The observations needed to assemble the metrics required by these criteria can
be collected by abstracting and modelling the behaviours programs exhibit during
execution – either by static or dynamic analysis techniques (Tracey, Clark et al. 2002).
Dynamic analysis involves executing the actual test object and monitoring its
behaviour; while it may not possible to draw general conclusions from dynamic
analysis, it provides evidence of the successful operation of the software. In contrast,
static analysis involves the construction and analysis of an abstract mathematical model
of the system (e.g. symbolic execution). Static analysis is performed without executing
the method under test, but rather this abstract model; this type of analysis is complex,
and often incomplete due to the simplifications in the model.

 If dynamic analysis techniques are employed, the ability to observe program
execution is paramount. Events that need to be captured range from simple observations
– such as execution of structural entities – to more complex examinations – such as
thread and object creation, field manipulations, and object locking behaviour (Kinneer,
Dwyer et al. 2006). Dynamic monitoring for events in Java software can be achieved
through instrumentation of Java bytecode.

 Bytecode is an assembly-like language that retains much of the high-level
information about the original source program. Class files (i.e. compiled Java programs
containing bytecode information) are a portable binary representation that contains class
related data such as the class name, its superclass name, information about the variables
and constants, and the bytecode instructions of each method (Vincenzi, Maldonado et
al. 2005). Using bytecode as the basis for building the CFG allows broadening the scope
of applicability of software testing tools, since the target object’s source code is often
unavailable; it can be used, for instance, to perform structural testing on third party Java
components. In addition, the bytecode can be seen as an intermediate language, so the
analysis performed at this level can be mapped back to the original high-level language
that generated the bytecode.

 Evolutionary algorithms have been used successfully for the unit testing of
procedural software, and their application to the generation of quality test data for
object-oriented software is an active field of research. Within the paradigm of object-
orientation, the major concept is the object – which possesses attributes, constructors
and methods. A test case for object-oriented software does not comprise only numerical

test data; a sequence of constructor and method calls is also necessary. Usually,
multiple objects are involved in one single test case (Wappler and Lammermann 2005):

• At the least, an instance of the class under test is needed.

• Additional objects, which are required (as parameters) for the creation of the
object under test and for the invocation of the method under test, must be
available. Again, for the creation of these additional objects, more additional
objects may be required.

• Depending on the kind of test, the participating objects may have to be put into
particular states in order for the test scenario to be processed in the desired way.
Consequently, method calls must be issued for these objects.

 A fitness function for object-oriented evolutionary testing must evaluate test
cases according to their ability to meet a given test goal. If white-box criteria are
employed, the CFG and the monitored execution of the test object are used to access the
adequateness of test cases – i.e. if the CFG node and/or path defined as the test goal was
exercised by the execution of a particular test case over the test object.

 In (Wappler and Wegener 2006a) a distance-based fitness function, which
expresses how close the execution of a test case over the test object is to reaching the
current test goal, was proposed. This closeness is expressed in terms of three distances:

• The Method Call Distance (dMC): expresses how close the test case execution
approached the method under test in terms of the number of methods called. In
case of a runtime exception, execution of a method call sequence terminates
prematurely, meaning that the method under test is not called.

• The Control Node Distance (dCN): expresses how close execution of the test
object approached the target CFG node.

• The Local Problem Node Distance (dPN): expresses how far the test object’s
execution is away from diverging along the branch of the problem node which
leads to the test goal.

 The metric dMC works at the test case level, and steers the evolutionary search
towards producing feasible test cases – i.e. it ensures that a method call sequence of a
given test case generates no runtime exceptions that prevent the method under test from
being called.

 Metrics dCN and dPN, on the other hand, are employed to cover individual test
goals on the test object, and are computed with basis on the CFG. In (Wegener, Baresel
et al. 2001), four methodologies – which depend on the CFG and the required test
purpose – for guiding the evolutionary search toward reaching particular test goals were
outlined, and the corresponding fitness functions were described:

• Node-oriented methods: require the attainment of specific nodes in the CFG
(e.g. statement test, condition test).

• Path-oriented methods: require the execution of certain paths in the CFG (e.g.
path tests).

• Node-path-oriented methods: require the achievement of a specific node and,
from this node, the achievement of a specific path through the CFG (e.g. branch
test, segment coverage).

• Node-node-oriented methods: aim to execute program paths that cover certain
node combinations of the CFG in a pre-determined sequence without specifying
a specific path between nodes (e.g. data-flow criteria).

3. Related Work
Interesting review articles on the topic of Evolutionary Testing include that of McMinn
(McMinn 2004), who presents a review of meta-heuristic techniques that have been
used in software test data generation, namely Hill Climbing, Simulated Annealing and –
most interestingly – Evolutionary Algorithms. Namely, the main achievements in
automating test data generation in the areas of structural testing, functional testing, and
grey-box testing are summarized. In (Mantere and Alander 2005) an in-depth index of
the work developed in the area is provided; topics include genetic algorithms applied to
coverage testing, test data generation, testing program dynamics, black-box testing and
software quality.

 Both works pinpoint the state problem (McMinn and Holcombe 2003) as the
main issue to be faced by researchers in this field. It occurs with methods that exhibit
state-like qualities by storing information in internal variables; such variables are
hidden from the optimization process because they are not available to external
manipulation. The only way to change the values of these variables is through execution
of statements that perform assignments to them. In object-oriented software this can
occur through the use of variables that are protected from external manipulation using
access modifiers.

 The first approach to the field of evolutionary testing for object-oriented
software was presented in (Tonella 2004); in this work, input sequences were generated
using evolutionary algorithms for the white-box testing of classes. Genetic algorithms
were the evolutionary approach employed, with potential solutions (test cases) being
represented as chromosomes. A source-code representation was used, and an original
evolutionary algorithm – with special evolutionary operators for recombination and
mutation on a statement level (i.e. mutation operators insert or remove methods from a
test program) – was defined. A population of individuals, representing the test cases,
was evolved in order to increase a measure of fitness, accounting for the ability of the
test cases to satisfy a coverage criterion of choice – the proportion of all control and call
dependences that lead to the given target. New test cases are generated as long as there
are targets to be covered or a maximum execution time is reached. However, the
encapsulation problem was not addressed, and this proposal only dealt with a simple
state problem; additionally, with this approach, Universal Evolutionary Algorithms –
evolutionary algorithms, provided by popular toolboxes, which are independent from
the application domain and offer a variety of predefined, probabilistically well-proven
evolutionary operators – cannot be applied.

 An approach which built upon an Ant Colony Optimization Algorithm was
presented by (Liu, Wang et al. 2005). The focus was on the generation of the shortest
method call sequence for a given test goal, under the constraint of state dependent

behaviour and without violating encapsulation. Ant PathFinder, hybridizing Ant Colony
Optimization and Multiagent Genetic Algorithms were employed. To cover those
branches enclosed in private/protected methods without violating encapsulation, call
chain analysis on class call graphs was introduced.

 In (Wappler and Lammermann 2005) an approach for the automatic generation
of test programs for object-oriented unit testing was presented, focusing on the usage of
Universal Evolutionary Algorithms. An encoding was proposed that represented object-
oriented test programs as basic type value structures, allowing for the application of
various search-based optimization techniques such as Hill Climbing or Simulated
Annealing. The generated test programs could be transformed into test classes
according to popular testing frameworks. The suggested encoding, however, did not
prevent the generation of individuals which could not be decoded into test programs
without errors; their fitness function used different penalty mechanisms in order to
penalize invalid sequences and to guide the search towards regions that contained valid
sequences. Due to the generation of infeasible sequences, the approach lacked
efficiency for more complicated cases.

 In (Wappler and Wegener 2006b) a different approach to the subject was
presented. Potential solutions were encoded using a Strongly-Typed Genetic
Programming (STGP) methodology, with method call sequences being represented by
method call trees; these trees are able to express the call dependences of the methods
that are relevant for a given test object. To account for polymorphic relationships which
exist due to inheritance relations, the STGP types used by the function set are specified
in correspondence to the type hierarchy of the test cluster classes. The emphasis of this
work is on sequence feasibility; the usage of STGP preserves feasibility throughout the
entire search process. The fitness function does need, however, to incorporate a penalty
mechanism for test cases which include method call sequences that generate runtime
exceptions. The issue of runtime exceptions was precisely the main topic in (Wappler
and Wegener 2006a). This methodology yielded very encouraging results. For a simple
custom-tailored test cluster, the set of generated test cases achieved full (100%) branch
coverage: during the search, 11966 test programs were generated and evaluated, and the
resulting test set contained 3 test cases; a control run, in which random test cases where
produced for comparison purposes, stopped after having evaluated 43233 test programs
(in accordance to the specified termination criteria), and the generated test set achieved
a coverage of 66%. In a more complex scenario, four classes where tested and full
coverage was achieved for all of the test objects.

 In the abovementioned approaches, the underlying model for program
representation is built with basis on the test object’s source-code; moreover,
instrumentation of the test object for extracting tracing information is also done at the
source-code level. To the best of our knowledge, there are no evolutionary approaches
to the unit-testing of object-oriented software that employ dynamic bytecode analysis to
derive structural testing criteria.

 The application of evolutionary algorithms and bytecode analysis for test
automation was, however, already studied in different scenarios. In (Cheon, Kim et al.
2005) an attempt to automate unit testing of object-oriented programs is described. A
black-box approach for investigating the use of genetic algorithms for test data
generation is employed, and program specifications written in JML are used for test

result determination. The JML compiler was extended to make Java bytecode produce
test coverage information. In (Muller, Lembeck et al. 2004), the layout of a symbolic
Java virtual machine (SJVM), which discovers test cases using a definable structural
coverage criterion with basis on static analysis techniques, is described. Java bytecode
is executed symbolically, and the decision whether to enter a branch or throw an
exception is based on the earlier constraints, a constraint solver and current testing
criterion. The SJVM has been implemented in a test tool called GlassTT. This work,
however, doesn’t address exception-related and method interaction-related criteria, and
only procedural software scenarios are described.

4. Dynamic Analysis Of Java Bytecode For Test Quality Optimization
The focus of this paper is on presenting a methodology for generating and optimizing
test data by employing evolutionary search techniques, solely with basis on the
information provided by the analysis Java bytecode and on the dynamic execution of the
instrumented test object’s class files.

 In this section, the simple test cluster defined in (Wappler and Wegener 2006a)
is used for demonstration purposes. We focus on the Controller.reconfigure(Config)
public method; its source code is reproduced in Figure 1.

 public void reconfigure(Config cfg) throws Exception {
 if(cfg.getSignalCount() > MAX_SIGNALS)
 throw new Exception("Too many signals.");
 if(cfg.getPort()<MIN_PORT||cfg.getPort()>MAX_PORT)
 throw new Exception("Invalid port.");
 this.cfg = cfg;
 signals = new int[cfg.getSignalCount()];
 }

Figure 1. Source code for the method Controller.reconfigure(Config)

 The source code provided by this example was compiled using JDK 1.5. The
bytecode instructions of the compiled Controller.reconfigure(Config) public method
are depicted in Figure 2.

4.1. Bytecode Analysis

In order to understand the details of Java bytecode, a preliminary discussion on how the
Java virtual machine (Lindholm and Yellin 1999) works regarding the execution of the
bytecode must take place. A JVM is a stack-based machine; each thread has a JVM
stack which stores frames. A frame is created each time a method is invoked, and
consists of an operand stack, an array of local variables, and a reference to the runtime
constant pool of the class of the current method (Haggar 2001).

 The array of local variables contains the parameters of the method and the
values of the local variables. The size of the array of local variables is determined at
compile time, and is dependent on the number and size of local variables and formal
method parameters. The parameters are stored first, beginning at index 0. If the frame is
for a constructor or an instance method, the this reference is stored at location 0;
location 1 contains the first formal parameter, location 2 the second, and so on. For a
static method, the first formal method parameter is stored in location 0, the second in
location 1, and so on. The operand stack is a LIFO stack used to push and pop values;

its size is also determined at compile time. Certain bytecode instructions push values
onto the operand stack; others take operands from the stack, manipulate them, and push
the result. The operand stack is also used to receive return values from methods.

 In Figure 2, The aload_1 instruction at location 0 pushes the value from the
index 1 of local variable table onto the operand stack – i.e. it pushes the parameter cfg
of the method Controller.reconfigure(Config cfg) onto the top of the operand stack
(a reference to an object of type Config). The invokevirtual instruction at location 1
invokes the instance method Config.getSignalCount() on the object cfg (popped from
the top of the operand stack); the value returned by this method is pushed onto the top
of the operand stack. The iconst_5 instruction at location 4 loads the integer value 5
onto the top of the operand stack. At this point, the operand stack contains two values:
the integer 5 on top, and the value returned by the Config.getSignalCount() on the
bottom. The if_icmple instruction loads both those values from the operand stack, and
compares them: if 5 is lower than or equal to the value returned from the
getSignalCount method, instruction flow is transferred to instruction 18.

cfg.Controller.public_void_reconfigure(cfg.Config_cfg)
_throws_java.lang.Exception
Code(max_stack = 3, max_locals = 2, code_length = 64)
0: aload_1
1: invokevirtual cfg.Config.getSignalCount ()I (6)
4: iconst_5
5: if_icmple #18
8: new <java.lang.Exception> (7)
11: dup
12: ldc "Too many signals." (8)
14: invokespecial java.lang.Exception (java.lang.String)
17: athrow
18: aload_1
19: invokevirtual cfg.Config.getPort ()I (10)
22: sipush 8000
25: if_icmplt #38
28: aload_1
29: invokevirtual cfg.Config.getPort ()I (10)
32: sipush 8005
35: if_icmple #48
38: new <java.lang.Exception> (7)
41: dup
42: ldc "Invalid port." (11)
44: invokespecial java.lang.Exception (java.lang.String)
47: athrow
48: aload_0
49: aload_1
50: putfield cfg.Controller.cfg Lcfg/Config; (2)
53: aload_0
54: aload_1
55: invokevirtual cfg.Config.getSignalCount ()I (6)
58: newarray <int>
60: putfield cfg.Controller.signals [I (3)
63: return

Figure 2. Java bytecode for the method Controller.reconfigure(Config)

 This brief analysis helps to support the following conclusions: firstly, the
bytecode instructions contain enough high-level information for coverage criteria to be
applied at the bytecode level; secondly, it is possible to group some instructions into a
smaller set of basic blocks that can ease the representation of the compiled program
using a CFG and, consequently, the application of dynamic analysis and structural
coverage metrics on the target object.

 The purpose of the aload_1 instruction is, in fact, to prepare the operand stack
for the getSignalCount method call at location 2. Equally, the iconst_5 instruction
prepares the stack for the if instruction on location 5. We group these instructions into
two basic blocks: the first pair is grouped into a Call block; the second pair is grouped
into a Basic Instruction block of the sub-type “if”.

4.2. CFG Definition and Interpretation

In our approach, bytecode instructions are grouped into a set of basic blocks – namely,
Basic Instruction blocks and Call Blocks. These blocks cover the core of nodes required
to build the CFG graph.

 Basic Instruction blocks encompass regular bytecode instructions, including the
decision and branching instructions that can influence control flow – namely the sub-
types “if”, “goto”, “jsr”, “switch”, “return”, “ret”, “throw”, “sumthrow” and “exit”.
They are represented in the CFG by Basic Instruction nodes. Call blocks represent
bytecode instructions that cause control flow to be transferred to another method; they
contain the high-level information needed to identify the method being called, and are
represented in the CFG by Call nodes. In our example, bytecode instructions are
grouped in accordance to Table 1.

Table 1. Mapping between bytecode instructions, basic instruction blocks,
basic intruction block subtypes, and node numbers in the CFG depicted in Figure 3.

initial

bc inst

final

bc inst

node

type

node

subtype

node

number

0

4

8

18

22

28

32

38

48

58

1

5

17

19

25

29

39

47

55

63

Call

Basic

Basic

Call

Basic

Call

Basic

Basic

Call

Basic

If

Throw

If

If

Throw

Return

2

4

5

6

8

9

11

12

13

15

 Additionally, other types of nodes which represent virtual operations are
defined: Entry nodes, Exit nodes, and Return nodes. These virtual nodes encompass no
bytecode instructions; they are used to represent certain control flow hypothesis.

 As mentioned above, Call blocks transfer control flow to the CFG of another
method; the method called, in turn, can return normally or with an exception. In order to
differentiate these situations, Return nodes are created. They follow Call nodes, and are
transversed when the called method returns regularly; if the called method returns with
an exception, either the exception is dealt with internally or control flow jumps to an
Exit node that causes the method to return with an exception itself.

 Exit nodes follow other nodes that can cause the method to return; a different
Exit node is created for each return scenario – including “return” and “throws”
instructions, and method call instructions that may return an exception.

 Entry nodes identify the starting point of the CFG. They simply indicate the
method’s entry point; there’s only one Entry block node per method.

Figure 3. Control-Flow Graph for the method Controller.reconfigure(Config).

 The CFG generated for the method Controller.reconfigure(Config) is depicted
of Figure 3. A brief overview follows: node #1 is the Entry node; it is connected by a
directed edge to Call node #2, which transfers control flow to the
Config.getSignalCount() method; if Config.getSignalCount() method returns
regularly, Return node #4 is next; if it throws an exception, Exit node #18 is transversed
and Controller.reconfigure(Config) returns with an exception itself.

4.3. Test Set Evaluation and Optimization

Using the CFG built with basis on the test object’s bytecode, it is possible to evaluate
thoroughness of the test set with basis on the quality criteria proposed by (Vincenzi,
Maldonado et al. 2005; Vincenzi, Delamaro et al. 2006); moreover, it is possible to
optimize the test set by employing the evolutionary search techniques proposed by
(Wegener, Baresel et al. 2001; Wappler and Wegener 2006a; Wappler and Wegener
2006b). Both methodologies were introduced in the Background section.

 In order to access the thoroughness of the testing process according to the all-
nodes and all-edges criteria, the test object’s class files must be instrumented for Basic
block and Call block dispatch, in accordance to the CFG defined as the underlying
representation. Dynamic analysis is performed by executing the instrumented test object
using each test case of a given test set as input; the trace files produced must then be
analyzed for the coverage metrics to be calculated.

public void testReconfigure() throws Exception
{
 System.out.println("reconfigure");

 int expected = 8000;

 Config cfg = new Config(9999);
 cfg.setPort(expected);
 Controller instance = new Controller();
 instance.reconfigure(cfg);

 int actual = cfg.getPort();

 assertEquals(expected, actual);
}

Figure 4. Sample test case for method Controller.reconfigure(Config)

 Exception-independent control-flow analysis implies the coverage of the
bytecode instructions represented by Basic Instruction nodes and Call nodes (in the case
of all-edgesei criterion, by exercising all available branches). Trace files for the
execution of the instrumented test object defined in Figure 2 using the test case depicted
in Figure 4 yield the transversal of nodes #2, #4, #6, #8, #13 and #15 – i.e. 66% all-
nodesei coverage (nodes #5 and #12 aren’t exercised) and 90% all-edgesei coverage
(edge #11 #12 isn’t exercised; edges beginning at virtual nodes aren’t considered) is
achieved.

 When employing exception-dependant coverage criteria, Exit nodes and Basic
Instruction nodes of the subtype “jsr” constitute the focus of the analysis. The all-
nodesei criterion implies the coverage of catch and finally Java blocks; additionally,
the all-edges criterion also implies the transversal of all the edges that lead to Exit nodes
that follow Call nodes.

 Specific fitness functions have to be defined for each coverage criterion; we
employ the methodologies proposed by (Wegener, Baresel et al. 2001). Each individual
fitness function, depending on the coverage criterion of choice, is defined as follows
(discussion includes examples related to the coverage information extracted from the
trace files described above):

• all-nodesei: a node-oriented fitness function is used, which allows the search to
be guided towards achieving every individual test goal – e.g. test cases that
exercise nodes #5 and #12 must be created.

• all-edgesei: a node-path-oriented fitness function is used, which allows the
search to be guided towards reaching a specific problem node and, from there,
following a certain path – e.g. a test case that considers node #11 as the problem
node and transverses edge #11 #12 must be created.

• all-nodesed: a node-path-oriented fitness function is used, which allows the
coverage of all bytecode instructions that are encompassed in catch and finally

blocks, and that can be reached through a jsr bytecode function. Basic
Instruction nodes of the subtype “jsr” are the problem nodes.

• all-edgesed: a node-node-oriented fitness function is used. In addition to the
nodes encompassed by catch and finally blocks, test cases must be generated
that reach every single Call node and, from there, transverse the Exit node that
corresponds to the called methods exceptional return – e.g. test cases must be
generated that consider nodes #18 to #23 as individual goals for the evolutionary
search.

5. Framework Description
The focus of our tool is on the creation and optimization of a test set that maximizes
code coverage. Optimization occurs at the test set level and at the test case level: we
aim to generate a set that can help gain confidence in the software under test using
white-box metrics, and to generate the shortest sequence for a given test goal.

 The process of CFG building, bytecode instrumentation and event tracing is
achieved with the aid of Sofya (Kinneer, Dwyer et al. 2006), a dynamic analysis
framework developed at the University of Nebraska, USA, that is particularly suited for
developing dynamic analysis tools. The Sofya package provides implementations and
tools for the construction of various kinds of graphs – most notably CFGs – and native
capabilities for dispatching event streams of specified program observations, which
include instrumentators, event dispatchers, and event selection filters for semantic and
structural event streams. Additionally, it contains tools to perform various analyses
using the outputs generated by its components (statistics, coverage reports, …) and to
visualize the trace files produced by the executions of instrumented programs.

 In the context of our tool, Sofya is employed to instrument classes for structural
event dispatch. Basic Block instrumentation enables the observations of the virtual
Entry, Exit and Return blocks, Call blocks and Basic Instruction blocks transversed
during a given program execution. Our tool automatically executes instrumented
programs, and compares the trace files produced to the statically generated CFGs in
order to compute the fitness function.

 For evolving the set of test cases, the Evolutionary Computation in Java (ECJ)
package (Luke, Panait et al. 2007) is used in a similar fashion to the one proposed in
(Wappler and Wegener 2006a; Wappler and Wegener 2006b). ECJ is a research
package, developed at the George Mason’s University, USA, that incorporates several
Universal Evolutionary Algorithms, and includes built-in support for Set-Based
Strongly-Typed Genetic Programming. It is highly flexible, having nearly all classes
and their settings being dynamically determined at runtime by user provided parameter
files.

 Parameter files containing all the constraints defined by the function set are
automatically generated by our tool: firstly, the Test Cluster and the Type Set for the
Class Under Test are extracted by means of the Java Reflection API; then, the Extended
Method Call Dependence Graph (EMCDG) is computed, and a Function Set for each of
the public methods is derived; finally, ECJ parameter files are automatically generated
for each of the function sets produced.

 jUnit is used as the front-end for our tool, as it constitutes both the starting and
ending points of the software testing process: the initial population of test cases can
optionally be derived from those defined by the user using jUnit (the initial population
can also be created automatically), and the generated test programs can be transformed
into test classes that can be loaded into the jUnit framework. The major usage scenario
is the generation of test cases that complete a test set in order to maximize code
coverage. The rationale for minimizing the length of the method call sequence of test
cases is that of simplifying the user’s task of defining assertions.

6. Conclusions and Future Work
This paper presents the rationale and introduces the methodology for generating and
optimizing test sets with basis on metrics derived from the dynamic analysis of the test
object’s Java bytecode. A Control-Flow Graph is used as the underlying model for
program representation, and it is build solely with basis on the high-level information
extracted from the Java bytecode of the test object. Bytecode instructions are grouped
into a smaller set of Basic Instruction and Call blocks with the intention of easing the
representation of the test object’s control flow, and additional virtual nodes are defined
to facilitate the dynamic analysis phase. The methodology for evaluating the test set
includes instrumenting the bytecode for basic block analysis and structural event
dispatch, and executing the instrumented test object using the generated test cases as
inputs, with the intention of collecting trace files with which to derive coverage metrics.
Methodologies for defining fitness functions in order to achieve the particular criteria-
related test goals are introduced. A general overview on how our automated software
testing tool is integrated is given.

 Evolutionary testing is an emerging methodology for automatically generating
high quality test data. Future work includes performing a case-study in a real
development context in order to demonstrate the usefulness and applicability of the
methodology and experiment different approaches to the evolutionary paradigm
employed. Namely, we aim to fine-tune the fitness functions employed for working at
the bytecode level. Further research must also be made on the topic facilitating the
user’s task of defining assertions for the generated test cases (e.g. by minimizing the
length of method call sequence of test cases) and on the possibility of using distinct
strong-typing mechanisms for the definition of the constraint imposed by the object-
oriented paradigm.

7. References
Cheon, Y., M. Y. Kim, et al. (2005). A complete automation of unit testing for Java

programs. Proceedings of the 2005 International Conference on Software
Engineering Research and Practice (SERP '05). Las Vegas, Nevada, USA, CSREA
Press: 290-295.

Haggar, P. (2001, 2001/07/01). "Java bytecode: Understanding bytecode makes you a
better programmer " IBM developerWorks Retrieved 2007/04/01, from http://www-
128.ibm.com/developerworks/ibm/library/it-haggar_bytecode/.

Kinneer, A., M. Dwyer, et al. (2006). Sofya: A Flexible Framework for Development of
Dynamic Program Analyses for Java Software, Department of Computer Science and
Engineering, University of Nebraska - Lincoln.

Lindholm, T. and F. Yellin (1999). The Java virtual machine specification. Harlow,
Addison-Wesley.

Liu, X., B. Wang, et al. (2005). Evolutionary search in the context of object-oriented
programs. MIC2005: The Sixth Metaheuristics International Conference, Vienna,
Austria.

Luke, S., L. Panait, et al. (2007). "ECJ 16: A Java evolutionary computation library."
from http://www.cs.gmu.edu/~eclab/projects/ecj/.

Mantere, T. and J. T. Alander (2005). "Evolutionary software engineering, a review."
Applied Soft Computing 5(3): 315-331.

McMinn, P. (2004). "Search-based software test data generation: a survey." Software
Testing, Verification and Reliability 14(2): 105-156.

McMinn, P. and M. Holcombe (2003). The state problem for evolutionary testing.
Genetic and Evolutionary Computation Conference, Chicago, USA, Springer-Verlag.

Muller, R. A., C. Lembeck, et al. (2004). A symbolic Java virtual machine for test case
generation. Proceedings of IASTED Conference on Software Engineering: 365-371.

Tonella, P. (2004). Evolutionary testing of classes. ISSTA '04: Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing and analysis. Boston,
Massachusetts, USA, ACM Press: 119-128.

Tracey, N., J. Clark, et al. (2002). A search-based automated test-data generation
framework for safety-critical systems, Springer-Verlag New York, Inc.

Vincenzi, A. M. R., M. E. Delamaro, et al. (2006). "Establishing structural testing
criteria for Java bytecode." Software Practice and Experience 36(14): 1513-1541.

Vincenzi, A. M. R., J. C. Maldonado, et al. (2005). "Coverage testing of Java programs
and components." Special issue on new software composition concepts 56(1-2): 211-
230.

Wappler, S. and F. Lammermann (2005). Using evolutionary algorithms for the unit
testing of object-oriented software. GECCO '05: Proceedings of the 2005 conference
on genetic and evolutionary computation, ACM Press: 1053-1060.

Wappler, S. and J. Wegener (2006a). Evolutionary Unit Testing Of Object-Oriented
Software Using A Hybrid Evolutionary Algorithm. Proceedings of the 2006 IEEE
Congress on Evolutionary Computation. Vancouver, IEEE Press: 3193-3200.

Wappler, S. and J. Wegener (2006b). Evolutionary unit testing of object-oriented
software using strongly-typed genetic programming. GECCO '06: Proceedings of the
8th annual conference on Genetic and evolutionary computation. Seattle,
Washington, USA, ACM Press: 1925-1932.

Wegener, J., A. Baresel, et al. (2001). "Evolutionary test environment for automatic
structural testing." Information & Software Technology 43(14): 841-854.

C.2 eCrash: a Framework for Performing Evo-

lutionary Testing on Third-Party Java

Components (CEDI JAEM 2007)

81

82

eCrash: a Framework for Performing Evolutionary Testing
on Third-Party Java Components

José Carlos Bregieiro Ribeiro
Polytechnic Institute of Leiria (IPL)

Morro do Lena, Alto do Vieiro
Leiria, Portugal

jose.ribeiro@estg.ipleiria.pt

Mário Zenha-Rela
University of Coimbra (UC)

CISUC, DEI, 3030-290
Coimbra, Portugal
mzrela@dei.uc.pt

Francisco Fernández de Vega
University of Extremadura (UNEX)

C/ Sta Teresa de Jornet, 38
Mérida, Spain

fcofdez@unex.es

Abstract
The focus of this paper is on presenting a tool for
generating test data by employing evolutionary
search techniques, with basis on the information
provided by the structural analysis and
interpretation of the Java bytecode of third-party
Java components, and on the dynamic execution
of the instrumented test object.

The main objective of this approach is that of
evolving a set of test cases that yields full
structural code coverage of the test object. Such a
test set can be used for effectively performing the
testing activity, providing confidence in the
quality and robustness of the test object.
 The rationale of working at the bytecode level
is that even when the source code is unavailable
structural testing requirements can still be derived,
and used to assess the quality of a test set and to
guide the evolutionary search towards reaching
specific test goals.

1. Introduction

Software testing is an expensive process, typically
consuming roughly half of the total costs involved
in the software development process [1]. Locating
suitable test data can be time consuming, difficult
and expensive; automation of test data generation
is, therefore, vital to advance the state-of-the-art in
software testing.
 Test data selection, generation and
optimization deals with locating good test data for
a particular test criterion. The assessment of the
quality of a given set of test data can be achieved
functionally (black-box testing) or structurally
(white-box testing) [2].
 Black-box testing is concerned with showing
the conformity between the implementation and
its functional specification; with white-box testing
techniques, test case design is performed with
basis on the program structure.

 When white-box testing is performed, the
metrics for measuring the thoroughness of a given
test set can be extracted from the structure of the
target object’s source code, or even from
compiled code. Traditional white-box criteria
include structural (e.g. statement, branch)
coverage and data flow coverage [3]. The basic
idea is to ensure that all of the control elements in
a program are executed by a given test set,
providing evidence of the quality of the testing
activity; a test set that contains test cases that
exercise all such elements is said to be adequate
with respect to the corresponding criterion.
 The evaluation of test data quality using
white-box criteria generally requires the definition
of an underlying model for program
representation – usually a control-flow graph
(CFG) [4]. The CFG is an abstract graph-based
representation of a given method in a class – in
the case of software testing, the test object.
Evaluating the quality of a test set involves using
CFGs to compute coverage metrics.
 The observations needed to assemble the
metrics required for the evaluation can be
collected by abstracting and modelling the
behaviours that programs exhibit during execution
[5], either by static or dynamic analysis
techniques.
 Static analysis involves the construction and
analysis of an abstract mathematical model of the
system (e.g. symbolic execution); testing is
performed without executing the method under
test, but rather this abstract model. This type of
analysis is complex, and often incomplete due to
the simplifications in the model. In contrast,
dynamic analysis involves executing the actual
test object and monitoring its behaviour; while it
may not possible to draw general conclusions
from dynamic analysis, it provides evidence of the
successful operation of the software.

•

•

•

 If dynamic analysis techniques are employed,
the ability to observe program execution is
paramount. Events that need to be captured range
from simple observations – such as execution of
structural entities – to more complex examinations
– such as thread and object creation, field
manipulations, and object locking behaviour [4].
Dynamic monitoring of structural entities can be
achieved by instrumenting the test object, and
dynamically tracing the execution of the structural
entities transversed during execution.
 Instrumentation in Java software is performed
by inserting probes in the test object that log the
entities exercised during execution. This operation
can be performed either at the source-code level
or at the Java bytecode level.
 Java bytecode is an assembly-like language
that retains much of the high-level information
about the original source program [6]. Class files
(i.e. compiled Java programs containing bytecode
information) are a portable binary representation
that contains class related data, such as the class’s
name, its superclass’s name, information about the
variables and constants, and the bytecode
instructions of each method.
 Given that the target object’s source code is
often unavailable, performing instrumentation and
CFG building with basis on bytecode allows
broadening the scope of applicability of software
testing tools. They can be used, for instance, to
perform structural testing on third-party Java
components. In addition, the bytecode can be seen
as an intermediate language, so the analysis
performed at this level can be mapped back to the
original high-level language that generated the
bytecode.
 Evolutionary algorithms have been applied
successfully to the search for quality test data in
the field object-oriented unit-testing [7-11].
However, the application of search-based
strategies in this area has not yet been investigated
comprehensively; what’s more, existing
approaches work at the test object’s source-code
level. The evolutionary paradigm is expected to be
equally suited if Java bytecode is employed as the
basis for evolutionary search guidance and quality
assessment.

The application of evolutionary algorithms to
test data generation is often referred to as
Evolutionary Testing [12, 13]. In evolutionary
testing, meta-heuristic search techniques are
employed to select or generate test data. The

search space is the input domain of the test object,
and the problem is to find a (minimal) set of test
cases that satisfies a certain test criterion.

In the particular case of object-oriented
programs, a sequence of method invocations is
required to cover the test goal, and the sequence
search space is an explosive space. Within the
paradigm of object-orientation, the major concept
is the object – which possesses attributes,
constructors and methods. A test case for object-
oriented software does not comprise only
numerical test data; a sequence of constructor and
method calls is also necessary.

Usually, multiple objects are involved in one
single test case [11]:

at least, an instance of the Class Under Test
(CUT) is needed;
additional objects, which are required (as
parameters) for the instantiation of the CUT
and for the invocation of the method under
test (MUT), must be available, and for the
creation of these additional objects more
objects may be required;
the participating objects may have to be put
into particular states in order for the test
scenario to be processed in the desired way
and, consequently, method calls must be
issued for these objects.

 A fitness function for object-oriented
evolutionary testing should evaluate test cases
according to their ability to meet a given test goal.
Fitness evaluation is, however hindered by the
State Problem. The State Problem occurs with
methods that exhibit state-like qualities by storing
information in internal variables [14]; such
variables are hidden from the optimization
process, because they are protected from external
manipulation using access modifiers (most
notably “getter” and “setter” methods). The only
way to change their values is through execution of
statements that perform assignments to them.

In this paper, we present a prototypical tool –
eCrash – that aims at providing a means to
perform structural unit-testing on object-oriented
software, using evolutionary techniques and with
basis on the test object’s bytecode. Firstly, in the
following chapter, related work is reviewed. In
chapter 3, the framework of our tool is outlined,
and a case study that illustrates the methodology
is described in chapter 4. The concluding chapter
resumes the key ideas of this paper and presents
some topics for future research.

2. Related Work

A first approach to the field of evolutionary
testing of object-oriented software was presented
in [10]; in this work, input sequences are
generated using evolutionary algorithms for the
white-box testing of classes. Genetic algorithms
are the evolutionary approach employed, with
potential solutions (test cases) being represented
as chromosomes. A source-code representation is
used, and an original evolutionary algorithm, with
special evolutionary operators for recombination
and mutation on a statement level (i.e. mutation
operators insert or remove methods from a test
program), is defined. A population of individuals,
representing the test cases, is evolved in order to
increase a measure of fitness, accounting for the
ability of the test cases to satisfy a coverage
criterion of choice. New test cases are generated
as long as there are targets to be covered or a
maximum execution time were reached.
 However, the encapsulation problem was not
addressed, and this proposal only dealt with a
simple state problem. Additionally, with this
approach, Universal Evolutionary Algorithms (i.e.
evolutionary algorithms, provided by popular
toolboxes, which are independent from the
application domain and offer a variety of
predefined, probabilistically well-proven
evolutionary operators) could not be applied due
to the usage of custom-made operators and
original evolutionary algorithms.
 An approach which employed an Ant Colony
Optimization algorithm was presented in [9]. The
focus is on the generation of the shortest method
call sequence for a given test goal, under the
constraint of state dependent behaviour and
without violating encapsulation. Ant PathFinder,
hybridizing Ant Colony Optimization and
Multiagent Genetic Algorithms are employed. To
cover those branches enclosed in private/protected
methods without violating encapsulation, call
chain analysis on class call graphs was introduced.
 In [11] the focus was on the usage of
Universal Evolutionary Algorithms. An encoding
is proposed that represents object-oriented test
cases as basic type value structures, allowing for
the application of various search-based
optimization techniques such as Hill Climbing or
Simulated Annealing. The generated test cases can
be transformed into test classes according to

popular testing frameworks. Still, the suggested
encoding did not prevent the generation of
individuals which could not be decoded into test
programs without errors; the fitness function used
different penalty mechanisms in order to penalize
invalid sequences and to guide the search towards
regions that contained valid sequences. Due to the
generation of infeasible sequences, the approach
lacked efficiency for more complicated cases.
 In [7] an approach in which potential solutions
were encoded using a Strongly-Typed Genetic
Programming (STGP) methodology was
presented, with method call sequences being
represented by method call trees; these trees are
able to express the call dependences of the
methods that are relevant for a given test object.
To account for polymorphic relationships which
exist due to inheritance relations, the STGP types
used by the function set are specified in
correspondence to the type hierarchy of the test
cluster classes. The emphasis of this work is on
sequence feasibility; the usage of STGP preserves
feasibility throughout the entire search process.
The fitness function does need, however, to
incorporate a penalty mechanism for test cases
which include method call sequences that generate
runtime exceptions. The issue of runtime
exceptions was precisely the main topic in [8].
 The methodology proposed in [7, 8] yielded
very encouraging results. For a simple custom-
tailored test cluster, the set of generated test cases
achieved 100% branch coverage; in a more
complex scenario, four classes where tested and
full coverage was achieved for all of the test
objects.
 In all of the abovementioned approaches, the
underlying model for program representation (i.e.
CFG) is built with basis on the test object’s
source-code; moreover, instrumentation of the test
object for extracting tracing information is also
performed at the source-code level. To the best of
our knowledge, there are no evolutionary
approaches to the unit-testing of object-oriented
software that employ dynamic bytecode analysis
to derive structural testing criteria.
 The application of evolutionary algorithms
and bytecode analysis for test automation was,
nonetheless, studied in different scenarios. A
black-box approach using program specifications
written in JML was employed in [15], and [16]
describes a methodology based on static analysis
techniques.

3. Framework Overview

The focus of this paper is on presenting the
framework of a tool (which we named “eCrash”)
for evolving test sets for structural unit-testing of
third-party object-oriented software.
 The ideas that lead to this approach were
greatly inspired by the previous works of [6-8, 11,
17]. Test cases are evolved using a STGP
mechanism, with the metrics required to evaluate
their quality being collected at the bytecode level.
The framework of our tool is outlined in Figure 1.

Figure 1. Framework overview

 For evolving the set of test cases, the
Evolutionary Computation in Java (ECJ) package
[18] is used. ECJ is a research package that
incorporates several Universal Evolutionary
Algorithms, and includes built-in support for Set-
Based STGP. It is highly flexible, having nearly
all classes and their settings being dynamically
determined at runtime by user provided Parameter
files and Function Set files.

The process of CFG building, bytecode
instrumentation and event tracing is achieved with
the aid of Sofya [4], a dynamic Java bytecode
analysis framework. The Sofya package provides
implementations and tools for the construction of
various kinds of graphs – most notably CFGs –
and native capabilities for dispatching event
streams of specified program observations, which
include instrumentators, event dispatchers, and
event selection filters for semantic and structural
event streams. Additionally, it contains tools to
perform various analyses using the outputs

generated by its components (statistics, coverage
reports, …) and to visualize the trace information
produced by the executions of instrumented
programs.
 The test cluster analysis phase is performed by
the “Automatic Test Object Analyser” (ATOA)
module of the eCrash tool. It’s main task is that of
generating Parameter Files containing the
constraints needed for the STGP system.

4. Case Study

In this experiment, the simple test cluster defined
in [8] is used for demonstration purposes. The
Controller.reconfigure(Config) public method was used
as the method under test (MUT); its source code is
depicted in Figure 2.

public void reconfigure(Config cfg) throws Exception {
 if(cfg.getSignalCount() > MAX_SIGNALS)
 throw new Exception("Too many signals.");
 if(cfg.getPort()<MIN_PORT||cfg.getPort()>MAX_PORT)
 throw new Exception("Invalid port.");
 this.cfg = cfg;
 signals = new int[cfg.getSignalCount()];
}

Figure 2. Method Under Test’s source code [8]

4.1. Test Cluster Analysis

The test cluster’s Java bytecode analysis is
performed by the ATOA module of the eCrash
framework; it is at this step that the Function and
Terminal sets are defined, and hence it must
precede the test set evolving and evaluation
phases.
 The first task is that of extracting the list of
public methods from the test object’s bytecode by
means of the Java Reflection API; this list
comprises the set of MUTs that are to be the
subject of the unit-testing process. Secondly, the
Extended Method Call Dependence Graph
(EMCDG) is determined; this structure describes
the method call dependences involved in the test
case construction [7].
 Function and Terminal sets are then computed
for each of the MUTs by evaluating the EMCDG.
These sets define the restrictions that must be
imposed to STGP tree nodes; specifically, they
identify the children and return types of each

node. This information is used to generate ECJ
Parameter files that contain the constraints of the
STGP system, and assures that the test cases’ call
dependences are taken into account.

Figure 3. Method Under Test’s bytecode instructions

For this case study’s MUT, the EMCDG
analysis yielded the Function Set depicted in [7],
which includes both the terminal and non-terminal
STGP nodes involved in the method call sequence
construction. A distinct approach was, however,
employed for the definition of terminal nodes
representing numerical values – the Ballista fault
injection methodology [2].

With the Ballista methodology, testing is
performed by passing combinations of acceptable,
boundary and exceptional inputs as parameters to
the test object via an ordinary method call.

With this in mind, 9 additional terminal nodes
were defined for this MUT, containing the
following constant values: 4, 5, 6; 7999, 8000,
8001; 8004, 8005, 8006. The analysis that lead to

the definition of this sub-set of terminal nodes
follows.

Bytecode instructions (Figure 3) at positions
4, 22 and 32 (iconst_5; sipush 8000; sipush 8005) push
the integer values 5, 8000 and 8005 onto the top
of the operand stack, for usage in posterior
instructions of type “if”. These constant values
are, therefore, potential boundaries for numerical
condition evaluation; the rationale for this
inference is the perception that this constitutes a
common programming pattern. This approach
allows us to emulate the behaviour proposed by
Ballista, as it is a step towards the definition of
valid, invalid and boundary test cases – if integers
5, 8000 and 8005 are indeed boundaries in
decision structures.

public void reconfigure(Config cfg)
0: aload_1
1: invokevirtual cfg.Config.getSignalCount ()I (6)
4: iconst_5
5: if_icmple #18
8: new <java.lang.Exception> (7)
11: dup
12: ldc "Too many signals." (8)
14: invokespecial java.lang.Exception (java.lang.String)
17: athrow
18: aload_1
19: invokevirtual cfg.Config.getPort ()I (10)
22: sipush 8000
25: if_icmplt #38
28: aload_1
29: invokevirtual cfg.Config.getPort ()I (10)
32: sipush 8005
35: if_icmple #48
38: new <java.lang.Exception> (7)
41: dup
42: ldc "Invalid port." (11)
44: invokespecial java.lang.Exception (java.lang.String)
47: athrow
48: aload_0
49: aload_1
50: putfield cfg.Controller.cfg Lcfg/Config; (2)
53: aload_0
54: aload_1
55: invokevirtual cfg.Config.getSignalCount ()I (6)
58: newarray <int>
60: putfield cfg.Controller.signals [I (3)
63: return

4.2. Test Set Representation and Generation

Test cases are represented as GP trees; test sets
correspond to GP individuals, each containing a
pre-defined number of GP trees. Individuals and
trees are generated automatically by the ECJ tool,
in conformity with the constraints imposed in the
Parameter files.

Figure 4. Example GP tree

The task of defining the number of GP trees
(test cases) involves identifying all the problem
blocks in the CFG – i.e. nodes at which execution
takes a critical branch, making it impossible to
reach a certain target node once the control flow
has diverged. The minimum number of test cases
is equal to the number of distinct control flow
paths.

For the abovementioned MUT, the set of
problem blocks includes blocks 4, 8 and 11 of the

CFG depicted in Figure 6 (Basic Instruction
blocks of subtype “if”) and hence the number of
GP trees was set as 3 per GP individual. CFG
definition and interpretation will be described in
further detail in the next subchapter.
 The first step involved in the generation of the
test cases’ source-code is the linearization of the
GP trees using a depth-first transversal algorithm.
The tree linearization process yields the ordered
method call sequence; source-code generation is
performed by translating the method call sequence
into test cases using the information encoded into
each node. The STGP mechanism assures that
only valid GP trees – i.e. that can be transformed
into compilable test cases – were generated.
 Figure 4 contain the an example GP tree
generated by ECJ for this case study’s MUT, and
Figure 5 depicts the corresponding test case’s
source-code.

Figure 5. Example test case

4.3. Test Set Evaluation and Fitness Definition

The main objective of this case study was that of
conducting a successful evolutionary search for a
test set that achieved full structural coverage – i.e.
a test set that yields the transversal of all the Java
bytecode instructions of the MUT.
 Control-Flow Graphs are used as the
underlying model for program representation, and
are built solely with basis on the information

extracted from the Java bytecode of the test
object. The evaluation of the quality of a given

package testCases;
import testObject.*;

public class MainG0I2T2 {
 public static void main(String[] args) {
 try {
 Controller controller0 = new Controller();
 Controller controller1 = new Controller();
 Config config2 = controller1.getConfig();
 controller0.reconfigure(config2);
 Controller controller3 = new Controller();
 Config config4 = controller3.getConfig();
 int int5 = 4;
 config4.setPort(int5);
 int int6 = 7999;
 config4.addSignal(int6);
 controller0.reconfigure(config4);
 } catch (Exception e) {
 System.err.println("MainG0I2T2: " + e);
} } } Initial

bc inst
final
bc inst

node
type

node
subtype

node
number

0
4
8
18
22
28
32
38
48
58

1
5
17
19
25
29
35
47
55
63

Call
Basic
Basic
Call
Basic
Call
Basic
Basic
Call
Basic

If
Throw

If

If
Throw

Return

2
4
5
6
8
9
11
12
13
15

Figure 6. Method Under Test’s Control-Flow Graph;
mapping between bytecode instructions, basic

instruction blocks, basic instruction block subtypes, and
node numbers in MUT’s CFG

test set is, therefore, performed by comparing the
trace information collected by the dynamic
execution of the MUT against its CFG, with the
purpose of verifying the coverage thoroughness
achieved by that test set. The tasks of building the
CFGs and of instrumenting the MUT’s bytecode
for basic block tracing and structural event
dispatch both precede that of evolving test sets,
and are performed with the aid of the Sofya tool.
 The CFG building procedure involves
grouping bytecode instructions into a smaller set
of Basic Instruction and Call blocks, with the
intention of easing the representation of the test
object’s control flow. Additionally, other types of
blocks which represent virtual operations are
defined: Entry blocks (e.g.: block 1 in Figure 6),
Exit blocks (e.g.: 18 to 23), and Return blocks
(e.g.: 3, 7, 10, 14). These Virtual blocks
encompass no bytecode instructions, and are used
to represent certain control flow hypothesis. For
this case study’s MUT, all the Basic Instruction
blocks (4, 5, 8, 11, 12, 15) and Call blocks (2, 6,
9, 13) of the CFG depicted in Figure 6 must be
transversed in order to attain full structural
coverage.
 Instrumentation of the MUT’s classes for
basic block analysis and structural event dispatch
enables the observation of the blocks transversed
during a given program execution; event tracing is
then performed by automatically executing the
instrumented MUT using each generated test case
as an “input”, with the intention of collecting trace
information with which to derive coverage
metrics. Relevant trace information includes the
list of blocks transversed (Hit List) in the MUT’s
CFG by the execution of each individual test case.
 In our current approach, the Hit List is
computed individually for each test case; the GP
individual’s overall fitness is calculated as the
percentage of bytecode instructions exercised by
the whole test set – i.e. the percentage of blocks
transversed by the execution of all the test cases in
the test set.

4.4. Experimental Observations

 In this experiment, ECJ was configured using
a single subpopulation of 5 GP individuals, with
each individual containing 3 GP trees; each run
stopped if an ideal individual was found or after

300 generations. The remaining parameters used
were the Koza-style [19] definitions used in ECJ
by default: Tournament Selection for
Reproduction, One-Point Mutation and Sub-Tree
Crossover, and Half/Full Tree Initialization.

The best run successfully achieved full
structural coverage with 11 generations. The
definition of Ballista-based terminal nodes proved
to be valuable; in control runs, numerical values
were generated randomly, and only 80% code
coverage was achieved after 300 generations. For
comparison purposes, ECJ was also parameterized
using random mutation, reproduction, and
crossover operators. 100% structural coverage
was also achieved; however, the minimum
number of generations required to do so was 78.
 Still, some problems persist. In this
experiment, it was possible to observe that if full
structural coverage is not achieved in the initial
generations, it’s unlikely that it is achieved in that
run – i.e. as generations evolve, the evolutionary
search is steered towards a local maximum that
hinders the possibility of achieving full coverage.
 This behaviour can be explained by the State
Problem; the CFG’s problem block 5 is
paradigmatic. The transversal of this block
accounts only for 10% of the fitness, and the
branch that leads to it must be taken at Basic
Instruction block 4 (sub-type “if”); however, a test
case requires 5 calls to the Config.addSignal(int signal)
method of the Config object that will be used as a
parameter in the MUT for this condition to be
evaluated favourably. The fitness function
currently employed provides no guidance for this
particular class of problems.

5. Conclusions and Future Work

This paper presents an evolutionary approach for
the structural unit-testing of third-party object-
oriented software. Preliminary experiments have
been carried out and quality solutions have been
found, proving the pertinence of the approach.

Future work involves addressing the State
Problem, by implementing adequate fitness
functions that can steer the evolutionary search
towards individual test goals on the test object.
This can be achieved by the definition of distance-
based metrics [17], which can express how close
the execution of a test case over the test object is
to reaching a given test goal.

Further research must also be made on the
topics of easing the user’s task of defining
assertions for the generated test cases (e.g. by
minimizing the length of method call sequences),
and on the usage of a set-typing mechanism for
mimicking the polymorphic relations that exist
amongst the test cluster’s classes.

References

[1] Li, K. and M. Wu, Effective software test
automation: developing an automated
software testing tool. 2004, San Francisco,
California ; London: Sybex. xx, 408 p.

[2] Kropp, N.P., P.J. Koopman, and D.P.
Siewiorek. Automated Robustness Testing of
Off the Shelf Software Components. in FTCS
98, IEEE. 1998.

[3] Vincenzi, A.M.R., et al., Coverage testing of
Java programs and components. Special issue
on new software composition concepts, 2005.
56(1-2): p. 211-230.

[4] Kinneer, A., M. Dwyer, and G. Rothermel,
Sofya: A Flexible Framework for
Development of Dynamic Program Analyses
for Java Software. 2006, Department of
Computer Science and Engineering,
University of Nebraska - Lincoln.

[5] Tracey, N., et al., A search-based automated
test-data generation framework for safety-
critical systems. Systems engineering for
business process change: new directions.
2002: Springer-Verlag New York, Inc.

[6] Vincenzi, A.M.R., et al., Establishing
structural testing criteria for Java bytecode.
Software Practice and Experience, 2006.
36(14): p. 1513-1541.

[7] Wappler, S. and J. Wegener, Evolutionary unit
testing of object-oriented software using
strongly-typed genetic programming, in
GECCO '06: Proceedings of the 8th annual
conference on Genetic and evolutionary
computation. 2006, ACM Press: Seattle,
Washington, USA. p. 1925-1932.

[8] Wappler, S. and J. Wegener, Evolutionary
Unit Testing Of Object-Oriented Software
Using A Hybrid Evolutionary Algorithm, in
Proceedings of the 2006 IEEE Congress on
Evolutionary Computation. 2006, IEEE Press:
Vancouver. p. 3193-3200.

[9] Liu, X., B. Wang, and H. Liu. Evolutionary
search in the context of object-oriented

programs. in MIC2005: The Sixth
Metaheuristics International Conference.
2005. Vienna, Austria.

[10] Tonella, P., Evolutionary testing of classes,
in ISSTA '04: Proceedings of the 2004 ACM
SIGSOFT international symposium on
Software testing and analysis. 2004, ACM
Press: Boston, Massachusetts, USA. p. 119-
128.

[11] Wappler, S. and F. Lammermann, Using
evolutionary algorithms for the unit testing of
object-oriented software, in GECCO '05:
Proceedings of the 2005 conference on genetic
and evolutionary computation. 2005, ACM
Press. p. 1053-1060.

[12] Mantere, T. and J.T. Alander, Evolutionary
software engineering, a review. Applied Soft
Computing, 2005. 5(3): p. 315-331.

[13] McMinn, P., Search-based software test data
generation: a survey. Software Testing,
Verification and Reliability, 2004. 14(2): p.
105-156.

[14] McMinn, P. and M. Holcombe. The state
problem for evolutionary testing. in Genetic
and Evolutionary Computation Conference.
2003. Chicago, USA: Springer-Verlag.

[15] Cheon, Y., M.Y. Kim, and A. Perumandla, A
complete automation of unit testing for Java
programs, in Proceedings of the 2005
International Conference on Software
Engineering Research and Practice (SERP
'05). 2005, CSREA Press: Las Vegas, Nevada,
USA. p. 290-295.

[16] Muller, R.A., C. Lembeck, and H. Kuchen, A
symbolic Java virtual machine for test case
generation, in Proceedings of IASTED
Conference on Software Engineering. 2004. p.
365-371.

[17] Wegener, J., A. Baresel, and H. Sthamer,
Evolutionary test environment for automatic
structural testing. Information & Software
Technology, 2001. 43(14): p. 841-854.

[18] Luke, S., et al. ECJ 16: A Java evolutionary
computation library. 2007 [cited; Available
from:
http://www.cs.gmu.edu/~eclab/projects/ecj/.

[19] Koza, J.R., Genetic programming : on the
programming of computers by means of
natural selection. Complex adaptive systems.
1992, Cambridge, Mass. ; London: MIT.
xiv,819p.

http://www.cs.gmu.edu/%7Eeclab/projects/ecj/

C.3 An Evolutionary Approach For Perform-

ing Structural Unit-Testing On Third-

Party Object-Oriented Java Software (NICSO

2007)

91

92

An Evolutionary Approach For Performing
Structural Unit-Testing On Third-Party
Object-Oriented Java Software

José Carlos Ribeiro1, Mário Zenha-Rela2, and Francisco Fernández de Vega3

1 Polytechnic Institute of Leiria (IPL)
Morro do Lena, Alto do Vieiro, Leiria, Portugal
jose.ribeiro@estg.ipleiria.pt

2 University of Coimbra (UC)
CISUC, DEI, 3030-290, Coimbra, Portugal
mzrela@dei.uc.pt

3 University of Extremadura (UNEX)
C/ Sta Teresa de Jornet, 38, Mérida, Spain
fcofdez@unex.es

Summary. Evolutionary Testing is an emerging methodology for automatically
generating high quality test data. The focus of this paper is on presenting an ap-
proach for generating test cases for the unit-testing of object-oriented programs,
with basis on the information provided by the structural analysis and interpretation
of Java bytecode and on the dynamic execution of the instrumented test object.
The rationale for working at the bytecode level is that even when the source code
is unavailable, insight can still be obtained and used to guide the search-based
test case generation process. Test cases are represented using the Strongly Typed
Genetic Programming paradigm, which effectively mimics the polymorphic relation-
ships, inheritance dependences and method argument constraints of object-oriented
programs.

1 Introduction

Test data selection, generation and optimization deals with locating good test
data for a particular test criterion. However, locating quality test data can be
time consuming, difficult and expensive; automating this process is, therefore,
vital to advance the state-of-the-art in software testing. In the particular case
of unit-testing, individual application objects or methods are tested in an
isolated environment; its goal is to warrant the robustness of the smallest
units of the program under test. Distinct test approaches include functional
(black-box) and structural (white-box) testing. Black-box testing is concerned
with showing the conformity between the implementation and its functional
specification; with white-box testing techniques, test case design is performed

2 José Ribeiro, Mário Rela, Francisco Vega

with basis on the program structure. When white-box testing is performed,
the metrics for measuring the thoroughness of a given test set can be extracted
from the structure of the target object’s source code, or even from compiled
code. Traditional white-box criteria include structural (e.g. statement, branch)
coverage and data-flow coverage. The basic idea is to ensure that all of the
control elements in a program are executed by a given test set, providing
evidence of the quality of the testing activity.

The evaluation of test data suitability using structural criteria generally
requires the definition of an underlying model for program representation –
usually a control-flow graph (CFG). The observations needed to assemble
the metrics required for the evaluation can be collected by abstracting and
modeling the behaviours programs exhibit during execution, either by static
or dynamic analysis techniques. Static analysis involves the construction and
analysis of an abstract mathematical model of the system (e.g. symbolic exe-
cution); in contrast, dynamic analysis involves executing the actual test object
and monitoring its behaviour. Dynamic monitoring of structural entities can
be achieved by instrumenting the test object, and tracing the execution of the
structural entities transversed during execution. Instrumentation is performed
by inserting probes in the test object; in Java software, this operation can be
effectively performed at the Java bytecode level.

Java bytecode is an assembly-like language that retains much of the high-
level information about the original source program [1]. Class files (i.e. com-
piled Java programs containing bytecode information) are a portable binary
representation that contains class related data, such as information about
the variables and constants and the bytecode instructions of each method.
Given that the target object’s source code is often unavailable, working at the
bytecode level allows broadening the scope of applicability of software testing
tools; they can be used, for instance, to perform structural testing on third-
party and COTS Java components. In addition, bytecode can be seen as an
intermediate language, so the analysis performed at this level can be mapped
back to the high-level language that generated the bytecode.

The focus of this work is precisely on the generation test data by employing
evolutionary search techniques, with basis on the information provided by the
structural analysis and interpretation of the Java bytecode and on the dynamic
execution of the instrumented test object. The application of evolutionary
algorithms to test data generation is often referred to as evolutionary testing
[2, 3]. In evolutionary testing, meta-heuristic search techniques are employed
to select or generate test data. The search space is the input domain of the test
object, and the problem is to find a (minimal) set of test cases that satisfies
a certain test criterion.

In the particular case of object-oriented programs, a sequence of method
invocations is required to cover the test goal and the participating objects
may have to be put into particular states in order for the test scenario to
be processed in the desired way. The most pressing challenge faced by search-
based test case generation is the state problem [4], which occurs with methods

Evolutionary Unit-Testing Of Third-Party Object-Oriented Java Software 3

that exhibit state-like qualities by storing information in internal variables.
Such variables are hidden from the optimization process, because they are
protected from external manipulation using access modifiers (e.g. getter and
setter methods). The only way to change their values is through execution of
statements that perform assignments to them.

Evolutionary algorithms have been applied successfully to the search for
quality test data in the field object-oriented unit-testing. Approaches have
been proposed that focus on the usage of Genetic Algorithms [5], Ant Colony
Optimization [6], Universal Evolutionary Algorithms [7], Genetic Program-
ming [8], and on testing Container classes [9]. Of particular interest to our
research is the work of Wappler et. al [10, 11], who proposed a methodology
in which potential solutions are encoded using the Strongly Typed Genetic
Programming (STGP) paradigm [12], with method call sequences being rep-
resented by STGP trees; these trees are able to express the call dependences
of the methods that are relevant for a given test object. The STGP mech-
anism assures that only compilable programs are generated; to account for
polymorphic relationships which exist due to inheritance relations, the STGP
types used by the function set are specified in correspondence to the type
hierarchy of the test cluster classes. The fitness function does need, however,
to incorporate a penalty mechanism for test cases which include method call
sequences that throw exceptions during the program execution – i.e. runtime
exceptions.

2 Our approach for performing evolutionary structural
unit-testing on third-party object-oriented software

This chapter presents the rationale and introduces our methodology for per-
forming evolutionary structural unit-testing on third-party object-oriented
software. Figure 1 summarizes the main phases of the testing process; the
sub-chapters that follow describe the process in detail.

2.1 Static Analysis

Firstly, the test cluster’s Java bytecode analysis is performed; it is at this
step that the function set is defined, and hence it must precede the test set
evolving and evaluation phases. The function set defines the restrictions that
must be imposed to STGP nodes; specifically, they identify the children and
return types of each node.

The first task is that of extracting the list of public methods from the test
object’s bytecode by means of the Java Reflection API; this list comprises
the set of methods under test (MUTs) that are to be the subject of the
unit-testing process. Secondly, the Extended Method Call Dependence Graph
(EMCDG), which describes the method call dependences involved in the test

4 José Ribeiro, Mário Rela, Francisco Vega

1. Static Analysis
1.1. Test Cluster Analysis
1.2. Test Object Analysis
1.3. CFG Definition
1.4. Test Object Instrumentation

2. foreach Generation
2.1. CFG Nodes’ Dynamic Weight Computation Phase
2.2. Test Case Evolving Phase
2.2.1. foreach Individual
2.2.1.1. Test Case Generation
2.2.1.1.1. Genetic Programming Tree Generation
2.2.1.1.2. Genetic Programming Tree Linearization
2.2.1.1.3. Test Case Generation
2.2.1.1.4. Test Case Compilation

2.2.1.2. Test Case Evaluation
2.2.1.2.1. Test Case Execution
2.2.1.2.2. Event Tracing
2.2.1.2.3. Test Case Fitness Computation

Fig. 1. Methodology Overview.

case construction, is computed. Finally, the EMCDG is evaluated in order to
define the function set.

For the definition of terminal nodes, the Ballista fault injection methodol-
ogy [13] is employed. With the Ballista methodology, testing is performed by
passing combinations of acceptable, boundary and exceptional inputs as pa-
rameters to the test object. The rationale for this inference is the perception
that this constitutes a common programming pattern. This approach allows to
effectively reduce the search space, which has been proved to improve results
in many cases [14].

Control-flow graphs are used as the underlying model for program repre-
sentation, and are built solely with basis on the information extracted from
the Java bytecode of the test object. The CFG building procedure involves
grouping bytecode instructions into a smaller set of Basic Instruction and Call
CFG nodes, with the intention of simplifying the representation of the test
object’s control flow. Additionally, other types of CFG nodes, which represent
virtual operations, are defined: Entry nodes, Exit nodes, and Return nodes.
These virtual nodes encompass no bytecode instructions; they are used to rep-
resent certain control flow hypothesis. Instrumentation of the MUTs’ bytecode
for basic block analysis and structural event dispatch enables the observation
of the CFG nodes transversed during a given program execution. Both the
process of building the CFG and of instrumenting the MUT’s are achieved
with the aid of Sofya [15], a dynamic Java bytecode analysis framework.

2.2 Test Case Generation

For evolving the set of test cases, the ECJ package [16] is used. Test cases
are evolved using the STGP paradigm, which effectively mimics the inheri-
tance and polymorphic properties of object-oriented programs and enables the
maintenance of call dependences when applying tree construction, mutation

Evolutionary Unit-Testing Of Third-Party Object-Oriented Java Software 5

or crossover; the types specify which nodes can be used as a child of a node
and which nodes can be exchanged between individuals.

Test cases are represented as GP trees; each GP individual contains a single
GP tree. The first step involved in the generation of the test cases’ source-code
is the linearization of the GP trees using a depth-first transversal algorithm.
The tree linearization process yields the ordered method call sequence; source-
code generation is performed by translating this sequence into test cases using
the information encoded into each node.

2.3 Test Case Evaluation

The evaluation of the quality of feasible test cases (i.e. those that do not
throw runtime exceptions) is performed by comparing their trace information
with the MUT’s CFG. Event tracing is carried out by automatically executing
the instrumented MUT using each generated test case as an “input”; relevant
trace information includes the Hit List - i.e. the list of structural entities (CFG
nodes) transversed. For unfeasible test cases, the fitness of the individual is
calculated in terms of the distance between the runtime exception index (i.e.
the position of the instruction that threw the exception) and the method call
sequence length. Also, an unfeasible penalty constant is added to the final
fitness value, in order to favour feasibility.

The algorithm for calculating the fitness of individuals is depicted in Figure
2. The CFG nodes missing list is initialized as being the complete CFG nodes
list; when a particular CFG node is exercised by a test case, it is removed from
the missing list. New test cases are generated as long as there are targets to
be covered or a maximum number of generations is reached.

1. if test case is unfeasible
1.1. compute method call distance (mcd)
1.1.1. rti = get runtime exception index
1.1.2. mcsl = get method call sequence length
1.1.3. mcd = mcsl - rti

1.2. fitness = (mcd * 100) / mcsl + UnfeasiblePenaltyConstant
2. else if test case is feasible
2.1. totalWeight = 0
2.2. foreach node in hitList
2.2.1. totalWeight += weightOf(node)
2.2.2. incrementHitCount(node)

2.3. fitness = totalWeight / sizeOf(hitList)
2.4. cfgNodesMissingList -= hitList
2.5. if isEmpty(cfgNodesMissingList)
2.5.1. found ideal individual

Fig. 2. Pseudo-code for the test case evaluation process.

The transversal of certain problem nodes requires the generation of com-
plex test cases, which define elaborate state scenarios; alas, this often entails
the generation of longer and more intricate method call sequences, which are

6 José Ribeiro, Mário Rela, Francisco Vega

more prone to throw runtime exceptions. Therefore, if unfeasible test cases
are blindly penalised in favour of feasible ones the search landscape will be
narrowed, thus hindering the possibility of transversing problem nodes. This
issue was addressed by assigning weights to the CFG nodes; the higher the
weight of a given node the higher the cost of exercising it, and hence the
higher the cost of transversing the corresponding control-flow path.

The weights of every node are re-evaluated every generation in accordance
to the algorithm depicted in Figure 3. With this approach, at the beginning of
each generation the nodes’ weight is firstly increased (worsened) to the direct
proportion of the number of times that node was exercised by the individuals
of the previous generation – with the intention of rising the cost of transversing
frequently hit nodes; next, the nodes’ weight is decreased in a weight decrease
constant value – and consequently, nodes with a low hit count will be favoured;
the nodes’ final weight is calculated as the average of its own weight and that
of its successors – so as to lower the cost of nodes that lead to less explored
paths.

1. foreach node in cfg
1.1. totalSucessorsWeight = 0
1.2. weightOf(node) *= 1 + (hitCount(node) / sizeOf(population))
1.3. weightOf(node) *= WeightDecreaseConstant
1.4. foreach successorNode in successorNodesListOf(node)
1.4.1. totalSucessorsWeight += weightOf(successorNode)
1.4.2. incrementSucessorCount(node)

1.5. weightOf(node) = (weightOf(node) + totalSucessorsWeight)
/ (sizeOf(successorNodesListOf(node)) + 1)

2. normalizeNodeWeights(cfg)

Fig. 3. Pseudo-code for the CFG nodes weight computation.

The dynamic re-evaluation of the CFG nodes’ weight presents the obvious
advantage of steering the evolutionary search towards the transversal of less
explored (or unexplored) nodes and paths; on the other hand, it worsens the
fitness of test cases that exercise recurrently transversed CFG nodes. In fact
– and depending on the value of the unfeasible penalty constant – unfeasible
test cases may be selected for breeding at certain points of the evolutionary
search, thus favouring diversity. This methodology intends to address a pitfall
observed in preliminary experiments, which indicated that to strong a bias to-
wards the generation of feasible test cases hinders the possibility of exercising
problem CFG nodes, since the search gets stuck at a local maximum.

3 Experimental Study

In order to validate and clarify our approach, experiments were performed on
the custom-made “Controller and Config” test cluster proposed in [11], using
the Controller.reconfigure(Config) public method as the MUT.

Evolutionary Unit-Testing Of Third-Party Object-Oriented Java Software 7

The test cluster analysis phase yielded the function set described in
[11]; the terminal set was defined in accordance to the Ballista methodol-
ogy, and included 13 STGP nodes containing constant integer values: Tn
= {Integer.MAXVALUE, Integer.MINVALUE, 0, 4, 5, 6, 7999, 8000, 8001,
8004, 8005, 8006}. We emulated the Ballista methodology by identifying the
definition of constants in the test object’s bytecode, depicted in Figure 4
(left); namely, instructions at positions 4, 22 and 32 (iconst 5; sipush 8000;
sipush 8005) push the constant integer values 5, 8000 and 8005 onto the top
of the operand stack. These values were considered to be potential bound-
aries for numerical condition evaluation – hence their inclusion and that of
their immediate neighbours (4, 6; 7999, 8001; 8004, 8006). The same heuris-
tic was employed for including Integer.MAXVALUE, Integer.MINVALUE and 0
numerical values into Tn.

The CFG definition phase yielded the graph depicted in Figure 4 (rigth).
Attaining full structural coverage of the MUT required transversing all the
Basic Instruction (4, 5, 8, 11, 12, 15) and Call (2, 6, 9, 13) CFG nodes.

The evolutionary parameters for this experiment were defined as follows.
The CFG nodes were initialized with a weight of 200; the weight decrease
constant was set to 0.9, and the unfeasible penalty constant was defined as
100. ECJ was configured using a single population of 10 GP individuals. The
breeding pipeline included strongly-typed versions of “Subtree Crossover” and
“Point Mutation”, and a simple reproduction operator; they were chosen with
a probability of 0.6, 0.2 and 0.2 respectively. Tournament selection, with a size
of 2.0, was employed as the selection method. The remaining configurations
used were the Koza-style [17] parameters defined in ECJ by default. The
search stopped if an ideal individual was found or after 200 generations.

Full structural coverage was achieved in all of the runs in an average of
27.6 generations (Table 1). The worst run found the ideal individual in 91
generations (seed 0), whilst in the best one all of the CFG nodes of the MUT
were exercised in 4 generations (seeds 4 and 9).

Table 1. Number of generations required to find an ideal individual.

Seed 0 1 2 3 4 5 6 7 8 9 Average

normal 91 29 5 29 49 13 36 4 16 4 27.6
random 32 42 96 86 198 76 46 n/a n/a 92 83.5

It could, however, be observed that 90% code coverage was achieved in
an average of 2.3 generations; the remaining search process was spent trying
to transverse problem CFG node 5. In fact, the CFG node 5 is paradigmatic
of a problem node: its transversal accounts for only 10% of the fitness, and
the branch that leads to it must be taken at Basic Instruction node 4 (sub-
type if); however, a test case requires 5 calls to the Config.addSignal(int

8 José Ribeiro, Mário Rela, Francisco Vega

Fig. 4. Bytecode instructions (left) and CFG (right) for the
Controller.reconfigure(Config) MUT of the “Controller and Config” test
cluster.

signal) method of the Config object that will be used as a parameter in the
MUT for this condition to be evaluated favourably.

Our methodology does, nevertheless, provide guidance towards the transver-
sal of less explored paths and allows for unfeasible test cases to be produced
at certain points of the evolutionary search, thus increasing diversity and
promoting the definition of more complex scenarios. This phenomenon was
particularly visible in the longest run, with seed 0 (Figure 5). In the ini-
tial generations, a high percentage of unfeasible test cases was produced; the
search was then steered towards the generation of feasible test cases. 90%
structural coverage was achieved in the 5th generation, with only CFG node
5 missing. Around generations 45-50, the weight of feasible test cases crossed
the threshold defined by the unfeasible constant, thus allowing for unfeasible
test cases to be selected for breeding.

The usefulness of the our methodology is particularly visible if the results
are compared to those obtained using random search (Table 1). In order to

Evolutionary Unit-Testing Of Third-Party Object-Oriented Java Software 9

Fig. 5. Percentage of unfeasible test cases per generation for the longest running
evolutionary search.

perform random search, the fitness was set to a constant value (in order to
deprive the evolutionary search from guidance) with the remaining config-
urations and parameters being left unchanged. 10 runs were executed. Full
structural coverage wasn’t achieved in 20% of them; in the remaining, the
average number of generations required to find an ideal individual was 83.5.

Finally, a battery of 10 runs was performed to validate the adequateness
of using the Ballista methodology. In order to do so, the Tn terminal set was
replaced a random integer value generator; the remaining configurations were
left unaltered. In 6 of the 10 runs, 80% code coverage was achieved – CFG
nodes 13 and 15 were never transversed; in the remaining 4 runs, the results
yielded 70% code coverage – CFG nodes 5, 13 and 15 weren’t exercised.

4 Conclusions and Future Work

This paper presents an evolutionary approach for the structural unit-testing
of third-party object-oriented software. Relevant contributions include: the
presentation of our methodology and underlying framework; the definition of
a fitness function that effectively uses the insight obtained from the analysis of
the test object’s Java bytecode for search guidance; the proposal of method-
ologies for the dynamic re-evaluation the CFG nodes’ weight; approaches for
reducing the input domain of integer function parameter values. Experiments
have been carried and quality solutions have been found, proving the perti-
nence of the approach and encouraging further studies.

Future work involves further research on the fitness function and domain
reduction strategies, as well as on the minimization of the length of method call
sequences so as to ease the user’s task of defining assertions for the generated
test cases, and on the identification and elimination of methods that do not
alter the parameters’ state from test cases’ method call sequences.

10 José Ribeiro, Mário Rela, Francisco Vega

References

1. Vincenzi, A.M.R., Delamaro, M.E., Maldonado, J.C., Wong, W.E.: Establishing
structural testing criteria for java bytecode. Softw. Pract. Exper. 36(14) (2006)
1513–1541

2. Mantere, T., Alander, J.T.: Evolutionary software engineering, a review. Appl.
Soft Comput. 5(3) (2005) 315–331

3. McMinn, P.: Search-based software test data generation: A survey. Software
Testing, Verification and Reliability 14(2) (2004) 105–156

4. McMinn, P., Holcombe, M.: The state problem for evolutionary testing (2003)
5. Tonella, P.: Evolutionary testing of classes. In: ISSTA ’04: Proceedings of the

2004 ACM SIGSOFT international symposium on Software testing and analysis,
New York, NY, USA, ACM Press (2004) 119–128

6. Liu, X., Wang, B., Liu, H.: Evolutionary search in the context of object-oriented
programs. In: MIC’05: Proceedings of the Sixth Metaheuristics International
Conference. (2005)

7. Wappler, S., Lammermann, F.: Using evolutionary algorithms for the unit test-
ing of object-oriented software. In: GECCO ’05: Proceedings of the 2005 con-
ference on Genetic and evolutionary computation, New York, NY, USA, ACM
Press (2005) 1053–1060

8. Seesing, A., Gro, H.G.: A genetic programming approach to automated test
generation for object-oriented software. ITSSA 1(2) (2006) 127–134

9. Arcuri, A., Yao, X.: Search based testing of containers for object-oriented soft-
ware. Technical Report CSR-07-3 (2007)

10. Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software
using strongly-typed genetic programming. In: GECCO ’06: Proceedings of the
8th annual conference on Genetic and evolutionary computation, New York,
NY, USA, ACM Press (2006) 1925–1932

11. Wappler, S., Wegener, J.: Evolutionary Unit Testing Of Object-Oriented Soft-
ware Using A Hybrid Evolutionary Algorithm. In: CEC’06: Proceedings of the
2006 IEEE Congress on Evolutionary Computation, IEEE (2006) 851–858

12. Montana, D.J.: Strongly typed genetic programming. Technical Report #7866,
10 Moulton Street, Cambridge, MA 02138, USA (7 1993)

13. Kropp, N.P., Jr., P.J.K., Siewiorek, D.P.: Automated robustness testing of off-
the-shelf software components. In: Symposium on Fault-Tolerant Computing.
(1998) 230–239

14. Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P., Wegener, J.: The impact
of input domain reduction on search-based test data generation. In: ESEC-
FSE ’07: Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, New York, NY, USA, ACM Press (2007) 155–164

15. Kinneer, A., Dwyer, M., Rothermel, G.: Sofya: A flexible framework for de-
velopment of dynamic program analysis for java software. Technical Report
TR-UNL-CSE-2006-0006, University of Nebraska, Lincoln (4 2006)

16. Luke, S. ECJ 16: A Java evolutionary computation library.
http://cs.gmu.edu/∼eclab/projects/ecj/ (2007)

17. Koza, J.R.: Genetic Programming: On the Programming of Computers by
Means of Natural Selection (Complex Adaptive Systems). The MIT Press (De-
cember 1992)

Appendix D

Certification Document –
Grades Obtained During the
Teaching and Investigation
Periods

103

	wtf07_evolutionarybytecode_cameraready.pdf
	1. Introduction
	2. Background
	3. Related Work
	4. Dynamic Analysis Of Java Bytecode For Test Quality Optimization
	4.1. Bytecode Analysis
	4.2. CFG Definition and Interpretation
	4.3. Test Set Evaluation and Optimization

	5. Framework Description
	6. Conclusions and Future Work
	7. References

	eCrash - a Framework for Performing Evolutionary Testing on Third-Party Java Components [CAMERAREADY].pdf
	eCrash: a Framework for Performing Evolutionary Testing on Third-Party Java Components
	1. Introduction
	2. Related Work
	3. Framework Overview
	4. Case Study
	4.1. Test Cluster Analysis
	4.2. Test Set Representation and Generation
	4.3. Test Set Evaluation and Fitness Definition
	4.4. Experimental Observations
	5. Conclusions and Future Work

