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Dept. de Tecnoloǵıas, Computadores y Comunicaciones; Escuela Politécnica;
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Abstract

Evolutionary Testing is an emerging methodology for automatically generat-
ing high quality test data. The focus of this work is on presenting a search-
based approach for the the unit-testing of third-party object-oriented Java
software.

Test cases are represented and evolved using the Strongly Typed Genetic
Programming paradigm, which effectively mimics the inheritance and poly-
morphic properties of object-oriented programs and enables the maintenance
of call dependences when applying tree construction, mutation or crossover.

Our strategy for evaluating the quality of test cases includes instrument-
ing the test object for basic block analysis and structural event dispatch,
and executing the instrumented test object using the generated test cases as
“inputs” – in order to collect trace information and derive coverage metrics.

Static analysis, instrumentation and execution tracing is performed solely
with basis on the high-level information extracted from the Java Bytecode of
the test object. Given that the test object’s source code is often unavailable,
working at the Bytecode level allows broadening the scope of applicability of
our approach; it can be used, for instance, to perform structural testing on
third-party Java components.

Test objects are represented internally by weighted control-flow graphs;
strategies are introduced for favouring test cases that exercise problematic
structures and difficult control-flow paths, which involve dynamic weight
reevaluation. The aim is that of efficiently guiding the search process to-
wards achieving full structural coverage – which often involves promoting
the definition of complex and intricate test cases that define elaborate state
scenarios.

The work performed so far allowed us to develop the prototype of a test
case generation tool, called eCrash. Experiments have been carried and qual-
ity solutions have been found, proving the pertinence of our methodology and
encouraging further studies.
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Chapter 1

Introduction

Software testing is an expensive process, typically consuming roughly half of
the total costs involved in the software development process – while adding
nothing to the raw functionality of the final product. Yet, it remains the
primary method through which confidence in software is achieved.

Test data selection and generation deals with locating good test data for
a particular test criterion [38]. In industry, this process is often performed
manually – with the responsibility of assessing the quality of a given software
product falling on the software tester. However, locating suitable test data
can be time-consuming, difficult and expensive; automation of test data gen-
eration is, therefore, vital to advance the state-of-the-art in software testing.

The application of evolutionary algorithms to test data selection and gen-
eration is often referred to as “Evolutionary Testing” [23, 21] or “Search-
Based Test Case Generation” [5, 10]. The search space is the input domain
of the program under test, and the problem is to find a set of input data –
called test cases – that satisfies a certain test criterion [6].

The focus of our on-going work [29, 31, 32] is precisely on presenting a
search-based approach for automatically generating test cases for the unit-
testing of object-oriented programs. This report aims to provide an overview
of the goals attained so far, while setting ground for future work.

Being an interdisciplinary area, there are key concepts related to both
software testing and evolutionary algorithms that must be introduced; these
subjects are addressed in Chapter 2. In Chapter 3 related work is reviewed,
with the topic of object-oriented evolutionary testing receiving special atten-
tion.

In Chapter 4, our approach to the evolutionary testing of object-oriented
software is described in detail. The work performed so far allowed us to
develop a prototype of a test case generation tool, which we baptized with
the name eCrash; its framework is outlined in Section 4.2.
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Experiments have been carried out and quality solutions have been found,
proving the pertinence of our approach and encouraging further research;
Chapter 5 describes the cases studies implemented so far, and discusses the
results obtained in terms of their impact and relevance.

Still, several open problems persist in the area of search-based test case
generation, and further advances must still be made in order to achieve full
automation. Chapter 6 sets ground for future work and presents some topics
for research. Finally, Chapter 7 resumes the key ideas and contributions of
this work.



Chapter 2

Background

This Chapter provides background information on the topics addressed dur-
ing the remaining of this document.

The following Section overviews software testing, by introducing different
test approaches from the point of view of test case design (structural and
functional), techniques employed to assemble the metrics required for test
evaluation (static and dynamic analysis) and possible levels of testing (re-
gression testing, integration testing, etc.). Next, special attention is paid to
unit-testing of object-oriented programs and its terminology.

Section 2.2 presents key concepts related with evolutionary algorithms,
starting by briefly exploring the genetic algorithm and genetic programming
paradigms, and finally focusing on Strongly Typed Genetic Programming.

The last Section of this Chapter is devoted to explaining the concepts of
Java Bytecode, presenting its main properties and demonstrating, by exam-
ple, its most relevant aspects to our studies.

2.1 Software Testing

The general aim of testing is to affirm the quality of software systems by sys-
tematically exercising the software in carefully controlled circumstances [22].
Despite advances in formal methods and verification techniques, a system
still needs to be tested before it is used. Testing remains the truly effective
means to assure the quality of a software system of non-trivial complexity.

2.1.1 Structural and Functional Testing

Distinct test approaches – from the point of view of test case design – include
Structural (or White-Box) Testing, Functional (or Black-Box) Testing, and

3



4 CHAPTER 2. BACKGROUND

Grey-Box testing.

• Functional Testing is concerned with showing the consistency between
the implementation and its functional specification.

• Structural Testing performs test case design with basis of the program
structure.

• Grey-box testing is a combination of Black-Box and White-Box testing;
in practice, many testing problems fall into this class. With this ap-
proach, tests are derived from a specification of the desired behaviour
but with reference to the implementation details.

When white-box testing is performed, the metrics for measuring the thor-
oughness of a given test set can be extracted from the structure of the target
object’s source code, or even from compiled code. Traditional white-box
criteria include structural (e.g. code, statement, branch) coverage and data-
flow coverage. The basic idea is to ensure that all of the control elements in
a program are executed by a given test set, providing evidence of the quality
of the testing activity.

The evaluation of test data suitability using structural criteria generally
requires the definition of an underlying model for program representation
– usually a Control-Flow Graph (CFG). A CFG is a representation, using
graph notation, of all the paths that might be traversed through a program
during its execution. Each node in the graph represents a basic block, i.e. a
straight-line piece of code. Directed edges are used to represent jumps in the
control flow.

2.1.2 Static Analysis and Dynamic Analysis

The observations needed to assemble the metrics required for the evalua-
tion can be collected by abstracting and modeling the behaviours programs
exhibit during execution, either by static or dynamic analysis techniques.

Static analysis involves the construction and analysis of an abstract math-
ematical model of the system [9]; it focuses on the range of methods that are
used to determine or estimate software quality without reference to actual ex-
ecutions. Techniques in this area include code inspection, program analysis,
symbolic analysis and model checking.

In contrast, dynamic analysis involves executing the actual test object
and monitoring its behaviour [14]; it deals with specific methods for ascer-
taining and/or approximating software quality through actual executions –
i.e. with real data and under real (or simulated) circumstances. Techniques
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in this area include synthesis of inputs, the use of structurally dictated testing
procedures and the automation of testing environment generation.

Dynamic monitoring of structural entities can be achieved by instrument-
ing the test object, and tracing the execution of the structural entities tra-
versed during execution.

Instrumentation is performed by inserting probes in the test object. In
Java software, this operation can be effectively performed at the Java Byte-
code level.

2.1.3 Levels of Testing

Although testing is involved in every stage of software life cycle, the testing
done at each level of software development is different in terms of its nature
and objectives [17].

• Unit testing tests individual application objects or methods in an iso-
lated environment. It verifies the smallest unit of the application to
ensure the correct structure and the defined operations.

• Integration testing is used to evaluate proper functioning of the inte-
grated modules (objects, methods) that make up a subsystem. The
focus of integration testing is on cross-functional tests rather than on
unit tests within one module.

• System testing should be executed as soon as an integrated set of mod-
ules has been assembled to form the application; it verifies the product
by testing the application in the integrated system environment.

• Regression testing ensures that code modification, bug correction, and
any postproduction activities have not introduced any additional bugs
into the previously tested code.

• Usability testing ensures that the presentation, data flow, and general
ergonomics of the application meet the requirements of the intended
users.

• Stress testing makes sure that the features of the software and hardware
continue to function correctly under a pre-designed set and volume of
test scenarios, in order to certify that the system can hold and operate
efficiently under different load conditions.

• Performance (or Timing) testing measures the response times of the
system to complete a task and the efficiency of the algorithms under
varied conditions.
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2.1.4 Unit Testing

The primary aim of unit testing is to uncover errors within a given unit (the
test object) or, if no errors can be found, to gain confidence in its correct-
ness [43]. In order to do so, the test object is executed in different scenarios
using relevant and interesting test cases.

A test set is said to be adequate with respect to a given criterion if the en-
tirety of test cases in this set satisfies this criterion; test set adequacy criteria
include code or branch coverage, and are used to answer the question of what
interesting test scenarios are and when the process of test case generation
can be terminated.

Recent surveys [33] show that companies conduct unit testing on the basis
of the programs structure (that is, white-box or grey-box testing), and that
they want the test cases to be repeatable and also automated with respect
to test execution and result checking.

2.1.5 Object-Oriented Unit Testing

In the case of object-oriented unit-testing, a sequence of method invocations
that realizes a particular test scenario is required to cover the test goal, and
the sequence search space is an explosive space.

Most work in testing has been done with “procedure-oriented” software
in mind; nevertheless, traditional methods – despite their efficiency – cannot
be applied without adaptation to object-oriented systems.

In an object-oriented system, the basic test unit is a class instead of a
subprogram; hence, testing should focus on classes and objects. Testing a
single class involves other classes, i.e. classes that appear as parameter types
in the method signatures of the class under test (CUT); it is not possible to
test the operations of a class in isolation, as they interact with each other
by modifying the state of the object which invokes them. The transitive set
of classes which are relevant for testing a particular class is called the test
cluster for this class.

A unit test case for object-oriented software consists of a method call
sequence (MCS), which represents the test scenario. During its execution,
all objects participating in the test are created and put into a particular state
by calling several instance methods for these objects.

Each test case focuses on the execution of one particular method, the
method under test (MUT). Consequently, the entirety of adequate test cases
for each method of the CUT satisfies the given adequacy criterion for the
whole class.
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In summary, the process of performing unit testing on object-oriented
programs usually requires [42]:

• at least, an instance of the CUT;

• additional objects, which are required (as parameters) for the instan-
tiation of the CUT and for the invocation of the MUT – and for the
creation of these additional objects, more objects may be required;

• putting the participating objects into particular states, in order for the
test scenario to be processed in the desired way – and, consequently,
method calls must be issued for these objects.

Sometimes, software testing can benefit from object-oriented technology
– for instance, by capitalizing on the fact that a superclass has already been
tested, and by decreasing the effort to test derived classes, which reduces the
cost of testing in comparison with a flat class structure.

However, the object-oriented paradigm can also be a hindrance to testing,
due to some aspects of its very nature [4]:

• Encapsulation – in the presence of encapsulation, the only way to ob-
serve the state of an object is through its operations; there is therefore
a fundamental problem of observability.

• Inheritance – inheritance opens the issue of retesting: should opera-
tions inherited from ancestor classes be retested in the context of the
descendant class?

• Polymorphism – polymorphic names induce difficulties because they in-
troduce undecidability in program-based testing. Moreover, erroneous
casting (type conversions) are also prone to happen in polymorphic
contexts and can lead non-easily detectable to errors.

2.2 Evolutionary Algorithms

Evolutionary Algorithms use simulated evolution as a search strategy to
evolve candidate solutions, using operators inspired by genetics and natural
selection. The best known algorithms in this class include Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms and Genetic Program-
ming.
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All of these methodologies try to solve problems for which no reasonable
fast algorithms have been developed, and they are especially fit for opti-
mization problems [8]. Independently of its class, any evolutionary program
should possess the following attributes [25]:

• a genetic representation for potential solutions to the problem;

• a way to create an initial population of potential solutions;

• an evaluation function that plays the role of the environment, rating
solutions in terms of their “fitness”;

• genetic operators that alter the composition of children;

• values for various parameters that the genetic algorithm uses (popula-
tion, size, probabilities of applying genetic operators, etc.).

2.2.1 Genetic Algorithms

Genetic Algorithms are the most well known form of Evolutionary Program-
ming, having been conceived by John Holland [13] during the late sixties
and early seventies. The term “Genetic Algorithm” comes from the analogy
between the encoding of candidate solutions as a sequence of simple com-
ponents and the genetic structure of a chromosome; continuing with this
analogy, solutions are often referred to as individuals or chromosomes. The
components of the solution are referred to as genes, with the possible values
for each component being called alleles and their position in the sequence
being the locus. The encoded structure of the solution for manipulation by
the genetic algorithm is called the genotype, with the decoded structure being
known as the phenotype.

Genetic algorithms maintain a population of solutions rather than just
one current solution; in consequence, the search is afforded many starting
points, and the chance to sample more of the search space than local searches.
The population is iteratively recombined and mutated to evolve successive
populations, known as generations. Various selection mechanisms can be
used to decide which individuals should be used to create offspring for the
next generation; key to this is the concept of the fitness of individuals.

The idea of selection is to favour the fitter individuals, in the hope of
breeding better offspring; however, too strong a bias towards the best indi-
viduals will result in their dominance of future generations, thus reducing
diversity and increasing the chance of premature convergence on one area of
the search space. Conversely, too weak a strategy will result in too much
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exploration, and not enough evolution for the search to make substantial
progress.

Traditional genetic algorithm operators include selection, crossover, and
mutation [13]:

• Selection (or Reproduction) is the process of copying the individuals
which are going to participate in the posterior crossover phase. They
are chosen according to their fitness value; selection methodologies in-
clude Fitness-Proportionate Selection, Linear Ranking or Tournament
Selection;

• Crossover is the procedure of mating the members of the new popula-
tion, in order to create a new set of individuals. As genetic material is
being combined, new genotypes will be produced;

• Mutation modifies the values of one or several genes of an individual.

2.2.2 Genetic Programming

Genetic Programming is a machine-learning approach usually associated with
the evolution of tree structures; it focuses on automatically creating computer
programs by means of evolution. Its foremost objective is to instruct the
computer on what we want it to perform [8].

In most genetic programming approaches, the programs are represented
using tree genomes – mostly due to the influence of Koza’s work [15]. The
leaf nodes are called terminals, whereas the non-leaf nodes are called non-
terminals. Terminals can be inputs to the program, constants or functions
with no arguments; non-terminals are functions taking at least one argument.
The function set is the set of functions from which the genetic programming
system can choose when constructing trees. A set of programs is manipu-
lated by applying reproduction, crossover and mutation until the optimum
program is found or other termination criteria is met.

2.2.3 Strongly Typed Genetic Programming

The nodes of a Genetic Programming tree can be typed or non-typed: when
using non-typed nodes, the functions of the function set are able to accept
every conceivable argument; if using a typed mechanism when applying tree
construction, mutation or crossover, the types specify which nodes can be
used as a child of a node and which nodes can be exchanged between two
individuals.
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Genetic programming is a powerful method for automatically generating
computer programs via the process of natural selection. However, one serious
constraint on the user-defined terminals is called “closure” – i.e. all the non-
terminals must accept arguments of a single data type and return values of
the same data-type. This means that all non-terminals return values can be
used as arguments for any other non-terminal.

In order to overcome this limitation, Montana [26] proposed the “Strongly
Typed Genetic Programming” (STGP) paradigm. In STGP, variables, con-
stants, arguments and returned values can be of any data type, with the
provision that the data type for each such value be specified beforehand.
This allows the initialization process and the genetic operators to only gen-
erate syntactically correct parse trees. STGP has already been extended to
support type inheritance and polymorphism [12].

2.3 Evolutionary Testing

In Evolutionary Testing – also known as “Search-Based Test Case Genera-
tion” [5], a sub-area of “Search-Based Software Engineering” [10] – compu-
tational evolutionary methods are employed for test data generation.

The test objective has to be defined numerically – i.e. the test data
generation process must be transformed into an optimization problem – and
suitable fitness functions, that provide guidance to the search by telling how
good each candidate solution is, must be defined. The fitness values are
based on the monitoring results for test data.

In the particular case of object-oriented evolutionary testing, a suitable
representation of object-oriented test programs must be defined; the search
space of the evolutionary search is the set of all conceivable test programs
for a given test object. The hidden state is, however, a serious barrier to the
evolutionary approach, because of the complexity of observing the effects of
method execution; this issue is usually referred to as the State Problem.

2.3.1 The State Problem

The State Problem [24] occurs with methods that exhibit state-like qualities
by storing information in internal variables; such variables are hidden from
the optimization process because they are not available to external manipu-
lation.

In procedural software this can occur through the use of the static stor-
age class; in object-oriented languages, through variables that are protected
from external manipulation using access modifiers (most notably “getter”
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and “setter” methods), and the only way to change their values is through
execution of statements that perform assignments to them.

2.4 Java Bytecode

Java Bytecode is an assembly-like language that retains much of the high-
level information about the original source program [39]. Class files (i.e.
compiled Java programs containing Bytecode information) are a portable
binary representation that contains class related data, such as information
about the variables and constants and the Bytecode instructions of each
method.

Given that the target object’s source code is often unavailable, working
at the Bytecode level allows broadening the scope of applicability of software
testing tools; they can be used, for instance, to perform structural testing on
third-party and COTS Java components.

To understand the details of the Bytecode, a preliminary discussion on
how a Java Virtual Machine (JVM) works regarding the execution of the
Bytecode [18] must take place. A JVM is a stack-based machine. Each
thread has a JVM stack which stores frames. A frame is created each time
a method is invoked, and consists of an operand stack, an array of local
variables, and a reference to the runtime constant pool of the class of the
current method.

The array of local variables contains the parameters of the method and
the values of the local variables. The size of the array of local variables is
determined at compile time and is dependent on the number and size of local
variables and formal method parameters. The parameters are stored first,
beginning at index 0. If the frame is for a constructor or an instance method,
the this reference is stored at location 0; location 1 contains the first formal
parameter, location 2 the second, and so on. For a static method, the first
formal method parameter is stored in location 0, the second in location 1,
and so on.

The operand stack is a last-in-first-out (LIFO) stack used to push and
pop values. Its size is also determined at compile time. Certain opcode
instructions push values onto the operand stack; others take operands from
the stack, manipulate them, and push the result. The operand stack is also
used to receive return values from methods.

For example, in Figure 5.2 (Section 5.1), the aload 1 instruction at lo-
cation 0 pushes the value from the index 1 of local variable table onto the
operand stack – i.e. it pushes the parameter cfg of the econfigure method
onto the top of the operand stack (a reference to an object of type Config).
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The invokevirtual instruction at location 1 invokes the instance method
getSignalCount on the object cfg (popped from the top of the operand
stack); the value returned by this method is pushed onto the top of the
operand stack. The iconst 5 instruction loads the integer value onto the
top of the operand stack. At this point, the operand stack contains two
values: the integer 5 on top, and the value returned by the getPort on the
bottom. The if icmple opcode loads both those values from the operand
stack, and compares them: if 5 is lower than or equal to the value returned
from the getPort method, instruction flow is transferred to instruction 18.

In fact, as the analysis of this example attests, Bytecode instructions
contain enough information for coverage criteria to be applied at the Byte-
code level. In addition, it can be regarded as an intermediate language, so
the analysis performed at this level can be mapped back to the high-level
language that generated the Bytecode.



Chapter 3

Related Work

This Chapter presents relevant work in the area of evolutionary testing, focus-
ing on the approaches that employ structural testing techniques and address
the object-oriented paradigm.

Xanthakis et al. [44] presented what is considered to be the first appli-
cation of heuristic optimization techniques for test-data generation. Ran-
dom testing was firstly employed to generate test-data, with the intention of
achieving as much structural coverage as possible; then, a genetic algorithm
was used to fill any gaps.

A first approach to the field of evolutionary testing of object-oriented
software was presented [37]; in this work, input sequences are generated
using evolutionary algorithms for the white-box testing of classes. Genetic
algorithms are the evolutionary approach employed, with possible solutions
being represented as chromosomes. A source-code representation is used, and
an original evolutionary algorithm, with special evolutionary operators for
recombination and mutation on a statement level – i.e. mutation operators
insert or remove methods from a test program – is defined. A population
of individuals, representing the test cases, is evolved in order to increase a
measure of fitness accounting for the ability of the test cases to satisfy a
coverage criterion of choice. New test cases are generated as long as there
are targets to be covered or a maximum execution time were reached.

However, the encapsulation problem was not addressed, and this proposal
only dealt with a simple state problem. Additionally, with this approach,
Universal Evolutionary Algorithms (i.e. evolutionary algorithms, provided
by popular toolboxes, which are independent from the application domain
and offer a variety of predefined, probabilistically well-proven evolutionary
operators) could not be applied due to the usage of custom-made operators
and original evolutionary algorithms.

An approach which employed an Ant Colony Optimization algorithm was

13
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presented in [19]. The focus is on the generation of the shortest method
call sequence for a given test goal, under the constraint of state dependent
behaviour and without violating encapsulation. Ant PathFinder, hybridizing
Ant Colony Optimization and Multiagent Genetic Algorithms are employed.
To cover branches enclosed in private/protected methods without violating
encapsulation, call chain analysis on class call graphs was introduced.

In [42] the focus was put on the usage of Universal Evolutionary Algo-
rithms. An encoding is proposed that represents object-oriented test cases
as basic type value structures, allowing for the application of various search-
based optimization techniques such as Hill Climbing or Simulated Annealing.
The generated test cases can be transformed into test classes according to
popular testing frameworks. Still, the suggested encoding does not prevent
the generation of individuals which cannot be decoded into test programs
without errors; the fitness function uses different penalty mechanisms in or-
der to penalize invalid sequences and to guide the search towards regions
that contain valid sequences. Due to the generation of invalid sequences, the
approach lacked efficiency for more complicated cases.

In [36], a methodology for creating test software for object-oriented sys-
tems using a genetic programming approach was proposed. Experiments were
carried out on five different classes. The author states that this methodology
is advantageous over the more established search-based test-case generation
approaches because the test software is represented and altered as a fully
functional computer program. However, it is pointed out that the number of
different operation types is quite limited, and that large classes which contain
many methods will lead to huge hierarchical trees.

In [43] an approach in which potential solutions were encoded using a
STGP methodology was presented, with MCS being represented by method
call trees; these trees are able to express the call dependences of the methods
that are relevant for a given test object. To account for polymorphic rela-
tionships which exist due to inheritance relations, the STGP types used by
the function set are specified in correspondence to the type hierarchy of the
test cluster classes.

The emphasis of this work is on sequence validity; the usage of STGP
preserves validity throughout the entire search process, with only compil-
able test cases being generated. The fitness function does need, however, to
incorporate a penalty mechanism for test cases which include method call
sequences that generate runtime exceptions. The issue of runtime exceptions
was precisely the main topic in [41].

The methodology proposed by Wappler et al. [43, 41] yielded very en-
couraging results. For a custom-tailored test cluster, the set of generated
test cases achieved full (100%) branch coverage: during the search, 11966
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test programs were generated and evaluated, and the resulting test set con-
tained 3 test cases; a control run, in which random test cases where produced
for comparison purposes, stopped after having evaluated 43233 test programs
(in accordance to the specified termination criteria), and the generated test
set achieved a coverage of 66%. In a more complex scenario, four classes
where tested and full coverage was achieved for all of the test objects.

Lately, Arcuri et al. [2, 1, 34] have developed work focused on the test-
ing of Container Classes (e.g. Vector, Stack and Red-Black Tree). Besides
analysing how to apply different search algorithms (Random Search, Hill
Climbing, Simulated Annealing, Genetic Algorithms, Memetic Algorithms
and Estimation of Distribution Algorithms) to the problem and exploiting
the characteristics of this type of software to help the search, more general
techniques that can be applied to object-oriented software were studied –
such as an improved branch distance that solves an issue regarding the eval-
uation of conjunctions of predicates.

In all of the abovementioned approaches, the underlying model for pro-
gram representation (i.e. CFG) is built with basis on the test object’s source-
code; moreover, instrumentation of the test object for extracting tracing
information is also performed at the source-code level. To the best of our
knowledge, there are no evolutionary approaches to the unit-testing of object-
oriented software that employ dynamic Bytecode analysis to derive structural
testing criteria.

The application of evolutionary algorithms and Bytecode analysis for test
automation was, however, already studied in different scenarios. In [7] an at-
tempt to automate the unit-testing of object-oriented programs is described.
A functional approach for investigating the use of genetic algorithms for test
data generation is employed, and program specifications written in JML are
used for test result determination. The JML compiler was extended to make
Java Bytecode produce test coverage information.

In [27] the layout of a symbolic JVM, which discovers test cases using
a definable structural coverage criterion with basis on static analysis tech-
niques, is described. The Bytecode is executed symbolically, and the decision
whether to enter a branch or throw an exception is based on the earlier con-
straints, a constraint solver and current testing criterion. The symbolic JVM
has been implemented in a test tool called GlassTT. This work, however,
does not address exception-related and method interaction-related criteria,
and only procedural software scenarios are described.

Interesting review articles on the topic of evolutionary testing include [23,
21, 5, 3], which overview the meta-heuristic techniques that have been used
in software test data generation, such as Hill Climbing, Simulated Annealing
and – most interestingly – Evolutionary Algorithms. Namely, some of the
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achievements in automating test data generation in the areas of structural
testing, functional testing, and grey-box testing have been summarized.

In [3], particularly, several issues in the current state-of-art of test data
generation for object-oriented software are pinpointed, namely:

• little work has been done using optimisation algorithms;

• empirical tests have always been done on very small clusters of classes,
which reduces the reliability of the results;

• there is no common benchmark cluster which can be used to test and
compare different techniques;

• there are no comparisons between different optimisation algorithms on
the testing of the same classes;

• no theoretical work on test data generation for object-oriented software
exists – all articles are of empirical nature.

When comparing evolutionary-based approaches over random testing [21]
several prominent advantages arise, which include: less need for human anal-
ysis, as the evolutionary algorithm pre-analyses the software in accordance
to the fitness function; the ability to automatically test combinations of sus-
picious parameters; and the possibility of finding combinations of inputs
that lead to a more severe fault behaviour. Drawbacks include the difficulty
of detecting solitary errors (“needles in a haystack”) with greater efficiency
than random testing, and the impossibility of guaranteeing code coverage in
black-box testing.



Chapter 4

Methodology and Framework

This Chapter presents our strategy for employing evolutionary algorithms
for the automatic generation of unit-test cases for third-party object-oriented
software.

The ideas that lead to this approach were greatly inspired by the previ-
ous works of [43, 41]. Their proposals included representing MCS as STGP
trees, which are able to express the call dependences of the methods that
are relevant for a given test object. This encoding is especially suited, as
it effectively mimics the inheritance and polymorphic properties of object-
oriented programs and enables the maintenance of call dependences when
applying tree construction, mutation or crossover. This means that only
compilable test cases – i.e. test cases that do not throw exceptions during
the compilation process – are generated.

Our conceptualization of the problem, however, involves performing static
analysis and instrumentation of the test objects at the Java Bytecode tier; it
is, in fact, possible to extract coverage metrics and derive various structural
criteria without access to the source code of the program under test [40, 39].
This strategy broadens the scope of applicability of our approach, given that
the test object’s source code is often unavailable; it allows us, for example,
to perform structural testing on third-party Java components.

The most pressing challenge to be addressed by researchers in this field is,
however, the state problem; strategies for the evaluation of test cases must
allow both the exploration and the exploitation of the search space if full
coverage is to be attained. We propose tackling this particular hindrance by
defining weighted CFG nodes, and having their weights being reevaluated
each generation. This novel approach actually allows the search to consider
unfeasible test cases at certain points of the search process, thus favouring
diversity.

This research also hopes to contribute to increase the level of automation

17
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of test case generation. In order to do so, the task of performing static anal-
ysis on the test object is of paramount importance, since the dependences
of the test cluster and the constraints of the search space must be specified
beforehand. With our approach, these are encoded in the function set; un-
suitable definition of the terminal and non-terminal nodes, data-types and
functions may result in the impossibility of achieving full coverage or, at
least, of accomplishing it in a reasonable amount of computational time.

Our proposal includes applying existing methodologies [16, 30] for re-
ducing the input domain of native data type values; on-going work is also
focused on proposing strategies for Input Domain Reduction and Search Do-
main Sampling to reference data types.

Thus far, the focus of this project was put on developing the eCrash
prototype tool for generating test data by employing evolutionary search
techniques; the following Section starts by providing an in-depth description
of the methodology, while Section 4.2 outlines the scheme of the framework.
The experiments described in Chapter 5 complement this overview by illus-
trating the process.

4.1 Methodology

Figure 4.1 summarizes the main phases of the process, which involves the
static analysis and instrumentation of the test object, the reevaluation of
the CFG nodes’ weights, the tasks of generating and evolving test cases, and
the test case evaluation phase. The Subsections that follow describe these
procedures in detail.

4.1.1 Static Analysis and Intrumentation

The first phase is that of performing static analysis on test objects’s Java
Bytecode; it is at this step that the test cluster, the function set and the CFG
are defined, and hence it must precede the test set evolving and evaluation
phases.

The first task is that of extracting the list of public methods from the test
object’s Bytecode by means of the Java Reflection API; this list comprises
the set of MUTs that are to be the subject of the unit-testing process. Sec-
ondly, the transitive set of classes which are relevant for testing the MUTs
are computed so as to define the test cluster. Next, the Extended Method
Call Dependence Graph (EMCDG) [43], which describes the method call de-
pendences involved in the test case construction, is build with basis on the
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1. Static Analysis and Instrumentation Phase
1.1. Test Object Analysis
1.1.1. Test Cluster Definition
1.1.2. Function Set Definition
1.1.3. CFG Definition
1.2.4. Parameter and Function Files Generation
1.2. Test Object Instrumentation
2. foreach MUT
2.1. Weight Initialization
2.2. foreach Generation
2.2.1. Weight Reevaluation Phase
2.2.2. foreach Individual
2.2.2.1. Test Case Generation Phase
2.2.2.1.1. foreach STGP tree
2.2.2.1.1.1. STGP tree linearization
2.2.2.1.1.2. MCS generation
2.2.2.1.2. Test Case Generation
2.2.2.1.3. Test Case Compilation
2.2.2.2. Test Case Evaluation
2.2.2.2.1. Test Case Execution
2.2.2.2.2. Structural Event Tracing
2.2.2.2.3. Feasible/Unfeasible Test Case Evaluation
2.2.2.2.4. Individual’s Fitness Definition

Figure 4.1: Methodology overview.

test cluster. Finally, the EMCDG is evaluated in order to define the function
set.

For the definition of terminal nodes representing native data types in the
function set, the Ballista fault injection methodology [16] is employed. With
the Ballista methodology, testing is performed by passing combinations of
acceptable, boundary and exceptional inputs as parameters to the test object
– with the intentions of sampling the search space for native data types and
reducing the input domain, which has been proved to improve results in many
cases [11, 30].

This strategy is emulated by identifying the definition of constants in the
test object’s Bytecode; these values are considered to be potential bound-
aries for numerical condition evaluation, and hence they – and their imme-
diate neighbours – are included as terminal nodes in the function set. The
rationale for this heuristic is the perception that this constitutes a common
programming pattern; the experiment described in Section 5.1 will help il-
lustrating this procedure.

CFGs are used as the underlying model for program representation, and
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are built with basis on the information extracted from the Java Bytecode
of the test object; assessing the quality of test cases involves identifying the
CFG nodes traversed in the MUT. The CFG building procedure involves
grouping Bytecode instructions into a smaller set of Basic Instruction CFG
nodes and Call CFG nodes, with the intention of easing the representation
of the test object’s control flow. Additionally, other types of CFG nodes,
which represent virtual operations, are defined: Entry nodes, Exit nodes,
and Return nodes. These Virtual nodes encompass no Bytecode instructions;
they are used to represent certain control flow hypothesis.

Finally, the test object’s Bytecode is instrumented for basic block analysis
and structural event dispatch, so as to enable the observation of the CFG
nodes traversed during a given program execution.

4.1.2 Test Case Generation

Test cases are represented as STGP individuals; individuals are implemented
as forests of STGP trees (Figure 4.2), with each individual containing a
number of trees equal to the number of arguments of the MUT – i.e. each
STGP tree provides an object that will be used as an argument for MUT’s
call.

Each tree subscribes to a function set which defines the STGP nodes
legally permitted in the tree. Similarly, a STGP node is permitted to be the
root if its return value type symbol matches the return value type symbol of
the tree.

The first step involved in the generation of the test cases’ source-code is
the linearization of the trees using a depth-first transversal algorithm. The
tree linearization process yields the ordered MCS. Source-code generation is
performed by translating the linearized GP trees into MCS, using the method
signature information encoded into the Function Files that correspond to
each GP node.

Figure 4.3 depicts the MCS obtained by the translation of the STGP tree
shown in Figure 4.2; Figure 4.4 presents an example of a test case generated
by the eCrash tool for the case study depicted in Section 5.2.

4.1.3 Test Case Evaluation

Metaheuristic algorithms require a numerical formulation of the test goal,
from which a fitness function can be derived. The purpose of the fitness
function is to guide the search into promising, unevaluated areas of the search
space [11].
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Figure 4.2: Genotype example – Strongly Typed Genetic Programming tree.

Controller controller0 = new Controller();
Controller controller1 = new Controller();
Config config2 = controller1.getConfig();
controller0.reconfigure(config2);
Controller controller3 = new Controller();
Config config4 = controller3.getConfig();
int int5 = 4;
config4.setPort(int5);
int int6 = 7999;
config4.addSignal(int6);
controller0.reconfigure(config4);

Figure 4.3: Phenotype example – Method Call Sequence.
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public class G0I4 {

static int seqLen = 0, exInd = 0;

public static void main(String[] args)

throws TCGeneException {

Stack stack0 = paramGenerator_Stack0();

Object object1 = paramGenerator_Object1();

if (exInd != seqLen) { // unfeasible

throw new TCGeneException(exInd, seqLen);

} else { // feasible

stack0.search(object1); // call to MUT

}

}

private static Stack

paramGenerator_Stack0() {

Stack parameter = null;

int c = 0;

seqLen += 7;

try {

Stack stack0 = new Stack(); c++;

String string1 = ‘‘HelloWorld!’’; c++;

int int2 = stack0.search(string1); c++;

Object object3 = stack0.pop(); c++;

Object object4 = stack0.pop(); c++;

Object object5 = stack0.peek(); c++;

Object object6 = stack0.peek(); c++;

parameter = stack0;

}catch (RuntimeException e) {

System.err.println(‘‘paraExInd:’’+c);

} finally {

exInd += c;

}

return parameter;

}

private static Object

paramGenerator_Object1() {

Object parameter = null;

int instcount = 0;

seqLen += 7;

try {

Stack stack0 = new Stack(); c++;

String string1 = ‘‘HelloWorld!’’; c++;

int int2 = stack0.search(string1); c++;

boolean boolean3 = stack0.empty(); c++;

Object object4 = stack0.peek(); c++;

Object object5 = stack0.pop(); c++;

Object object6 = stack0.peek(); c++;

parameter = object6;

}catch (RuntimeException e) {

System.err.println(‘‘paramExInd:’’+c);

} finally {

exInd += c;

}

return parameter;

}

}

Figure 4.4: Example test case.

With our approach, the quality of a given test case is related to the CFG
nodes of the MUT which are the targets of the evolutionary search at the
current stage of the search process. Test cases that exercise less explored (or
unexplored) CFG nodes and paths must be favoured, with the objective of
attaining the primary goal of the test case generation process – finding a set
of test cases that achieves full structural coverage of the test object.

However, the execution of test cases may abort prematurely if a runtime
exception is thrown during execution. When this happens, it is not possible
to trace the structural entities transversed in the MUT because the final
instruction of the MCS is not reached. Test cases can thus be separated in
two classes:

• feasible test cases are effectively executed, and terminate with a call to
the MUT;

• unfeasible test cases terminate prematurely because a runtime excep-
tion is thrown by an instruction of the MCS.
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As a general rule, longer and more intricate test cases are more prone
to throw runtime exceptions; however, complex method call sequences are
often needed for defining elaborate state scenarios and transversing certain
problem nodes. If unfeasible test cases are blindly penalized, the definition
of elaborate state scenarios will be discouraged.

The issue of steering the search towards the traversal of interesting CFG
nodes and paths was address by assigning weights to the CFG nodes; the
higher the weight of a given node the higher the cost of exercising it, and
hence the higher the cost of transversing the corresponding control-flow path.

Additionally, the weights of CFG nodes are reevaluated at the beginning
of every generation using a stigmergic process – i.e. nodes which are being
recurrently traversed in previous generations and/or lead to uninteresting
paths are penalised.

Weight Reevaluation

Let N be the set of Basic Block nodes of a given CFG graph; then, each CFG
node n ∈ N represents a linear sequence of computations (i.e. Bytecode
instructions) of the MUT, and each CFG edge eij represents the transfer of
the execution control of the program from node ni to the node nj.

Conversely, nj is a successor node of ni if an edge eij between the nodes
ni and nj exists. The set of successor nodes of ni is defined as Nni

s , Nni
s ⊂ N .

The weight of transversing node ni is identified as Wni. At the beginning
of the evolutionary search the weights of nodes are initialized with a prede-
fined value Winit. Wmax corresponds to the maximum value for the weight
existing in N .

The CFG nodes’ weights are reevaluated at the beginning of every gen-
eration according to Equation 4.1.

Wni = (αWni)

(
hitCni

|T |
+ 1

)( ∑
x∈Nni

s
Wx

|Nni
s | × Winit

2

)
(4.1)

The hitCni parameter is the “Hit Count”, and contains the number of
times a particular CFG node was exercised by the test cases of the previ-
ous generation. T represents the set of test cases produced in the previous
generation.

The constant value α, α ∈]0, 1] is the “weight decrease constant”.
After being reevaluated, weights of all the nodes are normalized in accor-

dance to Equation 4.2:

Wni =
Wni ×Winit

Wmax

(4.2)
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Evaluation of Feasible Test Cases

Let t be the test case being currently evaluated. For feasible test cases,
the fitness is computed by with basis on their trace information; relevant
trace information includes the the “Hit List” – i.e. the set Ht, Ht ⊆ N of
transversed CFG nodes.

The fitness of feasible test cases is evaluated in accordance to Equa-
tion 4.3:

Fitnessfeasible(t) =

∑
h∈Ht

Wh

|Ht|
(4.3)

Evaluation of Unfeasible Test Cases

For unfeasible test cases, the fitness of the individual is calculated in terms of
the distance between the “runtime exception index” exIndt (i.e. the position
of the method call that threw the exception) and the “method call sequence
length” seqLent. Also, an “unfeasible penalty constant” value β is added to
the final fitness value, so as to penalise unfeasibility.

Equation 4.4 depicts the formula for evaluating unfeasible test cases.

Fitnessunfeasible(t) = β +
(seqLent − exIndt)× 100

seqLent

(4.4)

The seqLent is the number of instructions that make the MCS of test
case t; the exception index exIndt parameter refers to the sum of instructions
actually executed in t before a runtime exception is thrown.

With this methodology, and depending on the value of β and on the fitness
of feasible test cases, unfeasible test cases may be selected for breeding at
certain points of the evolutionary search, thus favouring the diversity and
complexity of method call sequences. This will happen if feasible test cases
always transverse recurrently hit nodes, thus increasing their weight and
worsening the fitness of the corresponding test cases.

4.2 Framework Overview

The focus of this project was put on developing the eCrash prototype tool
for generating test data by employing evolutionary search techniques; this
tool is composed by the following main modules:

• Automatic Test Object Analyzer (ATOA) – the test object analysis is
performed by this module; it’s main tasks are those of defining the test
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cluster, and automatically generating Parameter and Function Files
which define the Function Set and contain the constraints of the STGP
algorithm.

• Static Analysis and Instrumentation Module (SAIM) – executes the
task of building the CFG and instrumenting the Bytecode of the test
object.

• Test Case Generator Module (TCGM) – evolves and linearizes STGP
trees, and constructs test cases.

• Test Case Evaluator Module (TCEM) – evaluates test cases and pro-
vides the TCGM with feedback on their quality.

A graphical outline of the eCrash tool’s framework is depicted in Fig-
ure 4.5.

Figure 4.5: Framework overview.

The tasks carried out by ATOA and TCGM are performed off-line; they
both receive the test object’s Bytecode as an input, and yield the files and
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structures required for the test cases to be evolved – namely the Parameter
and Function files, the CFG of the test object, and the instrumented test
object.

The TCGM and TCEM employ the information received by the above-
mentioned modules to perform the search-based generation of test cases.
Finally, when a predefined termination criteria is met (i.e. full structural
coverage is achieved or a maximum number of generations is reached), the
eCrash tool returns the test set generated for the test object.

The process of CFG building, bytecode instrumentation and event trac-
ing is achieved with the aid of Sofya [14], a dynamic Java Bytecode analysis
framework. The Sofya package provides implementations and tools for the
construction of various kinds of graphs – most notably CFGs – and native
capabilities for dispatching event streams of specified program observations,
which include instrumentators, event dispatchers, and event selection filters
for semantic and structural event streams. Additionally, it contains tools
to perform various analises using the outputs generated by its components
(statistics, coverage reports, ...) and to visualize the trace information pro-
duced by the executions of instrumented programs.

For evolving the set of test cases, the Evolutionary Computation in Java
(ECJ) package [20] is used. ECJ is a research package that incorporates
several Universal Evolutionary Algorithms, and includes built-in support for
Set-Based STGP. It is highly flexible, having nearly all classes and their set-
tings being dynamically determined at runtime by user provided Parameter
Files and Function files.
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Experimental Studies

In order to validate and clarify our approach, experiments were performed
on two distinct test objects:

• The custom-made “Controller & Config” test cluster proposed in [41].
This test cluster encompasses 2 classes and 7 public methods, but only
the Controller.reconfigure(Config) method was used as a MUT.

• The Stack class of the java.util package of JDK 1.4.2. The public
API of this class is composed by 5 public methods, and all of them
were subjected to the test case generation process.

The “Controller & Config” test object was used throughout the devel-
opment process of the eCrash tool and, in addition to providing interesting
data for research, it constituted a precious aid during the process of debug-
ging. The main goals of the experiment were those of demonstrating and
proving the feasibility of the approach, while gathering preliminary results
with which to fine-tune our methodology.

The Stack case study was developed with the following intentions: exper-
imenting with different configurations for the probabilities of the evolutionary
operators mutation, reproduction and crossover; investigating the impact of
using distinct values for the “weight decrease constant” α (Equation 4.1) and
the “unfeasible penalty constant” β (Equation 4.4) – which will henceforth
be referred to as test case evaluation parameters. Additionally, it allowed
demonstrating the applicability of the approach to a “real world” problem.

The Sections that follow describe both these experiments in detail: firstly,
the configurations and parameterizations defined for each case study are de-
scribed; secondly, the results obtained are presented. This Chapter ends with
a discussion on the main achievements attained, while pointing out occasional
flaws in our methodology and/or framework.

27
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5.1 Case Study: Controller & Config

In this case study, the simple test cluster proposed in [41] is employed; its
source code is reproduced in Figure 5.1.

The Controller.reconfigure(Config) public method was used as the
MUT; the Bytecode instructions for this method are depicted in Figure 5.2.

public class Controller {

protected final static int MAX_SIGNALS = 5;

protected final static int MIN_PORT = 8000;

protected final static int MAX_PORT = 8005;

private Config cfg = null;

private int[] signals = null;

public Controller() {

cfg = new Config(-1);

signals = new int[cfg.getSignalCount()];

}

public void reconfigure(Config cfg)

throws Exception

{

if(cfg.getSignalCount() > MAX_SIGNALS)

throw new Exception(‘‘Too many signals.’’);

if(cfg.getPort()<MIN_PORT ||

cfg.getPort()>MAX_PORT)

throw new Exception(‘‘Invalid port.’’);

this.cfg = cfg;

signals = new int[cfg.getSignalCount()];

}

public int retrieve(int signal) {

if( signal<0 || signal>signals.length-1 )

throw new IllegalArgumentException

(‘‘Invalid signal.’’);

return signals[signal];

}

public Config getConfig() {

return cfg;

}

}

public class Config {

private Vector signals;

private int port;

public Config(int port) {

this.port = port;

signals = new Vector();

addSignal(0);

}

public void addSignal(int signalType) {

signals.add(new Integer(signalType));

}

public int getSignalCount() {

return signals.size();

}

public int getPort() {

return port;

}

public void setPort(int port) {

this.port = port;

}

}

Figure 5.1: Source code of the “Controller & Config” test object.

The static analysis phase yielded the function set depicted in Table 5.1. It
should be noted that the integer value terminal set Tn = {Integer.MAXVALUE,
Integer.MINVALUE, 0, 4, 5, 6, 7999, 8000, 8001, 8004, 8005, 8006} was de-
fined as a result of the test object’s Bytecode analysis, and in accordance to
the Ballista methodology [16] described in Section 4.1.1.

The Ballista methodology was emulated by identifying the definition of
constants in the MUT’s Bytecode (Figure 5.2). Namely, instructions at posi-
tions 4, 22 and 32 (iconst 5; sipush 8000; sipush 8005) push the constant
integer values 5, 8000 and 8005 onto the top of the operand stack. These
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Function Name Return
Type

Child
Types

Controller class
Controller() Controller -
void reconfigure(Config cfg) Controller Controller,

Config
void reconfigure(Config cfg) Config Controller,

Config
void printSignals() Controller Controller

Config class
public Config() Config -
void addSignal(int signalType) Config Config, int
int retrieveSignal(int signalIndex) Config Config, int
int retrieveSignal(int signalIndex) int Config, int
int getSignalCount() Config Config
int getSignalCount() int Config

Integer Value Terminal Set (Tn)
Integer.MAXVALUE int -
Integer.MINVALUE int -
0 int -
4 int -
5 int -
6 int -
7999 int -
8000 int -
8001 int -
8004 int -
8005 int -
8006 int -

Table 5.1: Function Set for the “Controller & Config” case study.



30 CHAPTER 5. EXPERIMENTAL STUDIES

public void reconfigure(Config cfg)

throws Exception

0: aload_1

1: invokevirtual

cfg.Config.getSignalCount ()I

4: iconst_5

5: if_icmple #18

8: new <java.lang.Exception>

11: dup

12: ldc ‘‘Too many signals.’’

14: invokespecial Exception (String)

17: athrow

18: aload_1

19: invokevirtual cfg.Config.getPort ()I

22: sipush 8000

25: if_icmplt #38

28: aload_1

29: invokevirtual cfg.Config.getPort ()I

32: sipush 8005

35: if_icmple #48

38: new <Exception>

41: dup

42: ldc ‘‘Invalid port.’’

44: invokespecial Exception (String)

47: athrow

48: aload_0

49: aload_1

50: putfield Controller.cfg Lcfg/Config;

53: aload_0

54: aload_1

55: invokevirtual Config.getSignalCount ()I

58: newarray <int>

60: putfield Controller.signals[I

63: return

Figure 5.2: Bytecode of the reconfigure method.

values were considered to be potential boundaries for numerical condition
evaluation, and hence their inclusion and that of their immediate neighbours
(4, 6; 7999, 8001; 8004, 8006) into the Tn set. The same heuristic was em-
ployed for including Integer.MAXVALUE, Integer.MINVALUE and 0 numerical
values into Tn.

The CFG definition phase yielded the graph depicted in Figure 5.3. The
bytecode instructions of the MUT (Figure 5.2) were mapped to the CFG
nodes in accordance to Table 5.2; relevant information includes the mapping
between the MUT’s Bytecode instructions, and Basic Instruction and Call
CFG node types and sub-types, and CFG node numbers.

Attaining full structural coverage of the MUT requires the transversal of
all the Basic Instruction (4, 5, 8, 11, 12, 15) and Call (2, 6, 9, 13) CFG nodes.

5.1.1 Setup

The test case evaluation parameters were defined as follows: the MUT’s CFG
nodes were initialized with Winit = 200; the “weight decrease constant” α
was set to 0.9, and the “unfeasible penalty constant” β was defined as 150.

ECJ was configured using a single population of 5 individuals. Each
individual was composed by 2 STGP trees – with the first returning an
instance of Controller (required to call the reconfigure instance method),
and the second returning an object of type Config (required as an argument
for the reconfigure method).

For the generation of individuals a multi-breeding pipeline was used,
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Figure 5.3: Control-Flow Graph of the reconfigure method.

Initial Final Node Node Node
Bytecode Bytecode Type Subtype Number

0 1 Call 2
4 5 Basic If 4
8 17 Basic Throw 5
18 19 Call 6
22 25 Basic If 8
28 29 Call 9
32 35 Basic If 11
38 47 Basic Throw 11
48 55 Call 13
58 63 Basic Return 15

Table 5.2: Mapping table between the Bytecode instructions and the Control-
Flow Graph nodes for the reconfigure method.



32 CHAPTER 5. EXPERIMENTAL STUDIES

which stored 3 child sources; each time an individual had to be produced,
one of those sources was selected with a predefined probability. The available
breeding pipelines were the following:

• Reproduction pipeline – simply makes a copy of the individuals it re-
ceives from its source.

• Crossover pipeline – performs a strongly-typed version of “Subtree
Crossover” [15]. Two individuals are selected, and a single tree is cho-
sen in each such that the two trees have the same constraints; then a
random node is chosen in each tree such that the two nodes have the
same return type, and the swap is performed.

• Mutation pipeline – implements a strongly-typed version of the “Point
Mutation” [15]. An individual is selected, a random node is selected,
and the subtree rooted at that node is replaced by a new valid tree.

The probability of choosing the crossover, mutation and reproduction
were given the values of 0.6, 0.2 and 0.2, respectively.

The selection method employed was Tournament Selection with a size
of 2.0, which means that first 2 individuals (out of 5) are chosen at random
from the population, and then the one with the best fitness is selected. STGP
trees were grown (for the purposes of initialization and mutation) using the
“Ramped Half-And-Half” tree building method described in [15].

The search stopped if an ideal individual was found or after 200 gener-
ations. The remaining configurations used were the Koza-style parameters
defined in ECJ by default.

It should be noted that the probabilities for the evolutionary operators
and the configurations of the test case evaluation parameters were defined
empirically, as no experiments had yet been implemented that could provide
guidance for their selection; the case study described in Section 5.2 will,
however, provide guidelines for their choice.

5.1.2 Results

Full structural coverage was achieved in all of the runs in an average of
27.6 generations (Table 5.3). The worst run found the ideal individual in 91
generations (seed 0), whilst in the best one all of the CFG nodes of the MUT
were exercised in 4 generations (seeds 4 and 9).

It could, however, be observed that 90% code coverage was achieved in
an average of 2.3 generations; the remaining search process was spent trying
to traverse problem CFG node 5. In fact, the CFG node 5 is paradigmatic
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Seed 0 1 2 3 4 5 6 7 8 9 Average

normal 91 29 5 29 49 13 36 4 16 4 27.6
random 32 42 96 86 198 76 46 n/a n/a 92 83.5

Table 5.3: Number of generations required to attain full coverage.

of a problem node: its transversal accounts for only 10% of the fitness, and
the branch that leads to it must be taken at Basic Instruction node 4 (sub-
type if); however, a test case requires 5 calls to the Config.addSignal(int

signal) method of the Config object that will be used as an argument in
the MUT call for this condition to be evaluated favourably.

Our methodology does, nevertheless, provide guidance towards the transver-
sal of less explored paths and allows for unfeasible test cases to be produced
at certain points of the evolutionary search, thus increasing diversity and
promoting the definition of more complex scenarios.

This phenomenon was particularly visible in the longest run, with seed 0
(Figure 5.4). In the initial generations, a high percentage of unfeasible test
cases was produced; the search was then steered towards the generation of
feasible test cases. 90% structural coverage was achieved in the 5th genera-
tion, with only CFG node 5 missing. Around generations 45-50, the weight
of feasible test cases crossed the threshold defined by β, thus allowing for
unfeasible test cases to be selected for breeding.

Figure 5.4: Percentage of unfeasible test cases per generation.

The usefulness of the our methodology is particularly visible if the results
are compared to those obtained using random search (Table 5.3). In order
to perform random search, the fitness was set to a constant value (in order
to deprive the evolutionary search from guidance) with the remaining con-
figurations and parameters being left unchanged. 10 runs were executed; full
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structural coverage was not achieved in 20% of them. In the remaining, the
average number of generations required to find an ideal individual was 83.5.

Finally, a battery of 10 runs was performed to validate the adequateness
of using the Ballista methodology. In order to do so, the Tn terminal set was
replaced a random integer value generator; the remaining configurations were
left unaltered. In 6 of the 10 runs, 80% code coverage was achieved – CFG
nodes 13 and 15 were never traversed; in the remaining 4 runs, the results
yielded 70% code coverage – CFG nodes 5, 13 and 15 were not exercised.

5.2 Case Study: Stack

This case study was developed with the intentions of demonstrating the ap-
plicability of the approach to a “real world” problem, while experimenting
with different parameters and configurations; another interesting property
of the Stack class is that, being a container class, it contains explicit state,
which is only controlled through a series of method calls.

All of the public methods of this class were subjected to the automated
test case generation process, namely:

• boolean empty()

• Object peek()

• Object pop()

• Object push(Object item)

• int search(Object o)

Two distinct studies were made:

• the Probabilities of Operators case study was performed with the in-
tention of assessing the implications of evolutionary operators’ proba-
bilities on the test case generation process;

• the Evaluation Parameters case study took place with the objective of
analyzing the impact of the test case evaluation parameters α and β
on the evolutionary search.

The static analysis process yielded the function set depicted in Table 5.4.
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Function Name Return Type Child Types

boolean empty() boolean Stack
boolean empty() Stack Stack
Object peek() Object Stack
Object peek() Stack Stack
Object pop() Object Stack
Object pop() Stack Stack
Object push(Object item) Object Stack, Object
Object push(Object item) Stack Stack, Object
int search(Object o) int Stack, Object
int search(Object o) Stack Stack, Object
int search(Object o) Object Stack, Object
Stack() Stack -
Object() Object -
‘‘HelloWorld!’’ Object -

Table 5.4: Function Set for the Stack case study.

5.2.1 Setup

ECJ was configured using a single population of 5 GP individuals; the number
of GP trees per individual was equal to the number of child types of the MUT
(Table 5.4), as each tree provided the method with an argument. The MUTs’
CFG nodes were initialized with a weight Winit of 200. The search stopped
if an ideal individual was found or after 200 generations.

For the generation of individuals, a multi-breeding pipeline similar to the
one described in Section 5.1 was used, which included strongly-typed versions
of “Subtree Crossover” and “Point Mutation”, and a simple reproduction
operator. Tournament selection, with a size of 2.0, was employed as the
selection method, and trees were grown using the “Ramped Half-And-Half”
tree building method.

5.2.2 Results

Probabilities of Operators

This particular experiment was performed with the intention of assessing the
implications of evolutionary operators’ probabilities on the test case genera-
tion process.

In order to do so, 4 distinct parameterizations of the multi-breeding
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pipeline were defined, having:

1. a high probability of selecting the mutation breeding pipeline;

2. a high probability of selecting the crossover breeding pipeline;

3. a high probability of selecting the reproduction breeding pipeline;

4. equal probabilities of selecting either of the above breeding pipelines.

The “weight decrease constant” α was set to 0.9, and the “unfeasible
penalty constant” β was defined as 150.

For each of the above multi-breeding pipeline parameterizations, 20 runs
were executed for each of the 5 MUTs. Table 5.5 summarizes the results ob-
tained. Relevant data includes the probabilities of choosing reproduction (r),
crossover (c) and mutation (m) pipelines and, for each configuration, per-
centage of runs in which full coverage was achieved (%full) and the number
of generations required attain full coverage (#gens).

r:0.1 c:0.1 m:0.8 r:0.8 c:0.1 m:0.1 r:0.1 c:0.8 m:0.1 r:0.33 c:0.33 m:0.34
MUT %full #gens %full #gens %full #gens %full #gens
empty 100% 10.2 100% 11.2 100% 17.5 100% 4.5
peek 100% 6.6 100% 10.7 100% 9.4 100% 2.8
pop 100% 6.5 100% 8.9 100% 8.6 100% 2.8
push 100% 20.6 57% 16.4 95% 37.2 100% 2.5
search 95% 48.9 57% 48.2 82% 98.8 100% 18.7

Table 5.5: Statistics for the “Probabilites of Operators” experiment.

The results depicted clearly show that the strategy of assigning balanced
probabilities to the all of the breeding pipelines yields better results: this
configuration was the only one in which full coverage was achieved in all of the
runs (in, at most, 200 generations), and in beat all the other configurations
in terms of the average number of generations required to attain it.

The worst results were obtained for the parameterization in which the
reproduction breeding pipeline was given a high probability of selection. For
the Object push(Object item) and int search(Object o) MUTs, which
pose the most challenging state problems, 43% of the runs failed to attain
full coverage within 200 generations.
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Evaluation Parameters

In this experiment, different combinations of values for the α and β param-
eters were tried out, with the intention of analyzing the impact of the test
case evaluation parameters on the evolutionary search particular.

Namely, the following values were used:

• α – 0.1, 0.5, and 0.9;

• β – 0, 150, and 300.

The probabilities of choosing the 3 breeding pipelines were chosen in ac-
cordance to the results yielded by the Probabilities of Operators case
study – i.e. the probabilities for reproduction, crossover an mutation param-
eters were set to 0.33, 0.33 and 0.34 respectively.

All the 9 combinations of the α and β values were employed, and 20 runs
were executed for each (in a total of 180 runs); full coverage was achieved in
all of the runs.

The results obtained are summarized in Figure 5.5, which includes the
average number of generations required to attain full coverage for each of the
5 MUTs using each combination.

Figure 5.5: Results for the “Evaluation Parameters” experiment.

These results clearly show that the best configuration for the test case
evaluation parameters is that of assigning a low value to α (0.1 and 0.5
yielded the best results) and a value of 150 to β.
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5.3 Discussion

Automatic test case generation using search-based techniques is a difficult
subject, especially if the aim is to implement an “universal” solution that
is adaptable to a wide range of test objects. Key to the definition of a
good strategy is the configuration of parameters so as to find a good balance
between the intensification and the diversification of the search.

With our approach, test case evaluation parameters α and β, and the
evolutionary operators’ selection probabilities, play a central role in the test
case generation process.

The main task of the mutation and crossover operators is that of diver-
sifying the search, allowing it to browse through a wider area of the search
landscape and to escape local maximums; the task of intensifying the search
and guiding it towards the transversal of unexercised CFG nodes is performed
as a result of the strategy of assigning weights to CFG nodes.

Nevertheless, to strong a bias towards the breeding of feasible test cases
will hinder the generation of more complex test cases, which are sometimes
needed to exercise problem structures in the test object; on the other hand, if
feasible test cases are not clearly encouraged, the search process will wander.

This issue was addressed by allowing the fitness of feasible test cases to
fluctuate throughout the search process as a result of the impact of the α
and β parameters, in order to allow unfeasible test cases to be selected at
certain points of the evolutionary search.

The results described for the Stack case study (Section 5.2), in particu-
lar, allow us to draw some preliminary conclusions. Firstly, the assumption
we made on previous studies, in which we considered α = 0.9 as being an
adequate value, was wrong. Using lower values for this evaluation parame-
ter yields better results. Secondly, it was also possible to conclude that the
strategy of assigning balanced probabilities to the selection of the mutation,
crossover and breeding pipelines is better suited that that of clearly favouring
the choice of one of the evolutionary operators.

On the other hand, it is possible to affirm that the strategy of assigning
the value of 150 to the “unfeasible penalty constant” β shows good results.
An explanation for this behaviour follows.

The worst value a CFG node can have is 200 – since the weights of CFG
nodes are normalized at the beginning of each generation. If all the nodes
exercised by a feasible test case have the worst possible value – because they
are being recurrently exercised by test cases, i.e. because the search is stuck
in a local maximum – the fitness of the corresponding test case will also be
200.

However, for a given unfeasible test case t, if exIndt ≤ seqLent

2
and β =
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150, then Fitnessunfeasible(t) ∈ [150, 200] – i.e. if the exception index of a
given unfeasible test case is lower or equal to half of its MCS length, and if
the value 150 is used for β, then the fitness of that test case will belong to
the interval 150 to 200.

This means that, with β = 150, some good unfeasible test cases may be
selected for breeding; conversely, if β = 0, all unfeasible test cases will be
evaluated with relatively good fitness values, and if β = 300, none of the
unfesible test cases will be evaluated as being interesting. The concept of
good unfeasible test cases, in this context, can thus be verbalized as being a
test case in which at least half of the MCS is executed without an exception
being thrown.

Assigning the value β = Winit − 50 is, thus, a good compromise between
the need to penalize unfeasible test cases and the need to consider them at
some points of the evolutionary search.

It is also possible to affirm that the Ballista methodology for sampling
the integer value search space effectively reduced the input domain for this
particular data type; by comparing the results attained using this strategy to
those yielded by the usage of a random integer value generator, we can con-
clude that this strategy allowed achieving full coverage within an acceptable
number of generations.
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Chapter 6

Future Work

There are still many enhancements to be made in order to achieve full au-
tomation, and several open problems persist in the area of search-based test
case generation.

An underlying principle of our investigation involves the continuous re-
search on the definition and parameterization of fitness functions that can
effectively and efficiently overcome the state problem of object-oriented pro-
grams.

In the near future, it is also of paramount importance to perform further
experimental studies on different test objects and using various evolutionary
parameters, as well as comparing the results obtained with those of existing
automation methodologies.

In order to do so, further developments to the ATOA module of the eCrash
framework are in order. Although this module is already partly automated,
some bugs persist that hinder the generation of fully functional Function
Files and Parameter Files. Some minor corrections and additions to these
files must still be made manually, which make the process of generating the
data needed to experiment on new test objects awkward and time-costly.

The implementation of a Graphical User Interface (GUI), that enables
the eCrash tool to be utilized by users unfamiliar with its intricacies, is also
in the horizon. So far, only the ATOA module incorporates a visual interface.

However, the most promising research-related challenges that lie ahead
of us seem to be the following:

• Method Call Sequence Separation – deals with generating independent
method call sequences for each argument of the MUT.

• Input Domain Reduction – deals with removing irrelevant variables
from a given test data generation problem, thereby reducing the size
of the search space.

41
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• Search Space Sampling – deals with the inclusion of all the relevant
variables to a given test object into test data generation problem, so
as to make enable the coverage of the entire search space.

The pertinence of investigating these particular topics is addressed in the
following subsections.

6.1 Method Call Sequence Separation

In preliminary approaches to problem at hand, test cases were composed by
a single MCS, in a similar fashion the the methodology proposed by [43, 41].

However, alongside our work, we realized that this constituted a hindrance
to the evaluation of unfeasible test cases. We thus proceeded to employing a
different approach, which included using a number of STGP trees – and, con-
sequently, generating a number of MCS – equal to the number of arguments
in the MUT. This way, it is possible to evaluate the MCS that generate each
argument independently, thus allowing for a more realistic definition of the
exIndt (Equation 4.4).

The example described below, based on the sample test case depicted on
Figure 4.4, helps exemplifying the rationale of performing MCS separation.

With our current approach, a method call sequence is generated for each
argument (of types Stack and Object) by the parameter generator meth-
ods paramGenerator Stack0 and paramGenerator Object1. However, both
these method throw runtime exceptions (EmptyStackExceptions) at instruc-
tions 4 and 5, respectively. The exception index is thus exIndt = 7 – i.e. it
is equal to the number of instruction actually executed – with seqLent being
14.

However, if a single tree was used, it would be linearized into a single
MCS, and the exception index would thus be 3 and not 7, as the instructions
related with setting the state of the second argument would never be called.

Our current approach obviously yields more realistic and reliable results
than that of using a single MCS; however, further data must be collected and
analyzed in order to support this claim.

6.2 Input Domain Reduction

For search-based test data generation, the search space is the input domain
of the test object under consideration, which include the formal parameters
to the function containing the structure of interest. As such, it is possible
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that not every input variable will be responsible for determining whether
each structure will be covered or not.

The Ballista approach technique [16] for domain reduction has been proven
to be effective for native data types [30, 31], and techniques for extending this
procedure for reference types are yet to be investigated; nevertheless, recent
research on procedural software provides evidence to support the claim that
domain reduction has significant implications for practical search-based test
data generation [11].

Future work thus includes the definition of strategies for reducing the
input domain of reference argument types, in a similar fashion to that de-
scribed in Section 5.1 for native data types. This can be achieved by removing
irrelevant elements from the function set of a given problem.

Let us consider the Stack case study (Section 5.2). By studying the
documentation of the Stack class, the following observations can be made:

• the empty method simply tests if the stack is empty without changing
the state of the stack;

• the peek method looks at the object at the top of the stack without
removing it, and thus it does not alter the stack;

• the push method pushes an item onto the top of the stack, and it does
not change the state of the pushed item;

• the search method returns the position where an object is on the stack
– if it is on the stack – and it does not change the state of either the
stack or the object being searched.

Therefore, the search domain for the Stack case study could effectively
be reduced by employing the function set shown in Table 6.1. Five entries
were removed from the original function set (Table 5.4).

However, these observations were made for demonstration purposes only.
Our approach to software testing is a structural one, and it does not include
considering any kind of specification, neither formal nor informal; we be-
lieve that doing so would narrow the scope of applicability and the level of
automation of our testing tool.

There are, however, systematic approaches to execute this type of verifi-
cation – ex. by performing “Purity Analysis” [35, 45] on the methods that
compose the function set. Basically, a pure method has no externally visible
side effects; purity analysis checks, for each method, what fields they poten-
tially modify. Future research includes embedding this particular technique
into our framework.
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Function Name Return Type Child Types

boolean empty() boolean Stack
Object peek() Object Stack
Object pop() Object Stack
Object pop() Stack Stack
Object push(Object item) Stack Stack, Object
int search(Object o) int Stack, Object
Stack() Stack -
Object() Object -
‘‘HelloWorld!’’ Object -

Table 6.1: Improved Function Set for the Stack case study.

6.3 Search Domain Sampling

The failure to acknowledge the importance of the polymorphic relationship
between objects can significantly hinder the evolutionary search, and may
result in the impossibility of attaining full coverage.

In order to demonstrate the reason for this claim, one more experiment
was developed using the Stack test object (Section 5.2). The objective was
that of demonstrating the importance of the polymorphic relationships of
the object types when defining the function set: the “HelloWorld!” function,
depicted in the last row of Table 5.4, was removed from the function set, and
a battery of 20 runs was performed.

Reproduction, crossover an mutation probabilities were set to 0.34, 0.33
and 0.33 respectively, and the test case evaluation parameter were configures
with α = 0.1 and β = 150.

For the first four MUTs, the results attained were similar to those de-
picted in Figure 5.5. However, for the search method, full coverage was not
achieved in any of the 20 runs.

In fact, including the default constructor Object() as the sole provider
of Object data types does not suffice to achieve full coverage. The reason
for this is that the equals method is used internally to compare argument
o to the items in the stack; however, the equals method of class Object

implements the most discriminating possible equivalence relation on objects;
that is, for any non-null reference values x and y, this method returns true
if and only if x and y refer to the same object.

With our approach instances are not reused, and hence the search for
argument o always fails.
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The String class, however, overrides the equals method so that the
result is true if and only if the argument is not null and is a String object
that represents the same sequence of characters as the this object.

Therefore, the inclusion of the Object’s subclass String as an Object

type provider enables the equals method to evaluate favourably.
However, the test cluster cannot include all the subclasses of the transitive

set of classes which are relevant for the test object. The Object type is
paradigmatic: all classes inherit from the Object class, and hence all classes
would have to be included, which is – obviously – impossible.

Future research thus includes studying the polymorphic relationships of
function set types in order to define an adequate strategy for sampling the
search domain. Tuning our test case generation process for reusing instances
is also in order, since some scenarios may require this particular functionality.
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Chapter 7

Conclusions

This thesis presents an evolutionary approach for the structural unit-testing
of third-party object-oriented software. Relevant contributions include (but
are not limited to) the introduction of novel methodologies for automation
and search guidance, and the presentation of the eCrash prototype test case
generation tool.

With our approach, CFG nodes are weighted; additionally, their weight
is dynamically reevaluated each generation, in order to cause the fitness of
feasible test cases to fluctuate throughout the search process. This strategy
allows unfeasible test cases to be considered at certain points of the evolu-
tionary search – once the feasible test cases that are being bred cease to be
interesting. In conjunction with the impact of the evolutionary operators, a
good compromise between the intensification and diversification of the search
can be achieved.

Test cases are evolved using the STGP paradigm, which effectively mimics
the inheritance and polymorphic properties of object-oriented programs and
enables the maintenance of call dependences when applying tree construction,
mutation or crossover.

The methodology for evaluating the test set includes instrumenting the
Bytecode for basic block analysis and structural event dispatch, and execut-
ing the instrumented test object using the generated test cases as inputs, with
the intention of collecting trace files with which to derive coverage metrics.
Static analysis, instrumentation and execution tracing is performed solely
with basis on the high-level information extracted from the Java Bytecode
of the test object.

Throughout our work we have come across – and tackled – complex chal-
lenges. Alas, because many of them were technical problems that gravitate
around the central “core” of this research, their impact on the development
process may not have been efficiently mirrored in this report. Special refer-
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ences should be made to the integration of the third-party components (ECJ
and Sofya) into our framework, the automatic generation of syntactically
correct Function and Parameter files, the “on-the-fly” compilation and exe-
cution of test programs, the translation of the information encoded in STGP
individuals into fully functional test cases – and, especially, to the process of
“gluing together” the whole process.

We have managed, all the same, to achieve a very high level of automation,
which allowed us to experiment our prototype tool and develop pertinent case
studies, attaining very encouraging results which pointed us towards future
endeavours.

There is, in fact, much uncharted territory in the area of evolutionary
testing, and we hope to keep contributing to the advance the state-of-the-art
in years to come. The “holy grail” is, of course, the implementation of a fully
functional tool that can be integrated in the software development process,
providing a precious aid to the often tiresome – although incommensurably
important – process of software testing.
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Appendix A

Teaching and Investigation
Periods

The first biennium of the PhD Program in Information Technologies (Pro-
grama de Doctorado en Tecnoloǵıas Informáticas) consisted on two distinct
periods:

• a teaching period, with a value of 20 credits, in which the student took
a set of courses related with the available research areas;

• a supervised investigation period, with a value of 12 credits, in which
the student chose a line of investigation and did research in that area.

Table A.1 enumerates the courses taken during the teaching period, and
depicts credits and grades obtained in each course.

Table A.2 presents the line of investigation chosen, and the grade obtained
at the end of the research period.

The following Sections outline the contents of the courses taken during
the teaching period, summarizing the main topics addressed and the novel
competences acquired.

A.1 Design and Implementation of Reconfig-

urable Systems and Parallel Architectures

This course was ministered by professors D. Juan Antonio Gómez Pulido and
Miguel Ángel Vega Rodŕıguez. The main topics addressed were the following:
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Course Credits Classification

Design and Implementation of Reconfigurable
Systems and Parallel Architectures (Diseño y
Śıntesis Reconfigurable de Sistemas y Arqui-
tecturas Paralelas)

8 9 out of 10

Grid Computing and Evolutionary Algorithms
(Computación en Grid y Algoritmos Evolu-
tivos)

8 9.5 out of 10

Robotics and Artificial Vision (Robótica y
Visión Artificial)

4 9 out of 10

Average Classification: 9.2 out of 10

Table A.1: Teaching Period.

Course Credits Classification

Techniques for Planning the Improvement
of the Efficiency of Evolutionary Algorithms
(Técnicas de Planificación para la Mejora de
la Eficiencia de Algoritmos Evolutivos)

8 9 out of 10

Table A.2: Investigation Period.

Field-Programmable Gate Arrays (FPGAs). FPGAs are semicon-
ductor devices containing programmable logic components and programmable
interconnects. Logic blocks can be programmed to perform the function of
basic logic gates or more complex combinational functions such as decoders
or simple mathematical functions. FPGAs can be employed, for example,
for rapid prototyping and for implementing algorithms that can make use of
the inherent parallelism offered by their architecture.

Reconfigurable Computing. Reconfigurable computing is a computing
paradigm which combines the flexibility of software with the high perfor-
mance of hardware by making use of flexible high speed computing fabrics –
like FPGAs. The main differences, when compared to using ordinary micro-
processors or custom hardware, are the ability to make substantial changes
to the data path itself (in addition to the control flow) and the possibility
of adapting the hardware during runtime by “loading” a new circuit on the
reconfigurable fabric.
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A.2 Grid Computing and Evolutionary Algo-

rithms

This course was ministered by professors Juan Manuel Sanchez Perez and
Francisco Fernándes de Vega.

A State-of-the-art paper on the topic of Evolutionary Testing, entitled
“A Primer On Evolutionary Testing”, was written as a part of this course.

The main topics addressed were the following:

Algorithms and Optimization. An algorithm is a finite list of well-
defined instructions for accomplishing some task that, given an initial state,
will proceed through a well-defined series of successive states, eventually
terminating in an end-state. Algorithms can be classified according to sev-
eral criteria, including implementation (parallelism, determinism, ...), design
paradigm (greedy, linear, divide and conquer, ...), field of study (search, com-
binatorial, criptographic, ...) and, most interestingly, complexity – which
deals with the amount of time they need to complete compared to their in-
put size. Optimization is, thus, the process of modifying an algorithm to
make some aspect of it work more efficiently or use fewer resources.

Grid Computing. Grid computing is a method of computer processing
in which different parts of a program are run simultaneously on two or more
computers that are communicating with each other over a network; it is a
type of segmented or parallel computing, and can be used to enhance the
performance of algorithms.

Evolutionary Computation. Evolutionary Computation uses simulated
evolution as a search strategy to evolve candidate solutions, using operators
inspired by genetics and natural selection. The best known algorithms in
this class include evolution strategies, evolutionary programming, genetic
algorithms and genetic programming. All of these methodologies try to solve
problems for which no reasonable fast algorithms have been developed, and
they are specially fit for optimization problems.

A.3 Robotics and Artificial Vision

This 8 credit course was ministered by professors Pablo Bustos Garćıa de
Castro and José Moreno del Pozo ministered.
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A report, entitled “Object Recognition from Local Scale-Invariant Fea-
tures”, was written as a part of this course.

The main topics addressed were the following:

Artificial Vision. As a scientific discipline, Artificial Vision is concerned
with the theory and technology for building artificial systems that obtain
information from images. The image data can take many forms – such as
video sequences, views from multiple cameras, or multi-dimensional data
from a medical scanner.

Pattern Recognition and Image Processing. Pattern Recognition is,
in general, the act of taking in raw data and taking an action based on
the category of the data; however, this analysis can be too complex to be
performed without further processing on the data. Feature extraction thus
involves simplifying the amount of resources required to describe a large set of
data accurately. With Image Processing, in particular, the data is composed
by images, and it involves treating those images as a two-dimensional signals
and applying standard signal-processing techniques to it. Scale invariant
feature transform (SIFT) is one of several computer vision algorithms for
extracting distinctive features from images; it can be used for tasks like
matching different views of an object or scene and image recognition. The
features obtained by SIFT are invariant to image scale, rotation, and partially
invariant to changing viewpoints, and change in illumination.
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Appendix B

Planning

In this Chapter, the high-level objectives and low-level tasks which will guide
this research until the deposit of the PhD thesis in June of 2009 will be
discussed. Table B.1 depicts the calendarization for the main goals that
will be underlying our studies; it can be thought of as a kind of “mission
statement”.

Deadline Goals

January 2008 Low-level goals must be clearly defined; partial results
with originality, relevance and scientific interest must
have been obtained.

June 2008 Relevant results must have been published and dis-
cussed in top conferences in the area of research.

December 2008 The main results of the investigation must have been
attained; publication must be attempted in relevant
international journals with high impact index.

January 2009 The writing of the final thesis must begin.
June 2009 Deposit of the Thesis.
December 2009 Discussion of the Thesis.

Table B.1: High-level goals for the development of the thesis.

In section 6, the main topics of investigation that we will be addressing
in following biennium were outlined. Our approach for achieving those ob-
jectives includes addressing the research as a phased process, which includes
the following stages [28]:

• State-of-the-art phase - consists on studying the highest degree of de-
velopment of a technique at a particular time, which includes testing
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different tools, methods of research and data gathering, prototype im-
plementation processes and, mainly, reviewing the existing bibliography
on the subject; one must also have the capacity of understanding and
employing previously published techniques from different sources, test-
ing ideas, and be familiar with different theories and empirical studies.

• Prototyping phase - aims not only to prove the feasibility of the task,
but also to discover new problems and challenges that can be (or must
be) dealt with.

• Data Collection phase - its purpose is that of transforming raw data
into insight. During this process, one must take the time to analyze
the data generated during the Prototyping tasks from different angles;
with any luck, innovative ideas, that can contribute positively to the
investigation process, will be found.

• Writing phase - its main objective is that of compiling the results of
the work developed in order to enable its reviewing by the scientific
community. The process of writing the thesis must include publishing
papers in relevant conferences or journals, so that concepts and theories
can be validated and proved to be relevant.

Table B.2 discriminates both the future tasks and the on-going jobs, and
proposes a schedule for performing them.
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Task Description Start Finish Duration

Experiments with new Test Objects
Prototyping 2007/11/15 2008/01/15 2 months
Data Collection 2007/12/15 2008/01/15 1 month
Writing 2007/12/15 2008/01/15 1 month

Method Call Sequence Separation
Prototyping 2007/12/01 2008/12/15 1 fortnight
Data Collection 2007/12/15 2008/01/15 1 month
Writing 2007/12/15 2008/01/15 1 month

Input Domain Reduction
State-of-the-art 2008/01/01 2008/02/01 2 months
Prototyping 2008/01/15 2008/03/15 2 months
Data Collection 2008/03/01 2008/05/01 2 months
Writing 2008/04/01 2008/06/01 2 months

Search Domain Sampling
State-of-the-art 2008/01/01 2008/02/01 2 months
Prototyping 2008/02/01 2008/04/01 2 months
Data Collection 2008/03/01 2008/05/01 2 months
Writing 2008/04/01 2008/06/01 2 months

Assembling a Fully Functional Tool
State-of-the-art 2008/06/01 2008/06/15 1 fortnight
Prototyping 2008/06/15 2008/09/15 3 months
Data Collection 2008/08/01 2008/09/15 1 month
Writing 2008/08/01 2008/09/01 2 months

Thesis Writing
Data Collection 2009/01/01 2008/03/01 3 months
Writing 2009/01/01 2008/06/01 6 months

Table B.2: Low-level tasks for the development of the thesis.
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Abstract. The focus of this paper is on presenting a methodology for 
generating and optimizing test data by employing evolutionary search 
techniques, with basis on the information provided by the analysis and 
interpretation of Java bytecode and on the dynamic execution of the 
instrumented test object. 

The main reason to work at the bytecode level is that even when the source 
code is unavailable, structural testing requirements can still be derived and 
used to assess the quality of a given test set and to guide the evolutionary 
search towards reaching specific test goals. 

Java bytecode retains enough high-level information about the original source 
code for an underlying model for program representation to be built. The 
observations required to select or generate test data are obtained by 
employing dynamic analysis techniques – i.e. by instrumenting, tracing and 
analysing Java bytecode. 

1. Introduction 
Software testing is an expensive process, typically consuming roughly half of the total 
costs involved in the software development process while adding nothing to the raw 
functionality of the final product. Yet, it remains the primary method through which 
confidence in software is achieved.  In industry, this process is often done manually – 
with the responsibility of assessing the quality of a given software product usually 
falling on the software tester. However, locating suitable test data can be time-
consuming, difficult and expensive; automation of test data generation is, therefore, 
vital to advance the state-of-the-art in software testing. 

 Test data selection, generation and optimization deals with locating good test 
data for a particular test criterion. The application of evolutionary algorithms to test 
data generation is often referred to in literature as Evolutionary Testing (Mantere and 
Alander 2005). In evolutionary testing, meta-heuristic search techniques are employed 
to select or generate test data. The search space is the input domain of the test object, 



  

and the problem is to find a (minimal) set of input data – test cases – that satisfies a 
certain test criterion. In particular case of object-oriented programs, a sequence of 
method invocations is required to cover the test goal, and the sequence search space is 
an explosive space. The application of search-based strategies for object-oriented unit 
testing has not yet been investigated comprehensively. 

 In this paper, we present an approach for guiding the evolutionary search 
towards generating test sets using coverage metrics derived from the test object’s Java 
bytecode. The main reason to work at the bytecode level is that even when the test 
object’s source code is unavailable, structural testing requirements can still be derived 
and used to assess the quality of a given test set. The observations required to extract 
such metric are obtained by employing dynamic analysis techniques – i.e. by 
instrumenting, tracing and analysing Java bytecode.   

 In the following section, background on the topics of testing methodologies, 
quality criteria, evolutionary search techniques and fitness evaluation is provided; 
related work is reviewed in Section 4. In section 5, we present our methodology for 
employing dynamic analysis of Java bytecode for test quality assessment and 
optimization and, on Section 6 the complete framework of our tool is outlined. The 
concluding chapter resumes the key ideas of this paper and presents some topics for 
future research.  

2. Background 
The assessment of the quality of a given test set can be achieved functionally (black-box 
testing) or structurally (white-box testing). Black-box testing is concerned with showing 
the conformity between the implementation and its functional specification; with white-
box testing techniques, test case design is performed with basis on the program 
structure.  Black-box testing is the most widely used testing approach; however, its 
applicability is often hindered by the need for a formal specification of the test object to 
be available. With white-box testing, the metrics for measuring the thoroughness of a 
given test set can be extracted from the structure of the target’s source code, or even 
from compiled code (e.g. Java bytecode). 

 Traditional white-box criteria include structural (e.g. statement, branch) 
coverage and data flow coverage. The basic idea is to ensure that all of the control 
elements in a program are executed by a given test set, providing evidence of the quality 
of the testing activity; a test set that contains test cases that exercise all such elements is 
said to be adequate with respect to the corresponding criterion. 

 The evaluation of the quality of a given test set and the guidance to the test case 
selection using white-box criteria generally requires the definition of an underlying 
model for program representation – usually a control-flow graph (CFG). The CFG is an 
abstract representation of a given method in a class; control-flow testing criteria can be 
derived based on such a program representation to provide a theoretical and systematic 
mechanism to select and assess the quality of a given test set. 

 Two well known control-flow testing standards to derive testing requirements 
from the CFG are the all-nodes and all-edges criteria (Vincenzi, Delamaro et al. 2006). 
The all-nodes criterion requires that each node of a given CFG is executed at least once. 
To distinguish between instructions that are executed under the normal execution of the 



  

program from others that require an exception to be executed, this criterion can be 
subdivided into two non-overlapping testing criteria so that the testing activity can 
focus on different aspects of a program at a time: 

• all-nodes-exception-independent (All-Nodesei): requires every node of the CFG 
reachable through an exception-free path to be executed at least once. 

• all-nodes-exception-dependent (All-Nodesed): requires every node of the CFG 
not reachable through an exception-free path to be executed at least once. 

 Conversely, the all-edges criterion requires that each control-flow deviation is 
executed at least once. To consider the control-flow in relation to the exception-
handling mechanism, this criterion also is subdivided into two non-overlapping testing 
criteria: all-edges-exception-independent (All-Edgesei) and all-edges-exception-
dependent (All-Edgesed). 

 The observations needed to assemble the metrics required by these criteria can 
be collected by abstracting and modelling the behaviours programs exhibit during 
execution – either by static or dynamic analysis techniques (Tracey, Clark et al. 2002). 
Dynamic analysis involves executing the actual test object and monitoring its 
behaviour; while it may not possible to draw general conclusions from dynamic 
analysis, it provides evidence of the successful operation of the software. In contrast, 
static analysis involves the construction and analysis of an abstract mathematical model 
of the system (e.g. symbolic execution). Static analysis is performed without executing 
the method under test, but rather this abstract model; this type of analysis is complex, 
and often incomplete due to the simplifications in the model. 

 If dynamic analysis techniques are employed, the ability to observe program 
execution is paramount. Events that need to be captured range from simple observations 
– such as execution of structural entities – to more complex examinations – such as 
thread and object creation, field manipulations, and object locking behaviour (Kinneer, 
Dwyer et al. 2006). Dynamic monitoring for events in Java software can be achieved 
through instrumentation of Java bytecode.  

 Bytecode is an assembly-like language that retains much of the high-level 
information about the original source program. Class files (i.e. compiled Java programs 
containing bytecode information) are a portable binary representation that contains class 
related data such as the class name, its superclass name, information about the variables 
and constants, and the bytecode instructions of each method (Vincenzi, Maldonado et 
al. 2005).  Using bytecode as the basis for building the CFG allows broadening the scope 
of applicability of software testing tools, since the target object’s source code is often 
unavailable; it can be used, for instance, to perform structural testing on third party Java 
components. In addition, the bytecode can be seen as an intermediate language, so the 
analysis performed at this level can be mapped back to the original high-level language 
that generated the bytecode. 

 Evolutionary algorithms have been used successfully for the unit testing of 
procedural software, and their application to the generation of quality test data for 
object-oriented software is an active field of research.  Within the paradigm of object-
orientation, the major concept is the object – which possesses attributes, constructors 
and methods. A test case for object-oriented software does not comprise only numerical 



  

test data; a sequence of constructor and method calls is also necessary. Usually, 
multiple objects are involved in one single test case (Wappler and Lammermann 2005):  

• At the least, an instance of the class under test is needed.  

• Additional objects, which are required (as parameters) for the creation of the 
object under test and for the invocation of the method under test, must be 
available. Again, for the creation of these additional objects, more additional 
objects may be required. 

• Depending on the kind of test, the participating objects may have to be put into 
particular states in order for the test scenario to be processed in the desired way. 
Consequently, method calls must be issued for these objects. 

 A fitness function for object-oriented evolutionary testing must evaluate test 
cases according to their ability to meet a given test goal. If white-box criteria are 
employed, the CFG and the monitored execution of the test object are used to access the 
adequateness of test cases – i.e. if the CFG node and/or path defined as the test goal was 
exercised by the execution of a particular test case over the test object. 

 In (Wappler and Wegener 2006a) a distance-based fitness function, which 
expresses how close the execution of a test case over the test object is to reaching the 
current test goal, was proposed. This closeness is expressed in terms of three distances: 

• The Method Call Distance (dMC): expresses how close the test case execution 
approached the method under test in terms of the number of methods called. In 
case of a runtime exception, execution of a method call sequence terminates 
prematurely, meaning that the method under test is not called. 

• The Control Node Distance (dCN): expresses how close execution of the test 
object approached the target CFG node. 

• The Local Problem Node Distance (dPN): expresses how far  the test object’s 
execution is away from diverging along the branch of the problem node which 
leads to the test goal. 

 The metric dMC works at the test case level, and steers the evolutionary search 
towards producing feasible test cases – i.e. it ensures that a method call sequence of  a 
given test case generates no runtime exceptions that prevent the method under test from 
being called.  

 Metrics dCN and dPN, on the other hand, are employed to cover individual test 
goals on the test object, and are computed with basis on the CFG. In (Wegener, Baresel 
et al. 2001), four methodologies – which depend on the CFG and the required test 
purpose – for guiding the evolutionary search toward reaching particular test goals were 
outlined, and the corresponding fitness functions were described: 

• Node-oriented methods: require the attainment of specific nodes in the CFG 
(e.g. statement test, condition test). 

• Path-oriented methods: require the execution of certain paths in the CFG (e.g. 
path tests). 



  

• Node-path-oriented methods: require the achievement of a specific node and, 
from this node, the achievement of a specific path through the CFG (e.g. branch 
test, segment coverage). 

• Node-node-oriented methods: aim to execute program paths that cover certain 
node combinations of the CFG in a pre-determined sequence without specifying 
a specific path between nodes (e.g. data-flow criteria). 

3. Related Work 
Interesting review articles on the topic of Evolutionary Testing include that of McMinn 
(McMinn 2004), who presents a review of meta-heuristic techniques that have been 
used in software test data generation, namely Hill Climbing, Simulated Annealing and – 
most interestingly – Evolutionary Algorithms. Namely, the main achievements in 
automating test data generation in the areas of structural testing, functional testing, and 
grey-box testing are summarized. In (Mantere and Alander 2005) an in-depth index of 
the work developed in the area is provided; topics include genetic algorithms applied to 
coverage testing, test data generation, testing program dynamics, black-box testing and 
software quality.    

 Both works pinpoint the state problem (McMinn and Holcombe 2003) as the 
main issue to be faced by researchers in this field. It occurs with methods that exhibit 
state-like qualities by storing information in internal variables; such variables are 
hidden from the optimization process because they are not available to external 
manipulation. The only way to change the values of these variables is through execution 
of statements that perform assignments to them. In object-oriented software this can 
occur through the use of variables that are protected from external manipulation using 
access modifiers. 

 The first approach to the field of evolutionary testing for object-oriented 
software was presented in (Tonella 2004); in this work, input sequences were generated 
using evolutionary algorithms for the white-box testing of classes. Genetic algorithms 
were the evolutionary approach employed, with potential solutions (test cases) being 
represented as chromosomes. A source-code representation was used, and an original 
evolutionary algorithm – with special evolutionary operators for recombination and 
mutation on a statement level (i.e. mutation operators insert or remove methods from a 
test program) – was defined. A population of individuals, representing the test cases, 
was evolved in order to increase a measure of fitness, accounting for the ability of the 
test cases to satisfy a coverage criterion of choice – the proportion of all control and call 
dependences that lead to the given target. New test cases are generated as long as there 
are targets to be covered or a maximum execution time is reached. However, the 
encapsulation problem was not addressed, and this proposal only dealt with a simple 
state problem; additionally, with this approach, Universal Evolutionary Algorithms – 
evolutionary algorithms, provided by popular toolboxes, which are independent from 
the application domain and offer a variety of predefined, probabilistically well-proven 
evolutionary operators – cannot be applied. 

 An approach which built upon an Ant Colony Optimization Algorithm was 
presented by (Liu, Wang et al. 2005). The focus was on the generation of the shortest 
method call sequence for a given test goal, under the constraint of state dependent 



  

behaviour and without violating encapsulation. Ant PathFinder, hybridizing Ant Colony 
Optimization and Multiagent Genetic Algorithms were employed. To cover those 
branches enclosed in private/protected methods without violating encapsulation, call 
chain analysis on class call graphs was introduced. 

 In (Wappler and Lammermann 2005) an approach for the automatic generation 
of test programs for object-oriented unit testing was presented, focusing on the usage of 
Universal Evolutionary Algorithms. An encoding was proposed that represented object-
oriented test programs as basic type value structures, allowing for the application of 
various search-based optimization techniques such as Hill Climbing or Simulated 
Annealing. The generated test programs could be transformed into test classes 
according to popular testing frameworks. The suggested encoding, however, did not 
prevent the generation of individuals which could not be decoded into test programs 
without errors; their fitness function used different penalty mechanisms in order to 
penalize invalid sequences and to guide the search towards regions that contained valid 
sequences. Due to the generation of infeasible sequences, the approach lacked 
efficiency for more complicated cases. 

 In (Wappler and Wegener 2006b) a different approach to the subject was 
presented. Potential solutions were encoded using a Strongly-Typed Genetic 
Programming (STGP) methodology, with method call sequences being represented by 
method call trees; these trees are able to express the call dependences of the methods 
that are relevant for a given test object. To account for polymorphic relationships which 
exist due to inheritance relations, the STGP types used by the function set are specified 
in correspondence to the type hierarchy of the test cluster classes. The emphasis of this 
work is on sequence feasibility; the usage of STGP preserves feasibility throughout the 
entire search process. The fitness function does need, however, to incorporate a penalty 
mechanism for test cases which include method call sequences that generate runtime 
exceptions.  The issue of runtime exceptions was precisely the main topic in (Wappler 
and Wegener 2006a). This methodology yielded very encouraging results. For a simple 
custom-tailored test cluster, the set of generated test cases achieved full (100%) branch 
coverage: during the search, 11966 test programs were generated and evaluated, and the 
resulting test set contained 3 test cases; a control run, in which random test cases where 
produced for comparison purposes, stopped after having evaluated 43233 test programs 
(in accordance to the specified termination criteria), and the generated test set achieved 
a coverage of 66%. In a more complex scenario, four classes where tested and full 
coverage was achieved for all of the test objects. 

 In the abovementioned approaches, the underlying model for program 
representation is built with basis on the test object’s source-code; moreover, 
instrumentation of the test object for extracting tracing information is also done at the 
source-code level. To the best of our knowledge, there are no evolutionary approaches 
to the unit-testing of object-oriented software that employ dynamic bytecode analysis to 
derive structural testing criteria.   

 The application of evolutionary algorithms and bytecode analysis for test 
automation was, however, already studied in different scenarios. In (Cheon, Kim et al. 
2005) an attempt to automate unit testing of object-oriented programs is described. A 
black-box approach for investigating the use of genetic algorithms for test data 
generation is employed, and program specifications written in JML are used for test 



  

result determination. The JML compiler was extended to make Java bytecode produce 
test coverage information. In (Muller, Lembeck et al. 2004), the layout of a symbolic 
Java virtual machine (SJVM), which discovers test cases using a definable structural 
coverage criterion with basis on static analysis techniques, is described. Java bytecode 
is executed symbolically, and the decision whether to enter a branch or throw an 
exception is based on the earlier constraints, a constraint solver and current testing 
criterion. The SJVM has been implemented in a test tool called GlassTT. This work, 
however, doesn’t address exception-related and method interaction-related criteria, and 
only procedural software scenarios are described. 

4. Dynamic Analysis Of Java Bytecode For Test Quality Optimization 
The focus of this paper is on presenting a methodology for generating and optimizing 
test data by employing evolutionary search techniques, solely with basis on the 
information provided by the analysis Java bytecode and on the dynamic execution of the 
instrumented test object’s class files. 

 In this section, the simple test cluster defined in (Wappler and Wegener 2006a) 
is used for demonstration purposes. We focus on the Controller.reconfigure(Config) 
public method; its source code is reproduced in Figure 1. 

 

     public void reconfigure(Config cfg) throws Exception { 
         if( cfg.getSignalCount() > MAX_SIGNALS ) 
             throw new Exception("Too many signals."); 
         if(cfg.getPort()<MIN_PORT||cfg.getPort()>MAX_PORT)  
             throw new Exception("Invalid port."); 
         this.cfg = cfg; 
         signals = new int[cfg.getSignalCount()]; 
     } 

Figure 1. Source code for the method Controller.reconfigure(Config)

 The source code provided by this example was compiled using JDK 1.5. The 
bytecode instructions of the compiled Controller.reconfigure(Config) public method 
are depicted in Figure 2. 

4.1. Bytecode Analysis 

In order to understand the details of Java bytecode, a preliminary discussion on how the 
Java virtual machine (Lindholm and Yellin 1999) works regarding the execution of the 
bytecode must take place. A JVM is a stack-based machine; each thread has a JVM 
stack which stores frames. A frame is created each time a method is invoked, and 
consists of an operand stack, an array of local variables, and a reference to the runtime 
constant pool of the class of the current method (Haggar 2001).   

 The array of local variables contains the parameters of the method and the 
values of the local variables. The size of the array of local variables is determined at 
compile time, and is dependent on the number and size of local variables and formal 
method parameters. The parameters are stored first, beginning at index 0. If the frame is 
for a constructor or an instance method, the this reference is stored at location 0; 
location 1 contains the first formal parameter, location 2 the second, and so on. For a 
static method, the first formal method parameter is stored in location 0, the second in 
location 1, and so on. The operand stack is a LIFO stack used to push and pop values; 



  

its size is also determined at compile time. Certain bytecode instructions push values 
onto the operand stack; others take operands from the stack, manipulate them, and push 
the result. The operand stack is also used to receive return values from methods. 

 In Figure 2, The aload_1 instruction at location 0 pushes the value from the 
index 1 of local variable table onto the operand stack – i.e. it pushes the parameter cfg 
of the method Controller.reconfigure(Config cfg) onto the top of the operand stack 
(a reference to an object of type Config). The invokevirtual instruction at location 1 
invokes the instance method Config.getSignalCount() on the object cfg (popped from 
the top of the operand stack); the value returned by this method is pushed onto the top 
of the operand stack.  The iconst_5 instruction at location 4 loads the integer value 5 
onto the top of the operand stack. At this point, the operand stack contains two values: 
the integer 5 on top, and the value returned by the Config.getSignalCount() on the 
bottom. The if_icmple instruction loads both those values from the operand stack, and 
compares them: if 5 is lower than or equal to the value returned from the 
getSignalCount method, instruction flow is transferred to instruction 18. 

 

cfg.Controller.public_void_reconfigure(cfg.Config_cfg) 
_throws_java.lang.Exception 
Code(max_stack = 3, max_locals = 2, code_length = 64) 
0:    aload_1 
1:    invokevirtual cfg.Config.getSignalCount ()I (6) 
4:    iconst_5 
5:    if_icmple #18 
8:    new <java.lang.Exception> (7) 
11:   dup 
12:   ldc "Too many signals." (8) 
14:   invokespecial java.lang.Exception (java.lang.String) 
17:   athrow 
18:   aload_1 
19:   invokevirtual cfg.Config.getPort ()I (10) 
22:   sipush 8000 
25:   if_icmplt #38 
28:   aload_1 
29:   invokevirtual cfg.Config.getPort ()I (10) 
32:   sipush 8005 
35:   if_icmple #48 
38:   new <java.lang.Exception> (7) 
41:   dup 
42:   ldc "Invalid port." (11) 
44:   invokespecial java.lang.Exception (java.lang.String) 
47:   athrow 
48:   aload_0 
49:   aload_1 
50:   putfield cfg.Controller.cfg Lcfg/Config; (2) 
53:   aload_0 
54:   aload_1 
55:   invokevirtual cfg.Config.getSignalCount ()I (6) 
58:   newarray <int> 
60:   putfield cfg.Controller.signals [I (3) 
63:   return 

Figure 2. Java bytecode for the method Controller.reconfigure(Config)

 This brief analysis helps to support the following conclusions: firstly, the 
bytecode instructions contain enough high-level information for coverage criteria to be 
applied at the bytecode level; secondly, it is possible to group some instructions into a 
smaller set of basic blocks that can ease the representation of the compiled program 
using a CFG and, consequently, the application of dynamic analysis and structural 
coverage metrics on the target object. 



  

 The purpose of the aload_1 instruction is, in fact, to prepare the operand stack 
for the getSignalCount method call at location 2. Equally, the iconst_5 instruction 
prepares the stack for the if instruction on location 5. We group these instructions into 
two basic blocks: the first pair is grouped into a Call block; the second pair is grouped 
into a Basic Instruction block of the sub-type “if”. 

4.2. CFG Definition and Interpretation 

In our approach, bytecode instructions are grouped into a set of basic blocks – namely, 
Basic Instruction blocks and Call Blocks. These blocks cover the core of nodes required 
to build the CFG graph. 

 Basic Instruction blocks encompass regular bytecode instructions, including the 
decision and branching instructions that can influence control flow – namely the sub-
types “if”, “goto”, “jsr”, “switch”, “return”, “ret”, “throw”, “sumthrow” and “exit”. 
They are represented in the CFG by Basic Instruction nodes. Call blocks represent 
bytecode instructions that cause control flow to be transferred to another method; they 
contain the high-level information needed to identify the method being called, and are 
represented in the CFG by Call nodes. In our example, bytecode instructions are 
grouped in accordance to Table 1. 

Table 1. Mapping between bytecode instructions, basic instruction blocks,  
basic intruction block subtypes, and node numbers in the CFG depicted in Figure 3. 
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  Additionally, other types of nodes which represent virtual operations are 
defined: Entry nodes, Exit nodes, and Return nodes. These virtual nodes encompass no 
bytecode instructions; they are used to represent certain control flow hypothesis. 

 As mentioned above, Call blocks transfer control flow to the CFG of another 
method; the method called, in turn, can return normally or with an exception. In order to 
differentiate these situations, Return nodes are created. They follow Call nodes, and are 
transversed when the called method returns regularly; if the called method returns with 
an exception, either the exception is dealt with internally or control flow jumps to an 
Exit node that causes the method to return with an exception itself.  

 Exit nodes follow other nodes that can cause the method to return; a different 
Exit node is created for each return scenario – including “return” and “throws” 
instructions, and method call instructions that may return an exception.  

 Entry nodes identify the starting point of the CFG. They simply indicate the 
method’s entry point; there’s only one Entry block node per method.  



  

 
Figure 3. Control-Flow Graph for the method Controller.reconfigure(Config).

 The CFG generated for the method Controller.reconfigure(Config) is depicted 
of Figure 3. A brief overview follows: node #1 is the Entry node; it is connected by a 
directed edge to Call node #2, which transfers control flow to the 
Config.getSignalCount() method; if Config.getSignalCount() method returns 
regularly, Return node #4 is next; if it throws an exception, Exit node #18 is transversed 
and Controller.reconfigure(Config) returns with an exception itself. 

4.3. Test Set Evaluation and Optimization 

Using the CFG built with basis on the test object’s bytecode, it is possible to evaluate 
thoroughness of the test set with basis on the quality criteria proposed by (Vincenzi, 
Maldonado et al. 2005; Vincenzi, Delamaro et al. 2006); moreover, it is possible to 
optimize the test set by employing the evolutionary search techniques proposed by 
(Wegener, Baresel et al. 2001; Wappler and Wegener 2006a; Wappler and Wegener 
2006b). Both methodologies were introduced in the Background section. 



  

 In order to access the thoroughness of the testing process according to the all-
nodes and all-edges criteria, the test object’s class files must be instrumented for Basic 
block and Call block dispatch, in accordance to the CFG defined as the underlying 
representation. Dynamic analysis is performed by executing the instrumented test object 
using each test case of a given test set as input; the trace files produced must then be 
analyzed for the coverage metrics to be calculated. 

 

public void testReconfigure() throws Exception 
{ 
   System.out.println("reconfigure"); 
          
   int expected = 8000; 
         
   Config cfg = new Config(9999); 
   cfg.setPort(expected); 
   Controller instance = new Controller();       
   instance.reconfigure(cfg); 
 
   int actual = cfg.getPort(); 
         
   assertEquals(expected, actual);     
} 

Figure 4. Sample test case for method Controller.reconfigure(Config)

 Exception-independent control-flow analysis implies the coverage of the 
bytecode instructions represented by Basic Instruction nodes and Call nodes (in the case 
of all-edgesei criterion, by exercising all available branches). Trace files for the 
execution of the instrumented test object defined in Figure 2 using the test case depicted 
in Figure 4 yield the transversal of nodes #2, #4, #6, #8, #13 and #15 – i.e. 66% all-
nodesei coverage (nodes #5 and #12 aren’t exercised) and 90% all-edgesei coverage 
(edge #11 #12 isn’t exercised; edges beginning at virtual nodes aren’t considered) is 
achieved.   

 When employing exception-dependant coverage criteria, Exit nodes and Basic 
Instruction nodes of the subtype “jsr” constitute the focus of the analysis.  The all-
nodesei criterion implies the coverage of catch and finally Java blocks; additionally, 
the all-edges criterion also implies the transversal of all the edges that lead to Exit nodes 
that follow Call nodes. 

 Specific fitness functions have to be defined for each coverage criterion; we 
employ the methodologies proposed by (Wegener, Baresel et al. 2001). Each individual 
fitness function, depending on the coverage criterion of choice, is defined as follows 
(discussion includes examples related to the coverage information extracted from the 
trace files described above):  

• all-nodesei: a node-oriented fitness function is used, which allows the search to 
be guided towards achieving every individual test goal – e.g. test cases that 
exercise nodes #5 and #12 must be created. 

• all-edgesei: a node-path-oriented fitness function is used, which allows the 
search to be guided towards reaching a specific problem node and, from there, 
following a certain path – e.g. a test case that considers node #11 as the problem 
node and transverses edge #11 #12 must be created. 

• all-nodesed: a node-path-oriented fitness function is used, which allows the 
coverage of all bytecode instructions that are encompassed in catch and finally 



  

blocks, and that can be reached through a jsr bytecode function. Basic 
Instruction nodes of the subtype “jsr” are the problem nodes. 

• all-edgesed: a node-node-oriented fitness function is used. In addition to the 
nodes encompassed by catch and finally blocks, test cases must be generated 
that reach every single Call node and, from there, transverse the Exit node that 
corresponds to the called methods exceptional return – e.g. test cases must be 
generated that consider nodes #18 to #23 as individual goals for the evolutionary 
search. 

5. Framework Description 
The focus of our tool is on the creation and optimization of a test set that maximizes 
code coverage. Optimization occurs at the test set level and at the test case level: we 
aim to generate a set that can help gain confidence in the software under test using 
white-box metrics, and to generate the shortest sequence for a given test goal. 

 The process of CFG building, bytecode instrumentation and event tracing is 
achieved with the aid of Sofya (Kinneer, Dwyer et al. 2006), a dynamic analysis 
framework developed at the University of Nebraska, USA, that is particularly suited for 
developing dynamic analysis tools. The Sofya package provides implementations and 
tools for the construction of various kinds of graphs – most notably CFGs – and native 
capabilities for dispatching event streams of specified program observations, which 
include instrumentators, event dispatchers, and event selection filters for semantic and 
structural event streams. Additionally, it contains tools to perform various analyses 
using the outputs generated by its components (statistics, coverage reports, …) and to 
visualize the trace files produced by the executions of instrumented programs. 

 In the context of our tool, Sofya is employed to instrument classes for structural 
event dispatch. Basic Block instrumentation enables the observations of the virtual 
Entry, Exit and Return blocks, Call blocks and Basic Instruction blocks transversed 
during a given program execution. Our tool automatically executes instrumented 
programs, and compares the trace files produced to the statically generated CFGs in 
order to compute the fitness function. 

 For evolving the set of test cases, the Evolutionary Computation in Java (ECJ) 
package (Luke, Panait et al. 2007) is used in a similar fashion to the one proposed in 
(Wappler and Wegener 2006a; Wappler and Wegener 2006b). ECJ is a research 
package, developed at the George Mason’s University, USA, that incorporates several 
Universal Evolutionary Algorithms, and includes built-in support for Set-Based 
Strongly-Typed Genetic Programming. It is highly flexible, having nearly all classes 
and their settings being dynamically determined at runtime by user provided parameter 
files. 

 Parameter files containing all the constraints defined by the function set are 
automatically generated by our tool: firstly, the Test Cluster and the Type Set for the 
Class Under Test are extracted by means of the Java Reflection API; then, the Extended 
Method Call Dependence Graph (EMCDG) is computed, and a Function Set for each of 
the public methods is derived; finally, ECJ parameter files are automatically generated 
for each of the function sets produced.  



  

 jUnit is used as the front-end for our tool, as it constitutes both the starting and 
ending points of the software testing process: the initial population of test cases can 
optionally be derived from those defined by the user using jUnit (the initial population 
can also be created automatically), and the generated test programs can be transformed 
into test classes that can be loaded into the jUnit framework. The major usage scenario 
is the generation of test cases that complete a test set in order to maximize code 
coverage.  The rationale for minimizing the length of the method call sequence of test 
cases is that of simplifying the user’s task of defining assertions. 

6. Conclusions and Future Work 
This paper presents the rationale and introduces the methodology for generating and 
optimizing test sets with basis on metrics derived from the dynamic analysis of the test 
object’s Java bytecode. A Control-Flow Graph is used as the underlying model for 
program representation, and it is build solely with basis on the high-level information 
extracted from the Java bytecode of the test object. Bytecode instructions are grouped 
into a smaller set of Basic Instruction and Call blocks with the intention of easing the 
representation of the test object’s control flow, and additional virtual nodes are defined 
to facilitate the dynamic analysis phase. The methodology for evaluating the test set 
includes instrumenting the bytecode for basic block analysis and structural event 
dispatch, and executing the instrumented test object using the generated test cases as 
inputs, with the intention of collecting trace files with which to derive coverage metrics. 
Methodologies for defining fitness functions in order to achieve the particular criteria-
related test goals are introduced.   A general overview on how our automated software 
testing tool is integrated is given.  

 Evolutionary testing is an emerging methodology for automatically generating 
high quality test data. Future work includes performing a case-study in a real 
development context in order to demonstrate the usefulness and applicability of the 
methodology and experiment different approaches to the evolutionary paradigm 
employed. Namely, we aim to fine-tune the fitness functions employed for working at 
the bytecode level. Further research must also be made on the topic facilitating the 
user’s task of defining assertions for the generated test cases (e.g. by minimizing the 
length of method call sequence of test cases) and on the possibility of using distinct 
strong-typing mechanisms for the definition of the constraint imposed by the object-
oriented paradigm. 

7. References 
Cheon, Y., M. Y. Kim, et al. (2005). A complete automation of unit testing for Java 

programs. Proceedings of the 2005 International Conference on Software 
Engineering Research and Practice (SERP '05). Las Vegas, Nevada, USA, CSREA 
Press: 290-295. 

Haggar, P. (2001, 2001/07/01). "Java bytecode: Understanding bytecode makes you a 
better programmer " IBM developerWorks  Retrieved 2007/04/01, from http://www-
128.ibm.com/developerworks/ibm/library/it-haggar_bytecode/. 

Kinneer, A., M. Dwyer, et al. (2006). Sofya: A Flexible Framework for Development of 
Dynamic Program Analyses for Java Software, Department of Computer Science and 
Engineering, University of Nebraska - Lincoln. 



  

Lindholm, T. and F. Yellin (1999). The Java virtual machine specification. Harlow, 
Addison-Wesley. 

Liu, X., B. Wang, et al. (2005). Evolutionary search in the context of object-oriented 
programs. MIC2005: The Sixth Metaheuristics International Conference, Vienna, 
Austria. 

Luke, S., L. Panait, et al. (2007). "ECJ 16: A Java evolutionary computation library." 
from http://www.cs.gmu.edu/~eclab/projects/ecj/. 

Mantere, T. and J. T. Alander (2005). "Evolutionary software engineering, a review." 
Applied Soft Computing 5(3): 315-331. 

McMinn, P. (2004). "Search-based software test data generation: a survey." Software 
Testing, Verification and Reliability 14(2): 105-156. 

McMinn, P. and M. Holcombe (2003). The state problem for evolutionary testing. 
Genetic and Evolutionary Computation Conference, Chicago, USA, Springer-Verlag. 

Muller, R. A., C. Lembeck, et al. (2004). A symbolic Java virtual machine for test case 
generation. Proceedings of IASTED Conference on Software Engineering: 365-371. 

Tonella, P. (2004). Evolutionary testing of classes. ISSTA '04: Proceedings of the 2004 
ACM SIGSOFT international symposium on Software testing and analysis. Boston, 
Massachusetts, USA, ACM Press: 119-128. 

Tracey, N., J. Clark, et al. (2002). A search-based automated test-data generation 
framework for safety-critical systems, Springer-Verlag New York, Inc. 

Vincenzi, A. M. R., M. E. Delamaro, et al. (2006). "Establishing structural testing 
criteria for Java bytecode." Software Practice and Experience 36(14): 1513-1541. 

Vincenzi, A. M. R., J. C. Maldonado, et al. (2005). "Coverage testing of Java programs 
and components." Special issue on new software composition concepts 56(1-2): 211-
230. 

Wappler, S. and F. Lammermann (2005). Using evolutionary algorithms for the unit 
testing of object-oriented software. GECCO '05: Proceedings of the 2005 conference 
on genetic and evolutionary computation, ACM Press: 1053-1060. 

Wappler, S. and J. Wegener (2006a). Evolutionary Unit Testing Of Object-Oriented 
Software Using A Hybrid Evolutionary Algorithm. Proceedings of the 2006 IEEE 
Congress on Evolutionary Computation. Vancouver, IEEE Press: 3193-3200. 

Wappler, S. and J. Wegener (2006b). Evolutionary unit testing of object-oriented 
software using strongly-typed genetic programming. GECCO '06: Proceedings of the 
8th annual conference on Genetic and evolutionary computation. Seattle, 
Washington, USA, ACM Press: 1925-1932. 

Wegener, J., A. Baresel, et al. (2001). "Evolutionary test environment for automatic 
structural testing." Information & Software Technology 43(14): 841-854. 



C.2 eCrash: a Framework for Performing Evo-

lutionary Testing on Third-Party Java

Components (CEDI JAEM 2007)

81



82



eCrash: a Framework for Performing Evolutionary Testing  
on Third-Party Java Components  

José Carlos Bregieiro Ribeiro 
Polytechnic Institute of Leiria (IPL) 

Morro do Lena, Alto do Vieiro 
Leiria, Portugal 

jose.ribeiro@estg.ipleiria.pt  

Mário Zenha-Rela 
University of Coimbra (UC) 

CISUC, DEI, 3030-290  
Coimbra, Portugal 
mzrela@dei.uc.pt  

Francisco Fernández de Vega 
University of Extremadura (UNEX)

C/ Sta Teresa de Jornet, 38 
Mérida, Spain  

fcofdez@unex.es 
 
 

Abstract 
The focus of this paper is on presenting a tool for 
generating test data by employing evolutionary 
search techniques, with basis on the information 
provided by the structural analysis and 
interpretation of the Java bytecode of third-party 
Java components, and on the dynamic execution 
of the instrumented test object. 

The main objective of this approach is that of 
evolving a set of test cases that yields full 
structural code coverage of the test object. Such a 
test set can be used for effectively performing the 
testing activity, providing confidence in the 
quality and robustness of the test object. 
 The rationale of working at the bytecode level 
is that even when the source code is unavailable 
structural testing requirements can still be derived, 
and used to assess the quality of a test set and to 
guide the evolutionary search towards reaching 
specific test goals. 

1. Introduction 

Software testing is an expensive process, typically 
consuming roughly half of the total costs involved 
in the software development process [1]. Locating 
suitable test data can be time consuming, difficult 
and expensive; automation of test data generation 
is, therefore, vital to advance the state-of-the-art in 
software testing. 
 Test data selection, generation and 
optimization deals with locating good test data for 
a particular test criterion. The assessment of the 
quality of a given set of test data can be achieved 
functionally (black-box testing) or structurally 
(white-box testing) [2].  
 Black-box testing is concerned with showing 
the conformity between the implementation and 
its functional specification; with white-box testing 
techniques, test case design is performed with 
basis on the program structure.  

 When white-box testing is performed, the 
metrics for measuring the thoroughness of a given 
test set can be extracted from the structure of the 
target object’s source code, or even from 
compiled code. Traditional white-box criteria 
include structural (e.g. statement, branch) 
coverage and data flow coverage [3]. The basic 
idea is to ensure that all of the control elements in 
a program are executed by a given test set, 
providing evidence of the quality of the testing 
activity; a test set that contains test cases that 
exercise all such elements is said to be adequate 
with respect to the corresponding criterion. 
 The evaluation of test data quality using 
white-box criteria generally requires the definition 
of an underlying model for program 
representation – usually a control-flow graph 
(CFG) [4]. The CFG is an abstract graph-based 
representation of a given method in a class – in 
the case of software testing, the test object. 
Evaluating the quality of a test set involves using 
CFGs to compute coverage metrics.  
 The observations needed to assemble the 
metrics required for the evaluation can be 
collected by abstracting and modelling the 
behaviours that programs exhibit during execution 
[5], either by static or dynamic analysis 
techniques. 
 Static analysis involves the construction and 
analysis of an abstract mathematical model of the 
system (e.g. symbolic execution); testing is 
performed without executing the method under 
test, but rather this abstract model. This type of 
analysis is complex, and often incomplete due to 
the simplifications in the model. In contrast, 
dynamic analysis involves executing the actual 
test object and monitoring its behaviour; while it 
may not possible to draw general conclusions 
from dynamic analysis, it provides evidence of the 
successful operation of the software. 



  
 

• 

• 

• 

 If dynamic analysis techniques are employed, 
the ability to observe program execution is 
paramount. Events that need to be captured range 
from simple observations – such as execution of 
structural entities – to more complex examinations 
– such as thread and object creation, field 
manipulations, and object locking behaviour [4]. 
Dynamic monitoring of structural entities can be 
achieved by instrumenting the test object, and 
dynamically tracing the execution of the structural 
entities transversed during execution. 
 Instrumentation in Java software is performed 
by inserting probes in the test object that log the 
entities exercised during execution. This operation 
can be performed either at the source-code level 
or at the Java bytecode level. 
 Java bytecode is an assembly-like language 
that retains much of the high-level information 
about the original source program [6]. Class files 
(i.e. compiled Java programs containing bytecode 
information) are a portable binary representation 
that contains class related data, such as the class’s 
name, its superclass’s name, information about the 
variables and constants, and the bytecode 
instructions of each method.  
 Given that the target object’s source code is 
often unavailable, performing instrumentation and 
CFG building with basis on bytecode allows 
broadening the scope of applicability of software 
testing tools. They can be used, for instance, to 
perform structural testing on third-party Java 
components. In addition, the bytecode can be seen 
as an intermediate language, so the analysis 
performed at this level can be mapped back to the 
original high-level language that generated the 
bytecode. 
 Evolutionary algorithms have been applied 
successfully to the search for quality test data in 
the field object-oriented unit-testing [7-11]. 
However, the application of search-based 
strategies in this area has not yet been investigated 
comprehensively; what’s more, existing 
approaches work at the test object’s source-code 
level. The evolutionary paradigm is expected to be 
equally suited if Java bytecode is employed as the 
basis for evolutionary search guidance and quality 
assessment. 

The application of evolutionary algorithms to 
test data generation is often referred to as 
Evolutionary Testing [12, 13]. In evolutionary 
testing, meta-heuristic search techniques are 
employed to select or generate test data. The 

search space is the input domain of the test object, 
and the problem is to find a (minimal) set of test 
cases that satisfies a certain test criterion.  

In the particular case of object-oriented 
programs, a sequence of method invocations is 
required to cover the test goal, and the sequence 
search space is an explosive space. Within the 
paradigm of object-orientation, the major concept 
is the object – which possesses attributes, 
constructors and methods. A test case for object-
oriented software does not comprise only 
numerical test data; a sequence of constructor and 
method calls is also necessary.  

Usually, multiple objects are involved in one 
single test case [11]:  

at least, an instance of the Class Under Test 
(CUT) is needed;  
additional objects, which are required (as 
parameters) for the instantiation of the CUT 
and for the invocation of the method under 
test (MUT), must be available, and for the 
creation of these additional objects more 
objects may be required;  
the participating objects may have to be put 
into particular states in order for the test 
scenario to be processed in the desired way 
and, consequently, method calls must be 
issued for these objects. 

 A fitness function for object-oriented 
evolutionary testing should evaluate test cases 
according to their ability to meet a given test goal. 
Fitness evaluation is, however hindered by the 
State Problem. The State Problem occurs with 
methods that exhibit state-like qualities by storing 
information in internal variables [14]; such 
variables are hidden from the optimization 
process, because they are protected from external 
manipulation using access modifiers (most 
notably “getter” and “setter” methods). The only 
way to change their values is through execution of 
statements that perform assignments to them. 

In this paper, we present a prototypical tool –
eCrash – that aims at providing a means to 
perform structural unit-testing on object-oriented 
software, using evolutionary techniques and with 
basis on the test object’s bytecode. Firstly, in the 
following chapter, related work is reviewed. In 
chapter 3, the framework of our tool is outlined, 
and a case study that illustrates the methodology 
is described in chapter 4. The concluding chapter 
resumes the key ideas of this paper and presents 
some topics for future research. 



  

 
2. Related Work 

A first approach to the field of evolutionary 
testing of object-oriented software was presented 
in [10]; in this work, input sequences are 
generated using evolutionary algorithms for the 
white-box testing of classes. Genetic algorithms 
are the evolutionary approach employed, with 
potential solutions (test cases) being represented 
as chromosomes. A source-code representation is 
used, and an original evolutionary algorithm, with 
special evolutionary operators for recombination 
and mutation on a statement level (i.e. mutation 
operators insert or remove methods from a test 
program), is defined. A population of individuals, 
representing the test cases, is evolved in order to 
increase a measure of fitness, accounting for the 
ability of the test cases to satisfy a coverage 
criterion of choice. New test cases are generated 
as long as there are targets to be covered or a 
maximum execution time were reached.  
 However, the encapsulation problem was not 
addressed, and this proposal only dealt with a 
simple state problem. Additionally, with this 
approach, Universal Evolutionary Algorithms (i.e. 
evolutionary algorithms, provided by popular 
toolboxes, which are independent from the 
application domain and offer a variety of 
predefined, probabilistically well-proven 
evolutionary operators) could not be applied due 
to the usage of custom-made operators and 
original evolutionary algorithms. 
 An approach which employed an Ant Colony 
Optimization algorithm was presented in [9]. The 
focus is on the generation of the shortest method 
call sequence for a given test goal, under the 
constraint of state dependent behaviour and 
without violating encapsulation. Ant PathFinder, 
hybridizing Ant Colony Optimization and 
Multiagent Genetic Algorithms are employed. To 
cover those branches enclosed in private/protected 
methods without violating encapsulation, call 
chain analysis on class call graphs was introduced. 
 In [11] the focus was on the usage of 
Universal Evolutionary Algorithms. An encoding 
is proposed that represents object-oriented test 
cases as basic type value structures, allowing for 
the application of various search-based 
optimization techniques such as Hill Climbing or 
Simulated Annealing. The generated test cases can 
be transformed into test classes according to 

popular testing frameworks. Still, the suggested 
encoding did not prevent the generation of 
individuals which could not be decoded into test 
programs without errors; the fitness function used 
different penalty mechanisms in order to penalize 
invalid sequences and to guide the search towards 
regions that contained valid sequences. Due to the 
generation of infeasible sequences, the approach 
lacked efficiency for more complicated cases. 
 In [7] an approach in which potential solutions 
were encoded using a Strongly-Typed Genetic 
Programming (STGP) methodology was 
presented, with method call sequences being 
represented by method call trees; these trees are 
able to express the call dependences of the 
methods that are relevant for a given test object. 
To account for polymorphic relationships which 
exist due to inheritance relations, the STGP types 
used by the function set are specified in 
correspondence to the type hierarchy of the test 
cluster classes. The emphasis of this work is on 
sequence feasibility; the usage of STGP preserves 
feasibility throughout the entire search process. 
The fitness function does need, however, to 
incorporate a penalty mechanism for test cases 
which include method call sequences that generate 
runtime exceptions. The issue of runtime 
exceptions was precisely the main topic in [8].  
 The methodology proposed in [7, 8] yielded 
very encouraging results. For a simple custom-
tailored test cluster, the set of generated test cases 
achieved 100% branch coverage; in a more 
complex scenario, four classes where tested and 
full coverage was achieved for all of the test 
objects. 
 In all of the abovementioned approaches, the 
underlying model for program representation (i.e. 
CFG) is built with basis on the test object’s 
source-code; moreover, instrumentation of the test 
object for extracting tracing information is also 
performed at the source-code level. To the best of 
our knowledge, there are no evolutionary 
approaches to the unit-testing of object-oriented 
software that employ dynamic bytecode analysis 
to derive structural testing criteria. 
 The application of evolutionary algorithms 
and bytecode analysis for test automation was, 
nonetheless, studied in different scenarios. A 
black-box approach using program specifications 
written in JML was employed in [15], and [16] 
describes a methodology based on static analysis 
techniques. 



  
 
3. Framework Overview 

The focus of this paper is on presenting the 
framework of a tool (which we named “eCrash”) 
for evolving test sets for structural unit-testing of 
third-party object-oriented software.  
 The ideas that lead to this approach were 
greatly inspired by the previous works of [6-8, 11, 
17]. Test cases are evolved using a STGP 
mechanism, with the metrics required to evaluate 
their quality being collected at the bytecode level. 
The framework of our tool  is outlined in Figure 1. 

 

 
Figure 1. Framework overview 

 For evolving the set of test cases, the 
Evolutionary Computation in Java (ECJ) package 
[18] is used. ECJ is a research package that 
incorporates several Universal Evolutionary 
Algorithms, and includes built-in support for Set-
Based STGP. It is highly flexible, having nearly 
all classes and their settings being dynamically 
determined at runtime by user provided Parameter 
files and Function Set files. 

The process of CFG building, bytecode 
instrumentation and event tracing is achieved with 
the aid of Sofya [4], a dynamic Java bytecode 
analysis framework. The Sofya package provides 
implementations and tools for the construction of 
various kinds of graphs – most notably CFGs – 
and native capabilities for dispatching event 
streams of specified program observations, which 
include instrumentators, event dispatchers, and 
event selection filters for semantic and structural 
event streams. Additionally, it contains tools to 
perform various analyses using the outputs 

generated by its components (statistics, coverage 
reports, …) and to visualize the trace information 
produced by the executions of instrumented 
programs. 
 The test cluster analysis phase is performed by 
the “Automatic Test Object Analyser” (ATOA) 
module of the eCrash tool. It’s main task is that of 
generating Parameter Files containing the 
constraints needed for the STGP system. 

4. Case Study 

In this experiment, the simple test cluster defined 
in [8] is used for demonstration purposes. The 
Controller.reconfigure(Config) public method was used 
as the method under test (MUT); its source code is 
depicted in Figure 2. 

 

 

public void reconfigure(Config cfg) throws Exception { 
   if( cfg.getSignalCount() > MAX_SIGNALS ) 
 throw new Exception("Too many signals."); 
   if(cfg.getPort()<MIN_PORT||cfg.getPort()>MAX_PORT) 
 throw new Exception("Invalid port."); 
   this.cfg = cfg; 
   signals = new int[cfg.getSignalCount()]; 
} 

Figure 2. Method Under Test’s source code [8] 

4.1. Test Cluster Analysis 

The test cluster’s Java bytecode analysis is 
performed by the ATOA module of the eCrash 
framework; it is at this step that the Function and 
Terminal sets are defined, and hence it must 
precede the test set evolving and evaluation 
phases. 
 The first task is that of extracting the list of 
public methods from the test object’s bytecode by 
means of the Java Reflection API; this list 
comprises the set of MUTs that are to be the 
subject of the unit-testing process. Secondly, the 
Extended Method Call Dependence Graph 
(EMCDG) is determined; this structure describes 
the method call dependences involved in the test 
case construction [7].  
 Function and Terminal sets are then computed 
for each of the MUTs by evaluating the EMCDG. 
These sets define the restrictions that must be 
imposed to STGP tree nodes; specifically, they 
identify the children and return types of each 



  

 
node. This information is used to generate ECJ 
Parameter files that contain the constraints of the 
STGP system, and assures that the test cases’ call 
dependences are taken into account. 

 

 
Figure 3. Method Under Test’s bytecode instructions 

For this case study’s MUT, the EMCDG 
analysis yielded the Function Set depicted in [7], 
which includes both the terminal and non-terminal 
STGP nodes involved in the method call sequence 
construction. A distinct approach was, however, 
employed for the definition of terminal nodes 
representing numerical values – the Ballista fault 
injection methodology [2].  

With the Ballista methodology, testing is 
performed by passing combinations of acceptable, 
boundary and exceptional inputs as parameters to 
the test object via an ordinary method call. 

With this in mind, 9 additional terminal nodes 
were defined for this MUT, containing the 
following constant values: 4, 5, 6; 7999, 8000, 
8001; 8004, 8005, 8006. The analysis that lead to 

the definition of this sub-set of terminal nodes 
follows. 

Bytecode instructions (Figure 3) at positions 
4, 22 and 32 (iconst_5; sipush 8000; sipush 8005) push 
the integer values 5, 8000 and 8005 onto the top 
of the operand stack, for usage in posterior 
instructions of type “if”. These constant values 
are, therefore,  potential boundaries for numerical 
condition evaluation; the rationale for this 
inference is the perception that this constitutes a 
common programming pattern. This approach 
allows us to emulate the behaviour proposed by 
Ballista, as it is a step towards the definition of 
valid, invalid and boundary test cases – if integers 
5, 8000 and 8005 are indeed boundaries in 
decision structures. 

public void reconfigure(Config cfg) 
0:    aload_1 
1:    invokevirtual cfg.Config.getSignalCount ()I (6) 
4:    iconst_5 
5:    if_icmple #18 
8:    new <java.lang.Exception> (7) 
11:   dup 
12:   ldc "Too many signals." (8) 
14:   invokespecial java.lang.Exception (java.lang.String) 
17:   athrow 
18:   aload_1 
19:   invokevirtual cfg.Config.getPort ()I (10) 
22:   sipush 8000 
25:   if_icmplt #38 
28:   aload_1 
29:   invokevirtual cfg.Config.getPort ()I (10) 
32:   sipush 8005 
35:   if_icmple #48 
38:   new <java.lang.Exception> (7) 
41:   dup 
42:   ldc "Invalid port." (11) 
44:   invokespecial java.lang.Exception (java.lang.String) 
47:   athrow 
48:   aload_0 
49:   aload_1 
50:   putfield cfg.Controller.cfg Lcfg/Config; (2) 
53:   aload_0 
54:   aload_1 
55:   invokevirtual cfg.Config.getSignalCount ()I (6) 
58:   newarray <int> 
60:   putfield cfg.Controller.signals [I (3) 
63:   return 

4.2. Test Set Representation and Generation 

Test cases are represented as GP trees; test sets 
correspond to GP individuals, each containing a 
pre-defined number of GP trees. Individuals and 
trees are generated automatically by the ECJ tool, 
in conformity with the constraints imposed in the 
Parameter files. 

 

 
Figure 4. Example GP tree 

The task of defining the number of GP trees 
(test cases) involves identifying all the problem 
blocks in the CFG – i.e. nodes at which execution 
takes a critical branch, making it impossible to 
reach a certain target node once the control flow 
has diverged. The minimum number of test cases 
is equal to the number of distinct control flow 
paths. 

For the abovementioned MUT, the set of 
problem blocks includes blocks 4, 8 and 11 of the 



  
 
CFG depicted in Figure 6 (Basic Instruction 
blocks of subtype “if”) and hence the number of 
GP trees was set as 3 per GP individual. CFG 
definition and interpretation will be described in 
further detail in the next subchapter. 
 The first step involved in the generation of the 
test cases’ source-code is the linearization of the 
GP trees using a depth-first transversal algorithm. 
The tree linearization process yields the ordered 
method call sequence; source-code generation is 
performed by translating the method call sequence 
into test cases using the information encoded into 
each node. The STGP mechanism assures that 
only valid GP trees – i.e. that can be transformed 
into compilable test cases – were generated. 
 Figure 4 contain the an example GP tree 
generated by ECJ for this case study’s MUT, and 
Figure 5 depicts the corresponding test case’s 
source-code. 

 

 
Figure 5. Example test case 

4.3. Test Set Evaluation and Fitness Definition 

The main objective of this case study was that of 
conducting a successful evolutionary search for a 
test set that achieved full structural coverage – i.e. 
a test set that yields the transversal of all the Java 
bytecode instructions of the MUT. 
 Control-Flow Graphs are used as the 
underlying model for program representation, and 
are built solely with basis on the information 

extracted from the Java bytecode of the test 
object. The evaluation of the quality of a given 
 

 
 

package testCases; 
import testObject.*; 
 
public class MainG0I2T2 { 
        public static void main(String[] args) { 
                try { 
                        Controller controller0 = new Controller(); 
                        Controller controller1 = new Controller(); 
                        Config config2 = controller1.getConfig(); 
                        controller0.reconfigure(config2); 
                        Controller controller3 = new Controller(); 
                        Config config4 = controller3.getConfig(); 
                        int int5 = 4; 
                        config4.setPort(int5); 
                        int int6 = 7999; 
                        config4.addSignal(int6); 
                        controller0.reconfigure(config4); 
                } catch (Exception e) { 
                         System.err.println("MainG0I2T2: " + e); 
}       }       } Initial 
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Figure 6. Method Under Test’s Control-Flow Graph; 
mapping between bytecode instructions, basic 

instruction blocks, basic instruction block subtypes, and 
node numbers in MUT’s CFG 



  

 
 

test set is, therefore, performed by comparing the 
trace information collected by the dynamic 
execution of the MUT against its CFG, with the 
purpose of verifying the coverage thoroughness 
achieved by that test set. The tasks of building the 
CFGs and of instrumenting the MUT’s bytecode 
for basic block tracing and structural event 
dispatch both precede that of evolving test sets, 
and are performed with the aid of the Sofya tool. 
 The CFG building procedure involves 
grouping bytecode instructions into a smaller set 
of Basic Instruction and Call blocks, with the 
intention of easing the representation of the test 
object’s control flow. Additionally, other types of 
blocks which represent virtual operations are 
defined: Entry blocks (e.g.: block 1 in Figure 6), 
Exit blocks (e.g.: 18 to 23), and Return blocks 
(e.g.: 3, 7, 10, 14). These Virtual blocks 
encompass no bytecode instructions, and are used 
to represent certain control flow hypothesis. For 
this case study’s MUT, all the Basic Instruction 
blocks (4, 5, 8, 11, 12, 15) and Call blocks (2, 6, 
9, 13) of the CFG depicted in Figure 6 must be 
transversed in order to attain full structural 
coverage. 
 Instrumentation of the MUT’s classes for 
basic block analysis and structural event dispatch 
enables the observation of the blocks transversed 
during a given program execution; event tracing is 
then performed by automatically executing the 
instrumented MUT using each generated test case 
as an “input”, with the intention of collecting trace 
information with which to derive coverage 
metrics. Relevant trace information includes the 
list of blocks transversed (Hit List) in the MUT’s 
CFG by the execution of each individual test case. 
 In our current approach, the Hit List is 
computed individually for each test case; the GP 
individual’s overall fitness is calculated as the 
percentage of bytecode instructions exercised by 
the whole test set – i.e. the percentage of blocks 
transversed by the execution of all the test cases in 
the test set.  

4.4. Experimental Observations 

 In this experiment, ECJ was configured using 
a single subpopulation of 5 GP individuals, with 
each individual containing 3 GP trees; each run 
stopped if an ideal individual was found or after 

300 generations. The remaining parameters used 
were the Koza-style [19] definitions used in ECJ 
by default: Tournament Selection for 
Reproduction, One-Point Mutation and Sub-Tree 
Crossover, and Half/Full Tree Initialization. 

The best run successfully achieved full 
structural coverage with 11 generations. The 
definition of Ballista-based terminal nodes proved 
to be valuable; in control runs, numerical values 
were generated randomly, and only 80% code 
coverage was achieved after 300 generations. For 
comparison purposes, ECJ was also parameterized 
using random mutation, reproduction, and 
crossover operators. 100% structural coverage 
was also achieved; however, the minimum 
number of generations required to do so was 78. 
 Still, some problems persist. In this 
experiment, it was possible to observe that if full 
structural coverage is not achieved in the initial 
generations, it’s unlikely that it is achieved in that 
run – i.e. as generations evolve, the evolutionary 
search is steered towards a local maximum that 
hinders the possibility of achieving full coverage. 
 This behaviour can be explained by the State 
Problem; the CFG’s problem block 5 is 
paradigmatic. The transversal of this block 
accounts only for 10% of the fitness, and the 
branch that leads to it must be taken at Basic 
Instruction block 4 (sub-type “if”); however, a test 
case requires 5 calls to the Config.addSignal(int signal) 
method of the Config object that will be used as a 
parameter in the MUT for this condition to be 
evaluated favourably. The fitness function 
currently employed provides no guidance for this 
particular class of problems. 

5. Conclusions and Future Work 

This paper presents an evolutionary approach for 
the structural unit-testing of third-party object-
oriented software. Preliminary experiments have 
been carried out and quality solutions have been 
found, proving the pertinence of the approach. 

Future work involves addressing the State 
Problem, by implementing adequate fitness 
functions that can steer the evolutionary search 
towards individual test goals on the test object. 
This can be achieved by the definition of distance-
based metrics [17], which can express how close 
the execution of a test case over the test object is 
to reaching a given test goal.  



  
 

Further research must also be made on the 
topics of easing the user’s task of defining 
assertions for the generated test cases (e.g. by 
minimizing the length of method call sequences), 
and on the usage of a set-typing mechanism for 
mimicking the polymorphic relations that exist 
amongst the test cluster’s classes. 
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Summary. Evolutionary Testing is an emerging methodology for automatically
generating high quality test data. The focus of this paper is on presenting an ap-
proach for generating test cases for the unit-testing of object-oriented programs,
with basis on the information provided by the structural analysis and interpretation
of Java bytecode and on the dynamic execution of the instrumented test object.
The rationale for working at the bytecode level is that even when the source code
is unavailable, insight can still be obtained and used to guide the search-based
test case generation process. Test cases are represented using the Strongly Typed
Genetic Programming paradigm, which effectively mimics the polymorphic relation-
ships, inheritance dependences and method argument constraints of object-oriented
programs.

1 Introduction

Test data selection, generation and optimization deals with locating good test
data for a particular test criterion. However, locating quality test data can be
time consuming, difficult and expensive; automating this process is, therefore,
vital to advance the state-of-the-art in software testing. In the particular case
of unit-testing, individual application objects or methods are tested in an
isolated environment; its goal is to warrant the robustness of the smallest
units of the program under test. Distinct test approaches include functional
(black-box) and structural (white-box) testing. Black-box testing is concerned
with showing the conformity between the implementation and its functional
specification; with white-box testing techniques, test case design is performed
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with basis on the program structure. When white-box testing is performed,
the metrics for measuring the thoroughness of a given test set can be extracted
from the structure of the target object’s source code, or even from compiled
code. Traditional white-box criteria include structural (e.g. statement, branch)
coverage and data-flow coverage. The basic idea is to ensure that all of the
control elements in a program are executed by a given test set, providing
evidence of the quality of the testing activity.

The evaluation of test data suitability using structural criteria generally
requires the definition of an underlying model for program representation –
usually a control-flow graph (CFG). The observations needed to assemble
the metrics required for the evaluation can be collected by abstracting and
modeling the behaviours programs exhibit during execution, either by static
or dynamic analysis techniques. Static analysis involves the construction and
analysis of an abstract mathematical model of the system (e.g. symbolic exe-
cution); in contrast, dynamic analysis involves executing the actual test object
and monitoring its behaviour. Dynamic monitoring of structural entities can
be achieved by instrumenting the test object, and tracing the execution of the
structural entities transversed during execution. Instrumentation is performed
by inserting probes in the test object; in Java software, this operation can be
effectively performed at the Java bytecode level.

Java bytecode is an assembly-like language that retains much of the high-
level information about the original source program [1]. Class files (i.e. com-
piled Java programs containing bytecode information) are a portable binary
representation that contains class related data, such as information about
the variables and constants and the bytecode instructions of each method.
Given that the target object’s source code is often unavailable, working at the
bytecode level allows broadening the scope of applicability of software testing
tools; they can be used, for instance, to perform structural testing on third-
party and COTS Java components. In addition, bytecode can be seen as an
intermediate language, so the analysis performed at this level can be mapped
back to the high-level language that generated the bytecode.

The focus of this work is precisely on the generation test data by employing
evolutionary search techniques, with basis on the information provided by the
structural analysis and interpretation of the Java bytecode and on the dynamic
execution of the instrumented test object. The application of evolutionary
algorithms to test data generation is often referred to as evolutionary testing
[2, 3]. In evolutionary testing, meta-heuristic search techniques are employed
to select or generate test data. The search space is the input domain of the test
object, and the problem is to find a (minimal) set of test cases that satisfies
a certain test criterion.

In the particular case of object-oriented programs, a sequence of method
invocations is required to cover the test goal and the participating objects
may have to be put into particular states in order for the test scenario to
be processed in the desired way. The most pressing challenge faced by search-
based test case generation is the state problem [4], which occurs with methods
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that exhibit state-like qualities by storing information in internal variables.
Such variables are hidden from the optimization process, because they are
protected from external manipulation using access modifiers (e.g. getter and
setter methods). The only way to change their values is through execution of
statements that perform assignments to them.

Evolutionary algorithms have been applied successfully to the search for
quality test data in the field object-oriented unit-testing. Approaches have
been proposed that focus on the usage of Genetic Algorithms [5], Ant Colony
Optimization [6], Universal Evolutionary Algorithms [7], Genetic Program-
ming [8], and on testing Container classes [9]. Of particular interest to our
research is the work of Wappler et. al [10, 11], who proposed a methodology
in which potential solutions are encoded using the Strongly Typed Genetic
Programming (STGP) paradigm [12], with method call sequences being rep-
resented by STGP trees; these trees are able to express the call dependences
of the methods that are relevant for a given test object. The STGP mech-
anism assures that only compilable programs are generated; to account for
polymorphic relationships which exist due to inheritance relations, the STGP
types used by the function set are specified in correspondence to the type
hierarchy of the test cluster classes. The fitness function does need, however,
to incorporate a penalty mechanism for test cases which include method call
sequences that throw exceptions during the program execution – i.e. runtime
exceptions.

2 Our approach for performing evolutionary structural
unit-testing on third-party object-oriented software

This chapter presents the rationale and introduces our methodology for per-
forming evolutionary structural unit-testing on third-party object-oriented
software. Figure 1 summarizes the main phases of the testing process; the
sub-chapters that follow describe the process in detail.

2.1 Static Analysis

Firstly, the test cluster’s Java bytecode analysis is performed; it is at this
step that the function set is defined, and hence it must precede the test set
evolving and evaluation phases. The function set defines the restrictions that
must be imposed to STGP nodes; specifically, they identify the children and
return types of each node.

The first task is that of extracting the list of public methods from the test
object’s bytecode by means of the Java Reflection API; this list comprises
the set of methods under test (MUTs) that are to be the subject of the
unit-testing process. Secondly, the Extended Method Call Dependence Graph
(EMCDG), which describes the method call dependences involved in the test
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1. Static Analysis
1.1. Test Cluster Analysis
1.2. Test Object Analysis
1.3. CFG Definition
1.4. Test Object Instrumentation

2. foreach Generation
2.1. CFG Nodes’ Dynamic Weight Computation Phase
2.2. Test Case Evolving Phase
2.2.1. foreach Individual
2.2.1.1. Test Case Generation
2.2.1.1.1. Genetic Programming Tree Generation
2.2.1.1.2. Genetic Programming Tree Linearization
2.2.1.1.3. Test Case Generation
2.2.1.1.4. Test Case Compilation

2.2.1.2. Test Case Evaluation
2.2.1.2.1. Test Case Execution
2.2.1.2.2. Event Tracing
2.2.1.2.3. Test Case Fitness Computation

Fig. 1. Methodology Overview.

case construction, is computed. Finally, the EMCDG is evaluated in order to
define the function set.

For the definition of terminal nodes, the Ballista fault injection methodol-
ogy [13] is employed. With the Ballista methodology, testing is performed by
passing combinations of acceptable, boundary and exceptional inputs as pa-
rameters to the test object. The rationale for this inference is the perception
that this constitutes a common programming pattern. This approach allows to
effectively reduce the search space, which has been proved to improve results
in many cases [14].

Control-flow graphs are used as the underlying model for program repre-
sentation, and are built solely with basis on the information extracted from
the Java bytecode of the test object. The CFG building procedure involves
grouping bytecode instructions into a smaller set of Basic Instruction and Call
CFG nodes, with the intention of simplifying the representation of the test
object’s control flow. Additionally, other types of CFG nodes, which represent
virtual operations, are defined: Entry nodes, Exit nodes, and Return nodes.
These virtual nodes encompass no bytecode instructions; they are used to rep-
resent certain control flow hypothesis. Instrumentation of the MUTs’ bytecode
for basic block analysis and structural event dispatch enables the observation
of the CFG nodes transversed during a given program execution. Both the
process of building the CFG and of instrumenting the MUT’s are achieved
with the aid of Sofya [15], a dynamic Java bytecode analysis framework.

2.2 Test Case Generation

For evolving the set of test cases, the ECJ package [16] is used. Test cases
are evolved using the STGP paradigm, which effectively mimics the inheri-
tance and polymorphic properties of object-oriented programs and enables the
maintenance of call dependences when applying tree construction, mutation
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or crossover; the types specify which nodes can be used as a child of a node
and which nodes can be exchanged between individuals.

Test cases are represented as GP trees; each GP individual contains a single
GP tree. The first step involved in the generation of the test cases’ source-code
is the linearization of the GP trees using a depth-first transversal algorithm.
The tree linearization process yields the ordered method call sequence; source-
code generation is performed by translating this sequence into test cases using
the information encoded into each node.

2.3 Test Case Evaluation

The evaluation of the quality of feasible test cases (i.e. those that do not
throw runtime exceptions) is performed by comparing their trace information
with the MUT’s CFG. Event tracing is carried out by automatically executing
the instrumented MUT using each generated test case as an “input”; relevant
trace information includes the Hit List - i.e. the list of structural entities (CFG
nodes) transversed. For unfeasible test cases, the fitness of the individual is
calculated in terms of the distance between the runtime exception index (i.e.
the position of the instruction that threw the exception) and the method call
sequence length. Also, an unfeasible penalty constant is added to the final
fitness value, in order to favour feasibility.

The algorithm for calculating the fitness of individuals is depicted in Figure
2. The CFG nodes missing list is initialized as being the complete CFG nodes
list; when a particular CFG node is exercised by a test case, it is removed from
the missing list. New test cases are generated as long as there are targets to
be covered or a maximum number of generations is reached.

1. if test case is unfeasible
1.1. compute method call distance (mcd)
1.1.1. rti = get runtime exception index
1.1.2. mcsl = get method call sequence length
1.1.3. mcd = mcsl - rti

1.2. fitness = (mcd * 100) / mcsl + UnfeasiblePenaltyConstant
2. else if test case is feasible
2.1. totalWeight = 0
2.2. foreach node in hitList
2.2.1. totalWeight += weightOf(node)
2.2.2. incrementHitCount(node)

2.3. fitness = totalWeight / sizeOf(hitList)
2.4. cfgNodesMissingList -= hitList
2.5. if isEmpty(cfgNodesMissingList)
2.5.1. found ideal individual

Fig. 2. Pseudo-code for the test case evaluation process.

The transversal of certain problem nodes requires the generation of com-
plex test cases, which define elaborate state scenarios; alas, this often entails
the generation of longer and more intricate method call sequences, which are
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more prone to throw runtime exceptions. Therefore, if unfeasible test cases
are blindly penalised in favour of feasible ones the search landscape will be
narrowed, thus hindering the possibility of transversing problem nodes. This
issue was addressed by assigning weights to the CFG nodes; the higher the
weight of a given node the higher the cost of exercising it, and hence the
higher the cost of transversing the corresponding control-flow path.

The weights of every node are re-evaluated every generation in accordance
to the algorithm depicted in Figure 3. With this approach, at the beginning of
each generation the nodes’ weight is firstly increased (worsened) to the direct
proportion of the number of times that node was exercised by the individuals
of the previous generation – with the intention of rising the cost of transversing
frequently hit nodes; next, the nodes’ weight is decreased in a weight decrease
constant value – and consequently, nodes with a low hit count will be favoured;
the nodes’ final weight is calculated as the average of its own weight and that
of its successors – so as to lower the cost of nodes that lead to less explored
paths.

1. foreach node in cfg
1.1. totalSucessorsWeight = 0
1.2. weightOf(node) *= 1 + (hitCount(node) / sizeOf(population))
1.3. weightOf(node) *= WeightDecreaseConstant
1.4. foreach successorNode in successorNodesListOf(node)
1.4.1. totalSucessorsWeight += weightOf(successorNode)
1.4.2. incrementSucessorCount(node)

1.5. weightOf(node) = (weightOf(node) + totalSucessorsWeight)
/ (sizeOf(successorNodesListOf(node)) + 1)

2. normalizeNodeWeights(cfg)

Fig. 3. Pseudo-code for the CFG nodes weight computation.

The dynamic re-evaluation of the CFG nodes’ weight presents the obvious
advantage of steering the evolutionary search towards the transversal of less
explored (or unexplored) nodes and paths; on the other hand, it worsens the
fitness of test cases that exercise recurrently transversed CFG nodes. In fact
– and depending on the value of the unfeasible penalty constant – unfeasible
test cases may be selected for breeding at certain points of the evolutionary
search, thus favouring diversity. This methodology intends to address a pitfall
observed in preliminary experiments, which indicated that to strong a bias to-
wards the generation of feasible test cases hinders the possibility of exercising
problem CFG nodes, since the search gets stuck at a local maximum.

3 Experimental Study

In order to validate and clarify our approach, experiments were performed on
the custom-made “Controller and Config” test cluster proposed in [11], using
the Controller.reconfigure(Config) public method as the MUT.
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The test cluster analysis phase yielded the function set described in
[11]; the terminal set was defined in accordance to the Ballista methodol-
ogy, and included 13 STGP nodes containing constant integer values: Tn
= {Integer.MAXVALUE, Integer.MINVALUE, 0, 4, 5, 6, 7999, 8000, 8001,
8004, 8005, 8006}. We emulated the Ballista methodology by identifying the
definition of constants in the test object’s bytecode, depicted in Figure 4
(left); namely, instructions at positions 4, 22 and 32 (iconst 5; sipush 8000;
sipush 8005) push the constant integer values 5, 8000 and 8005 onto the top
of the operand stack. These values were considered to be potential bound-
aries for numerical condition evaluation – hence their inclusion and that of
their immediate neighbours (4, 6; 7999, 8001; 8004, 8006). The same heuris-
tic was employed for including Integer.MAXVALUE, Integer.MINVALUE and 0
numerical values into Tn.

The CFG definition phase yielded the graph depicted in Figure 4 (rigth).
Attaining full structural coverage of the MUT required transversing all the
Basic Instruction (4, 5, 8, 11, 12, 15) and Call (2, 6, 9, 13) CFG nodes.

The evolutionary parameters for this experiment were defined as follows.
The CFG nodes were initialized with a weight of 200; the weight decrease
constant was set to 0.9, and the unfeasible penalty constant was defined as
100. ECJ was configured using a single population of 10 GP individuals. The
breeding pipeline included strongly-typed versions of “Subtree Crossover” and
“Point Mutation”, and a simple reproduction operator; they were chosen with
a probability of 0.6, 0.2 and 0.2 respectively. Tournament selection, with a size
of 2.0, was employed as the selection method. The remaining configurations
used were the Koza-style [17] parameters defined in ECJ by default. The
search stopped if an ideal individual was found or after 200 generations.

Full structural coverage was achieved in all of the runs in an average of
27.6 generations (Table 1). The worst run found the ideal individual in 91
generations (seed 0), whilst in the best one all of the CFG nodes of the MUT
were exercised in 4 generations (seeds 4 and 9).

Table 1. Number of generations required to find an ideal individual.

Seed 0 1 2 3 4 5 6 7 8 9 Average

normal 91 29 5 29 49 13 36 4 16 4 27.6
random 32 42 96 86 198 76 46 n/a n/a 92 83.5

It could, however, be observed that 90% code coverage was achieved in
an average of 2.3 generations; the remaining search process was spent trying
to transverse problem CFG node 5. In fact, the CFG node 5 is paradigmatic
of a problem node: its transversal accounts for only 10% of the fitness, and
the branch that leads to it must be taken at Basic Instruction node 4 (sub-
type if); however, a test case requires 5 calls to the Config.addSignal(int
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Fig. 4. Bytecode instructions (left) and CFG (right) for the
Controller.reconfigure(Config) MUT of the “Controller and Config” test
cluster.

signal) method of the Config object that will be used as a parameter in the
MUT for this condition to be evaluated favourably.

Our methodology does, nevertheless, provide guidance towards the transver-
sal of less explored paths and allows for unfeasible test cases to be produced
at certain points of the evolutionary search, thus increasing diversity and
promoting the definition of more complex scenarios. This phenomenon was
particularly visible in the longest run, with seed 0 (Figure 5). In the ini-
tial generations, a high percentage of unfeasible test cases was produced; the
search was then steered towards the generation of feasible test cases. 90%
structural coverage was achieved in the 5th generation, with only CFG node
5 missing. Around generations 45-50, the weight of feasible test cases crossed
the threshold defined by the unfeasible constant, thus allowing for unfeasible
test cases to be selected for breeding.

The usefulness of the our methodology is particularly visible if the results
are compared to those obtained using random search (Table 1). In order to
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Fig. 5. Percentage of unfeasible test cases per generation for the longest running
evolutionary search.

perform random search, the fitness was set to a constant value (in order to
deprive the evolutionary search from guidance) with the remaining config-
urations and parameters being left unchanged. 10 runs were executed. Full
structural coverage wasn’t achieved in 20% of them; in the remaining, the
average number of generations required to find an ideal individual was 83.5.

Finally, a battery of 10 runs was performed to validate the adequateness
of using the Ballista methodology. In order to do so, the Tn terminal set was
replaced a random integer value generator; the remaining configurations were
left unaltered. In 6 of the 10 runs, 80% code coverage was achieved – CFG
nodes 13 and 15 were never transversed; in the remaining 4 runs, the results
yielded 70% code coverage – CFG nodes 5, 13 and 15 weren’t exercised.

4 Conclusions and Future Work

This paper presents an evolutionary approach for the structural unit-testing
of third-party object-oriented software. Relevant contributions include: the
presentation of our methodology and underlying framework; the definition of
a fitness function that effectively uses the insight obtained from the analysis of
the test object’s Java bytecode for search guidance; the proposal of method-
ologies for the dynamic re-evaluation the CFG nodes’ weight; approaches for
reducing the input domain of integer function parameter values. Experiments
have been carried and quality solutions have been found, proving the perti-
nence of the approach and encouraging further studies.

Future work involves further research on the fitness function and domain
reduction strategies, as well as on the minimization of the length of method call
sequences so as to ease the user’s task of defining assertions for the generated
test cases, and on the identification and elimination of methods that do not
alter the parameters’ state from test cases’ method call sequences.
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