
Master in Informatics and Systems

mCrash: a Framework for the Evaluation of

Mobile Devices’ Trustworthiness Properties

José Carlos Bregieiro Ribeiro

Departament of Informatics Engineering

School of Sciences and Technology

University of Coimbra, Portugal

October 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IC-online

https://core.ac.uk/display/61795989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Organization:

Departament of Informatics Engineering, School of Sciences and Technology,
University of Coimbra

Title:

mCrash: a Framework for the Evaluation of Mobile Devices’ Trustworthiness
Properties

Author:

José Carlos Bregieiro Ribeiro

Supervising Teacher:

Mário Alberto Zenha-Rela

Period:

2005/2008

i

ii

Abstract

Mobile devices, such as Smartphones, are being used virtually by every mod-
ern individual. Such devices are expected to work continuously and flawlessly
for years, despite having been designed without criticality requirements.
However, the requirements of mobility, digital identification and authenti-
cation lead to an increasing dependence of societies on the correct behaviour
of these “proxies for the individual”.

The Windows Mobile 5.0 release has delivered a new set of internal state
monitoring services, centralized into the State and Notifications Broker. This
API was designed to be used by context-aware applications, providing a com-
prehensive monitoring of the internal state and resources of mobile devices.
We propose using this service to increase the dependability of mobile appli-
cations by showing, through a series of fault-injection campaigns, that this
novel API is very effective for error propagation profiling and monitoring.

Keywords: robustness testing, dependability evaluation, State and No-
tifications Broker, Windows Mobile, COTS.

iii

iv

List of Publications

Publications originated from this Thesis:

• José Carlos Bregieiro Ribeiro and Mário Zenha-Rela. “mCrash: a
Framework for the Evaluation of Mobile Devices’ Trustworthiness Prop-
erties”, in Proceedings of the Conference on Mobile and Ubiquitous Sys-
tems (CSMU 2006), pages 163–166. ISBN:972-8692-29-3. Guimarães,
Portugal, June 2006.

• José Carlos Bregieiro Ribeiro, Bruno Miguel Lúıs, and Mário Zenha-
Rela. “Error propagation monitoring on windows mobile-based de-
vices”, in Proceedings of the Third Latin-American Symposium on
Dependable Computing (LADC 2007), volume 4746/2007 of Lecture
Notes in Computer Science, pages 111–122. ISBN:978-3-540-75293-6.
Morelia, Mexico, September 2007.

Other Publications:

• José Carlos Bregieiro Ribeiro. “Search-Based Test Case Generation
for Object-Oriented Java Software Using Strongly-Typed Genetic Pro-
gramming”, in Proceedings of the GECCO ’08, pp. 1819-1822, Gradu-
ate Student Workshop. Atlanta, Georgia, USA, July 2008

• José Carlos Bregieiro Ribeiro, Mário Zenha-Rela and Francisco Fernán-
dez de Vega. “Strongly-Typed Genetic Programming and Purity Anal-
ysis: Input Domain Reduction for Evolutionary Testing Problems”, in
Proceedings of the GECCO ’08, pp. 1783–1784, 10th Annual Con-
ference on Genetic and Evolutionary Computation. Atlanta, Georgia,
USA, July 2008.

• José Carlos Bregieiro Ribeiro, Mário Zenha-Rela and Francisco Fernán-
dez de Vega. “A strategy for evaluating feasible and unfeasible test
cases for the evolutionary testing of object-oriented software”. in Pro-
ceedings of the 3rd International Workshop on Automation of Software

v

Test (AST ’08), pp. 85-92, 30th International Conference on Software
Engineering (ICSE ’08), Leipzig, Germany, May 2008.

• José Carlos Bregieiro Ribeiro, Mário Zenha-Rela and Francisco Fernán-
dez de Vega. “An Evolutionary Approach For Performing Structural
Unit-Testing On Third-Party Object-Oriented Java Software”, in Pro-
ceedings of the NICSO 2007, pp. 379-388, Vol. 129/2008, Studies
in Computational Intelligence, International Workshop on Nature In-
spired Cooperative Strategies for Optimization. Acireale, Italy, Novem-
ber 2007.

• José Carlos Bregieiro Ribeiro, Mário Zenha-Rela and Francisco Fernán-
dez de Vega. “eCrash: a Framework for Performing Evolutionary Test-
ing on Third-Party Java Components”, in Proceedings of the I Jornadas
sobre Algoritmos Evolutivos y Metaheuristicas (JAEM), pp. 137-144,
II Congreso Español de Informática (CEDI). ISBN: 978-84-9732-593-6.
Zaragoza, Spain, September 2007.

• José Carlos Bregieiro Ribeiro, Francisco Fernández de Vega and Mário
Zenha-Rela. “Using Dynamic Analysis of Java Bytecode for Evolution-
ary Object-Oriented Unit Testing”, in Proceedings of the 8th Workshop
on Testing and Fault Tolerance (WTF), pp. 143-156, 25th Brazilian
Symposium on Computer Networks and Distributed Systems (SBRC).
ISBN: 85-766-0119-1. Belém, Brazil, May 2007.

vi

Acknowledgements

I would like to start expressing my deepest gratitude to Professor Mário
Zenha-Rela, for his availability, his support, his enthusiasm.

I would also like to thank Bruno Miguel Luis for his companionship,
and Professor Francisco Fernández de Vega for his contribution to our latest
research.

Finally, I also take this opportunity for thanking mum, dad, and my little
brother, and for sending a big kiss to my girlfriend Marta.

vii

viii

Contents

1 Introduction 1

2 Background and Related Work 3
2.1 Mobile Devices and Context-Awareness 3
2.2 Dependability and Software Fault Injection 4
2.3 The State and Notifications Broker 6

3 Methodology and Framework 9
3.1 Faultload Database . 9
3.2 Input Generation and Fault Injection Module 11
3.3 Postcondition Checker . 12
3.4 Execution Manager . 12

4 Experimental Studies 13
4.1 Targets and Methodology . 13
4.2 Results and Observations . 14

5 Conclusions 19
5.1 On-Going and Future Work 20

A Publications 27
A.1 “mCrash: a Framework for the Evaluation of Mobile Devices’

Trustworthiness Properties” (CSMU 2006) 29
A.2 “Error propagation monitoring on windows mobile-based de-

vices” (LADC 2007) . 35

ix

x

List of Figures

3.1 mCrash’s framework scheme. 10

List of Tables

2.1 Base State and Notification Properties, categorized by Infor-
mation Type. 8

4.1 Data Types and corresponding Test Cases that threw late ex-
ceptions. Late Exception Types and corresponding number of
occurrences. 15

4.2 Data Types and corresponding Test Cases that threw immedi-
ate exceptions. Immediate Exception Types and correspond-
ing number of occurrences. 16

xi

xii

List of Abbreviations

API Application Program Interface

SNB State and Notifications Broker

OEM Original Equipment Manufacturer

IDE Integrated Development Environment

MUT Module Under Test

OO Object-Oriented

STGP Strongly-Typed Genetic Programming

xiii

xiv

Chapter 1

Introduction

The philosophy for mobile devices has been evolving towards the “wallet”
paradigm: they contain important personal information, and virtually every
adult carries one. They are true “proxies for the individual” [16]. Addition-
ally, people are getting used to take care of their business affairs on these
pervasive devices, since they are becoming increasingly more sophisticated
and are able to handle most basic tasks.

However, not all mobile devices were designed with enterprise class se-
curity in mind, and even components which were specifically designed for
mission-critical applications may prove to have problems if used in a differ-
ent context. Retrofitting trust in any technology is considerably harder than
building it in from the start, especially when users have already perceived it
as invasive, intrusive, or dangerous.

Software behaviour is a combination of many factors: which particular
data states are created, what paths are exercised, how long execution takes,
what outputs are produced, and so forth [14]. An operating system is, itself,
a dynamic entity [32], as different services have diverse robustness properties;
the way in which software makes use of those services will have impact on the
robustness of their operations. What’s more, mobile devices – such as Pocket
PCs and Smartphones – are expected to work continuously and flawlessly
for years, with varying energy and in harsh environmental conditions; this
requires stringent internal state and resource monitoring.

One of the major problems in dependability evaluation is the difficulty of
observing what happens inside the system that is submitted to stress. This
problem is exacerbated when the source code of the system under evaluation
is unavailable; alas, this is the most common situation.

The Windows Mobile 5.0 release has delivered a new Application Program
Interface (API) with a set of services targeting context-aware applications,
the State and Notifications Broker (SNB) [33], which aims to provide com-

1

2

prehensive monitoring of resources. It is clear that automated testing of
black-box components requires (or, at least, can be greatly improved by)
built-in system support; this service, while not providing true white-box
testing tools, makes the system transparent enough to allow for a semantic-
oriented monitoring of relevant state-variables.

One of the key ideas presented in this thesis is to use the internal moni-
toring services provided by the SNB for error propagation profiling and mon-
itoring. Although most of the information provided by the SNB could be
obtained by other means, this tool enables the monitoring of a standard set
of relevant system variables defined by the API itself, in a straightforward
manner. We also aim to contribute to the issue of interpreting the raw data
produced into useful information – i.e., into insight.

Chapter 2

Background and Related Work

We propose using Windows Mobile 5.0’s SNB API for error monitoring and
propagation profiling; the SNB centralizes system state in documented lo-
cations and distributes change notifications to interested parties using a
publish-subscribe model. It provides built-in monitoring services to a large
number of internal state variables, which constitutes a means for keeping an
eye on undesirable state value modifications.

The ideas that lead to this approach were inspired by previous works of
other and ourselves: the methodology for automated testing of component
interfaces, based on parameter data types instead of component functionality,
was inspired on Ballista [15]; the error propagation analysis follows the work
of [14], by extending the degree of observability available; the fault-injection
execution manager was based on the RT-Xception [10].

The following sections provide an overview of relevant concepts and re-
sources.

2.1 Mobile Devices and Context-Awareness

Nowadays, personalization focuses on creating information services that de-
liver “the right information at the right time, in the right place, in the right
way, to the right person” [28].

Mobile information services must be designed, specifically, for the context
of their use and to meet mobile users’ needs. The current design philosophy
for mobile devices has been described as having the “Swiss Army knife”
[29] approach: include as much functionality as possible into a single de-
vice. Popular usage scenarios include navigational assistance, task-specific
cognitive assistance, access to messaging information, access to schedule in-
formation, memory aids and reminders, and meeting and experience sharing

3

4 CHAPTER 2. BACKGROUND AND RELATED WORK

tools.
Mobile devices function in a very fluid environment, subject to frequent

changes. It thus becomes important for an application to know what state
the device is in at any one time. Context information allows for minimization
of the number of steps required to carry out a specific action and this, in turn,
depends on adapting content and application functionality. Unlike desktop
systems, where functionality often takes precedence over interaction time,
mobile devices’ small size and limited input facility lower the chances that
users will complete tasks requiring a long interaction sequence. Context-
awareness aims to make interaction with devices easier.

Context can be categorized according to the following items [8]:

• Computing context – e.g., network connectivity, communication costs,
and communication bandwidth, and nearby resources such as printers,
displays, and workstations.

• User context – e.g., as the user’s profile, location, people nearby, even
the current social situation.

• Physical context – e.g., lighting, noise levels, traffic conditions, and
temperature.

• Time context – e.g., time of a day, week, month, and season of the year.

Among the problems that may hinder context-aware devices and applica-
tions, Pascoe [22] identifies resource hungriness, high development cost and
the diversity of computing environments as being the most common.

2.2 Dependability

and Software Fault Injection

Dependability can be defined as the trustworthiness of a computing system,
which allows reliance to be justifiably placed on the service it delivers [4];
it is related not only to correct behaviour under normal circumstances, but
also – and most importantly – to reliability in the presence of errors.

The applications envisaged by our approach are not mission-critical –
these are not the targets of the Windows Mobile platform. In fact, not all
mobile devices are designed with enterprise class security in mind, and even
components which were specifically designed for mission-critical applications
may prove to have problems if used in a different context.

2.2. DEPENDABILITY AND SOFTWARE FAULT INJECTION 5

Retrofitting trust in any technology is considerably harder than building
it in from the start [16], especially when users have already perceived it as
invasive, intrusive, or dangerous. This work’s focus is precisely on trustwor-
thiness – i.e., on contributing for the reliable and secure behaviour of standard
personal applications such as those used by mobile devices for e-commerce
or personal identification. The key dependability attribute we are interested
in is the robustness of software, formally defined as the degree to which a
software component functions correctly in the presence of exceptional inputs
or stressful environmental conditions [1].

One of the main causes of failure is the interactions of different software
components in the system which are often unknown at development time,
such as the specific operating system under which the application is running,
the set of services available, the drivers, and other applications.

The reliability of software is tested by exercising it with a consensually
agreed workload when benchmarking different systems [3]. When absolute
reliability figures are required, a tailored workload is selected to perform
robustness tests to evaluate the different services offered by the system. There
are two main categories of software testing techniques used to pinpoint faults
[15]:

• White-box, or structural, testing – useful for attaining high test cover-
age of programs. Typically focuses on the control flow of a program,
rather than on the handling of exceptional data values.

• Black-box, or behavioural, testing – designed to demonstrate correct
response to various input values regardless of the software implementa-
tion. It is more appropriate for robustness testing, and is the preferred
approach whenever the source code is not available [7].

The approach we are interested in is a black-box one, as we aim to test
the robustness of the software. Robustness testing does not claim to report
the number of software defects; rather, it intends detect opportunities for
obtaining faulty responses due to robustness problems within the software
being tested.

The key idea behind black-box testing is that tests are based on the values
of parameters – test cases are built according to their data types – and not
on the implementation details, which may even be unavailable because access
to source code is required.

There are several research works on the evaluation the robustness of oper-
ating systems, with drivers being identified as the major source of OS failures
([9, 21, 30]). The effects of driver errors were also studied in [2, 11, 14].

6 CHAPTER 2. BACKGROUND AND RELATED WORK

Such was also the goal of the work presented in [3], where bit-flips were
used to emulate errors; instead, we focus on data level errors flowing through
the different module interfaces. This is also the approach followed in [14].

Of particular interest is the work in [15], where the Ballista methodology
for the automated testing of component interfaces is presented. Its main con-
tribution is the proposal for an object-oriented approach based on parameter
data types instead of component functionality, thus eliminating the need for
function-specific test scaffolding.

Our work is in line of the work performed by [14], but extending the
observability available: while in their work the error propagation analysis
was limited to the interface between components, we delve deeper into the
system’s internal state by using the information made available by the SNB.

2.3 The State and Notifications Broker

The focus of our research is on the monitoring and profiling of system be-
haviour under abnormal circumstances and, in particular, error propagation.
It is clear that automated testing of black box components requires – or can
be greatly improved – with built-in system support.

The Windows Mobile 5.0 operating system has centralised its state in-
formation into a single entity, the State and Notifications Broker (SNB)1 –
whether that information is related to the device itself or to the standard
Windows Mobile 5.0 applications. It provides a standard architecture for
monitoring state values for changes and for distributing change notifications
to the interested parties using a publish-subscribe model, thus making it un-
necessary to hunt down a separate function or API for each individual state
value. Also, prior to the introduction of the SNB API, determining a specific
state value often required several function calls and additional logic.

Error monitoring and profiling based on reports from the Windows SNB
can greatly reduce the difficulty of collecting the internal system state in
this platform. This service, while not providing a true white-box approach,
such as control flow, makes the system transparent enough to allow for a
semantically-oriented monitoring of relevant state-variables.

Each state value is available either through native or managed code: na-
tive code provides direct access to the behaviours and capabilities of the
platform using the C or C++ languages, but the developer is responsible for
handling the details involved in interacting with the platform; managed code
puts a greater focus on development productivity by encapsulating details
within class libraries.

1http://msdn2.microsoft.com/en-us/library/aa455748.aspx [cited: 2008/10/02]

2.3. THE STATE AND NOTIFICATIONS BROKER 7

For the managed code developers, the .NET Compact framework includes
more than a hundred pre-defined static base State and Notification Proper-
ties2 (Table 2.1) that represent the available state values; in addition, Orig-
inal Equipment Manufacturers (OEMs) are free to add more values, as the
underlying implementation of the SNB uses the registry as the data store.

The base State and Notification Properties encompass information on the
system state, phone, user, tasks and appointments, connections, messages,
media player and time. To access the present value of a given property,
managed-code developers simply access the SystemState property that cor-
responds to the state value of their interests: to receive state value change no-
tifications, an application must simply create an instance of the SystemState
class and pass the appropriate SystemProperty enumeration that identifies
the value of interest, and attach a delegate to the new SystemState instance’s
Changed event.

Still, some problems persist. Firstly, there is no standard way for third-
party software companies to expose their own properties in the SNB. Sec-
ondly, not all the device’s properties are exposed, although registry-based
custom-made states can be implemented to extend the default functionality.
Thirdly, even though C# managed code is easier to use, it includes reduced
functionality when compared to native C++ code.

2http://msdn2.microsoft.com/en-us/library/aa455750.aspx [cited: 2008/10/02]

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Information Types Base State and Notification Properties
System State ActiveApplication; ActiveSyncStatus; CameraPresent; CarKitPresent;

CradlePresent; DisplayRotation; HeadsetPresent; KeyboardPresent; Power-
BatteryBackupState; PowerBatteryBackupStrength; PowerBatteryState;
PowerBatteryStrength

Message MessagingActiveSyncAccountName; MessagingActiveSyncEmailUn-
read; MessagingLastEmailAccountName; MessagingMmsAccountName;
MessagingMmsUnread; MessagingOtherEmailUnread; MessagingSm-
sAccountName; MessagingSmsUnread; MessagingTotalEmailUnread;
MessagingVoiceMail1Unread; MessagingVoiceMail2Unread; Messag-
ingVoiceMailTotalUnread

Calendar CalendarAppointment; CalendarAppointmentBusyStatus; CalendarAp-
pointmentCategories; CalendarAppointmentEndTime; CalendarAppoint-
mentHasConflict; CalendarAppointmentLocation; CalendarAppoint-
mentStartTime; CalendarAppointmentSubject; CalendarEvent; Calen-
darEventBusyStatus; CalendarEventCategories; CalendarEventEndTime;
CalendarEventHasConflict; CalendarEventLocation; CalendarEventStart-
Time; CalendarEventSubject; CalendarEventSubject; CalendarHome-
ScreenAppointment; CalendarHomeScreenAppointmentBusyStatus;
CalendarHomeScreenAppointmentCategories; CalendarHomeScreenAp-
pointmentEndTime; CalendarHomeScreenAppointmentHasConflict;
CalendarHomeScreenAppointmentLocation; CalendarHomeScreenAp-
pointmentStartTime; CalendarHomeScreenAppointmentSubject;
CalendarNextAppointment; CalendarNextAppointmentBusyStatus;
CalendarNextAppointmentCategories; CalendarNextAppointmentEnd;
CalendarNextAppointmentHasConflict; CalendarNextAppointmentLoca-
tion; CalendarNextAppointmentStart; CalendarNextAppointmentSubject;
TasksActive; TasksDueToday; TasksHighPriority; TasksOverdue

Media MediaPlayerAlbumTitle; MediaPlayerTrackArtist; MediaPlayerTrackBi-
trate; MediaPlayerTrackGenre; MediaPlayerTrackNumber; MediaPlayer-
TrackTimeElapsed; MediaPlayerTrackTitle

Phone Phone1xRttCoverage; PhoneActiveCallCount; PhoneBlockedSim;
PhoneCallCalling; PhoneCellBroadcast; PhoneLine1Selected; Phone-
Line2Selected; PhoneMultiLine; PhoneNoService; PhoneProfileName;
PhoneSearchingForService; PhoneInvalidSim; PhoneNoSim; Phon-
eRadioOff; PhoneRadioPresent; PhoneRingerOff; PhoneRoaming;
PhoneSignalStrength; PhoneSimFull; SpeakerPhoneActive; PhoneCall-
Barring; PhoneCallForwardingOnLine1; PhoneCallForwardingOnLine2;
PhoneCallOnHold; PhoneCallTalkingv; PhoneConferenceCall; PhoneIn-
comingCall; PhoneMissedCall; PhoneMissedCalls; PhoneOperatorName;
PhoneProfile;

Connections ConnectionsBluetoothDescriptions; ConnectionsCellularCount; Connec-
tionsCellularDescriptions; ConnectionsCount; ConnectionsDesktopCount;
ConnectionsDesktopDescriptions; ConnectionsModemCount; Connections-
ModemDescriptions; ConnectionsNetworkAdapters; ConnectionsNetwork-
Count; ConnectionsNetworkDescriptions; ConnectionsProxyCount; Con-
nectionsProxyDescriptions; ConnectionsUnknownCount; ConnectionsUn-
knownDescriptions; ConnectionsVpnCount; ConnectionsVpnDescriptions;
PhoneActiveDataCall; PhoneGprsCoverage; PhoneHomeService

Time Date; Time

User OwnerEmail; OwnerName; OwnerNotes; OwnerPhoneNumber; PhoneIn-
comingCallerContact; honeIncomingCallerContactPropertyID; PhoneIn-
comingCallerContactPropertyName; PhoneIncomingCallerName; PhoneIn-
comingCallerNumber; PhoneLastIncomingCallerContact; PhoneLastIncom-
ingCallerContactPropertyIDv; PhoneLastIncomingCallerContactProperty-
Name; PhoneLastIncomingCallerName; PhoneLastIncomingCallerNumber;
PhoneTalkingCallerContact; PhoneTalkingCallerContactPropertyID;
PhoneTalkingCallerContactPropertyName; PhoneTalkingCallerName;
PhoneTalkingCallerNumber

Table 2.1: Base State and Notification Properties, categorized by Information
Type.

Chapter 3

Methodology and Framework

In order to access the usefulness of the SNB for error propagation monitoring
and profiling, we have developed a prototype general-purpose software testing
tool – mCrash – that allowed us to automate the testing process. This section
describes this framework and contextualizes the use of the SNB API.

Presently, mCrash allows automatic testing of classes, methods, param-
eters and objects in the .NET framework. In order to achieve this, several
.NET framework APIs were employed, such as the System.Reflection and
System.CodeDom namespaces, and the Microsoft Excel Object Library. This
tool is meant to dynamically generate a test script, compile it into a .NET
assembly, and invoke the test process. Many ideas of this approach were
inspired by previous work of others and ourselves. This tool was presented
in [23, 24], and its design closely follows the guidelines proposed by [17, 32].

Four fundamental modules embody our tool: the Faultload Database;
the Input Generation and Fault Injection Module; the Postcondition Checker;
and the Execution Manager. These modules are schematically represented in
Figure 3.1, and will be discussed in further detail in the following subsections.

3.1 Faultload Database

The process of building the Faultload Database precedes the actual testing
phase, as a set of test cases must be created for each unique public con-
structor, method and property of each class made available by the Module
Under Test (MUT). The first step is to catalogue all the MUT’s information
– including input and output parameters, their data types and error codes.
Most of these tasks are achieved automatically by means of the Reflection

API; alas, some of the information (e.g., the expected return values) must
be manually defined by the software tester.

9

10 CHAPTER 3. METHODOLOGY AND FRAMEWORK

Figure 3.1: mCrash’s framework scheme.

3.2. INPUT GENERATION AND FAULT INJECTION MODULE 11

The following step involves performing a domain analysis for each indi-
vidual data type in order to establish the faultload. Test cases encompass
valid, boundary and invalid conditions for the different data types; this al-
lows the coverage of a vast array of erroneous inputs, and also enables the
tester to obtain a reference execution (i.e., the gold run).

Finally, all this information is inserted in an Excel spreadsheet – using
Excel API Programming in the case of the automated tasks, and manually
in the case of the values that must be defined by the software tester. This
spreadsheet holds an ordered list of the API calls that will be used to test
the MUT.

3.2 Input Generation

and Fault Injection Module

The Input Generation component dynamically generates test cases for a given
set of constructors, methods and properties; the Fault Injection component
automatically executes the test cases, and collects the information returned
by a particular function call.

The test cases’ source code is generated using the CodeDom API, and is
based on the parameters defined in the Excel spreadsheet during the Fault-
load Database building process. Additionally, the necessary code for logging
any events detected by SNB is included in the test cases’ source code. Any
changes to a monitored property are logged to a text file. If any parameters
were left blank during the Faultload Database definition, the user is given
the option of either allowing the application to insert random values and
“dummy” objects, or entering a “manual stub” himself. The ability to use
late binding, provided by the Reflection API, is employed to dynamically
invoke the test cases; using this technique enables the mCrash tool to resolve
the existence and name of a given type and its members at runtime (rather
than compile time).

In short, a reference execution is run first; then, all the boundary and
invalid test cases defined for a given function are executed. The Postcondition
Checker is in charge of comparing these executions and presenting reports to
the user. This methodology automates the test case generation process, hence
avoiding the need to write source code, and it even allows for a considerable
amount of system state to be set.

12 CHAPTER 3. METHODOLOGY AND FRAMEWORK

3.3 Postcondition Checker

The Postcondition Checker monitors the environment for unacceptable events.
Assertions are put in two main places: at the system level and at the output.
All of these values are recorded in a Microsoft Excel spreadsheet.

At the system level, global environmental events are tracked using the
SNB. Two distinct categories of values are logged: those incoming from the
notifications received, and those of the properties being monitored – the Base
State and Notification Properties. The latter are logged before and after the
fault injection process takes place. At the output level, the tool validates
return values (by comparing them with the expected returns defined during
the Faultload Database definition) and checks if exceptions were thrown –
and where they were thrown.

Finally, the results yielded by the boundary and invalid test values are
automatically compared with the gold run, and any discrepancies will be
recorded in the results spreadsheet.

3.4 Execution Manager

The Execution Manager provides the visual interface between the user and
the software testing tool. It allows for the definition of the parameters used
during a given software testing campaign, such as the location of the .NET
Integrated Development Environment (IDE) and of the MUT. It is also re-
sponsible for dealing with the complexity of creating the three other modules,
and for feeding each one of them with the necessary incoming data.

Until now, this tool was only tested using Microsoft Visual Studio as the
IDE. During the fault injection process, the IDE is automatically started
and the code produced by the Fault Injection component is executed.

At the end of the software testing campaign, the results spreadsheet,
containing all the results gathered by the Postcondition Checker, is presented
to the user.

Chapter 4

Experimental Studies

In the experiments described in this study, we employed the mCrash tool to
conduct a software testing campaign with the purpose of assessing Windows
Mobile 5.0’s trustworthiness properties and uncovering faults.

4.1 Targets and Methodology

The targets of this experiment were the public properties made available by
the Microsoft Windows Mobile 5 Microsoft.WindowsMobile.PocketOutlook
namespace. We chose to target the PocketOutlook namespace in this study
because it is a productivity package used, essentially, by programmers that
develop mobile and context-aware applications, and also because its com-
plexity is adequate for research and demonstration purposes. The rationale
for focusing our study on the public properties is related with the extended
insight that the SNB allows.

We started by using mCrash to extract the list of public properties avail-
able in all the classes made available by the PocketOutlook namespace.
During the Faultload Database building process, 9 distinct classes, including
96 distinct public properties, were identified and catalogued. These 96 dis-
tinct public properties encompassed 13 different data types, including primi-
tive data types (bool, int, string), enumerations (WeekOfMonth, TimeSpan,
Sensitivity, RecurrenceType, Month, Importance, DaysOfWeek, DateTime,
BusyStatus) and objects (Uri).

The methodology followed was that of performing fault-injection by chang-
ing the target public properties’ values. Valid, boundary and invalid test
values were defined for each of the data types, except for bool properties,
to which only true or false values can be assigned. Manual stubbing was
employed to instantiate an object and to set the minimum amount of state

13

14 CHAPTER 4. EXPERIMENTAL STUDIES

needed for each individual test case. In the majority of the cases, creating
a “dummy” object sufficed but, in some situations, additional complexity
was required; these special situations were individually addressed in order to
create the state needed.

Preliminary experiments showed that some errors were only uncovered by
the operating system when the object carrying the faulty property was used
as an input parameter in a method call. In order to pinpoint such situations,
we tested all of the abovementioned objects as input parameters in a method
belonging to the same class.

Finally, we analysed the results collected by mCrash in order to draw
conclusions. The logs generated by the Postcondition Checker were auto-
matically compared to the previously recorded gold run; all the exceptions
thrown (and the phase of the testing process in which they were thrown)
were annotated; the values the properties assumed (in the cases in which
no exception was thrown) after the fault injection process were compared to
those that were expected. The results of this comparison were thoroughly
analysed, and will be discussed in the following subsection.

4.2 Results and Observations

As a result of our experiments, we were able to categorize the exceptions
thrown during the fault injection procedure in two types, according to their
latency:

• if the exception is thrown during the process of assigning an erroneous
value to a property (i.e. if the assertion is located in the property’s
setter method) the exception is considered to be an immediate ex-
ception;

• if the exception is thrown by the method that receives the object con-
taining the faulty property as an input parameter (i.e. the assertion is
located in the method called) the exception is considered to be a late
exception.

Late exceptions are more problematic, due to the high probability of error
propagation. In fact, objects containing “faulty” properties could linger in
the system indefinitely, until they are used as an input parameter and the
exception is triggered. Late exception statistics are depicted in Table 4.1.

The vast majority of the test values that threw late exceptions were of
the string data type; the property can be assigned an invalid value, but

4.2. RESULTS AND OBSERVATIONS 15

Late Exceptions
Data Types Test Cases

string string with 4096 characters;
”\\\0066n”; string.Empty; null

DateTime DateTime.MaxValue
EmailMessage.Importance (Importance)1000; (Importance)(-1);

Importance.Low; Importance.High
EmailMessage.Sensitivity (Sensitivity)int.MaxValue; (Sensitivity)(-1);

Sensitivity.Confidential; 0

Exception types Ocurrences
System.ComponentModel.Win32Exception 60

System.InvalidCastException 17

Table 4.1: Data Types and corresponding Test Cases that threw late excep-
tions. Late Exception Types and corresponding number of occurrences.

when the object is used as an input in a method an assertion existed to make
sure that the string could not exceed the maximum length.

Actually, the maximum length of string objects is defined in the doc-
umentation, but nothing is mentioned on when the check is made. What’s
more, this limit is documented in the property’s entry; hence the program-
mer has no reason to assume that the check won’t be done immediately. The
DateTime data type is also problematic in terms of latency; the DateTime.

MaxValue test value (which we considered to be a boundary value) often gen-
erated a late exception. Such was also the case of some of the enumeration
types associated to the EmailMessage class.

Immediate exceptions included null, range and format exceptions. Table
4.2 resumes the data for these categories of exceptions. The analysis of the
exceptions’ data does not allow the typification the data types according to
category of exception generated – there is no coherent behaviour or pattern
that allows us to conclude that a particular data type or a particular test case
always have the same exception latency. Similar invalid test values generate
both immediate and late exceptions, which can only be explained by the
API’s internal structure (of which no source code is available).

It is at this point that the extended insight provided by the SNB can prove
to be invaluable; this API can be used to monitor properties continuously.
The software tester will thus be able to assert properties’ values all the way
through – and early on – the software testing process.

16 CHAPTER 4. EXPERIMENTAL STUDIES

Immediate Exceptions
Data Types Test Cases

string String with 4096 characters
DateTime DateTime.MaxValue; DateTime.MinValue;

new DateTime(int.MaxValue,
int.MaxValue, int.MaxValue);

new DateTime(int.MinValue,
int.MinValue, int.MinValue);

TimeSpan TimeSpan.MaxValue;
new TimeSpan(int.MaxValue,

int.MaxValue, int.MaxValue)
Uri new Uri(null); new Uri(“dei.uc.pt”)

EmailMessage.Importance (Importance)1000; (Importance)(-1)
EmailMessage.Sensitivity (Sensitivity)int.MaxValue; (Sensitivity)(-1)
Appointment.BusyStatus (BusyStatus)(-1)

Exception types Ocurrences
System.ArgumentOutOfRangeException 23

System.ComponentModel.Win32Exception 16
System.UriFormatException 1

System.NullReferenceException 1
System.ArgumentNullException 1

Table 4.2: Data Types and corresponding Test Cases that threw immedi-
ate exceptions. Immediate Exception Types and corresponding number of
occurrences.

With this in mind, we devoted special attention to the time frame between
the contamination of the property with an erroneous value and the usage of
the “faulty” object as an input parameter in a method (error latency). The
measurements made to the Appointment class were especially interesting,
since the SNB monitors an extensive set of properties regarding Calendar
information.

For instance, we observed that when the Appointment.Start property
was set to a value below the allowed range, an immediate “Argument Out
Of Range” exception was thrown; nevertheless the Postcondition Checker re-
ceived a notification of the property being set to its lower bound – i.e. some
of the properties values are changed even though an exception is thrown.
What’s more, in a similar situation – when the Appointment.Start prop-
erty was set to a value above its upper bound – an immediate exception

4.2. RESULTS AND OBSERVATIONS 17

of the type System.ComponentModel.Win32Exception was thrown, and the
property kept its previous value. This irregular behaviour requires distinct
handling of similar situations.

Other anomalous behaviour observed using the SNB included receiving
notifications of changes to properties other than those directly disturbed.
The following observations are typical of this situation:

• when the Appointment.Start property was set to an invalid value, the
Appointment.End property was set to its default value;

• when the Appointment.End property was set to an invalid value the
Appointment.Start property was set to its default value.

Although this behaviour is not completely unreasonable – the Start and
End properties of the Appointment class are obviously related – it does con-
stitute a means for error propagation. It also provides a clear sign that to
increase the effectiveness of the postcondition checking the system must me
monitored as a whole.

In some circumstances, we were also able to detect the contamination
of objects before the errors were detected by the runtime environment. For
instance, in the Appointment.Subject property, the “String with 4096 char-
acters” boundary test case (the documentation explicitly refers that an ap-
pointment’s subject is limited to 4096 characters) generated a late exception
when the object was used as an argument in a method call. Nevertheless,
by means of the State and Notification Broker, it was possible to observe
that this property assumed a null value immediately after the erroneous
value was assigned to the property; it issued a notification for the change
of the base State and Notification Property CalendarAppointmentSubject,
and the logs also showed that the property was reset to null – its default
value.

It must be stressed that this anomalous behaviour was unveiled by the
SNB – it published a notification of the property change – before the runtime
environment threw an exception.

18 CHAPTER 4. EXPERIMENTAL STUDIES

Chapter 5

Conclusions

This thesis proposes using a custom-tailored framework for accessing Win-
dows Mobile 5.0’s trustworthiness properties. To achieve this, we employed
the SNB API for error monitoring and propagation profiling, and presented
an experimental study illustrating the feasibility of the approach.

The SNB centralizes system state information in documented locations,
and distributes change notifications to interested parties using a publish-
subscribe model. It provides built-in monitoring services to internal system
variables, which constitutes a means for keeping an eye on undesirable state
value modifications.

The experimental observations show that system built-in assertions are
sparsely distributed and less than thoroughly documented, and that errors
can remain dormant in the system until they are detected and dealt with –
e.g., with an exception. This behaviour renders the SNB particularly useful
for detecting erroneous internal states. Interesting observations include:

• receiving notifications of changes to properties other than those dis-
turbed;

• receiving notification of a property being changed, even though an ex-
ception was immediately thrown after an invalid value was assigned to
it;

• receiving notification of invalid values being assigned to a property; an
exception was only triggered when the faulty property’s instance was
used as an argument in a method call.

Even thought this API is not enough to prevent the contamination of
internal objects with erroneous values, we believe it represents an opportu-
nity for enhancing dependability in large-scale, not limited to mission-critical
applications.

19

20 CHAPTER 5. CONCLUSIONS

Our work so far was limited to the base State and Notification Properties
defined by default; nevertheless, these are clearly insufficient to cover the
system as a whole. Future work includes extending the set of properties ex-
posed, with the purpose of broadening the range of relevant system variables
being monitored by our tool.

Along this work, we realized that the current fault-injection paradigm is
still much too centred on the stimulus-response functional model. However,
a growing number of real-world mission-critical applications are now based
on the object-oriented model; nonetheless, tools for dependability evaluation
are seldom used in this context.

5.1 On-Going and Future Work

Recently, the focus of our research has been mostly focused on employing
Evolutionary Algorithms for the structural unit-testing of Object-Oriented
(OO) programs. In fact, a large amount of the resources spent on testing
are applied on the difficult and time consuming task of locating quality test
data [6]; automating this process is thus vital to advance the state-of-the-art
in software testing. So far, automation in this area has been quite limited,
mainly because the exhaustive enumeration of a program’s input is unfeasi-
ble for any reasonably-sized program, and random methods are unlikely to
exercise “deeper” features of software [19].

Meta-heuristic search techniques, like Evolutionary Algorithms (high-
level frameworks which utilise heuristics, inspired by genetics and natural
selection, in order to find solutions to combinatorial problems at a reason-
able computational cost [5]), are natural candidates to address this problem,
since the input space is typically large but well defined, and test goal can
usually be expressed as a fitness function [12]. The application of Evolution-
ary Algorithms to test data generation is often referred to as Evolutionary
Testing [31] or Search Based Testing [19].

Our Evolutionary Testing approach involves representing and evolving
test cases using the Strongly-Typed Genetic Programming (STGP) tech-
nique [20]. The methodology for evaluating the quality of test cases includes
instrumenting the program under test, and executing it using the generated
test cases as inputs with the intention of collecting trace information with
which to derive coverage metrics. The aim is that of efficiently guiding the
search process towards achieving full structural coverage of the program un-
der test. These concepts have been implemented into the eCrash automated
test case generation tool [26].

Our main goals are those of defining strategies for addressing the chal-

5.1. ON-GOING AND FUTURE WORK 21

lenges posed by the OO paradigm and of proposing methodologies for enhanc-
ing the efficiency of search-based testing approaches. Relevant contributions
presented so far include the following:

• presenting a strategy for test case evaluation and search guidance,
which involves allowing unfeasible test cases (i.e., those that terminate
prematurely due to a runtime exception) to be considered at certain
stages of the evolutionary search – namely, once the feasible test cases
that are being bred cease to be interesting [25];

• introducing a novel Input Domain Reduction methodology, based on
the concept of Purity Analysis, which allows the identification and re-
moval of entries that are irrelevant to the search problem because they
do not contribute to the definition of test scenarios [27].

Evolutionary Testing is an emerging methodology for automatically gen-
erating high quality test data. It is, however, a difficult subject, especially
if the aim is to implement an automated solution, viable with a reasonable
amount of computational effort, which is adaptable to a wide range of test
objects. Significant success has been achieved by applying this technique to
the automatic generation of unit-test cases for procedural software [18, 19].
The application of search-based strategies for OO unit-testing is, however,
fairly recent [31] and is yet to be investigated comprehensively [13].

22 CHAPTER 5. CONCLUSIONS

Bibliography

[1] Ieee standard glossary of software engineering terminology. Technical
report, 1990.

[2] Arnaud Albinet, Jean Arlat, and Jean-Charles Fabre. Characterization
of the impact of faulty drivers on the robustness of the linux kernel. In
DSN, pages 867–876, 2004.

[3] Jean Arlat, Jean-Charles Fabre, Manuel Rodŕıguez, and Frédéric Salles.
Dependability of cots microkernel-based systems. IEEE Trans. Comput.,
51(2):138–163, 2002.

[4] A. Avizienis, J. Laprie, and B. Randell. Fundamental concepts of de-
pendability, 2001.

[5] Thomas Back, David B. Fogel, and Zbigniew Michalewicz, editors.
Handbook of Evolutionary Computation. IOP Publishing Ltd., Bristol,
UK, UK, 1997.

[6] Boris Beizer. Software Testing Techniques. John Wiley & Sons, Inc.,
New York, NY, USA, 1990.

[7] Boris Beizer. Black-box testing: techniques for functional testing of soft-
ware and systems. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[8] Guanling Chen and David Kotz. A survey of context-aware mobile
computing research. Technical report, Hanover, NH, USA, 2000.

[9] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. An empirical study of operating systems errors. SIGOPS Oper.
Syst. Rev., 35(5):73–88, 2001.

[10] João Carlos Cunha, Ricardo Maia, Mário Zenha Rela, and João Gabriel
Silva. A study of failure models in feedback control systems. In DSN
’01: Proceedings of the 2001 International Conference on Dependable

23

24 BIBLIOGRAPHY

Systems and Networks (formerly: FTCS), pages 314–326, Washington,
DC, USA, 2001. IEEE Computer Society.

[11] João Durães and Henrique Madeira. Multidimensional characterization
of the impact of faulty drivers on the operating systems behavior. IEICE
transactions on information and systems, 86(12):2563–2570, 20031201.

[12] Mark Harman. Automated test data generation using search based soft-
ware engineering. In AST ’07: Proceedings of the Second International
Workshop on Automation of Software Test, page 2, Washington, DC,
USA, 2007. IEEE Computer Society.

[13] Mark Harman. The current state and future of search based software
engineering. In FOSE ’07: 2007 Future of Software Engineering, pages
342–357, Washington, DC, USA, 2007. IEEE Computer Society.

[14] Andreas Johansson. Error propagation profiling of operating systems.
In DSN ’05: Proceedings of the 2005 International Conference on De-
pendable Systems and Networks, pages 86–95, Washington, DC, USA,
2005. IEEE Computer Society.

[15] Nathan P. Kropp, Philip J. Koopman Jr., and Daniel P. Siewiorek. Au-
tomated robustness testing of off-the-shelf software components. In Sym-
posium on Fault-Tolerant Computing, pages 230–239, 1998.

[16] Marc Langheinrich. Privacy by Design – Principles of Privacy-Aware
Ubiquitous Systems. In G. D. Abowd, B. Brumitt, and S. Shafer, editors,
Ubicomp 2001 Proceedings, volume 2201 of Lecture Notes in Computer
Science, pages 273–291. Springer, 2001.

[17] Kanglin Li and Mengqi Wu. Effective Software Test Automation: De-
veloping an Automated Software Testing Tool. SYBEX Inc., Alameda,
CA, USA, 2004.

[18] Timo Mantere and Jarmo T. Alander. Evolutionary software engineer-
ing, a review. Appl. Soft Comput., 5(3):315–331, 2005.

[19] P. McMinn. Search-based software test data generation: A survey. Soft-
ware Testing, Verification and Reliability, 14(2):105–156, 2004.

[20] David J. Montana. Strongly typed genetic programming. Evolutionary
Computation, 3(2):199–230, 1995.

BIBLIOGRAPHY 25

[21] B. Murphy and Levidow B. Windows 2000 dependability. In Proceed-
ings of the IEEE International Conference on Dependable Systems and
Networks, New York, NY, USA, 2000.

[22] Jason Pascoe, Nick Ryan, and David Morse. Issues in developing
context-aware computing. In HUC ’99: Proceedings of the 1st interna-
tional symposium on Handheld and Ubiquitous Computing, pages 208–
221, London, UK, 1999. Springer-Verlag.

[23] José Carlos Bregieiro Ribeiro, Bruno Miguel Lúıs, and Mário Zenha-
Rela. Error propagation monitoring on windows mobile-based devices.
In LADC 2007: Third Latin-American Symposium on Dependable Com-
puting, volume 4746/2007 of Lecture Notes in Computer Science, pages
111–122. Springer Berlin / Heidelberg, 2007.

[24] José Carlos Bregieiro Ribeiro and Mário Zenha Rela. mcrash: a frame-
work for the evaluation of mobile devices’ trustworthiness properties. In
CSMU 2006: Conference on Mobile and Ubiquitous Systems.

[25] José Carlos Bregieiro Ribeiro, Mário Zenha Rela, and Francisco Fer-
nandéz de Vega. A strategy for evaluating feasible and unfeasible test
cases for the evolutionary testing of object-oriented software. In AST
’08: Proceedings of the 3rd international workshop on Automation of
software test, pages 85–92, New York, NY, USA, 2008. ACM.

[26] José Carlos Bregieiro Ribeiro, Mário Zenha-Rela, and Francisco Fer-
nandez de Vega. An evolutionary approach for performing structural
unit-testing on third-party object-oriented java software. In Nature In-
spired Cooperative Strategies for Optimization (NICSO 2007), volume
Volume 129/2008 of Studies in Computational Intelligence, pages 379–
388. Springer Berlin / Heidelberg, 11 2007.

[27] José Carlos Bregieiro Ribeiro, Mário Alberto Zenha-Rela, and Fran-
cisco Fernandéz de Vega. Strongly-typed genetic programming and pu-
rity analysis: input domain reduction for evolutionary testing problems.
In GECCO ’08: Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation, pages 1783–1784, New York, NY, USA,
7 2008. ACM.

[28] George Roussos, Andy J. Marsh, and Stavroula Maglavera. Enabling
pervasive computing with smart phones. IEEE Pervasive Computing,
4(2):20–27, 2005.

[29] M. Satyanarayanan. Swiss army knife or wallet? IEEE Pervasive Com-
puting, 4(2):2–3, 2005.

[30] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving
the reliability of commodity operating systems. ACM Trans. Comput.
Syst., 23(1):77–110, 2005.

[31] Paolo Tonella. Evolutionary testing of classes. In ISSTA ’04: Proceed-
ings of the 2004 ACM SIGSOFT international symposium on Software
testing and analysis, pages 119–128, New York, NY, USA, 2004. ACM
Press.

[32] Jeffrey M. Voas and Gary McGraw. Software fault injection: inoculating
programs against errors. John Wiley & Sons, Inc., New York, NY, USA,
1997.

[33] Jim Wilson. The state and notifications broker part i. Elec-
tronic Article, February 2006. http://msdn2.microsoft.com/en-
us/library/aa456240.aspx.

26

Appendix A

Publications

27

28

A.1 “mCrash: a Framework for the Evalua-

tion of Mobile Devices’ Trustworthiness

Properties” (CSMU 2006)

29

30

mCrash: a Framework for the Evaluation
of Mobile Devices’ Trustworthiness Properties

José Ribeiro1, Mário Zenha-Rela2

1 Department of Informatics Engineering, Polytechnic Institute of Leiria,
2411-901 Leiria

jose.ribeiro@estg.ipleiria.pt
2 Department of Informatics Engineering, University of Coimbra,

3030-290 Coimbra
mzrela@dei.uc.pt

Abstract. A rationale and framework for the evaluation of mobile devices’ ro-
bustness and trustworthiness properties using a Windows Mobile 5.0 testbed is
presented. The methodology followed includes employing software fault-
injection techniques at the operating system’s interface level and customising
tests to the behaviour of the software.

1 Introduction

The philosophy for mobile devices has been evolving towards the “wallet” [1]
paradigm: they contain important personal information, and virtually every adult
carries one. They are true “proxies for the individual” [2]. Additionally, people are
getting used to take care of their business affairs on these pervasive devices, since
they are becoming increasingly more sophisticated and are able to handle most basic
tasks. But not all mobile devices were designed with enterprise class security in mind,
and even components which were specifically designed for mission-critical applica-
tions may prove to have problems if used in a different context. Retrofitting trust in
any technology is considerably harder than building it in from the start [3], especially
when users have already perceived it as invasive, intrusive, or dangerous. More em-
phasis should be placed on building robust systems that can adapt to aberrant behav-
iour.
However, software behaviour is a combination of many factors: which particular data
states are created, what paths are exercised, how long execution takes, what outputs
are produced, and so forth [4]. An operating system is, itself, a dynamic entity [5], as
different services have diverse robustness properties; the way in which software
makes use of those services will have impact on the robustness of their operations.
We believe that a tool for assessing robustness properties during the development
phase by employing software fault-injection techniques will contribute decisively for
the trustworthiness of the resulting software, as it is known that most of the comput-
ing devices’ breakdowns are caused by residual software faults.

This framework’s approach is that of integrating a fault-injection tool into the IDE –
e.g. Microsoft Visual Studio 2005 – as a plug-in. The availability of the code under
development allows for a profiling phase to take place, hence creating ground for
making use of software fault-injection techniques to test the code in a tailored way
and according to the developers’ requirements. The methodology we will be follow-
ing is that of applying fault injection instrumentation directly at the Windows Mobile
5.0 API - it is at the operating system’s interfaces that corrupt data coming from the
application under development will be simulated.
The next chapter outlines the proposed framework and provides an overview of its
architecture; the third and last chapter presents topics for discussion and sets ground
for future work.

2 Description of the Proposed Framework

Four fundamental modules embody this framework:
• The Faultload Database.
• The Input Generation and Fault Injection Module.
• The Postcondition Checker.
• The Execution Manager.

The Faultload Database

The process of building the Faultload database is executed offline, and must pre-
cede the actual testing phase, as a set of test values must be created for each unique
parameter data type of every function made available by the Windows Mobile 5.0
SDK API. Test cases encompass both valid and exceptional values for the parameter
data types, in order to mimic all sorts of events.
The first step is to catalogue all the API information, including all the functions, input
and output parameters and their data types, and error codes. A parsing application that
extracts information from the Windows Mobile SDK documentation automates this
process.
The following step includes performing a domain analysis for each individual pa-
rameter in order to establish the Faultload. The DWORD data type, for example, is a
typedef for an unsigned long. Therefore, test values could include its boundaries, and
some randomly selected valid and invalid values. For pointer types, values such as
NULL, -1 (cast to a pointer), pointer to freed memory, and pointers to malloc’ed
buffers of various powers of two could be used [6].

Input Generation and Fault Injection Module

The Input Generator Component dynamically generates test cases for a given set of
functions and their parameter data types. The function lists are fed to this component

by the Execution Manager as a result of a profiling phase; test cases are built by
drawing values from the pre-defined Faultload Database.
The Fault Injection Component’s approach is that of automatically and exhaustively
testing combinations of parameter test cases by nested iteration. The testing code is
generated given just the function name and a listing of parameter types. A test object
is instantiated for each of the function’s parameters data types, and is responsible for
creating all testing infrastructure; the constructor runs the instructions needed to gen-
erate the test case. This methodology uses test objects to encapsulate all the test case
generation complexity - hence avoiding the need to adapt test cases to a particular
function - and allows for a considerable amount of system state to be set.

Postcondition Checker

The Postcondition Checker monitors the environment for unacceptable events. As-
sertions are put in two main places: the system level and the output level. The results
yielded by the testing phase will be mapped to low-level categories (similar to those
depicted in the C.R.A.S.H. Scale [7]).

Table 1. C.R.A.S.H. scale.

Value Description
Catastrophic the system crashes or hangs
Restart the test process hangs
Abort the test process terminates abnormally
Silent the test process exits without an error code, but one should have been returned
Hindering the test process exits with an error code not relevant to the situation
Pass the module exits properly, possibly with an appropriate error code

Additionally, at the system level, global environmental events will be tracked using
the State and Notifications Broker API [8] - Windows Mobile 5.0’s state information
store, which provides a standard architecture for monitoring state values for changes -
which is a valuable tool for increasing the system’s observability and for detecting
actions that were uncalled for.
At the output level, Silent and Hindering failures values will be considered; this is
why it is necessary - during the APIs cataloguing phase - for the output parameters
and for the error codes to be identified.

Execution Manager

The Execution Manager is responsible for profiling the code - in order to correctly
setup the Input Generation and Fault Injection Module with adequate usage scenarios
- and for automating the collection and analysis of vulnerability information provided
by the Postcondition Checker.

The profiling phase aims to identify the operating system’s services used by the
application under development – by means of an API tracing tool [9] - in order to
generate ordered lists of the API functions; once the software behaviour is analysed,

it is possible to make use of software fault-injection techniques to test the code in a
customized way. This phase is of paramount importance, as the number of test cases
is determined by the number and type of input parameters, and is thus exponential
with the number of functions.

The collection and analysis phase allows for the outputs monitored by the Post-
condition Checker to be properly logged and mapped to the inputs previously pro-
duced by the Input Generation and Fault Injection Module.

3 Conclusions and Future Work

We believe that the presented framework will allow the detection robustness
problems all the way through – and early on – the software development process,
hopefully decreasing the need for adding software “wrappers” to baselined software,
and thus reducing the possibility of introducing additional faults and lowering main-
tenance costs. However, several issues are still subject to discussion. Topics include:

• The feasibility of including all of Windows Mobile 5.0’s APIs in the scope
of the proposed framework.

• The relevance of implementing a parsing application to extract information
from the Windows Mobile SDK documentation.

• The methodology for the generation of test cases.
• The tools to be employed during the profiling phase.
• The drawbacks and advantages of covering Silent and Hindering failures.

References

1. Satyanarayanan, M.: Swiss Army Knife or Wallet?. IEEE Pervasive Computing, vol. 4,
number 2, pp. 2-3 (2005)

2. Abowd, D.: The Smart Phone: A First Platform for Pervasive Computing. IEEE Pervasive-
Computing, vol. 4, number 2, pp. 18-19 (2005)

3. Langheinrich, M.: Privacy by Design - Principles of Privacy-Aware Ubiquitous Systems.
Swiss Federal Institute of Technology, ETH Zurich, ch. 3. ACM UbiComp (2001)

4. Johansson, A., Suri, N.: Error Propagation Profiling of Operating Systems. International
Conference on Dependable Systems and Networks (2005)

5. Voas, V., McGraw, G.: Software Fault Injection: Inoculating Programs Against Errors. John
Wiley & Sons, Inc. (1998)

6. Kropp, N., Koopman, P., Siewiorek, D.: Automated Robustness Testing of Off-the-Shelf
Software Components. Fault Tolerant Computing Symposium, Munich (1998)

7. Biyani, M., Santhanam, P.: TOFU: Test Optimizer for Functional Usage. Software Engineer-
ing Technical Brief (1997)

8. Wilson. J.: The State and Notifications Broker Part I. MSDN Library Online (2006)
9. Durães, J., Madeira, H.: Generic Faultloads Based on Software Faults for Dependability

Benchmarking. International Conference on Dependable Systems and Networks (2004)

A.2 “Error propagation monitoring on win-

dows mobile-based devices” (LADC 2007)

35

36

Error Propagation Monitoring
on Windows Mobile-based Devices

José Carlos Bregieiro Ribeiro1, Bruno Miguel Luís2, Mário Zenha-Rela2

1 Polytechnic Institute of Leiria (IPL), Morro do Lena, Alto do Vieiro,

Leiria, Portugal
jose.ribeiro@estg.ipleiria.pt

2 University of Coimbra (UC), CISUC, DEI, 3030-290,
Coimbra, Portugal
mzrela@dei.uc.pt

Abstract. Mobile devices, such as Smartphones, are being used virtually by
every modern individual. Such devices are expected to work continuously and
flawlessly for years, despite having been designed without criticality
requirements. However, the requirements of mobility, digital identification and
authentication lead to an increasing dependence of societies on the correct
behaviour of these 'proxies for the individual'. The Windows Mobile 5.0 release
has delivered a new set of internal state monitoring services, centralized into the
State and Notifications Broker. This API was designed to be used by context-
aware applications, providing a comprehensive monitoring of the internal state
and resources of mobile devices. In this paper we propose using this service to
increase the dependability of mobile applications by showing, through a series
of fault-injection campaigns, that this novel API is very effective for error
propagation profiling and monitoring.

Keywords: Robustness Testing, Dependability Evaluation, State and
Notifications Broker, Windows Mobile, COTS.

1 Introduction

The philosophy for mobile devices has been evolving towards the ‘wallet’ paradigm:
they contain important personal information, and virtually every adult carries one.
They are true “proxies for the individual” [1]. Additionally, people are getting used to
take care of their business affairs on these pervasive devices, since they are becoming
increasingly more sophisticated and are able to handle most basic tasks. But not all
mobile devices were designed with enterprise class security in mind, and even
components which were specifically designed for mission-critical applications may
prove to have problems if used in a different context. Retrofitting trust in any
technology is considerably harder than building it in from the start [1], especially
when users have already perceived it as invasive, intrusive, or dangerous.

Software behaviour is a combination of many factors: which particular data states
are created, what paths are exercised, how long execution takes, what outputs are
produced, and so forth [2]. An operating system is, itself, a dynamic entity [3], as
different services have diverse robustness properties; the way in which software

makes use of those services will have impact on the robustness of their operations.
What’s more, mobile devices – such as Pocket PCs and Smartphones – are expected
to work continuously and flawlessly for years, with varying energy and in harsh
environmental conditions; this requires stringent internal state and resource
monitoring. One of the major problems in dependability evaluation is the difficulty of
observing what happens inside the system that is submitted to stress. This problem is
exacerbated when the source code of the system under evaluation is unavailable; alas,
this is the most common situation.

The Windows Mobile 5.0 release has delivered a new API with a set of services
targeting context-aware applications, the State and Notifications Broker (SNB) [4],
which aims to provide comprehensive monitoring of resources. This service, while
not providing true white-box testing tools, makes the system transparent enough to
allow for a semantically-oriented monitoring of relevant state-variables.

One of the key ideas presented in this paper is to use the internal monitoring
services provided by the State and Notifications Broker for error propagation profiling
and monitoring. Although most of the information provided by the State and
Notifications Broker could be obtained by other means, this tool enables the
monitoring of a standard set of relevant system variables defined by the API itself, in
a straightforward manner. We also aim to contribute to the issue of interpreting the
raw data produced into useful information, into insight. It is clear that automated
testing of black-box components requires (or, at least, can be greatly improved by)
built-in system support.

2 Background

Computer dependability can be defined as the trustworthiness of a computing system,
which allows reliance to be justifiably placed on the service it delivers [5]. The
applications envisaged by our approach, however, are not mission-critical – actually,
this is not the target of the Windows Mobile platform. This work’s focus is
trustworthiness – i.e. reliable and secure behaviour of standard personal applications –
such as those used by mobile devices for e-commerce or personal identification. In
fact, the key dependability attribute we are interested in is the robustness of software,
formally defined as the degree to which a software component functions correctly in
the presence of exceptional inputs or stressful environmental conditions [6]. The
robustness of software is tested by exercising it with a tailored workload. Black-box
or behavioural testing [7] is the preferred approach whenever the source code is not
available – as is the case of a proprietary operating system. There are several research
works on the evaluation of the robustness of operating systems [8-13]. Drivers were
identified as a major source of OS failures, and its effects were studied in [2, 14, 15].

The works based on the Ballista methodology [16-18] interested us particularly,
due to the possibility of automating the testing of component interfaces. Its main
contribution was the proposal of an object-oriented approach based on parameter data
types instead of component functionality, thus eliminating the need for function-
specific test scaffolding. Since we are emulating software errors, we focus on data
level errors flowing through the different module interfaces and on the evaluation of

the impact of these errors on the overall system dependability. This is also the
approach followed in [2, 19-21]; however, in [20] the study of the impact of data
errors is focused on the consequences of error propagation in control applications.
The experiments presented in this paper closely follow the line of the work presented
in [2] by extending the observability; while in their work the error propagation
analysis is limited by the observation at the interface between components, we delve
deeper into the system internals, as this was made feasible by the State and
Notifications Broker of the Windows Mobile 5.0 platform. Johansson and Suri's work
has the added interest in that they present a case study based on Windows CE.net, the
platform from which Windows Mobile (our testbed) derives.

Thus, the main focus of this paper is on presenting, employing, and discussing the
usefulness of this service to increase the dependability of mobile applications by
showing, through a series of fault-injection campaigns, that this novel API is very
effective for error propagation profiling and monitoring. The rationale behind this
study falls into the 'callee interface fault injection' as defined in [22].

3 State and Notifications Broker Overview

The recent Windows Mobile 5.0 operating system has centralised its state information
into a single entity, the State and Notifications Broker1 – whether that information is
related to the device itself or to the standard Windows Mobile 5.0 applications. It
provides a standard architecture for monitoring state values for changes and for
distributing change notifications to the interested parties using a publish-subscribe
model, thus making it unnecessary to hunt down a separate function or API for each
individual state value. Also, prior to the introduction of the State and Notifications
Broker API, determining a specific state value often required several function calls
and additional logic.

Each state value is available either through native or managed code: native code
provides direct access to the behaviours and capabilities of the platform using the C or
C++ language, but the developer is responsible for handling the details involved in
interacting with the platform; managed code puts a greater focus on development
productivity by encapsulating details within class libraries. For the managed code
developers, the .NET Compact framework includes more than a hundred pre-defined
static base State and Notification Properties2 that represent the available state values;
in addition, original equipment manufacturers (OEMs) are free to add more values, as
the underlying implementation of the State and Notifications Broker uses the registry
as the data store. The base State and Notification Properties encompass information
on the system state, phone, user, tasks and appointments, connections, messages,
media player and time. To access the present value of a given property, managed-code
developers simply access the SystemState property that corresponds to the state
value of their interests: to receive state value change notifications, an application must
simply create an instance of the SystemState class and pass the appropriate

1 http://msdn2.microsoft.com/en-us/library/aa455748.aspx [cited: 2007/03/03]
2 http://msdn2.microsoft.com/en-us/library/aa455750.aspx [cited: 2007/04/03]

SystemProperty enumeration that identifies the value of interest, and attach a
delegate to the new SystemState instance's Changed event.

Still, some problems persist. Firstly, there is no standard way for third-party
software companies to expose their own properties in the State and Notifications
Broker. Secondly, not all the device’s properties are exposed, although registry-based
custom-made states can be implemented to extend the default functionality. Thirdly,
even though C# managed code is easier to use, it includes reduced functionality when
compared to native C++ code.

4 Framework Description

In order to access the usefulness of the State and Notifications Broker for error
propagation monitoring and profiling, we’ve developed a prototype general-purpose
software testing tool – mCrash – that allowed us to automate the testing process. This
section describes this framework and contextualizes the use of the State and
Notifications Broker API.

Presently, mCrash allows automatic testing of classes, methods, parameters and
objects in the .NET framework. In order to achieve this, several .NET framework
APIs were employed, such as the System.Reflection and System.CodeDom
namespaces, and the Microsoft Excel Object Library. This tool is meant to
dynamically generate a test script, compile it into a .NET assembly, and invoke the
test process. Many ideas of this approach were inspired by previous work of others
and ourselves. This tool was first presented in [23], and its design closely follows the
guidelines proposed by [3, 24].

Four fundamental modules embody our tool: the Faultload Database; the Input
Generation and Fault Injection Module; the Postcondition Checker; and the Execution
Manager. These modules are schematically represented in Figure 1, and will be
discussed in further detail in the following subsections.

4.1 Faultload Database

The process of building the Faultload Database precedes the actual testing phase, as a
set of test cases must be created for each unique public constructor, method and
property of each class made available by the Module Under Test (MUT). The first
step is to catalogue all the MUTs information – including input and output
parameters, their data types and error codes. Most of these tasks are achieved
automatically by means of the Reflection API; alas, some of the information (e.g. the
expected return values) must be manually defined by the software tester.

The following step involves performing a domain analysis for each individual data
type in order to establish the faultload. Test cases encompass valid, boundary and
invalid conditions for the different data types; this allows the coverage of a vast array
of erroneous inputs, and also enables the tester to obtain a reference execution (i.e. the
gold run).

Finally, all this information is inserted in an Excel spreadsheet – using Excel API
Programming in the case of the automated tasks, and manually in the case of the
values that must be defined by the software tester. This spreadsheet holds an ordered
list of the API calls that will be used to test the MUT.

Execution Manager

Faultload
Database

Input Generation and
Fault Injection Module

Postcondition
Checker

User Interface

Reflection

Class
Names
--

Parameter
Names
--

Parameter
Types

| |
| |

Manual
Stubbing

Automatic
Test Code
Generation
(CodeDom)

Late
Binding

System
Errors

(Exceptions)

Actual
Returns
and

Expected
Returns

System State
(State and

Notifications
Broker)

Module
Under
Test

Reports

Fig. 1. Framework scheme.

4.2 Input Generation and Fault Injection Module

The Input Generation component dynamically generates test cases for a given set of
constructors, methods and properties; the Fault Injection component automatically

executes the test cases, and collects the information returned by a particular function
call.

The test cases’ source code is generated using the CodeDom API, and is based on
the parameters defined in the Excel spreadsheet during the Faultload Database
building process. Additionally, the necessary code for logging any events detected by
State and Notifications Broker is included in the test cases’ source code. Any changes
to a monitored property are logged to a text file. If any parameters were left blank
during the Faultload Database definition, the user is given the option of either
allowing the application to insert random values and “dummy” objects, or entering a
“manual stub” himself. The ability to use late binding, provided by the Reflection
API, is employed to dynamically invoke the test cases; using this technique enables
the mCrash tool to resolve the existence and name of a given type and its members at
runtime (rather than compile time).

In short, a reference execution is run first; then, all the boundary and invalid test
cases defined for a given function are executed. The Postcondition Checker is in
charge of comparing these executions and presenting reports to the user. This
methodology automates the test case generation process, hence avoiding the need to
write source code, and it even allows for a considerable amount of system state to be
set.

4.3 Postcondition Checker

The Postcondition Checker monitors the environment for unacceptable events.
Assertions are put in two main places: at the system level and at the output. All of
these values are recorded in a Microsoft Excel spreadsheet.

At the system level, global environmental events are tracked using the State and
Notifications Broker. Two distinct categories of values are logged: those incoming
from the notifications received, and those of the properties being monitored – the
Base State and Notification Properties. The latter are logged before and after the fault
injection process takes place. At the output level, the tool validates return values (by
comparing them with the expected returns defined during the Faultload Database
definition) and checks if exceptions were thrown – and where they were thrown.

Finally, the results yielded by the boundary and invalid test values are
automatically compared with the gold run, and any discrepancies will be inserted in
the results spreadsheet.

4.4 Execution Manager

The Execution Manager provides the visual interface between the user and the
software testing tool. It allows for the definition of the parameters used during a given
software testing campaign, such as the location of the .NET IDE and of the MUT. It is
also responsible for dealing with the complexity of creating the three other modules,
and for feeding each one of them with the necessary incoming data.

Until now, this tool was only tested using Microsoft Visual Studio 2005 as the
IDE. During the fault injection process, the IDE is automatically started and the code
produced by the Fault Injection component is executed.

At the end of the software testing campaign, the results spreadsheet, containing all
the results gathered by the Postcondition Checker, is presented to the user.

5 Experimental Observations

In the experiment described in this paper, we employed the mCrash tool to conduct a
software testing campaign with the purpose of accessing Windows Mobile 5.0’s
trustworthiness properties and uncovering faults.

5.1 Targets and Methodology

The targets of this experiment were the public properties made available by the
Microsoft Windows Mobile 5 Microsoft.WindowsMobile.PocketOutlook
namespace. We chose to target the PocketOutlook namespace in this study because
it is a productivity package used, essentially, by programmers that develop mobile
and context-aware applications, and also because its complexity is adequate for
research and demonstration purposes. The rationale for focusing our study on the
public properties is related with the extended insight that the State and Notifications
Broker allows..

We started by using mCrash to extract the list of public properties available in all
the classes made available by the PocketOutlook namespace. During the Faultload
Database building process, 9 distinct classes, including 96 distinct public properties,
were identified and catalogued. These 96 distinct public properties encompassed 13
different data types, including primitive data types (bool, int, string),
enumerations (WeekOfMonth, TimeSpan, Sensitivity, RecurrenceType,
Month, Importance, DaysOfWeek, DateTime, BusyStatus) and objects (Uri).

The methodology fallowed was that of performing fault-injection by changing the
target public properties’ values. Valid, boundary and invalid test values were defined
for each of the data types, except for bool properties, to which only true or false
values can be assigned. Manual stubbing was employed to instantiate an object and to
set the minimum amount of state needed for each individual test case. In the majority
of the cases, creating a “dummy” object sufficed but, in some situations, additional
complexity was required; these special situations were individually addressed in order
to create the state needed.

Preliminary experiments showed that some errors were only uncovered by the
operating system when the object carrying the faulty property was used as an input
parameter in a method call. In order to pinpoint such situations, we tested all of the
abovementioned objects as input parameters in a method belonging to the same class.

Finally, we analysed the results collected by mCrash in order to draw conclusions.
The logs generated by the Postcondition Checker were automatically compared to the
previously recorded gold run; all the exceptions thrown (and the phase of the testing

process in which they were thrown) were annotated; the values the properties
assumed (in the cases in which no exception was thrown) after the fault injection
process were compared to those that were expected. The results of this comparison
were thoroughly analysed, and will be discussed in the following subsection.

5.2 Results and Observations

As a result of our experiments, we were able to categorize the exceptions thrown
during the fault injection procedure in two types, according to their latency:
• if the exception is thrown during the process of assigning an erroneous value to a

property (i.e. if the assertion is located in the property’s setter method) the
exception is considered to be immediate;

• if the exception is thrown by the method that receives the object containing the
faulty property as an input parameter (i.e. the assertion is located in the method
called) the exception is considered to be late.

Late exceptions are more problematic, due to the high probability of error
propagation. In fact, objects containing “faulty” properties could linger in the system
indefinitely, until they are used as an input parameter and the exception is triggered.
Late exception statistics are depicted in Table 1.

Table 1. Data Types and corresponding Test Cases that threw late exceptions. Late Exception
Types and corresponding number of occurrences

Late Exceptions
Data Types Test Cases

string string with 4096 characters;
"\\\u0066\n"; string.Empty; null

DateTime DateTime.MaxValue

EmailMessage.Importance (Importance)1000; (Importance)(-1);
Importance.Low; Importance.High

EmailMessage.Sensitivity (Sensitivity)int.MaxValue;
(Sensitivity)(-1);
Sensitivity.Confidential; 0

Exception types Ocurrences

System.ComponentModel.Win32Exception 60

System.InvalidCastException 17

The vast majority of the test values that threw late exceptions were of the string

data type; the property can be assigned an invalid value, but when the object is used
as an input in a method an assertion existed to make sure that the string could not
exceed the maximum length. Actually, the maximum length of these strings is defined
in the documentation, but nothing is mentioned on when the check is made. What’s
more, this limit is documented in the property’s entry; hence the programmer has no

reason to assume that the check won’t be done immediately. The DateTime data type
is also problematic in terms of latency; the DateTime.MaxValue test value (which
we considered to be a boundary value) often generated a late exception. Such was also
the case of some of the enumeration types associated to the EmailMessage class.

Immediate exceptions included null, range and format exceptions. Table 2 resumes
the data for these categories of exceptions. The analysis of the exceptions’ data
doesn’t allow us to typify the data types according to category of exception generated
– there is no coherent behaviour or pattern that allows us to conclude that a particular
data type or a particular test case always have the same exception latency. Similar
invalid test values generate both immediate and late exceptions, which can only be
explained by the API’s internal structure (of which no source code is available).

Table 2. Data Types and corresponding Test Cases that threw immediate exceptions.
Immediate Exception Types and corresponding number of occurrences.

Immediate Exceptions
Data Types Test Cases

string String with 4096 characters

DateTime DateTime.MaxValue;
DateTime.MinValue;
new DateTime(int.MaxValue,
int.MaxValue, int.MaxValue);
new DateTime(int.MinValue,
int.MinValue, int.MinValue)

TimeSpan TimeSpan.MaxValue;
new TimeSpan(int.MaxValue,
int.MaxValue, int.MaxValue)

Uri new Uri(null); new Uri("dei.uc.pt")

EmailMessage.Importance (Importance)1000; (Importance)(-1)

EmailMessage.Sensitivity (Sensitivity)int.MaxValue;
(Sensitivity)(-1)

Appointment.BusyStatus (BusyStatus)(-1)

Exception types Ocurrences
System.ArgumentOutOfRangeException 23

System.ComponentModel.Win32Exception 16

System.UriFormatException 1

System.NullReferenceException 1

System.ArgumentNullException 1

It is at this point that the extended insight provided by the State and Notifications

Broker can prove to be invaluable; this API can be used to monitor properties

continuously. The software tester will thus be able to assert properties’ values all the
way through – and early on – the software testing process.

With this in mind, we devoted special attention to the time frame between the
contamination of the property with an erroneous value and the usage of the “faulty”
object as an input parameter in a method (error latency). The measurements made to
the Appointment class were especially interesting, since the State and Notifications
Broker monitors an extensive set of properties regarding Task and Appointment
information. For instance, we observed that when the Appointment.Start property
was set to a value below the allowed range, an immediate “Argument Out Of Range”
exception was thrown; nevertheless the Postcondition Checker received a notification
of the property being set to its lower bound – i.e. some of the properties values are
changed even though an exception is thrown. What’s more, in a similar situation –
when the Appointment.Start property was set to a value above its upper bound –
an immediate exception of the type System.ComponentModel.Win32Exception
was thrown, and the property kept its previous value. This irregular behaviour
requires distinct handling of similar situations.

Other anomalous behaviour observed using the State and Notifications Broker
included receiving notifications of changes to properties other than those directly
disturbed. The following observations are typical of this situation:
• when the Appointment.Start property was set to an invalid value, the

Appointment.End property was set to its default value;
• when the Appointment.End property was set to an invalid value the

Appointment.Start property was set to its default value.
Although this behaviour is not completely unreasonable – the Start and End

properties of the Appointment class are obviously related – it does constitute a
means for error propagation. It also provides a clear sign that to increase the
effectiveness of the postcondition checking the system must me monitored as a whole.
In some circumstances, we were also able to detect the contamination of objects
before the errors were detected by the runtime environment. For instance, in the
Appointment.Subject property, the “String with 4096 characters” boundary test
case (the documentation explicitly refers that an appointment’s subject is limited to
4096 characters) generated a late exception when the object was used as an argument
in a method call. Nevertheless, by means of the State and Notification Broker, it was
possible to observe that this property assumed a null value immediately after the
erroneous value was assigned to the property; it issued a notification for the change of
the base State and Notification Property CalendarAppointmentSubject, and the
logs also showed that the property was reset to null – its default value.

It must be stressed that this anomalous behaviour was unveiled by the State and
Notifications Broker – it published a notification of the property change – before the
runtime environment threw an exception.

6 Conclusions and Future Work

This paper proposes using a custom-tailored framework for accessing Windows
Mobile 5.0’s trustworthiness properties. For this, we employed the State and

Notifications Broker API for error monitoring and propagation profiling, and
presented an experimental study illustrating the feasibility of the approach.

The State and Notifications Broker centralizes system state information in
documented locations, and distributes change notifications to interested parties using
a publish-subscribe model. It provides built-in monitoring services to internal system
variables, which constitutes a means for keeping an eye on undesirable state value
modifications.

The experimental observations show that system built-in assertions are sparsely
distributed and less than thoroughly documented, and that errors can remain dormant
in the system until they are detected and dealt with e.g. by throwing an exception.
This behaviour renders the State and Notifications Broker particularly useful for
detecting erroneous internal states. Interesting observations include:
• receiving notifications of changes to properties other than those disturbed;
• receiving notification of a property being changed, even though an exception was

immediately thrown after an invalid value was assigned to it;
• receiving notification of invalid values being assigned to a property; an exception

was only triggered when the faulty property’s instance was used as an argument
in a method call.

Even thought this API is not enough to prevent the contamination of internal
objects with erroneous values, we believe it represents an opportunity for enhancing
dependability in large-scale, not limited to mission-critical applications.

Our work so far was limited to the base State and Notification Properties defined
by default; nevertheless, these are clearly insufficient to cover the system as a whole.
Future work includes extending the set of properties exposed, with the purpose of
broadening the range of relevant system variables being monitored by our tool.

Along this work, we realized that the current fault-injection paradigm is still much
too centred on the stimulus-response functional model. However, a growing number
of real-world mission-critical applications are now based on the object-oriented
model; nonetheless, tools for dependability evaluation are seldom used in this context.

References

1. M. Langheinrich, "Privacy by Design - Principles of Privacy-Aware Ubiquitous Systems.,"
presented at ACM UbiComp, 2001.

2. A. Johansson and N. Suri, "Error Propagation Profiling of Operating Systems," presented at
DSN, 2005.

3. J. M. Voas and G. McGraw, Software fault injection: inoculating programs against errors.
New York: Wiley Computer Pub, 1998.

4. J. Wilson, "The State and Notifications Broker Part I," MSDN Library, 2006.
5. A. Avizienis, J.-C. Laprie, and B. Randell, "Fundamental Concepts of Dependability,"

LAAS-CNRS N01145, 2001.
6. IEEE Standard Glossary of Software Engineering Terminology (IEEE Std610.12-1990),

1990.
7. B. Beizer, Black-box testing : techniques for functional testing of software and systems. New

York ; Chichester: Wiley, 1995.
8. W. N. Gu, Z. Kalbarczyk, R. K. Lyer, and Z. Y. Yang, "Characterization of Linux kernel

behavior under errors," presented at DSN, 2003.

9. B. Murphy and B. Levidow, "Windows 2000 Dependability," presented at Workshop on
Dependable Networks and OS, 2000.

10. A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, "An Empirical Study of Operating
System Errors," presented at SOSP, 2001.

11. J. Arlat, J.-C. Fabre, M. Rodriguez, and F. Salles, "Dependability of COTS Microkernel-
Based Systems," IEEE Trans. on Computers, vol. 51, pp. 138–163, 2002.

12. M. M. Swift, B. N. Bershad, and H. M. Levy, "Improving the Reliability of Commodity
OS’s," Operating Systems Review, vol. 37, pp. 207-222, 2003.

13. X. Jun, K. Zbigniew, and K. I. Ravishankar, Networked Windows NT System Field Failure
Data Analysis, 1999.

14. A. Albinet, J. Arlat, and J.-C. Fabre, "Characterization of the Impact of Faulty Drivers on
the Robustness of the Linux Kernel," presented at DSN, 2004.

15. J. Durães and H. Madeira, "Multidimensional Characterization of the Impact of Faulty
Drivers on the OS Behavior," IEICE, pp. 2563–2570, 2003.

16. N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, "Automated Robustness Testing of Off
the Shelf Software Components," presented at FTCS 98, IEEE, 1998.

17. P. Koopman and J. DeVale, "Comparing the robustness of POSIX operating systems,"
presented at FTCS 99, 1999.

18. C. P. Shelton, P. Koopman, and K. Devale, "Robustness testing of the Microsoft Win32
API," presented at DSN, 2000.

19. M. Hiller, A. Jhumka, and N. Suri, "PROPANE: An environment for examining the
propagation of errors in software," Proceedings of the ACM SIGSOFT 2002 International
Symposium on Software Testing and Analysis, pp. 81, 2002.

20. Ö. Askerdal, M. Gafvert, M. Hiller, and N. Suri, "Analyzing the Impact of Data Errors in
Safety-Critical Control Systems," presented at IEEE Trans. Inf. Syst., 2003.

21. M. Hiller, A. Jhumka, and N. Suri, "EPIC: Profiling the propagation and effect of data
errors in software," IEEE Trans. on Computers, vol. 53, pp. 512-530, 2004.

22. P. Koopman, "What’s Wrong With Fault Injection As A Benchmarking Tool?," presented
at DSN, Washington, 2002.

23. J. Ribeiro and M. Z. -Rela, "mCrash: a Framework for the Evaluation of Mobile Devices’
Trustworthiness Properties," presented at CMUS, Portugal, 2006.

24. K. Li and M. Wu, Effective software test automation: developing an automated software
testing tool. London: Sybex, 2004.

