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Instituto Politécnico de Leiria
grilo@estg.ipleiria.pt
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Abstract. We examine the influence of asynchronism in the Spatial
Prisoner’s Dilemma game. Previous studies reported that less coopera-
tion is achieved with the asynchronous version of the game than with
the synchronous one. Here, we show that, in general, the opposite is the
most common outcome. This conclusion is only possible because a larger
number of scenarios was tested, namely, different interaction topologies,
a transition rule that can be tuned to emulate different levels of deter-
minism in the choice of the next strategy to be adopted and different
rates of asynchronism. The influence of stochastic and deterministic pe-
riodic updating in the outcome of the system is also compared. We found
that these two update disciplines lead basically to the same result. This
is an important issue in the simulation of social and biological behavior.

1 Introduction

Spatial evolutionary games are used in the area of evolutionary game theory as
models to study, for example, how could cooperation ever emerge in nature and
human societies [11]. They are also used as models to study how can cooperation
be promoted and sustained in artificial societies [9]. In these models, a structured
population of agents interacts during several time steps through a given game
which is used as a metaphor for the type of interaction that is being studied.
The population is structured in the sense that each agent can only interact with
its neighbors. After each interaction session, some or all the agents, depending
on the update method used, have the possibility to change their strategies. This
is done using a so called transition rule that models the fact that agents tend
to adapt their behavior to the context in which they live by imitating the most
successful agents they know. It can also be interpreted as the selection step of an
evolutionary process in which the least successful strategies tend to be replaced
by the most successful ones.

The final outcome of these models, that is, the proportion of cooperating
agents eventually achieved, can be influenced by, for example, the game that is
being used, the interaction topology, the transition rule or the update method.
The most used game in this area is the Prisoner’s Dilemma game (see section 2.1).
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There are some works where the influence of some of those aspects on the spatial
version of this game is studied. For example, in [10] the influence of the interac-
tion topology is analyzed. Also, in [7] the influence of the interaction topology,
the transition rule and the update method are studied.

In this area, the discussion about using synchronous or asynchronous update
methods started with a paper by Huberman and Glance [5]. Synchronous up-
dating means that, at each time step, the revision of strategies happens for all
agents simultaneously, while this is not the case for asynchronous updating. In
that paper the authors contested the results achieved in [8] by Nowak and May
who showed that cooperation can be maintained when the game is played in a
regular 2-dimensional grid by agents which do not remember their neighbors’
past actions. Huberman and Glance criticized the fact that the model used in
[8] was a synchronous one, which is an artificial feature. They also presented
the results of simulations where cooperation was no longer sustainable when
an asynchronous updating was used. After this work, in [7] Nowak et al tested
their model under several conditions, including synchronous and asynchronous
updating and showed that cooperation can be maintained for many different
conditions, including asynchronism. However, the results are presented through
system snapshot images, which render difficult to measure the way they are
affected by the modification from synchronous to asynchronous updating. Re-
cently, in [6], a similar scenario was studied using various asynchronous update
methods besides synchronous updating. The authors found that ”The most no-
table difference between the synchronous and asynchronous schemes, is that the
synchronous updating scheme supports more cooperators than the other updating
schemes”.

In this paper, we show that, in general, more cooperation is achieved with
the asynchronous version of the Spatial Prisoner’s Dilemma game than with the
synchronous one. The conclusions derived in [5] and [6] result from the fact that
a limited number of conditions were tested, namely, the utilization of only the
best-neighbor transition rule, according to which an agent always imitates the
strategy of its most successful neighbor. Here, we use the transition rule used
in [7] (see Section 2.3). This rule can be tuned to cover the spectrum between
proportional updating, with which agents can imitate strategies other than the
one used by their most successful neighbor, and the best neighbor rule. Different
types of interaction topologies were also used so that the conclusions derived can
have a more general character.

In what concerns to the update methods, we first used an asynchronous
stochastic update method [2] that allows us to cover the spectrum from syn-
chronous to sequential updating. Usually, asynchronous updating is understood
as sequential updating, which means that, at each time step, only one agent
updates its strategy after interacting with its neighbors. But, reality seems to
lie somewhere between these two extremes and, so, sequential updating can be
considered as artificial as synchronous updating. In a population of interacting
agents, many interaction and decision processes can be occurring at the same
time but not necessarily involving all the agents. If both were instantaneous
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phenomena we could model the dynamics of the system as if they occurred one
after another but that is not usually the case. These processes can take some
time, which means that their output is not available to other ongoing decision
processes. Even if we consider them as being instantaneous, the time that infor-
mation takes to be transmitted and perceived implies that their consequences
are not immediately available to other agents.

We also compare the results achieved using the stochastic update method
with the ones achieved with a deterministic periodic one. There are numerous
examples of periodic behaviors where not all the population is necessarily syn-
chronized [3][6]. This comparison can help us understand to what extent the
results depend on this type of updating.

The paper is structured as follows: in Sec. 2 we describe the model we used
in our simulations and in Sec. 3 we present and discuss the results. Finally, in
Sec. 4 some conclusions are drawn and future work is advanced.

2 The Model

2.1 The Prisoner’s Dilemma Game

In the Prisoner’s Dilemma game (PD), players can cooperate (C) or defect (D).
The payoffs are the following: R to each player if they both play C; P to each if
they both play D; T and S if one plays D and the other C, respectively. These
values must obey T > R > P > S and 2R > T + S. It follows that there is a
strong temptation to play D. But, if both play D, which is the rational choice
or the Nash equilibrium of the game, both get a smaller payoff than if they
both play C, hence the dilemma. For practical reasons, the payoffs are usually
defined as R = 1, T = b > 1 and S = P = 0, where b represents the advantage
of D players over C ones when they play the game with each other. This has
the advantage that the game can be described by only one parameter without
loosing its essence [7].

2.2 Population Topologies

We used two types of topologies: small-world networks (SWNs) [13] and scale-
free networks (SFNs) [1]. We build SWNs as in [12]: first, a toroidal regular
2-dimensional grid is built so that each node is linked to its 8 surrounding
neighbors by undirected links; then, with probability φ, each link is replaced
by another one linking two randomly selected nodes. Parameter φ is called the
rewiring probability. In some works [7] self-links are allowed because it is con-
sidered that each node can represent not a single agent but a set of similar
agents that may interact with each other. Here, we do not allow self-interaction
since we are interested in modeling nodes as individual agents. Repeated links
and disconnected graphs are also avoided. The rewiring process may create long
range links connecting distant agents. For simplicity, we will call neighbors to all
interconnected agents, even if they are not located at adjacent nodes. By varying
φ from 0 to 1 we are able to build from completely regular networks to random
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ones. SWNs have the property that, even for very small values of the rewiring
probability, the mean path length between any two nodes is much smaller than
in a regular network, maintaining however a high clustering coefficient observed
in many real systems including social ones.

Although frequently used to model real networks, SWNs do not have a power
law degree distribution that is frequently observed on such networks [10]. SFNs
are network models that have this property since their degrees follow the power
law distribution P (k) ∼ k−γ . We build SFNs in the following way: the network
is initialized with m0 fully connected nodes. Then we add nodes, one at a time,
until the network has the desired size. Each added node is linked to m0 already
existing nodes so that the probability of creating a link with some existing node i
is equal to ki�

j kj
, where ki is the degree of i, that is, the number of nodes to which

it is connected. This method of link creation is called preferential attachment,
since the more links a node has, the greater is the probability of creating links
to it. This has the effect that a little proportion of nodes has a big connectivity
while the most part has a very low connectivity.

2.3 Interaction and Strategy Update

On each time step, agents first play a one round PD game with all their neigh-
bors. Agents can only play C or D and the only way they can change their
strategy is by way of the application of the transition rule, after the interaction
process. This rule is used to model the fact that agents tend to imitate the most
successful agents they know. In order to be able to model intermediate levels of
asynchronism in the strategy update process, we use an update method called
asynchronous stochastic dynamics (ASD)[2]. When ASD is used, at each time
step, each agent has a given probability 0 < α ≤ 1 of applying the transition
rule in order to decide which strategy to use next. The α parameter is called the
synchrony rate and is the same for all agents. When α = 1 we have synchronous
updating and as α → 1

n , where n is the population size, ASD approaches se-
quential updating.

To model the strategy update process, we used a generalization of the pro-
portional transition rule [7]. Let Gi be the average payoff earned by agent i in
the second stage, Ni be the set of neighbors of agent i, si be equal to 1 if i’s
strategy is C and 0 otherwise, and d a positive number. According to this rule,
the probability that an agent i adopts C as its next strategy is

pC(i) =

∑
l∈Ni∪i sl(Gl)d

∑
l∈Ni∪i(Gl)d

. (1)

The d parameter acts as a weight that favors the most successful neighbor’s
strategy B in the update process: the bigger d, the larger is the probability that
i adopts B. When d → +∞ we have a deterministic best-neighbor rule such that
i always adopts B as its next strategy. When d = 1 we have the proportional
update rule. It can be viewed, as well, as the deterministic degree of the transition
rule. We use average payoffs instead of total payoffs because agents may have a
different number of neighbors.
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3 Simulations and Results

All the simulations were done with populations of 50 × 50 = 2500 agents, ran-
domly initialized with 50% of Cs and 50% of Ds. When the system is running
synchronously, i.e., when α = 1, we let it run during a transient period of 900
iterations. After this, we let the system run during 100 more iterations and, at
the end, we take as output the average proportion of cooperators during this
period, which is called the sampling period. When α �= 1 the number of selected
agents at each time step may not be equal to the size of the population and it
may vary between two consecutive time steps. In order to guarantee that these
runs are equivalent to the synchronous ones in what concerns to the total num-
ber of individual updates, we let the system first run until 900× 2500 individual
updates have been done. After this, we sample the proportion of cooperators
during 100 × 2500 individual updates and we average it by the number of time
steps needed to do these updates. Each simulation is a combination of the φ/m0,
α, b and d parameters, and all the possible combinations of the values shown in
Table 1 were tested. For each combination, 30 runs were made and the average
of these runs is taken as the output.

Table 1. Parameter values used in the simulations

Parameter Values

φ (SWNs) 0 (regular), 0.01, 0.05, 0.1, 1 (random)

m0 (SFNs) 4, 8, 12

α (ASD) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 (synchronous)

b (PD game) 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2

d (transition rule) +∞ (best neighbor), 100, 10, 8, 6, 4, 2, 1 (proportional)

In [4] we presented results of simulations done with the ASD update method
where only SWNs were used. In the next section, we present an analysis of
the results achieved based also on simulations done with SFNs. Most of the
conclusions apply to both types of topologies but we will point the differences
where they exist. In order to help the understanding of the conclusions, in Fig. 1
we show four typical charts produced by the simulations. In Sec. 3.2 we then
compare the results achieved using ASD with the ones achieved using a periodic
deterministic update method.

3.1 ASD Results

We can conclude that, for most conditions, the system is not very sensitive to
small changes in the α value (we consider that the system is sensitive when its
outcome changes by more than 0.1 when the α value is changed by 0.1). There
are, however, some situations of big sensitivity (Ex: Fig. 1d). Also, the results
show that, in general, the system responds monotonically to changes in the α
value. The few situations of non-monotonicity happen almost only for SWNs
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(a) d = +∞. (b) d = 10.

(c) d = 4. (d) d = 1.

Fig. 1. % of cooperators for m0 = 4 (SFNs) and different combinations of d, b and α

and mainly for large values of d, that is, when the probability that an agent
imitates its most successful neighbor is high. As to the influence of the interaction
topology on these two aspects, the results show that the system becomes more
robust and monotonous as φ and m0 are increased. We hypothesize that the
real reason for this coincidence of results can be due to the fact that the mean
path length between the nodes decreases as we increase φ and m0, respectively,
on SWNs and SFNs. Another possibility would be the clustering degree of the
network. However, while the clustering degree decreases on SWNs as we increase
the φ value, it can not decrease on SFNs as we increase the value of m0. So, this
result can not be ascribed to this property. More work must be done, however,
in order to confirm this.

There is a somewhat unexpected result that can be phrased like this: the lower
the value of the d parameter, the more is cooperation favored when we decrease
the value of α. That is, as we decrease the value of d, the slope of the curves
increases. This also means that the system becomes more sensitive to α changes
as the d parameter is decreased. We call this effect the small determinism degree
and small synchrony rate effect.

Possibly, the most relevant result is that, as we decrease the α value, the
proportion of cooperators increases for the big majority of the simulations. That
is, in general, asynchronism supports more cooperators than synchronism. This
conclusion can only be derived because several scenarios were tested, namely,
different interaction topologies and different values for the determinism degree
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of the transition rule. Indeed, this allowed us to verify that the situations where
this conclusion does not apply are the ones where big values of the determinism
degree of the transition rule, d, are used. Putting it another way, asynchronism
is detrimental to the emergence of cooperation only when the probability of
committing errors in the choice of the next strategy to use is very low. But
reality is far from such perfection and phenomena like noise, be it deliberate
or not, perception errors, or simply bad evaluations, often prevent agents from
choosing what would seem the best choice.

Finally, we would like to stress that using an update method able to cover all
the spectrum from synchronous to near sequential updating, as the ASD method
is, allows a deeper analysis of the system being studied. It allows, for example,
the identification of existing phase transitions: often the level of cooperation is
0 for α = 1 and it remains there until a given α = c value is reached. Then,
suddenly, the level of cooperation starts to increase, sometimes in a significative
way, as α decreases from c to 0.1. For many of such situations c is very near to
1 or even equal to 1 (see, for example, Fig. 1d). This may suggest that in these
cases the existence of some degree of cooperation is the most probable outcome
in the system being modeled since it exists for almost the entire α domain.

3.2 Stochastic Versus Deterministic Updating

In [3] a classification of random boolean networks (RBNs) is given based mainly
on the update methods used. The authors found that the behavior of asyn-
chronous deterministic RBNs is much closer to the behavior of synchronous
RBNs than to the one shown by asynchronous stochastic RBNs. In spite that
our intention in this paper is not to make a comparison between the model
studied here and RBNs, a question arises: is this also the case for spatial evolu-
tionary games? An affirmative answer could help in the formulation of a general
explanation for the influence of asynchronism on dynamical systems, if there is
any. A negative answer is also important because, not only it takes this hypoth-
esis off the path, but also because it can help us understanding the influence of
deterministic updating on the modeled systems.

In order to model asynchronous deterministic dynamics, the authors of [3] used
a sequential update method and another one (DGARBN)1 that allows more than
one agent to be updated at the same time. DGARBN is also a periodic update
method: each agent has two parameters, p and q that, respectively, determine
the period of the updating, and the phase (the translation of the update). Agents
updated at the same time step are updated synchronously. The problem with this
method is that it doesn’t allow us to control the synchrony rate so that a direct
comparison with the results achieved with ASD can be made. Besides, it doesn’t
provide the same number of updates for all agents when time grows. This means
that agents can not be considered homogeneous anymore, which is a significant
modification generating a different problem. Therefore, we changed the method
so that the p parameter is the same for all agents. We call asynchronous deter-
ministic dynamics (ADD) to this update method. As in the original method,
1 DGARBN: Deterministic Generalized Asynchronous Random Boolean Networks.
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q < p and is defined randomly for each agent. This way, when p = 2, p = 5, or
p = 10, respectively, 50%, 20% and 10% of the population is updated each time
step, on average. These are the values we used in our simulations. They allow
us to compare the results achieved with the ASD method for α = 0.5, α = 0.2
and α = 0.1. It would be desirable that we could compare results for other α
values, namely for 0.5 < α < 1.0, but we don’t know about any deterministic
and periodic update method that allows us to cover that interval.

Let us consider ResSync, ResASD and ResADD as the results achieved for a
given combination of parameters with synchronous updating, ASD and ADD,
respectively (each point in the charts of Fig. 1 corresponds to a given combina-
tion of parameters). In order to see which one of the two methods is closer to
synchronous updating and how different they are, we first compute the quantities
difASD = |ResASD−ResSync| and difADD = |ResADD−ResSync| for each com-
bination of parameters. difASD and difADD are not considered in the following
when ResSync = ResASD = ResADD since in these cases it makes no sense to
talk about which method is closer to synchronous updating. After this, we sepa-
rately compute the averages of difASD and difADD values. Let us call these two
quantities AvgASD and AvgADD, respectively. Finally, we compute the quanti-
ties s = AvgASD − AvgADD and r = x/y, where x = min(AvgADD, AvgASD)
and y = max(AvgADD, AvgASD). The s value tells us two things: which method
is closer to synchronous updating and how different they are from each other in
absolute terms. If s > 0, ADD is closer to synchronous updating than ASD and
vice-versa. Also, as s → 0 the two methods become closer. The r meaning is
the following: if F and C are, respectively, the method that is farther and closer
to synchronous updating, then r < 0.5 means that C is closer to synchronous
updating than to F . If r > 0.5, C is closer to F than to synchronous updating.

The results are (s = 0.011, r = 0.928) for SWNs and (s = 0.010, r = 0.922)
for SFNs. This means that ADD is closer to synchronous updating than ASD.
However, we are talking about s values very close to 0. Furthermore, the r values
are very close to 1, which means that the two methods are much closer to each
other than to synchronous updating. Given that these values result from all the
combinations simulated for each type of interaction topology, we later separated
the results along the different values of each parameter in order to enquire if there
are certain types of combinations for which there is a clear difference between the
two methods. We made separations for all the parameters and, as Table 2 shows,
the same conclusions derived above can be applied no matter how we separate the
results. This means that, although ADD is almost always closer to synchronous
updating than ASD, it is much closer to ASD than to synchronous updating.
This result indicates that the conclusions derived for ASD also apply to ADD
and that possible different levels of cooperation observed in the system being
modeled are not due to the deterministic or stochastic nature of the updating
scheme used by the agents. Also, this means that if we are willing to explain the
influence of update methods on the level of cooperation we must look somewhere
else away from their deterministic versus stochastic nature.
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Table 2. s and r values for the different values of each parameter

SWNs SFNs

φ = 0.0 φ = 0.1 φ = 1.0 m0 = 4 m0 = 8 m0 = 12

s r s r s r s r s r s r

0.020 0.877 0.006 0.952 0.011 0.940 0.013 0.916 0.008 0.928 0.011 0.900

m = +∞ m = 100 m = 2 m = 1

s r s r s r s r

0.009 0.876 0.007 0.919 0.012 0.939 0.017 0.932

α = 0.5 ≡ p = 2 α = 0.2 ≡ p = 5 α = 0.1 ≡ p = 10

s r s r s r

0.025 0.792 0.011 0.933 −0.002 0.985

4 Conclusion and Future Work

In this work we examined the influence of asynchronism on the evolution of co-
operation in models where agents try to adapt their behavior to the context in
which they live. We showed that, in general, asynchronism supports more cooper-
ators in the Spatial Prisoner’s Dilemma game than synchronism. This conclusion
contradicts previous ones but it results from a more general analysis, based on a
bigger number of tested conditions, namely, different types of topologies, various
values for the determinism degree of the transition rule and different levels of the
synchrony rate. Besides this conclusion, the asynchronous update method used
allowed us to derive some conclusions concerning, for example, the sensitivity
and monotonicity of the model to changes in the synchrony rate. Finally, we
found that the outcome of the studied model is approximately the same whether
a stochastic or a deterministic asynchronous updating is used.

Future extensions to this work will explore the ASD update method with
other games in order to verify if the results achieved with the PD game as, for
example, the small determinism degree and small synchrony rate are also present.
The results achieved in [12] with the Snowdrift game, where the best-neighbor
(+∞) and the proportional (m = 1) transition rules, as well as synchronous and
sequential updating were used, seem to indicate that this is the case. However,
only by exploring intermediate levels of asynchronism and intermediate levels
of determinism of the transition rule we can confirm this. We will also try to
answer the question ”Is there an explanation for the influence of asynchronism
on the emergence of cooperation?” and, if it turns out that there is a positive
answer ”Is this explanation extensible to other dynamical systems?”.
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