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Abstract .  This paper describes a quantitative similarity metric and its
contribution to achieve original plan solutions. This similarity metric is
used by an iterative process of piece retrieval from structured plan cases.
Within our approach plan cases are tree-like networks of pieces (goals and
actions). These case pieces are ill-related each other by links
(explanations). These links may be classified as hierarchical or temporal,
antecedent or consequent, and explicit or implicit. Besides links, each case
piece has also information about its properties (the attributes-value pairs),
its hierarchical and temporal position in the case (the address), and about its
constraints in the relationship with others (the constraints). The similarity
metric computes a similarity value between two case pieces taking into
account similarities between these case piece’s information types. Each
time a problem is proposed, different weights are given to some of those
similarities, with the aim of solving it with an original solution. This
similarity metric is used by the system INSPIRER (ImagiNation taking as
Source Past and Imperfectly REalated Reasonings). We illustrate the role of
the similarity metric in the creativity of solutions, focusing specially their
originality, with the presentation of the experimental results obtained in
the musical composition domain, which is considered by us as a planning
domain.

1 Introduction
The power of a Case-Based Reasoning (CBR) System (Kolodner and Riesbeck, 1986)
is greatly determined by its capability to retrieve the relevant cases for the solution of
a new problem. A nearest neighbour algorithm for case retrieval (Duda and Hart, 1973)
searches through every case in memory, applies a similarity metric and returns the
case or k cases with the past problem more similar to the new one. This similarity
metric counts the number of facts that the past and the new problem have in common.

Knowledge-based retrieval systems (Koton, 1989) are a consequence of combining
nearest neighbour and knowledge-guided techniques. These systems are characterised by
the use of domain knowledge for the construction of explanations for why a problem
had a particular solution in the past. Those explanations are necessary to similarity
judgement (Barletta and Mark, 1989; Veloso, 1992; Bento and Costa, 1994): they are
necessary to judge the relevance of the features comprising a past problem. In domains
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where a strong theory is not available but past experience is accessible, case
explanations are imperfect (Bento, Macedo and Costa, 1994). CBR is appropriate for
this kind of domains.

Although many CBR systems select out cases that are most similar to the new
problem, other selection criteria may prove more effective. E.g., Kolodner (1989) has
considered that the most useful cases are those that can address the reasoner’s current
goal, which means that they may not be the most similar ones. Particularly, this
stands to reason when the goal is to achieve creative solutions, i.e., solutions required
to be original but also appropriate (Macedo et al. 1996b, 1996c 1997a).

Considering cases as set of pieces (Barletta and Mark, 1988; Kolodner, 1988;
Redmond, 1990; Sycara and Navinchandra, 1991; Veloso, 1992; Bento, Macedo and
Costa, 1994) instead of monolithic entities, can improve the results of a CBR system
in that solutions of problems may result from the contribution of multiple cases.

Moreover, structured representations of cases (Plaza, 1995) allow treating pieces of
cases as full-fledged cases. This has two consequences: first, the similarity metric used
by the nearest neighbour algorithm can be applied to them; second, the problems that
appear when using parts of multiple monolithic cases are minimised, particularly, the
lot of effort taken to find the useful parts in them.

A plan is a specific sequence of steps (or actions) with the aim of a goal
achievement. Case-Based Planning (CBP) systems (Hammond, 1986; Veloso, 1992)
reuse past sequences of actions from past plans to construct new ones. Some systems
like CELIA (Redmond, 1990), JULIA (Kolodner, 1989), PRODIGY/ANALOGY
(Veloso, 1992), etc., break up the goal into smaller sub-goals, enabling plan
construction by composition of sub-plans. This leads to a hierarchical representation
of plan cases (Macedo et al., 1996a). The case representation is similar to a tree where
each node is a goal and its sons the sub-goals, or at the latest level, the actions of the
plan. Each goal (or action) depends on other goals. This is particularly evident in
structured domains.

In this paper we will focus on a similarity metric used by an iterative retrieval of
case pieces from structured plan cases. This means that building a new plan case
solution consists in an incremental association of case pieces, each one of these
resulting from a retrieval process, which involves the application of a similarity
metric to each candidate case piece present in memory. This means case pieces are
treated as full-fledged cases. The similarity metric takes into account the address,
context and attribute similarities between two case pieces. We propose a way to
produce creative solutions, i.e., original but also appropriate solutions, based on
applying the similarity metric giving different weights to its components, each time a
problem is solved.

Our approach to case representation is presented in the next section. The retrieval
and solution construction process are briefly presented in section 3. In section 4, we
introduce the similarity metric. Section 5 focus the definition of creative solutions,
and section 6 presents an application in the musical composition domain. The results
obtained with our similarity metric function in this domain are presented in section 7.
Finally, a conclusion about our work is made in section 8.
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2 Case Representation
Within our approach a plan case is a set of goals and actions organised in a
hierarchical way (Figure 1): a main goal (the main problem) is refined into sub-goals
(the sub-problems), and so on, until reaching the actions (the leaf nodes of the tree)
that satisfy the goals. It is worth noting that, although the actions are represented by
the leaf nodes, some of their properties (attributes) are inherited from the attributes of
their hierarchical ascendants.

Temporal Links

g1

g22g21g13

g2 g3

g

g11 g12 g32g31

α
λ β
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π

Hierarchical Links

a112 a113a111 a114 a211 a212

. . . .
. . .

.. . .

Figure 1 - Case structure. The gi’s represent the goals and the ai’s the actions.

In our model, each node of the hierarchical structure corresponds to a case piece.
To complete the case structure, there are links between case pieces, representing causal
justifications, or explanations. Some of these links maintain the hierarchical case
structure, others reflect causal temporal relations between case pieces. Thus the
existence of a case piece in a plan case is causally explained by several case pieces of
the same plan case.

Considering the hierarchical links only (represented in Figure 1 by continuous
arrows), the inherent meaning of the represented structure is: g, the main goal of the
plan (or the main problem), is achieved by sequentially achieving sub-goals (sub-
problems) g1, g2 and g3. Each one of these sub-goals is also broken up into other
sub-goals. For example, g1 is broken up into g11, g12 and g13, and g2 into g21 and
g22. To achieve the goal g11 the actions a111, a112, a113 and a114 must be
sequentially executed by this temporal order.

Besides being explained by the goal-refinement process, through hierarchical links,
a case piece may also be explained through temporal links (represented in Figure 1 by
discontinuous arrows). For example, g21 (sub-goal of g2) is a consequence of case
pieces g11 and g12, which is represented by the temporal links labelled α and _ ,
respectively.

A case piece has seven types of information describing its relevant aspects: a name
that uniquely identifies the case piece, the name of the case to which the case piece
belongs, the case piece address, the constraints, a set of attribute/value pairs, the
antecedents and the consequents.

The address of a case piece in level n is represented by Nn:Nn-1:...:N0, where each
N i  ⊄0  (from now on we will call offsets to the Ni’s ). An offset L=Ni, 0 _  i <n,

means that the case piece with that address has a predecessor in level i of the tree
which is the L-th son of its father (with the exception of the case piece in level 0,
which has no ascendants and so its offset is always 0). The offset J=Nn means that
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this case piece is the J-th son of its closer ascendant. Every case piece propagates its
address to its descendants, that is, if the case piece’s address is Nn:...:N0, its M-th
son’s address will be M:Nn:...:N0. This representation embeds in its syntax,
explicitly, the position that a case piece and its ascendants occupy in the tree relatively
to the others, and, implicitly, the hierarchical level that the case piece occupies in the
tree.

Another information in a case piece is a set of attribute/value pairs describing
several properties which characterise the case piece.

The constraints are also attribute/value pairs. The semantic of a set of constraints
C = {a1 = vc1, a2 = vc2, ...,an = vcn} of a case piece p is: if p ascendants have any of
the attributes a1,a2, ...,an, then its values must not be different from, respectively,
vc1, vc2, ...,vcn; otherwise, p is incoherent with its ascendants. Thus constraints play
the role of determining whether or not the case piece is a candidate to occupy a
missing piece (see below) in a solution, depending on whether or not they are coherent
with the attributes of the missing piece’s hierarchical ascendants.

Antecedents and consequents are causal links that follow, respectively, from and to
other case pieces. Antecedent links show how a case piece is explained by the
existence of other case pieces (e.g. in Figure 1, g21 is explained by g11 and g12
through the links labelled _  and _ , respectively, and by g2 through a father link).
Consequent links show how a case piece explains the existence of other case pieces
(e.g., in Figure 1, g21 partially explains g22 and g32 through links _  and _ ,
respectively, and a211 and a212 through father links).

Each antecedent or consequent link is classified into another two main kinds of
links: hierarchical and temporal ones (described above).

Sometimes the type of relation between antecedent fact(s) and the consequent one
may be unknown. This lack of a complete theory is common in CBR (Bento, Macedo
and Costa, 1994). This idea leads to another classification of the links between case
pieces: we say that a link between the case pieces a and b is explicit if we know it
well and so we are able to represent it, and implicit if we can’t represent it because we
do not know it well, although we know it exists. In Figure 1, g13 implicitly explains
g21. There is not a concrete link between them, but it is coherent to assume that the
existence of g21 is partially due to the previous occurrence of g13. We may also say
that g implicitly explains g21, although there is not a well known relation between
them.

We call the case piece context to the set of case pieces that surround it. We
distinguish eight types of contexts according to the kind of link existing between the
case piece considered and the surrounding ones. Thus, each one of these surrounding
case pieces is included in one of the contexts of the set C = {antecedent-hierarchical-
implicit context, antecedent-hierarchical-explicit context, antecedent-temporal-implicit
context, antecedent-temporal-explicit context, consequent-hierarchical-implicit context,
consequent-hierarchical-explicit context, consequent-temporal-implicit context or
consequent-temporal-explicit context}. Notice that the name of the context reflects the
classification of the link to the case piece. For example, in Figure 1, the contexts of
g21 are: antecedent-hierarchical-implicit context = {g}; antecedent-hierarchical-explicit
context = {g2}; antecedent-temporal-implicit context = {g13}; antecedent-temporal-



ICCBR-97

explicit context = {g11, g12}; consequent-hierarchical-implicit context = {};
consequent-hierarchical-explicit context = {a211, a212}; consequent-temporal-implicit
context = {g31}; consequent-temporal-explicit context = {g22, g32}.

Since there is not any direct link between implicitly related case pieces, it is
necessary to define a frontier to limit the number of case pieces of the implicit
contexts. We assume that this frontier involves the nearest case pieces.

3 Overview of the Retrieval Process and Solution Construction
The construction of an entire solution is performed by an iterative retrieval of case
pieces from memory to fill the missing ones in the tree-like partially complete
solution. This process is made level by level starting at the highest hierarchical level
and ending at the lowest hierarchical level, and in each level, starting from the
leftmost to the rightmost case piece.

The process of retrieving a case piece from memory is the following. Consider
that π is the structured solution currently being constructed, and πi a place on solution
π in which a case piece is missing. The retrieval of a case piece to be placed in πi
involves the following steps:

(i) construction of the set of candidate case pieces by selecting those which belong
to the same level of πi;

(ii) application of a constraint based filter to the case pieces selected in (i),
eliminating those which constraints are incompatible with the attributes of the πi’s
ascendants. This step is performed as follows. Given a case piece p presented in
memory, candidate to fill πi, and given the set of constraints Lc = {c1 = vc1, c2 =
vc2, ...,cn = vcn} of case piece p, and the union of the sets of attribute-value pairs La
= {a1 = va1, a2 = va2, ...,am = vam} of the hierarchical ascendants of πi, then p is not
filtered from the set of candidate case pieces to fill πi if and only if: _ i _  {1,2,...,n}, 
∀ j _  {1,2,...,m}, _  aj= vaj _  La, _ _  ci= vci _  Lc  : ci = aj _  vci _  vaj

(iii) application of a similarity metric (function CasePieceSim presented below) to
each candidate case piece;

(iv) ranking of the candidates case pieces by their similarity metric value;
(v) selection of the case piece with the highest similarity metric value;
(vi) validation of placing the selected case piece on πi. This step comprises the

verification of link incompatibilities between the selected case piece and the partially
constructed solution for the given problem. Performing one of the following options
solves these incompatibilities: (i) relaxing incompatibilities; (ii) selecting another
case piece.

4 The Similarity Metric
The similarity metric computes similarities between two case pieces p and p’ and is
described as follows:

CasePieceSim p p
AttrSim p p AddrSim p p ContSim p p

( , ' )
( , ' ) ( , ' ) ( , ' )= ↔ + ↔ + ↔

+ +
α φ λ

α φ λ

where ContSim, AttrSim and AddrSim are the functions that compute, respectively,
the context, attribute and address similarities between p and p', as presented below, and 
α , _  and _  are the user assigned parameters that represent the weights given to
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those similarities, respectively.
AddrSim is the following:

AddrSim p p
AbsASim p p AdYOSim p p AdSESim p pad ad ad ad ad ad( , ')

( , ' ) ( , ' ) ( , ' )= ↔ + ↔ + ↔
+ +

φ φ φ
φ φ φ

1 2 3

1 2 3

where: AbsAdSim calculates the similarity between the addresses pad and p’ad,
respectively, of case piece p and p’; AdYOSim calculates the similarities between the
component of the same addresses that contains the information about case pieces
positions relatively to their old and young brothers; AdSESim calculates the
similarities of the case pieces address relatively to the start and end of the case. The
parameters _ 1, _ 2, and _ 3 represent the weights given to those similarities,
respectively. These functions are presented as follows.

AbsAdSim is:

AbsAdSim p p
p p

p pad ad
ad ad

ad ad

( , ' )
'

'
=

� =
� ?

�
�
�

1

0

AdYOSim is:

AdYOSim H R H R
H

NSons R

H

NSons R
( : , ' : ' )

( )

'

( ' )
= − −

��
�
↵√

1

This function compares the mappings into the interval (0,1) of the positions of
each case piece relatively to its young and old brother. This mapping is done dividing
the first offset of the case piece’s address (H or H’) by the number of sons of its father,
whose value is given by the function NSons. Remember that the first offset H of the
case piece’s address H:R tells us that the case piece is the H th son of its father, whose
address is R.

AdSESim is:

AdSESim H R H R
H Ha H R

NPiecesLevel H R

H Ha H R

NPiecesLevel H R
( : , ' : ' )

( : )

( : )

' ( ' : ' )

( ' : ' )
= − + − +

��
�
↵√

1

This function is similar to the previous one. However, the mapping is done by
first, summing the first offset of the case piece’s address and the number of case pieces
of the same level that are younger than it (this value is computed by the function Ha),
and then, dividing this sum value by the number of case pieces of the same level of
that case piece (this value is given by the function NPiecesLevel).

AttrSim is defined as follows:

AttrSim p p
Length p p

Length p Length p
a a

a a

( , ' )
( ' )

( ) ( ' )
= ↔ �

+
2

where pa, p’a are the sets of attributes of, respectively, p and p’, and Length is the
function that computes the length of a set.

ContSim is:
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ContSim p p

F p p
i

i i

i
i

( , ')

( , ')

=

↔
=
�

�
=

λ

λ

1

8

1

8

where each Fi  is a function that computes similarities between two same types of
contexts of two case pieces, as described below. Each _ i is the weight given to each
one of those similarities. The Fi functions is:

F p p

Length p p

Length p Length p
SeqSim p p

i

c c

c c
c c

i i

i i

i i

( , ')

( ' )

( ) ( ' )
( , ' )

=

↔ �
+

+
2

2
where ci is the ith  element of the set of contexts C (described above), and, pci and

p’ci are the ci contexts of p and p’, respectively. SeqSim is the function that computes
the similarity between sequences of elements in both lists.

5 Creative Solutions
Creative solutions are undoubtedly mainly characterised by two properties:
appropriateness and originality.

An appropriate solution is one that fulfills the goal(s) of the problem, i.e., that is
useful by satisfying a need. A solution, to be appropriate, should also be coherent,
without incompatibilities between its components, and also able to be executed
(Macedo et al., 1996b, 1996c, 1997a).

An original solution is one that is different from previous ones, i.e., is one that
stands apart from the solutions that the individual or other people has already
produced. It is singular, novel and somehow unpredictable.

Originality of solutions is measured comparing the solution with the past
solutions stored in memory. This comparison is made piece by piece, computing the
number of new relations that a case piece has in the new solution in comparison with
the relations it has in old solutions. Appropriateness is measured by experts taking
into account the coherence and usefulness of solutions.

6 Musical Composition Domain
Balaban (1992) and others, state that any music can be represented by a hierarchy of
temporal objects (objects with an associated temporal duration), in such a way that
each one has, as descendants, a sequence of sub-objects that starts and ends at the same
start and ending point as the object’s. Figure 2 shows an example.

There are temporal causal relations in music (represented in Figure 2 by
discontinuous arrows), since many musical objects may be causally explained, for
instance, by transformations of some other object (e.g., repetition, variation,
inversion, transposition, etc.). For example, in Figure 2, the temporal link between
theme of Part1 and var1 of Part2 may represent a variation transformation which,
when applied to theme originates var1. These temporal relations are represented in the
antecedents and consequents informations fields of a case piece.
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Figure 2 - A case in the music domain.

Each musical object has several properties which are represented in our approach
by attribute/value pairs (e.g., {ton='I', meas=2/4} meaning that the tonality is 'I' and
the measure is binary).

Additionally, each musical object has also a set of constraints, which are
conditions that must be consistent with the attributes of its ascendants, when it is
added to the new case (e.g., if a case piece has the set of constraints a = {meas=2/4,
ton='II', etc} then it must not be a descendant of a case piece with tonality 'I', for
instance). Thus the role of the constraints is to maintain the coherence of the new
musical piece hierarchy, since they disallow the hierarchical association of case pieces
with incompatible properties.

The goal of our application is to use analysis of music pieces from a seventeenth
century composer as foundation for a restructuring process, providing a structured and
constrained way of composing novel pieces, although keeping the essential traits of
the composer’s style. We use analysis of music pieces with six hierarchical levels.
Each music piece is considered as a plan, since it is a sequence of musical objects with
the aim of achieving a musical goal (e.g., a sonata).

7 Experimental Tests

7.1 Description and Results
The main aim of the tests performed with the similarity metric of INSPIRER in the
musical composition domain is to evaluate its contribution to achieve original
solutions. However, appropriateness is also guaranteed to a certain extent by the
similarity metric since it disallows totally new solutions which may be inappropriate.
Besides this, the tests also allow the formulation of conclusions about the accuracy of
the INSPIRER's similarity metric.

We have made four tests (labelled Test #1, Test #2, Test #3 and Test #4) (Figure
3). In each test the values 0 or 1 were assigned to each parameter in the similarity
metric function. In Test #1 the similarity metric is complete: it takes into account the
attribute, address and context similarities (their parameters are assigned to 1). Test #2,
#3 and #4 are similar to Test #1, with the difference of not taking into account,
respectively, the context, the address and the attribute similarities in the similarity
metric.

Test #1 has two variants: variant A (Figure 4) and variant B (Figure 5). Variant A
corresponds to assigning different values (0 or 1) to the parameters of the sub-terms of
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the similarity metric address term. Variant B is similar to variant A, but relatively to
the sub-terms of the context term of the similarity metric.

Figure 5 - Test parameters for variant B of Test #1.

Each one of the Tests #2, #3, and #4, when compared with Test #1, allows to
make conclusions about taking or not taking into account one term of the similarity
metric. The same happen when comparing Tests #A2, #A3 and #A4 with Test #A1,
and, Tests #B2, #B3,...,#B9 with Test #B1. This is based on the assumption that the
best way to measure the relevance of xk to y, when y=f(x1,..., xk-1,, xk,  x k+1,,..., xn), is
by comparing y1=f(x1,..., xk-1, xk+1,,..., xn) with y=f(x1,..., xk-1, xk, xk+1,,..., xn).

Some test conditions were kept constant in all the tests: we used just one past case
solution in memory (a musical symphony), because we want to test the performance
of INSPIRER's similarity metric in the worst conditions to achieve original
solutions; the problem proposed was always the same: to produce a new symphony;

Variant A α φ 1 φ 2 φ 3 λ

Test #A1 1 1 1 1 1

Test #A2 1 1 1 0 1

Test #A3 1 1 0 1 1

Test #A4 1 0 1 1 1

α φ λ

Test #1 1 1 1

Test #2 1 1 0

Test #3 1 0 1

Test #4 0 1 1

Figure 3 - Test parameters. Figure 4 - Test parameters for variant A of Test #1.

Variant B α φ λ 1 λ 2 λ 3 λ 4 λ 5 λ 6 λ 7 λ 8

Test #B1 1 1 1 1 1 1 1 1 1 1

Test #B2 1 1 1 1 1 1 1 1 1 0

Test #B3 1 1 1 1 1 1 1 1 0 1

Test #B4 1 1 1 1 1 1 1 0 1 1

Test #B5 1 1 1 1 1 1 0 1 1 1

Test #B6 1 1 1 1 1 0 1 1 1 1

Test #B7 1 1 1 1 0 1 1 1 1 1

Test #B8 1 1 1 0 1 1 1 1 1 1

Test #B9 1 1 0 1 1 1 1 1 1 1
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each test produced a new case solution (a new symphony), which was evaluated by
three musical composition teachers of the Coimbra School of Music, about its
appropriateness and originality, taking as reference the original composer’s music
piece, to which was given 100% of appropriateness.

Chart I of Figure 6 summarises the results obtained with the four tests. Chart II
shows the results of variant A of Test #1, and Chart III, the results of variant B of
Test #1.
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Figure 6 - Test results.

7.2 Analysis  of  Results
From Chart I (Figure 6) we may conclude that the address term is the most important
one to the accuracy of the similarity metric. Actually, Test #3 has the highest number
of wrongly selected case pieces. We consider that a case piece is wrongly selected if it
is different from the one that would be selected from the past case solution, if we
applied the complete similarity metric. The context term is the second most important
one (Test #2), and the attribute term the third (Test #4).

From Chart II it can be seen that Test #A2 has the highest number of wrongly
selected case pieces. This means the sub-term AdSESim is the most important to the
accuracy of the similarity metric, followed closely by the sub-term AbsAdSim (Test
#A4). The sub-term AdYOSim is not very relevant to the same accuracy (Test #A3).

Chart III shows that the sub-terms of the context term are almost equally relevant
to the accuracy of the similarity metric. However, the antecedent contexts (Tests #B6,

Chart II

0

20

40

60

80

100

A1 A2 A3 A4
tests

p
e

rc
e

n
ta

g
e

Chart III

0

20

40

60

80

100

B1 B2 B3 B4 B5 B6 B7 B8 B9
tests

p
e

rc
e

n
ta

g
e



ICCBR-97

#B7, #B8 and #B9) are more important than consequent contexts (Tests #B2, #B3,
#B4 and #B5). This happens because a missing case piece of the partially constructed
solution does not have consequent contexts. The hierarchical contexts (Tests #B4,
#B5, #B8 and #B9) are more important than temporal contexts (Tests #B2, #B3, #B5
and #B6). This happens because every case piece has hierarchical links, while some of
them may not have temporal links. Relatively to implicit and explicit contexts no
relevant differences are identified.

From all of the charts we may conclude that the percentage number of wrongly
selected case pieces by the similarity metric is, generally, greater than the percentage
number of wrongly selected case pieces after applying the evaluation step. This is
because the evaluation step rejects the case pieces that are given the highest similarity
metric value but that, actually, are not the most similar, since the similarity metric
does not takes into account all the terms.

In all the tests the appropriateness of the solutions is function of the originality:
the more original is the solution, the less appropriate it is. However, there is no
directly correlation between these two properties. Actually there are solutions with
high originality but with an appropriateness almost equal to 100% (e.g., Test #3).

8 Conclusions
We have presented a similarity metric for retrieval of pieces from structured plan cases.
This similarity metric is part of a iterative retrieval process for the construction of
new case plans, which consists in an incremental association of case pieces from past
plan cases.

Each plan case is a tree-like network, in which pieces (goals and actions) are linked
to each other. Three main classifications of links were reported: implicit/explicit
links; temporal/hierarchical links; and antecedent/consequent links. These link
classifications determine eight types of case piece contexts. Besides links, case pieces
have also represented information about its properties (the attributes) and about its
position in the case (the address).

The similarity metric is based on similarities between same types of case piece’s
information. Creative solutions are achieved ignoring some of those similarities.

As shown, musical composition can be considered as a planning task and it is an
appropriate domain to our approach. However, in this domain and other similar ones
in which the solutions are required to be creative, we think it is important to assume
that a useful case piece (or case) may not be the one with the highest similarity
metric.
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