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Abstract. We argue that intermediate levels of asynchronism should
be explored when one uses evolutionary games to model biological and
sociological systems. Usually, only perfect synchronism and continuous
asynchronism are used, assuming that it is enough to test the model un-
der these two opposite update methods. We believe that biological and
social systems lie somewhere between these two extremes and that we
should inquire how the models used in these situations behave when the
update method allows more than one element to be active at the same
time but not necessarily all of them. Here, we use an update method
called Asynchronous Stochastic Dynamics which allows us to explore
intermediate levels of asynchronism and we apply it to the Spatial Pris-
oner’s Dilemma game. We report some results concerning the way the
system changes its behaviour as the synchrony rate of the update method
varies.

1 Introduction

The explanation of how cooperation could ever emerge on nature and human
societies by means of natural evolution has been a difficult problem to solve
[1]. Evolutionary game theory [15] has been largely used as a tool to study this
problem. In this area interactions between agents are usually modeled as a game
and the Prisoner’s Dilemma game is one of the most used metaphors to study
the evolution of cooperation. In this game there are two possible strategies:
Cooperate (C) or Defect (D). Figure 1 shows the payoff matrix of the game,
where the following conditions must be met: T > R > P > S.

When panmitic populations are used1 and when the players play the game
just once on each encounter without remembering what happened on previous
encounters, theory says that the C strategy is completely dominated by the D
one, until complete extinction [15]. However, in [13] Nowak and May showed that
1 On panmitic populations each agent can interact with any other agent in the popu-

lation.
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Fig. 1. Payoff matrix for the Prisoner’s Dilemma game. The row player gets the first
value of each matrix element.

cooperation can be maintained when the game is played in a two-dimensional
spacial grid, in which agents can only interact with their immediate neighbours.
This work was almost immediately contested in [7], the reason being that these
results were only possible because a synchronous system was used which, accord-
ing to the authors, is an artificial feature. In a synchronous system all the agents
in the population interact and are updated exactly at the same time. Instead,
the authors of this work used a continuous asynchronous updating method called
uniform choice [14] in which, at each time step, only a randomly chosen indi-
vidual, with reposition, is able to interact with its neighbours, and the reported
output was that cooperation is no longer sustainable even if only a D agent
exists in the initial population. Given that these results were obtained with a
single combination of payoff values, Nowak and colleagues counter-answered in
[12], testing several conditions, namely, different payoff values, synchronous and
asynchronous (uniform choice) update methods, and different levels of determin-
ism in the transition rule (see parameter m in section 3). The results show that
cooperation can be maintained for many different conditions, including asyn-
chronism, but they are presented through system snapshot images, which render
difficult to measure the exact way they are affected by the modification from a
synchronous to a continuous asynchronous discipline. In spite of that, this and
other subsequent works [10][17] allowed spatial structure to be viewed as a fea-
ture that, in certain situations, can be beneficial to the evolution of cooperation.
Also, since the criticism made in [7], it’s common to see papers [16][6][11] where
both synchronous and continuous update methods are used.

In this paper we argue that both perfect synchronism and continuous asyn-
chronism are equally artificial ways of simulating the global dynamics of a popu-
lation of interacting agents. This doesn’t mean that the above mentioned practice
of presenting results achieved with these two methods is not a positive one. How-
ever, it takes for granted that it is enough to test the system under these two
opposite methods. We believe that biological and social systems lie somewhere
between these two extremes and that we should inquire how the models used in
these situations behave when the update method allows more than one element
to be “active” at the same time but not necessarily all of them. In order to do
that, we used one update method named asynchronous stochastic dynamics [4]
that allows us to cover all the spectrum between synchronous and continuous
updating. We applied the method to a model similar to the one used in [12] and
we report some results obtained.

The paper is structured as follows: in Sect. 2 we explain why we think that
synchronism and continuous asynchronism are both equally artificial and why
methods like asynchronous stochastic dynamics should be explored when studying
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populations of interacting agents. In Sect. 3 we describe the model we used in our
experiments and in Sect. 4 we present and discuss some results. Finally, some con-
clusions are drawn and future work is advanced.

2 Asynchronous Stochastic Dynamics

Beyond the evolution of cooperation, the influence of the update method has
been studied in areas like, for example, cellular automata [8][3] and evolution-
ary algorithms [9][5]. In some of these works, especially the ones about cellular
automata and evolution of cooperation, the utilization of synchronous update
methods is criticized, the argument being that the real world is not synchronous
and, so we can not entirely rely on results achieved that way. As an alternative,
continuous asynchronous methods are usually used (see [14] for an analysis of
several asynchronous methods). This procedure corresponds to choosing small
enough time intervals so that at each one exactly one element of the population
can interact with its neighbours and be updated [7].

We think that continuous asynchronism when applied to biological and socio-
logical environments can be considered as artificial as perfect synchronism. There
are two reasons for this: the first reason is that, when we have a population of inter-
acting agents, many interactions can be occurring at the same time. If interactions
were an instantaneous phenomena we could model the dynamics of the system as
if interactions occurred one after another but that is not the case. Interactions
can take some time, which means that their output is not available to other ongo-
ing interactions. Even if we consider interactions as being instantaneous, the time
that information takes to be transmitted and perceived implies that interactions’
consequences are not immediately available. Another reason is the determinism
of continuous update methods: on what basis can we say that, at each time step,
exactly 1, 2, or n elements are “active”? Even if we have an idea of the level of
activity of the system being modeled, it’s doubtful that it is always exactly the
same. This, of course, is not a problem for evolutionary algorithms, where, given
a problem to solve, the goal is to achieve the best solution as fast as possible, in-
dependently of the methods we use. But social systems are not as predictable and
some sort of nondeterminism should be used.

A feasible alternative to perfect synchronism and continuous asynchronism
is a method named asynchronous stochastic dynamics (ASD) in which, at each
time step, each element of the population has a given probability 0 < α ≤ 1 of
being selected to interact with its neighbours, after which it is updated using
a given transition rule. The α parameter is called the synchrony rate and is
the same for all the elements of the population. After this selection procedure
both the interactions and the application of the transition rule are done as if
they occurred simultaneously, i.e., synchronously. The stochastic nature of the
method implies that the number of selected elements may vary from time step
to time step. Also, the α parameter allows us to explore intermediate levels of
asynchronism. This was done, for example, in [4] for studying the robustness
of elementary cellular automata to asynchronism. The authors found that some
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automata are very sensitive to small changes in the α parameter. Besides, it can
happen that a given automata has a similar behaviour to, for example, α = 1
and α = 0.1, which are values at almost opposite sides of the α domain, but
has a very different behaviour say, for example, for α = 0.5 2. This made us
question if this could be the case for spatial evolutionary games, since these
models resemble cellular automata in many aspects [13]. Evolutionary games
are used as metaphors to model real situations. It’s difficult to know exactly
the update discipline of the modeled system’s elements. Therefore, it’s useful
to know if the model is robust to changes in the update method. Even if it’s
robust, in the sense that it doesn’t change significantly its behaviour to small
changes on the update method, it can gradually change it’s behaviour as we
change the synchrony rate. This change can be such that the system has a very
different behaviour under the two extremes of the update method (synchronous
vs. continuous) and the ASD method gives us the possibility of knowing how
this change happens.

3 The Model

The model we used in the experiments is very similar to the one used in [12]
so that the results could be compared. Agents are placed in a toroidal two
dimensional grid so that each agent occupies one cell. Each time step can be
divided in three stages: the activation stage, the interaction stage and the update
stage.

In the first stage we decide, using the ASD method, which agents will be active
at the current time step, i.e., which are the agents that will interact with their
neighbours and, therefore, will be updated in the following stages. The utilization
of this update method is the main modification we made to the original model.
Recall that in the original model the update methods used were synchronous
update and uniform choice. The ASD method equals synchronous update when
α = 1 and approaches uniform choice as α → 1

n where n is the population size.
In the second stage, the selected agents play a one round Prisoner’s Dilemma

game with all their 8 surrounding neighbours. This type of neighbourhood is
usually called the Moore neighbourhood. In some works the neighbourhood is
allowed to include the agent itself. This is justified by considering that each cell
can represent not a single agent but a set of similar agents that may interact
with each other. Here, we do not consider self-interaction since we are interested
in modeling cells as individual agents.

Agents can only play C or D and the only way they can change their strategy
is by way of the application of the transition rule in the third stage. It is common
practice to define the game’s payoff values as R = 1, T = b (b > 1) and S =
P = 0. The b parameter represents the advantage of D players over C ones when

2 The measure used to compare the behaviour of an automaton under different con-
ditions was the mean number of cells with value 1 during a given sampling period
after a transient period.
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these play the game with each other. Defining payoff values this way has the
advantage that the game can be characterized by just one parameter.

Besides the regular two dimensional grid, we also made experiments with
small-world networks (SWNs) [18] in order to verify if the results were depen-
dent on the underlying interaction topology. We build SWNs as in [16]: first, a
regular two dimensional grid is built so that each agent is linked to its 8 sur-
rounding neighbours by undirected links; then, with probability p, each link is
replaced by another one linking two randomly selected agents. Parameter p is
called the rewiring probability. During the rewiring process we do not allow the
creation of self links, as we do not allow self-interaction. Repeated links and dis-
connected graphs are also avoided. The rewiring process may create long range
links connecting distant agents. For simplicity, we will call neighbours to all in-
terconnected agents, even if they are not located at adjacent cells. By varying
p from 0 to 1 we are able to build from completely regular networks to random
ones. SWNs have the property that, even for very small values of the rewiring
probability, the mean path length between any two nodes is much smaller than
in a regular network, maintaining however a high clustering coefficient observed
in many real systems including social ones.

The third stage is used to model the fact that agents tend to imitate the
most successful agents they know. It can also be interpreted as the selection
step of an evolutionary process in which the least successful strategies tend to
be replaced by the most successful ones. This is done by synchronously applying
a transition rule to the agents selected in the first stage. The transition rule used
here (and also in [12]) is a generalization of the proportional update rule. Let Gi

be the average payoff earned by agent i in the interaction stage, Ni be the set of
neighbours of agent i, si be equal to 1 if i’s strategy is C and 0 otherwise, and
m a positive number. The probability that in the next time step agent i adopts
C as its strategy is then given by

pC =

∑
l∈Ni∪i siG

m
l∑

l∈Ni∪i Gm
l

. (1)

The m parameter acts as a weight that favors the most successful neighbour’s
strategy B in the update process: the bigger m, the larger is the probability
that i adopts B. When m = +∞ we have a deterministic best neighbour rule
such that i always adopts B as its next strategy. When m = 1 we have the
proportional update rule. It can be viewed, as well, as the deterministic degree
of the transition rule. We use average payoffs instead of total payoffs because
the rewiring process used to build small-world topologies may result in agents
having a different number of neighbours.

4 Simulations and Results

As in [12], the simulations were done with populations of 80×80 = 6400 agents.
When the system is running synchronously, i.e., when α = 1 we let the system
run during a transient period of 200 iterations. After this, we let the system
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run during 100 more iterations, and at the end we take as output the average
proportion of cooperators during this period, which is called the sampling period.
When α �= 1 the number of selected agents at each time step may not be equal to
the size of the population and it may vary between two consecutive time steps. In
order to guarantee that the runs with α �= 1 are equivalent to the synchronous
ones in what concerns to the total number of individual updates, we let the
system first run until 200 ∗ 6400 = 1280000 individual updates have been done.
After this, we sample the proportion of cooperators during 100 ∗ 6400 = 640000
individual updates and we average by the number of time steps needed to do
these updates.

Each point in the charts of Fig. 2 is the result for a combination of the b,
m and α values and p = 0 (regular grid), averaged over 30 runs. We used 10
different b values varying from 1.02 to 1.7. α values vary from 1 to 0.1 by steps
of 0.1. For the m parameter we used values +∞, 100, 10, 8, 6, 4, 2 and 1.

In [4] a given cellular automata is said to be robust if the average density of
1’s in the sampling period doesn’t change by more than 0.1 when the synchrony
rate α parameter is changed by a small value (they also change α by 0.1 steps). If
we take these same values, but using the frequency of cooperators instead of the
density of 1’s as the measure of interest, the first conclusion we can derive from
Fig. 2 is that, in general, the system is robust to small changes of the α value.
There are, however, some situations of non-robustness: when m = +∞ (b = 1.15,
b = 1.35 and b = 1.61) and m = 100 (b = 1.55 and b = 1.61) and several when
m = 2 and m = 1. The big jumps that can be observed for the m = 2 and
m = 1 cases are due to the large difference in the frequency of cooperators for
opposite values of α: in order to get from one point to the other, big jumps must
be made. This is not the real justification when b = 1.02. In this case we can see
that the real reason for the non-robustness is that the frequency of cooperators
doesn’t change uniformly as we change the α value: when we move from α = 1
to α = 0.1 the frequency of cooperators grows very quickly until it stabilizes
in the maximum value. This means that, for this particular combination of the
m and b values, cooperation hegemony is the dominant result for a significant
fraction of the α domain.

Another result that we can derive from the charts is that, as we change the α
parameter, the variation of the frequency of cooperators is not always monotonic.
For example, there are some situations in which, when we move from α = 1 to
α = 0.1, the frequency of cooperators first decreases but then, at some point, it
starts increasing. The most significant of these situations happens for (m = 8,
b = 1.35) and (m = 6, b = 1.3). In the first situation, the difference in the
frequency of cooperators obtained with α = 1 and α = 0.1 is 0.022, but the
difference of the values obtained with α = 1 and α = 0.5 is 0.231. Excepting
these situations, which happen for a relatively low value of m, non-monotonicity
happens mainly for large values of m, that is, when the probability that an agent
imitates its most successful neighbour is high. Nevertheless, we can say that, in
general, the system responds monotonically as we change α from one extremity
to the other.
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(a) m = +∞. (b) m = 100.

(c) m = 10. (d) m = 8.

(e) m = 6. (f) m = 4.

(g) m = 2. (h) m = 1.

Fig. 2. % of cooperators for p = 0 and different combinations of m, b and α
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There is a somewhat unexpected result that we can also derive by looking at
the charts. It can be phrased like this: the lower the value of the m parameter,
the more is cooperation favoured when we decrease the value of α. That is, for
high values of m, there is a general tendency for a decrease in the frequency of
cooperators as we decrease the value of α. But, as we decrease the value of m,
lower values of α become more beneficial to the emergence of cooperation. In the
first set of simulations we have done, we used only the values +∞, 100, 10, and 1
as in [12]. But, after verifying the behaviour of the system for m = 1, we decided
to experiment with some more m values between 1 and 10 in order to confirm if
this was a consistent behaviour, which in fact is. We will call to this phenomenon
the small determinism degree and small synchrony rate phenomenon.

As we said before, besides the regular grid, we also did some simulations with
SWNs in order to verify how much the results were dependent of the underlying
interaction topology and how could they change as we change the rewiring prob-
ability. We used the following p values: 0 (regular grid), 0.01, 0.05, 0.1 and 1.0
(random network). Due to space restrictions, we only show the results achieved
with p = 0.1 and p = 1 (Figs. 3 and 4 in the Appendix). For a start, we may
observe that, as we increase the rewiring probability, the system progressively
becomes more robust to changes in α. For example, when p = 0.1, only for the
cases (m = 4, b = 1.02), (m = 1, b = 1.02) and (m = 2, b = 1.02) we have jumps
larger than 0.1. In what concerns monotonicity, we also observe that the system
becomes progressively more monotonous as the rewiring probability is increased.
When p = 0.1 some cases of non-monotonicity remain but, excepting two situ-
ations ((m = +∞, b = 1.61) and (m = 100, b = 1.61)), the difference between
the largest value and the lower one is very small. For p = 1, non-monotonicity
doesn’t exist.

As to the small determinism degree and small synchrony rate phenomenon, the
first thing we can conclude is that, not only it appears in all the tested topologies,
but also that, as p is increased, its effects start to appear earlier, i.e, for larger
values of m. For example, for p = 1, the combination (m = +∞, b = 1.02) is the
only one where the frequency of cooperators decreases as we decrease the value of
α. Also, as p is increased, cooperation becomes possible for an increasing part of
the b domain. As to this, we would like to stress that there are many combinations
(m,b) for which cooperation is not present when α = 1 but for which it is present
when α = 0.1. Once more, the utilization of the ASD method allows us to
analyze how this change happens. One of these cases occurs for (p = 0.1, m =
+∞, b = 1.7), where cooperation becomes possible only when α is approaching
0.1. However, for the most part of these cases cooperation is made possible as
soon as we depart from the synchronous discipline. This may suggest that the
existence of some degree of cooperation is the most probable result in these
situations since it exists for almost the entire α domain. These results also show
that, for the most part of the parameters’ combinations, synchronism renders
difficult the emergence of cooperation, which may have some relevant social
consequences. For example, this may suggest that two negotiators submitting



ASD and the Spatial Prisoner’s Dilemma Game 243

their proposals by the way of a mediator will have more difficulty at arriving to
an agreement than if they do it asynchronously.

5 Conclusion and Future Work

In this work we argued that intermediate levels of asynchronism should be ex-
plored in the study of models such as spacial evolutionary games, since we believe
that real systems, and specially sociological ones, lie somewhere between per-
fect synchronism and continuous updating. We used an update method called
asynchronous stochastic dynamics which allows the exploration of all the space
between these two extremes and applied it to spacial versions of the Prisoner’s
Dilemma game. This method allows us derive some results concerning, for exam-
ple, robustness and monotonicity of the system that are not possible to derive
if only synchronous and continuous updating are used. We found that, in gen-
eral, the spacial Prisoner’s Dilemma game responds robustly and monotonically
to changes in the synchrony rate. This behaviour is usually taken for granted
but results obtained in recent works on elementary cellular automata systems,
with which spatial evolutionary games have many resemblances, show that the
behaviour of these systems may be very different on intermediate levels of the
update discipline. This method also allows us to analyze how the synchrony rate
affects the system behaviour as other system parameters change. We found, for
example, that lower values of the synchrony rate become more beneficial to the
evolution of cooperation as the level of determinism of the generalized propor-
tional update transition rule diminishes. Finally, in situations in which some
degree of cooperation exists under one of the extremes of the update rule but
not under the other, this method allows us to understand how the change from
one type of result to the other happens and what is the most common output
throughout the synchrony rate spectrum.

One of our first future extensions to this work will be to explore the ASD
method with other very used games in order to verify if some of the results
achieved with the Prisoner’s Dilemma game as, for example, the small deter-
minism degree and small synchrony rate phenomenon, can be generalized. The
results achieved in [16] with the Snowdrift game, where the best-neighbour
(equivalent to m = +∞) and the simple proportional update (m = 1) tran-
sition rules, as well as synchronous and continuous updating were used, seem to
indicate that this is the case. However, only by exploring intermediate levels of
asynchronism and intermediate levels of determinism of the transition rule we
can confirm this. We also plan to use scale free networks [2] as the underlying
interaction topology. This will allow us to compare, for example, the robustness
of other types of topologies to changes in the synchrony rate.
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A Results for p = 0.1 and p = 1

(a) m = +∞. (b) m = 100.

(c) m = 10. (d) m = 8.

(e) m = 6. (f) m = 4.

(g) m = 2. (h) m = 1.

Fig. 3. % of cooperators for p = 0.1 and different combinations of m, b and α
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(a) m = +∞. (b) m = 100.

(c) m = 10. (d) m = 8.

(e) m = 6. (f) m = 4.

(g) m = 2. (h) m = 1.

Fig. 4. % of cooperators for p = 1.0 and different combinations of m, b and α
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