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Abstract

Nowadays there are a wide range of techniques for terrain generation, but
all of them are focused on providing realistic terrains, often neglecting other
aspects (e.g., aesthetic appeal or presence of desired features). This thesis
presents a new technique, GTP (Genetic Terrain Programming), based on
evolutionary design with Genetic Programming. The GTP technique consists
of a guided evolution, by means of Interactive Evolution, accordingly to a
specific desired terrain feature or aesthetic appeal. This technique can yield
both aesthetic and real TPs (Terrain Programmes) which are capable of gen-
erating different terrains, but consistently with the same features. TPs are
also scale invariant, meaning that terrain features will be preserved across
different LODs (Levels Of Details), which allows the use of low LODs dur-
ing the evolutionary phase without compromising results. Additionally, the
resulting TPs can be incorporated in video games, like any other procedural
technique, to generate terrains. Furthermore, by way of resorting to several
TPs to compose the full landscape, it is possible to control some localised
terrain features, thus eliminating the main drawback of traditional procedu-
ral techniques. The combination of GP with evolutionary art systems also
diminish the effort and time required to create complex terrains when com-
pared to modeling techniques. Moreover, the results are not dependent on the
designer’s skills.
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Chapter 1

Introduction

Video games constitute a crucial area of the entertainment industry, with
impressive financial investments to make them more appealing and interest-
ing. Game players seek continually for more enjoyable games as they spent
3.7 days per week playing an average of 2.01 hours per day [4]. Entertain-
ment industry wants to maintain or increase this user’s interest. In order
to achieve richer human-machine interaction video games must be dynamic,
they need to present game players with novel plots, intelligent artificial oppo-
nents, different goals and even scenario changes. Artificial terrain generation
algorithms have an important role in the video games’ dynamics. They help
keep the user interested in playing by providing new landscapes. Video games
are the most common application for artificial terrain generation algorithms,
but they are also used in other fields such as movies, simulations and training
environments (see Section 2.1).

Nowadays there are a wide range of techniques for terrain generation,
which are presented in Sections 2.4 and 2.5, but all of them have key con-
strains. More elaborated methods depend highly upon designer’s skills, time
and effort to obtain acceptable results, and can not be used to automatically
generate terrains in real time. The simpler methods allow only a narrow
variety of terrain types and usually require a second algorithm (e.g. erosion
algorithms) to provide a more natural looking result. Another key limitation
of most techniques is the lack of control over localised terrain features.

A common feature with current techniques is that they all try to gen-
erate realistic terrains. Although this is an important aspect, imagine the
possibility of a game designer to evolve their own terrain accordingly to his
aesthetic feelings. This can lead to the generation of more exotic terrains at
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the cost of realism, but might also give players a reaction of awe and increase
their interest in playing. This report presents a new technique, that we des-
ignated as Genetic Terrain Programming, that allows the evolution of TPs
(Terrain Programmes) based on aesthetic evolutionary design with Genetic
Programming (GP).

A TP is a mathematical expression that can generate height maps. Due to
the incorporated randomness, each execution will generate a different terrain,
but that will always present the same features. So, a TP can be executed
like other procedural techniques and as many times as desired.

The use of evolutionary art systems with GP will allow the creation of
both aesthetic and real terrains (without requiring a database of real terrain
data). Additionally some control over localised terrain features will be pos-
sible trough the use of several TPs to compose the full landscape, which is
the main drawback of the current procedural techniques. It will also require
less effort and time than modeling techniques to create complex terrains and
the result is not solely dependent on the designer’s skills.

This document includes two background chapters, Chapter 2 and 3. Chap-
ter 2 presents what have been done in the field of terrain generation and a
terrain generator taxonomy. Chapter 3 introduces the evolutionary algo-
rithms paradigm, their characteristics and applications, with emphasis on
video games and evolutionary design. An introduction to GP is also in-
cluded. Our technique, Genetic Terrain Programming, its implementation
details and results are exhibited on Chapter 4. Finally, conclusions and fu-
ture work are presented on Chapters 5 and 6.



Chapter 2

Artificial Terrains

Artificial terrain generation has been addressed by several researchers for a
long time. This chapter presents what have been done in this area and starts
to present some examples of terrain generation applications in Section 2.1.
Section 2.2 introduces a number of traits that an ideal terrain generation algo-
rithm would have to establish a base line of comparison with real algorithms.
Then different options of data structure to represent terrains models, their
benefits and short comings are presented in Section 2.3. The existing gen-
eration techniques are addressed in two sections, Section 2.4 deals with the
traditional generation techniques, which are the ones most commonly used,
and Section 2.5 presents the newer methods for terrain generation based on
evolutionary algorithms. Finally, some considerations are made regarding
how different generation techniques approaches the LOD (Level Of Detail)
problematic in Section 2.6.

2.1 Applications

Terrain generation is used for a broad range of applications in many fields,
from computer generated art and animation, to video games , virtual reality
and architecture. The following list presents some examples:

• virtual tourism and travel planning;
• geographical and general reference education (e.g. the Virtual Field

Course1);

1http://www.geog.le.ac.uk/vfc/

3
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• land planning, usage and urban planning;
• civil engineering, utilities, and other infrastructure;
• visualisation of weather and other environmental attributes;
• real estate (e.g. Sense8 virtual real estate demo 2);
• diplomacy (e.g. pilots study virtual terrain in Bosnia3);
• radio, tv and cellular transmitter placement and signal analysis (e.g.

Radio Mobile4);
• public participation in land management (e.g. Virtual reality solutions

to coastal erosion 5);
• media and advertising;
• security and defence industry;
• games and entertainment;

2.2 Ideal Terrain Generator

In order to compare existing generation techniques R. Saunders [5] proposed
a list with the desired properties of a perfect terrain generator:

• low requirements of human input;
• allow a high degree of human control;
• to be completely intuitive to control;
• produce models at arbitrary levels of detail;
• fast enough for real-time applications;
• to be able to generate a wide variety of recognisable terrain types and

features;
• to be extensible to support new types of terrain;

2.2.1 Low Requirements of Input

Digital terrain models typically involves large amounts of data. For example,
to represent a terrain with a grid of points with 10 meters of distance between
points requires more than 10.000 data points per square kilometer. The
manual placement of all this data points would be a tedious and lengthy task.
Therefore, the automated construction of details, without compromising the

2http://www.sense8.com/gallery/data_visual.html
3http://www2.cnn.com/TECH/9512/virtual_bosnia/index.html
4http://www.cplus.org/rmw/english1.html
5http://www.edp24.co.uk/content/news/2002/06/asp/020605coasterode.asp

http://www.sense8.com/gallery/data_visual.html
http://www2.cnn.com/TECH/9512/virtual_bosnia/index.html
http://www.cplus.org/rmw/english1.html
http://www.edp24.co.uk/content/news/2002/06/asp/020605coasterode.asp
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designer control, should result in a productivity increase. An ideal terrain
generation methodology would accept a command like this “give me a 10 km
by 5 km area of desert-like terrain with a resolution of 10m per sample” and
produce a believable result. A low input requirement would also be useful
for generating unique terrains automatically , e.g. random terrain generator
for a game.

2.2.2 High Degree of Control

To give designers the full creative freedom requires the ability to control the
behaviour of the terrain across all scales. From the macro-scale features (e.g.
hills, valleys, mountains) to the micro-scale details (e.g. cracks, crevices) with
the desired localisation. An ideal algorithm would permit the artist to exert
whatever amount of control he wishes, where he wishes, while intelligently
filling in the details he does not want to specify directly. Obviously this goal
conflits with the previous one of low requirements of human input.

2.2.3 Intuitive to Control

An ideal terrain generation algorithm would be perfectly intuitive to use,
without requiring knowledge of the algorithm’s operation. All of the inputs
available to the user would be easily understood: even an inexperienced user
would have a reasonable idea of how tweaking an input would affect the
generated terrain.

2.2.4 Arbitrary Levels of Detail

An ideal terrain generation algorithm would permit the creation of terrain at
multiple levels of detail, and the segmentation of large terrains into regions
of differing levels of detail. Full detail terrain models are not always needed,
the required level of detail is determined by their intended use. For example,
a computer animated film needs a highly realistic detail of the terrain model
only in the areas near to which the action is to take place, and can use
relatively simple geometry for the distant terrain. Similarly, the level of
detail required for the terrain in a flight simulation is significantly smaller
than what is needed for ground level action.
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2.2.5 Fast Enough for Real Time Applications

Many terrain-related algorithms are very slow, or else require a lengthy pre-
processing phase before the terrain can be used in a real-time application.
Only the simplistic terrain generation algorithms are able to generate terrains
in real time. However, this feature can provide several important advantages,
including:

• instantaneous feedback regarding a particular modification;

• the ability to modify dynamically the terrain, such as transforming a
mountain into a crater, or rapidly eroding a riverbed into a deep gorge;

• if the full terrain can be (re)generated from a compact set of param-
eters, the required memory and disk storage will be significantly less
demanding;

• the ability to create seamless, infinite worlds, with arbitrarily fine, dy-
namic level of detail;

2.2.6 Capable of Diverse Features and Terrain Types

An ideal algorithm would be able to create a wide diversity of terrain types
(e.g., desert, mountains, plains) and features (e.g. ravines, riverbeds, volca-
noes), both with realistic look and from the imagination or aesthetic appeal
of the artist. The transitions between different types of terrain (e.g., from
mountains to foothills) would be credible. Additionally, the placement of
semantic features would make sense, e.g. waterfalls would pour into pools,
rivers would always flow downhill.

2.2.7 Extensible

The digital creations of a designer or artist are only limited by their imagina-
tion. Therefore, regardless of how many types of terrain a terrain generation
tool can create, it is not possible to cover all the possibilities. Thus, an ideal
terrain generation algorithm would be extensible in some way, allowing new
types of terrain to be introduced easily.
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2.3 Terrain Representation

Before a terrain generator is developed, it is necessary to define how to repre-
sent a terrain. The chosen data structure will influence the way the terrain is
build, the available tools to manipulate it and might affect also the terrains
features that can be represented. Regarding these topics there are several
considerations:

• the terrain must be rendered at any arbitrary scale, or is it acceptable
to have a finite maximal resolution?

• is it necessary to represent all terrain features where there are multiple
surfaces for the same horizontal coordinates, like caves and overhangs?

• is it necessary to account for planetary curvature, or a flat approxima-
tion is enough?

• is it necessary to perform collision detection in an efficient way?

Having this considerations in mind, several alternative data structures to
represent terrains are analysed:

• height maps;
• voxel grids;
• non-uniform meshes;
• analytical and fractal functions;

2.3.1 Height Maps

Height maps are probably the most common method used to represent ter-
rains. Formally, a height map is a scalar function of two variables, such that
for every coordinate pair (x, y) corresponds an elevation value h, as shown
in Eq. (2.1). In practice a height map is a two-dimensional, rectangular grid
of height values, where the axis values are spaced with regular intervals valid
over a finite domain (see Figure 2.1). The most common data structure to
represent them are 2D arrays filled with the elevations values.

h = f (x, y) . (2.1)
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Figure 2.1: A discrete height map example

Advantages

The height maps’ regular structure is their main advantage, it allows the
optimisation of operations such as rendering, collision detection and path
finding. The render of huge height maps in real-time is now possible due
to the creation of several continuous level of detail (CLOD) algorithms [6–
8], which render highly visible areas of the terrain with detailed geometry,
using progressively simpler geometry for more distant parts of the terrain.
Collision detection is greatly simplified if one of the objects is a height map,
because only a few surrounding triangles need to be checked for collision.

If the values of a height map are normalised it becomes the same thing
as grey scale image. This means that image processing and computer vision
techniques may be used to construct, modify and analyse terrain models rep-
resented as height maps. For example, a height map can be stored, imported
or exported using an image file format, or a filter can be applied to smooth
a rough terrain.

Finally, Geographic Information Systems (GIS) use height maps to rep-
resent real world terrain, which are commonly built using remote sensing
techniques such as satellite imagery and land surveys. This is another ad-
vantage due to the significant amount of real world terrain models available
to work with.
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Disadvantages

The main limitation of height maps is the inability to represent structures
where multiple heights exist for the same pair of coordinates. So height maps
are inherently unable to represent caves, overhangs, vertical surfaces, and
other terrain structures in which multiple surfaces have the same horizontal
coordinates. Fortunately, only a small percentage of natural terrain fall into
this category and this limitation can be overcame by using separate objects
placed on top of the terrain model.

A second disadvantage of height maps is that it has a finite uniform reso-
lution, which means there is no simple way to handle a terrain with different
local levels of details. If the resolution is chosen to match the average scale
of the features in the terrain, then any finer-scale features will be simplified
or eliminated. Conversely, if the resolution is chosen to be high enough to
capture the fine-scale features, areas containing only coarse features will also
be captured at this same high resolution, an undesirable waste of space and
processing time. Ideally, a terrain representation for terrain generation would
either be infinite in resolution, or else would adaptively increase its resolution
to accommodate the addition of fine scale details, rather than requiring an a
priori decision about resolution.

A third disadvantage of height maps is its inadequacy to represent ter-
rain on a planetary scale. Rectangular height maps do not map directly to
spheroid objects, usually a two-pole spherical projection is used. In those
cases the density of height field points will be substantially greater in areas
near the poles than at those near the equator.

2.3.2 Voxel Grids

A voxel grid is a discrete three-dimensional grid of volumetric pixels (voxels)
where each voxel is filled or not. This structure allow the representation of
arbitrary 3D shapes.

Advantages

The voxel grids’ advantage over height maps is their ability to represent any
terrain structures like caves, overhangs and vertical surfaces.
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Disadvantages

Voxel grids share the same disadvantages of height maps, such as finite res-
olution and inability to gracefully handle planetary curvature. Additionally,
operations like rendering and collision detection consumes more processor
power and memory than height maps.

2.3.3 Non-Uniform Meshes

The terrain surface can be represented as an arbitrary mesh of 2D primitives,
usually polygons, in the 3D space. This is a more general representation of
3D objects and there are several tools to work with this representation. A
special case of a non-uniform mesh is TIN (triangular irregular network)
[9]. A TIN is a vector based representation of a physical surface made up
of irregularly distributed nodes and lines with three dimensional coordinates
(x, y, z) that are arranged in a network of nonoverlapping triangles. TINs are
often derived from the elevation data of a rasterized digital elevation model
(DEM).

Advantages

The main benefit of using non-uniform meshes to model the terrain surface
is that they are extremely general. The surface may have arbitrary geometry
(overhangs, caves, etc.). This is the most common paradigm used in 3D tools
and allows an artist to freely model any arbitrary 3D object using a single
modeling paradigm. Furthermore, there are a significant amount of available
tools to work with, see Section 2.4.

A second advantage of using a TIN over a height map is that the points of
a TIN are distributed variably based on an algorithm that determines which
points are most necessary to an accurate representation of the terrain. So,
they naturally support variable level of detail, allowing more vertices in areas
of sharp change and relatively few vertices in flat areas. As a result, a mesh
structure can store some terrain models much more efficiently than regular
grid methods, since it does not require a globally high resolution in order to
achieve fine-scale features in a few places.
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Disadvantages

The main problem when using meshes for terrain generation is that it is
not clear how to generate them automatically. Although a terrain is always
tessellated into polygons before rendering, to best of our knowledge, there are
no methods (other than manual sculpting) to directly generate a non-uniform
mesh.

2.3.4 Analytical and Fractal Functions

Another way to represent terrains is through the use of fractal functions or
analytic expressions. This approach is not used often, being MojoWorld 6

and GenTP (see Chapter 4) two examples.

Advantages

The main advantage of analytical and fractal functions is the ability of being
displayed at any scale without losing resolution. Due to the continuous na-
ture analytical functions it is possible to recalculate the terrain so it does not
look faceted when viewed close-up, like height maps tend to do. Some analyt-
ical functions are render friendly and/or collision detection, others, such as
polynomial surfaces of low degree (quadratic and below), allows ray/surface
intersections to be calculated in a straightforward way. However, terrains
produced by analytic functions tend to become more and more linear when
enlarged. On the other hand, fractals functions continue to produce new
details as they are evaluated progressively at finer scales.

Disadvantages

Modeling with analytical functions is a great challenge, if a single, global
function is used, it is difficult to know how to modify it to achieve a certain
local effect. A more common approach is the use of several functions to
compose a full landscape, were B-spline patches are an example. Fractals
present the same disadvantage due to the few input variables to control the
output.

6http://www.pandromeda.com/products/

http://www.pandromeda.com/products/
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Another problem is the complexity to render the terrain directly from the
functions, because ray tracing systems and hardware were built to work with
polygon-based rendering. One way to address this issue is the introduction of
an additional stage were the function is converted to another form of terrain
representation, like height maps, before rendering, but with performance
costs.

2.4 Traditional Generation Techniques

Traditional terrain generation techniques can be divided in three main cate-
gories:

• Measuring;
• Modeling;
• Procedural;

2.4.1 Measuring

In the measuring techniques elevation data is derived from real-world mea-
surements to produce Digital Elevation Models (DEM), commonly built using
remote sensing techniques such as satellite imagery and land surveys 7. This
is the most common basis for digitally-produced relief maps. Measuring has
the advantage of producing highly realistic terrains with very little human
effort, but at the expense of designer control. If the designer has specific
goals for the the terrain’s design and features (e.g. mountains, valleys, lakes)
this approach may be very time-consuming, as the designer might have to
search extensively to find real-world data that meets his specific criteria.

2.4.2 Modeling

Modeling is by far the most flexible technique for terrain generation. A
human artist models or sculpts the terrain morphology manually using a 3D
modeling program (e.g. Maya 8, 3D Studio 8, or Blender 9), or a specialised

7http://rockyweb.cr.usgs.gov/nmpstds/demstds.html
8http://www.autodesk.com/fo-products
9http://www.blender.org

http://rockyweb.cr.usgs.gov/nmpstds/demstds.html
http://www.autodesk.com/fo-products
http://www.blender.org
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terrain editor program (e.g. the editors that ship with video games like
Unreal Tournament 2004 10, SimCity 4 11 or SimEarth 12). The way the
terrain is built is different depending on the features provided by the chosen
editor, but the general principle is the same. With this approach the designer
has unlimited control over the terrain design and features, but this might be
also a disadvantage. By delegating most or all of the detail up to the designer,
these technique imposes high requirements on the designer in terms of time
and effort. Also the realism of the resulting terrain is fully dependent on the
designer’s skills.

2.4.3 Procedural

Procedural techniques are those in which the terrains are generated program-
matically. These category can be divided into the following techniques:

• Physical;
• Spectral synthesis techniques;
• Fractals;

Physical

Physically-based techniques simulate the real phenomena of terrain evolution
trough effects of physical processes such as erosion by wind 13, water [10],
thermal [11], or plate tectonics. These techniques generate highly realistic
terrains, but require an in-depth knowledge of the physical laws to imple-
ment and use them effectively. Physically-based techniques are also very
demanding in terms of processing power.

Spectral synthesis techniques

Another procedural approach is the spectral synthesis. This technique is
based on the observation that fractional Brownian motion (fBm) noise has
a well defined power spectrum. So random frequency components can be
easily calculated and then the inverse Fast Fourier Transform (FFT) can

10http://www.mobygames.com/game/unreal-tournament-2004
11http://simcity.ea.com/about/simcity4/overview.php
12http://www.mobygames.com/game/simearth-the-living-planet
13http://www.weru.ksu.edu/weps.html

http://www.mobygames.com/game/unreal-tournament-2004
http://simcity.ea.com/about/simcity4/overview.php
http://www.mobygames.com/game/simearth-the-living-planet
http://www.weru.ksu.edu/weps.html
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be computed to convert the frequency components into altitudes [11]. This
technique does not allow the designer much control on the outcome of terrains
features.

Fractals

Self-similarity is the key concept behind any fractal technique. An object
is said to be self-similar when magnified subsets of the object look like (or
identical to) the whole and to each other [12]. Terrain falls into this category
(to a limited extent). The jagged edge of a broken rock has the same irregu-
larities as a ridgeline on a distant horizon. This allows the use of fractals to
generate terrain which still looks like terrain, regardless of the scale in which
it is displayed [13]. Every time these algorithms are executed they generate
a different terrain due to the incorporated randomness. This class of algo-
rithms is the favourite one by game’s designers, mainly due to their speed
and simplicity of implementation. There are several tools available that are
predominantly based on fractal algorithms, such as Terragen 14 (which is a
hybrid fractal/modeling tool) and GenSurf 15 (a mapping tool for Quake 3
Arena video game). However, generated terrains by this techniques are easily
recognised because of the self-similarity characteristic of fractal algorithms.
Although these algorithms present some parameters that can be tweaked to
control, e.g the roughness, the designer does not have control on the resulting
terrain features.

Due to the importance of these techniques in entertainment industry, we
will explain the Midpoint Displacement Algorithm and the Diamond-Square
Fractal Algorithm.

Midpoint Displacement Algorithm

One of the most popular method for automatic terrain generation is the
diamond-square algorithm. This fractal algorithm is a variation of the ran-
dom midpoint displacement algorithm [14] applied to two dimensions. The
roughness constant, H, is the value which will determine the roughness of
the resulting fractal. This constant can take values from 0 to 1 and is used
to calculate the scaling factor f = 2−H . The resulting fractal will be very
smooth with H = 1 and very jagged with H = 0 [13].

To explain how the random midpoint displacement algorithm works, lets

14http://www.planetside.co.uk/terragen
15http://tarot.telefragged.com/gensurf

http://www.planetside.co.uk/terragen
http://tarot.telefragged.com/gensurf
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consider its use on just one dimension. If X(t) is to be computed for times
t between 0 and 1, then it may be started by setting X(0) = 0 and X(1)
as a sample of a Gaussian random number. Next X(1

2
) is computed as

1
2
(X(0) + X(1)) + D1, where D1 is a Gaussian random number which should

be multiplied by a scaling factor of 1
2
. On the next iteration the scaling factor

is reduced by 1√
8

(H = 0.5) and the two intervals
[
0, 1

2

]
and

[
1
2
, 1

]
are divided

again. X(1
4
) will be set to 1

2
(X(0) + X(1

2
)) + D2,1, where D2,1 is a Gaussian

random number which should be multiplied by 1√
8

(the current scaling factor).

The same reasoning is applied to X(3
4
) where D2,2 is computed the same way

as D2,1. This process can be repeated as many times as desired [12]. Figure
2.2 shows three runs of the random midpoint displacement algorithm with
different roughness (H) values.

The same reasoning is applied to X(3
4
) as showed in Formula 2.2, where

D2,2 is computed the same way as D2,1 [12].
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The third stage proceeds in the same way: reduce the scaling factor by√
2, which will be 1√
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a similar fashion to Formula 2.2.
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(2.3)

Diamond-Square Fractal Algorithm

The midpoint displacement algorithm, described in previous section, can
be extrapolated into 3D space, one of those extrapolations is called diamond-
square algorithm. A two-dimensional array of height values is needed, they
will map indices (x and y values) into height values (h). Although the end
goal is to generate three-dimensional coordinates, the array only needs to
store the height (h) values. The algorithm starts with a large empty 2D
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Figure 2.2: Execution examples of the random midpoint displacement algo-
rithm

square array of points. The dimension of this array should be d = 2n + 1,
where n is the number of desired interactions and the scaling factor should
now be f =

√
2−H [12]. The four corner points should be set to the height

value and form a square. This is the starting-point for the two steps iterative
subdivision routine [14] (see Figure 2.3):

• The diamond step: Taking a square of four points, generate a random
value at the square midpoint, where the two diagonals meet. The
midpoint value is calculated by averaging the four corner values, plus
a random amount. This gives diamonds when it has multiple squares
arranged in a grid;

• The square step: Taking each diamond of four points, generate a ran-
dom value at the centre of the diamond. Calculate the midpoint value
by averaging the corner values, plus a random amount generated in the
same range as used for the diamond step. This will generate squares
again;

2.5 Evolutionary Generation Techniques

All traditional generation techniques present some kind of limitation, in an
attempt to overcome them new techniques were developed based on evolu-
tionary algorithms. Evolutionary algorithms (EA) are a kind of bio-inspired
algorithms that apply the Darwin’s theory [15] (see Chapter 3).
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Figure 2.3: Two iterations of the diamond-square algorithm. Pseudo random
number are used for initial values in step a. In step b (the ”diamond” step) a
new value is found by offsetting the average of the four values of step a. Step
c (the ”square” step) fills in the rest of the midpoint values also by offsetting
the average of the four neighbours of each new point. Steps d and e show
the next iteration [11].

To the best of our knowledge, Teong Ong et al. [16] were the first authors
to propose an evolutionary approach to generate terrains. They proposed an
evolutionary design optimisation technique to generate terrains by applying
genetic algorithms to transform height maps in order to conform them to the
required features. Their approach breaks down the terrain generation pro-
cess into two stages: the terrain silhouette generation phase, and the terrain
height map generation phase. The input to the first phase is a rough, 2D
map laying out the geography of the desired terrain that can be randomly
generated or specified by the designer. This map is processed by the first
phase to remove any unnaturally straight edges and then fed to the second
phase, along with a database of pre-selected height map samples representa-
tive of the different terrain types. The second phase searches for an optimal
arrangement of elevation data from the database that approximates the map
generated in the first phase. Since the height map generation algorithm is
inherently random, the terrains generated from two separate runs of the al-
gorithm will not be the same, even if they use the same map. While this
has the benefit of allowing an infinite number of variations to be created,
it could also inhibit the designer’s creation process, as each successive run
would produce an entirely new terrain, even if the designer had made only
a small tweak to the map between runs. To control this, the seed for the
random number generator can be kept the same across separate runs of the
algorithm, allowing the same terrain to be regenerated as many times as
desired.

We proposed a new evolutionary approach designated GTP (Genetic Ter-
rain Programming) [1], which is detailed in Chapter 4. Our approach consists
on the combination of evolutionary art systems with GP to evolve mathemat-
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ical expressions, designated TPs (Terrain Programmes), to generate artificial
terrains.

2.6 Level of Detail

A detailed terrain model involves a huge amount of polygons to be repre-
sented, even when considering only the portion of the scene that is visible.
Clark [17] suggested using simpler versions of the geometry for objects that
had lesser visual importance, such as those far away from the viewer. These
simplifications are called Levels of Detail (LODs) and allows the adaptation
of structures, such as terrains, to the processing power requirements. How-
ever, when generating terrains LOD acquires a higher importance. On the
rendering phase LOD can be considered as the upper limit on the amount
of detailed to be shown. However, on the generation phase LOD will have a
huge effect on the shape and features of the generated terrain. As the LOD of
a terrain is reduced, the finer details are lost, leaving only the larger features.
Due to this result the details that disappeared are considered as belonging to
the finer LOD. Regarding LOD we can divide generations methods in three
classes:

• LOD-agnostic;
• Superposition;
• Progressive refinements;

– Fractals;

The following subsections describe those generation methods.

2.6.1 LOD-agnostic

Some generation methods’ approach to LOD by considering it only initially,
by determining the resolution of the terrain model to be generated. These
LOD-agnostic methods generate the terrain at once with the maximum de-
tail.

Collaging/faulting methods 16 are an example of LOD-agnostic methods.
In this method, a flat landscape is used as starting point and repeatedly add

16http://www.geocities.com/Area51/6902/t_fault.html

http://www.geocities.com/Area51/6902/t_fault.html
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or subtract height from some portion of the bitmap. Usually a straight line
is drawn across the bitmap and raise the left or the right part by one unit.
This is repeated from 1.000 to 10.000 times with randomly placed lines of
random slope to get some reasonably realistic mountains. The resolution
of the height field is fixed at the start of the algorithm, and the collaging
process runs to completion without explicit consideration for the LOD of
generated features. This approach was used by Mandelbrot [18] in building
early fractal landscapes. This is generally an expensive approach, although
there are some methods that can be used to speed it up in some cases.

Another class of methods that is typically LOD-agnostic is the class of
simulation methods. Simulation is usually done using numerical integration
techniques on a regular grid structure, the initial choices of grid resolution
and simulation time-step are normally the only points at which LOD con-
siderations are consciously applied. Thereafter, the physical features of the
terrain emerge through the approximation of physical processes, without fur-
ther reference to LOD (though the initial choice of LOD will certainly affect
the accuracy of the simulation).

2.6.2 Superposition

Superposition methods construct several layers with different scales and then
add them together until the desired LOD is achieved. This approach is used
in spectral synthesis methods (see Section 2.4) where each layer is composed
by a finite slice of the frequency domain. The higher the frequency, the
smaller are the details on the space domain. The recombination of these
different scales into a spatial-domain height field is done by applying the ap-
propriate inverse transform (Fourier or wavelet) from the frequency-domain
representation [19].

Another example of a superposition method is Perlin Noise [20, 21] ,
in which random noise layers of different frequencies and amplitudes are
added together; the choice of frequency and amplitude for each of the layers
gives some measure of control over the overall characteristics of the resulting
height map. Perlin Noise (and similar superposition methods) allow a user to
achieve a greater variety of effects and allows him some degree of predictable
control over the behaviour of the surface at different scales.
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2.6.3 Progressive refinements

A third approach to LOD in terrain generation is to refine the terrain surface
progressively, starting from a coarse LOD and adding finer and finer details
until the desired LOD is reached. These methods differ from the superposi-
tion ones in that they generate new fine scale details as modifications to the
coarser LODs. The use of recursive subdivision is common on these methods.
They start with a coarse LOD of the terrain model and the next finer LOD is
constructed by subdividing it and by adding small scale modifications. The
Midpoint Displacement Method (MPD) is an example of this approach. The
advantage of progressive refinement methods is that they can make use of
the previously constructed and provide better guarantee of perseverance of
macro terrain features without the need of any additional algorithm.

Fractals

Fractals are a special case of the progressive refinements category. Mandel-
brot [18] observed that many objects in nature display the characteristic of
self-similarity, having essentially the same structure when viewed at different
scales. Saunders [5] summarises this behaviour quite well:

Fractal algorithms answer the question, ”What should the terrain
look like at this scale?”, with, ”Just like it did at the larger scale,
but smaller.”

Fractals have been used in computer graphics to represent natural struc-
tures both regular (e.g plants and trees) and irregular (e.g terrains). Ran-
domised fractal algorithms are a convenient method of creating irregular
shapes across an entire range of LODs. Because each successively finer LOD
has a well defined relationship to the one preceding it (except for the effects
of the random numbers), fractal algorithms offer unlimited amount of detail.

However, not all terrain types exhibit the self-similar property across all
scales. For example, both photos from Figure 2.4 are from Death Valley (CA,
USA), but seen at very different scales. On top is a close-up of cracked dried
mud in a creek from the Death Valley and at the bottom is a satellite image
of the same region. As is easily verified, in this case there is no self-similarity
between the two scales of these terrain photos.

Therefore, fractals cannot be used as general functions to generate ter-
rains at different LODs, because there will be types of terrains that they
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Figure 2.4: Images of Death Valley, on top “Cracked mud on the way to
the borax haystacks”, by redteam (Creative Commons license), bellow a
satellite image from NASA (public domain). On this example there is no
self-similarity between the two scales of this region
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will be unable to reproduce. Any terrain generation algorithm that aims to
support a broad range of terrain types at various scales must allow for the
possibility of non-self-similar terrain.



Chapter 3

Evolutionary Algorithms

Evolutionary algorithms can be seen as search techniques [22]. They are able
to achieve good approximate solutions to all types of problems, because they
do not make any assumption about the underlying search landscape. This
characteristic is the key factor of success in such diverse fields as engineering,
art, biology, economics, marketing, genetics, operations research, robotics,
social sciences, physics, and chemistry. Apart from their use as optimisers,
evolutionary algorithms have also been used as an experimental framework to
validate theories about biological evolution and natural selection, particularly
through work in the field of artificial life [23].

Another filed were evolutionary algorithms have been used as an artificial
intelligence technique is video games. They provide competitive, dynamic
environments that make them ideal test beds for computational evolutionary
theories, architectures, and algorithms [24–26].

Given the increasing importance of the this entertainment industry, Sec-
tion 3.1 provides an overview of the use of evolutionary algorithms on video
games. Section 3.2 presents the concept of evolutionary design followed by
related work on this field on Section 3.3. Finally, Section 3.4 explains how
GP is implemented, which is used in our technique.

3.1 Video Games

Much of the early work on computational intelligence and games was directed
toward classic board games, such as noughts and crosses [27], chess, and

23
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checkers [28]. Board games can now, in most cases, be played by a computer
at a higher level than the best humans. For example the best computer
checkers player is considered to be better than the world champion. The
best computer chess players, despite Deep Blue beating Kasparov, are still
not rated as highly as the world champion human players. But the day
cannot be too far away when the best computer players can consistently
beat the best human players [26]. Board games usually capitulate to brute
force methods of search to produce the very best players. Go is an exception,
and has so far resisted machine attack. The best Go computer players now
play at the level of a good novice [29]. In recent years, researchers have been
applying EC methods to evolve all kinds of game-players, including real-time
arcade and console games (e.g., Quake, Pac-Man [30]). There are many goals
of this research, and one emerging theme is using EC to generate opponents
(NPCs - non-player characters) that are more interesting and fun to play
against, rather than being necessarily superior.

3.1.1 AI agents

Human-centred games are limited by human mental capacity and dexter-
ity. Video games, on the other hand, operate under no such constraints and
typically have a more complex state space than even the most complex of
human-centred games. This complexity encourages the development or evo-
lution of more general purpose AI agents than the required for playing board
or card games. John Laird [31] emphasised the challenge posed by real-time
video games to the AI community, and this is now a rapidly growing field of
research [26].

Currently, the majority of Game-AI agents are controlled through scripts,
developed by game programmers. The use of computational intelligence
techniques offers an alternative to scripted approaches, whereby the agent
behaviour can be controlled using an evolved neural network, for example,
rather than being programmed. This has two implications: firstly, program-
ming the scripts can be laborious and time consuming and therefore expen-
sive. Evolving the agent behaviours is financially advantageous. Second,
an evolved agent may create novel strategies that game players may find
especially entertaining to compete with.

Evolved agents tend to be excellent at exploiting loopholes in a game.
Identifying and removing these loopholes is an important part of the game
development life cycle, and one in which evolutionary computation is just
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starting to be used [32]. These are aspects of the game, whereby a player
finds a fast way to win. The effect of this is that the player tends to lose
respect for the game and game developers devote many hours of game playing
to find these loopholes.

A major challenge for researchers is to develop effective learning algo-
rithms that can adapt in real time within complex environments. To have
game characters that exhibit such characteristic would make games much
more interesting. For example, if a NPC learns from playing against the hu-
man player, then the human player may benefit in the long term by making
deliberate mistakes early on. So far it is not known any game that use this
type of learning [26]. Yannakakis [4] has created and used an objective mea-
sure framework of interestingness to evolve more engaging ghost behaviours
for a simplified version of Pac-Man and other preypredator games.

With computational intelligence techniques the possibility of opening new
genres arises. That has happened already in the work of Stanley et al. [33]
in their NERO video game. In NERO, the object of the game is to train
an army unit to fight as a team and, thereby, achieve the game goals. Each
soldier has a neural network that is able to learn through experience. Soldiers
who make more progress through the maze have more offspring than those
who make less progress, and eventually good maze-solving behaviours can be
evolved.

While the major recent trend has been toward designing NPCs for com-
plex 3D games such as Quake, the challenges of older 2D arcade classics
such as Pac-Man should not be underestimated. The advantage of working
with older-style arcade games is that they offer a sufficiently interesting chal-
lenge, while being much easier to implement and faster to simulate. While
there exists open-source first-person shooters, these can be quite technical to
interface to, and present lengthy simulation times [26].

Researchers at DEMO (the Dynamical & Evolutionary Machine Organ-
isation) have developed a web-based game designated Tron [34]. Tron uses
GAs to evolve a better game-playing AI. Tron is a GA-based system that
evolves strategies to play the light cycles game as depicted in the movie
Tron. The evolving players are set in opposition against human players over
the Web. Written entirely in Java, the project offers a variety of statistics
over how well its playing style has improved over time. Later Funes and
Pollack describe a statistics-based approach to compare players with each
other developed in the context of the Tron system [35]. They used a co-
evolutionary experiment that matches humans against agents and were able
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to show that the complex interactions led the artificial agents to evolve to-
wards higher proficiency. At the same time, individual humans learned as
they gained experience interacting with the system.

There are research areas, such as robotics, were measuring progress is a
significant problem. This happens because of the complex multi-task and
multi-objective goals they have to deal with. One way to measuring progress
is through real world competitive games. The robotic football tournaments
are a great success in this area in the form of RoboCup [36]. This tournaments
allowed many research groups to work with a common focus, and progress
can now be measured by the performance of current teams against previous
teams. Real world robotic games are much harder than they first appear and
involve dealing with noisy sensors and imperfect actuators, together with all
the strategic issues of how to play the game in question.

Another example of real world games are the computer-controlled car rac-
ing. By using real-time video feed from a Web cam, the aim of the controller
is to race the car around the track as fast as possible. This is hard enough in
itself, but much harder and more interesting when racing two or more cars
against each other at the same time. Ivan Tanev [37] hand designed a car
control algorithm, then optimised the parameters with an EA. One the other
hand, Togelius and Lucas [38] evolved a high-performance neural-network
controller for a simulated version of the track, but performed poorly on the
real-world track. Floreano et al. [39] evolved an active vision system for driv-
ing a car in a 3D racing game. Maybe one day this method can be applied
to drive a car in the real world.

3.1.2 ALife Games

Some video games try to go beyond the game playing strategy and controll
and apply the concepts of ALife to the whole game. Nerve Garden is a bi-
ologically inspired multi-user collaborative 3D virtual world. It is available
to a general Internet audience through low speed dial-up connections and
standard Internet protocols running on all major hardware platforms. The
project combines a number of methods and technologies, including L-systems,
Java, cellular automata, and VRML. Nerve Garden is a work designed to pro-
vide a compelling experience of a virtual terrarium that exhibits properties
of growth, decay and energy transfer reminiscent of a simple ecosystem. The
goals of the Nerve Garden project are to create an on-line “collaborative
A-Life laboratory” which can be extended by a large number of users for



3.1. VIDEO GAMES 27

purposes of education and research [40].

The first version of the system allowed users to operate a Java client, the
Germinator to extrude 3D plant models generated from L-systems. The 3D
interface in the Java client provided an immediate 3D experience of various
L-system plant and arthropod forms. Users employed a slider bar to extrude
the models in real time and a mutator to randomise production rules in the
L-systems and generate variants on the plant models. After germinating
several plants, the user would select one, name it and submit it into to a
common VRML97 scenegraph called the Seeder Garden.

Mindscape Creatures is a product of the Creature Labs division of Cyber-
Life Technology, Ltd. This is a ALife computer game created in the mid-1990s
by English computer scientist Steve Grand whilst working for the Cambridge
computer games developer Millennium Interactive. The program is regarded
as an important breakthrough in the advancement of ALife research. The
creatures in this computer game are called Norns, and the world’s popu-
lation of them at one stage hovered around the five million mark, making
them more common than many familiar natural species. Each Norn is com-
posed of thousands of tiny simulated biological components, such as neurons,
biochemicals, chemoreceptors, chemoemitters and genes. The genes dictate
how these components are assembled to make the complete organisms, and
the creatures behaviour then emerges from the interactions of those parts,
rather than being explicitly programmed in. The Norns are capable of learn-
ing about their environment, either by being shown things by their owners or
through learning by their own mistakes. They must learn for themselves how
to find food and how to interact with the many objects in their environment.
They can interact with their owners, using simple language, and also with
each other. They can form relationships and produce offspring, which inherit
their neural and biochemical structure from their parents and are capable of
open-ended evolution over time. They can fall prey to a variety of diseases
(as well as genetic defects) and can be treated with appropriate medicines
[41]. The player has also the possibility to directly manipulate the Norns
genes, through a special editor, in order to obtain the desired physical or be-
haviour characteristics [42]. The commercial success of this title, with more
than a million copies sold worldwide, reflects the relationships many users
are willing to form with believable artificial life characters [24].

Spore is another ALife video game by Maxis and designed by Will Wright
and it is still under development. The game has drawn wide attention for its
promise to simulate the development of a species through open-ended, on-the-
fly, user-guided evolution. Spore is a game where the player molds and guides
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Figure 3.1: Evolutionary design categories

a species across many generations, growing it from a single-celled organism
into a more complex animal. Eventually, the species becomes sapient. At this
point the player begins molding and guiding this species’ society, progressing
it towards a space-faring civilisation. Spore’s main innovation is the use of
procedural generation for many of the components of the game, providing
vast scope and open-endedness [43].

3.2 Evolutionary Design

Evolutionary design is a branch of evolutionary computation which has its
roots in three different disciplines: computer science, evolutionary biology
and design. Evolutionary design has taken place in many different areas over
the last decade. Designers have optimised selected parts of their designs using
evolution, artists have used evolution to generate aesthetically pleasing forms,
architects have evolved new building plans from scratch, computer scientists
have evolved morphologies and control systems of artificial life.

Evolutionary design can be divided into four main categories [44]: evo-
lutionary design optimisation, creative evolutionary design, evolutionary art
and evolutionary artificial life forms. However, some author’s work may be
included in two or more categories creating four overlapping sub-categories
shown in Figure 3.1. Our technique fits in the subcategory of Aesthetic
Evolutionary Design.
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3.3 Related Work

Evolutionary art systems are similar in many ways: they all generate new
forms or images from the ground up (random initial populations); they rely
upon a human evaluator to set the fitness value of an individual based on
subjective evaluation, such as aesthetic appeal; the population sizes are very
small to avoid user’s fatigue and allow a quick evaluation; and user interfaces
usually present a grid on the screen with the current population individuals,
allowing the user to rank them. However, they differ on their phenotype
representations [45]. If we use a terrain surface as phenotype, instead of an
image, it is possible to apply the same principle of evolutionary art to terrain
generation. The following paragraphs review the most proeminent works of
evolutionary art systems with GP.

GP has been the most fruitful evolutionary algorithm applied to evolve
images interactively. Karl Sims used GP to create and evolve computer
graphics by mathematical equations. The equations are used to calculate
each pixel [46], or create graphic movies by adding a time variable to the
dynamic differential equations [47]. He created several graphic art pieces in-
cluding Panspermia and Primordial Dance and also allowed visitors interact
with his interactive art system at art shows and exhibitions. His Galapagos1

is an L-system based Interactive Evolutionary Computation (IEC) system
that allows visitors to create their own graphic art through their interaction.

Tatsuo Unemi developed SBART (Simulated Breeding ART) [48, 49], an
IEC graphics system open to public. SBART uses GP to create mathematical
equations for calculating each pixel value and its (x, y) coordinates. As GP
nodes SBART assigns the four arithmetic fundamental operators (+, −,
× and ÷), power, sqrt, sin, cos, log, exp, min and max. The terminal
nodes are constants and variables. Three values at each pixel are calculated
using one generated mathematical equation by assuming that the constants
are 3D vectors consisting of three real numbers and the variables are 3D
tuples consisting of (x, y, 0). The three calculated values are regarded as
members of a vector (hue, lightness and saturation) and are transformed to
RGB values for each pixel. These three values are normalised to values in
[−1, 1] using a saw-like function. It allows the creation of movies by replacing
(x, y, 0) with (x, y, t), where t is a time variable. The SBART ’s functions were
expanded to create a collage [50]. A human user selects preferred 2D images
from 20 displayed images at each generation and the system creates the

1http://www.genarts.com/galapagos

http://www.genarts.com/galapagos
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next 20 offspring. Sometimes exporting/importing parents among multiple
SBART instances is allowed. This operation is iterated until the user obtains
a satisfactory image.

In NEvAr (Neuro Evolutionary Art) [51], of Penousal Machado et al.,
the function set is composed mainly of simple functions such as arithmetic,
trigonometric and logic operations. The terminal set is composed of a set of
variables x, y and random constants. The phenotype (image) is generated
by evaluating the genotype for each (x, y) pair belonging to the image. In
order to produce colour images, NEvAr resorts to a special kind of terminal
that returns a different value depending on the colour channel – Red, Green
or Blue – that is being processed. This tool focus on the reuse of useful
individuals, which are stored in an image database and led to the development
of automatic seeding procedures.

Despite the interesting results achieved by the above evolutionary art
systems, to the best of our knowledge, none of them has applied this technique
to evolve terrain landscaps.

3.4 Genetic Programming

Genetic programming (GP) is an evolutionary computation (EC) technique
that automatically solves problems without requiring the user to know or
specify the form or structure of the solution in advance. At the most abstract
level GP is a systematic, domain-independent method for getting computers
to solve problems automatically starting from a high-level statement of what
needs to be done. In GP a population of computer programs is evolved, gen-
eration by generation a population of programs is stochastically transformed
into new, hopefully better, populations of programs [52]. Due to its random
nature GP can never guarantee results, however it has been used successfully
in many areas. A brief list of GP applications follows [22]:

• Artificial life;
• Robots and autonomous agents;
• Financial trading;
• Neural networks;
• Art;
• Image and signal processing;
• Prediction and classification;
• Optimisation;
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Algorithm 3.1 Genetic programming basic algorithm

1: Randomly create an initial population of programs from the available
primitives

2: repeat
3: Execute each program and ascertain its fitness
4: Select one or two program(s) from the population with a probability

based on fitness to participate in genetic operations
5: Create new individual program(s) by applying genetic operations with

specified probabilities
6: until an acceptable solution is found or some other stopping condition

is met (e.g., a maximum number of generations is reached)
7: return the best-so-far individual

There are now 36 instances where GP has automatically produced a result
that is competitive with human performance: 15 instances where GP has
created an entity that either infringes or duplicates the functionality of a
previously patented 20th century invention; 6 instances where GP has done
the same with respect to a 21st century invention and 2 instances where GP
has created a patentable new invention [53].

Algorithm 3.1 shows the basic steps of GP. The generated programmes
are runned for evaluation (line 3) and compared with some ideal. This com-
parison is quantified to give a numeric value called fitness. The best programs
are chosen to breed (line 4) and produce new programs for the next gener-
ation (line 5). The primary genetic operators used to create new programs
from existing ones are:

• Crossover - The creation of a child program by combining randomly
chosen parts from two selected parent programs;

• Mutation - The creation of a new child program by randomly altering
a randomly chosen part of a selected parent program;

3.4.1 Representation

In GP, programs are usually expressed as syntax trees rather than as lines of
code. For example Figure 3.2 shows the tree representation of the program
max(x + x, x + 3 ∗ y). The variables and constants in the program (x, y and
3) are leaves of the tree, or terminals in GP terminology. The arithmetic
operations (+, * and max) are internal nodes called functions. The sets
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Figure 3.2: GP tree representation of max(x + x, x + 3 ∗ y)

of allowed functions and terminals together form the primitive set of a GP
system. It is common in the GP literature to represent expressions in a prefix
notation similar to that used in Lisp. For example, max(x + x, x + 3 ∗ y)
becomes (max(+xx)(+x(∗3y))). This notation often makes it easier to see
the relationship between (sub)expressions and their corresponding (sub)trees.
From now on it will be used trees and their corresponding prefix-notation
expressions interchangeably to represent GP programs.

3.4.2 Initialising the Population

Like in other evolutionary algorithms, in GP the individuals in the initial
population are typically randomly generated. There are a number of differ-
ent approaches to generating this random initial population. Following we
present a description of the two simplest methods, the full and grow methods,
and a widely used combination of the two known as ramped half-and-half.

In both the full and grow methods, the initial individuals are generated
so that they do not exceed a user specified maximum depth. The depth of
a node is the number of edges that need to be traversed to reach the node
starting from the tree’s root node (which is assumed to be at depth 0). The
depth of a tree is the depth of its deepest leaf (e.g., the tree in Figure 3.2 has
a depth of 3). In the full method, where all leaves are at the same depth,
nodes are taken at random from the function set until the maximum tree
depth is reached. Beyond that depth, only terminals can be chosen. Figure
3.3 shows an example of a tree having maximum depth 2 created with the
full initialisation method, where all leaves are at the same depth. However,
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Figure 3.3: Example of a tree having maximum depth 2 created with the full
initialisation method

this does not necessarily mean that all initial trees will have an identical
number of nodes (often referred to as the size of a tree) or the same shape.
In fact, this only happens when all the functions in the primitive set have the
same number of input values, also known as arity. Nonetheless, even when
mixed-arity primitive sets are used, the range of program sizes and shapes
produced by the full method may be rather limited.

On the contrary the grow method allows the creation of trees of more
varied sizes and shapes. Nodes are selected from both the primitive function
and terminals set until the depth limit is reached. Once the depth limit is
reached only terminals may be chosen (like the full method). Figure 3.4
illustrates an example of a tree created with the grow initialisation method
with depth limit 2. Here the first argument of the + root node happens to
be a terminal. This closes off that branch preventing it from growing any
more before it reached the depth limit. The other argument is the function
−, but its arguments are forced to be terminals to ensure that the resulting
tree does not exceed the depth limit.

Because neither the grow or full method provide a very wide array of
sizes or shapes on their own, Koza [54] proposed a combination called ramped
half-and-half. Half the initial population is constructed using full and half
is constructed using grow. This is done using a range of depth limits (hence
the term “ramped”) to help ensure that it generates trees having a variety
of sizes and shapes.

These methods are easy to implement and use, but are difficult to control
regarding the statistical distributions of important properties such as the
sizes and shapes of the generated trees. For example, the sizes and shapes
of the trees generated via the grow method are highly sensitive to the sizes
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Figure 3.4: Example of a tree having maximum depth 2 created with the
grow initialisation method

of the function and terminal sets. If, for example, one has significantly more
terminals than functions, the grow method will almost always generate very
short trees regardless of the depth limit. Similarly, if the number of functions
is considerably greater than the number of terminals, then the grow method
will behave quite similarly to the full method. The arities of the functions
in the primitive set also influence the size and shape of the trees produced
by grow. While these are particular problems for the grow method, they
illustrate a general issue where small (and often apparently inconsequential)
changes such as the addition or removal of a few functions from the function
set can in fact have significant implications for the GP system, and potentially
introduce important but unintended biases. For more information about this
and other initialisation mechanisms check [52].

3.4.3 Selection

In GP the genetic operators are applied to individuals that are probabilisti-
cally selected based on their fitness. Which means that better individuals are
more likely to have more child programs than inferior individuals. The most
commonly employed method for selecting individuals in GP is tournament
selection.

In tournament selection a number of individuals are chosen at random
from the population. These are compared with each other and the best of
them is chosen to be the parent. For crossover two parents are needed, so,
two selection tournaments are made. Tournament selection only looks at
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which program is better than another, it does not need to know how much
better. This automatically rescales fitness, so that the selection pressure
on the population remains constant. Hence, a single extraordinarily good
program cannot immediately flood the next generation with its children. If
that happened, it would lead to a rapid loss of diversity with potentially
undesirable consequences. In reverse, tournament selection amplifies small
differences in fitness to prefer the better program even if it is only marginally
superior to the other individuals in a tournament. An element of noise is in-
herent in tournament selection due to the random selection of candidates for
tournaments. So, while preferring the best, tournament selection does ensure
that even average quality programs have some chance of having children.

On interactive systems the selection is performed by a human, usually
based on a visual representation of the individuals. Many other selection
methods are possible, such as [55, 56]:

• Fitness Proportional Selection (also known as roulette wheel);
• Stochastic Universal Sampling (SUS);
• Lexicographic Parsimony Pressure Tournament;
• Doubletour;

3.4.4 Genetic Operators

The GP implementation of the genetic operators crossover and mutation
are significantly different from other evolutionary algorithms. The choice of
which operator, mutation or crossover, should be used to create an offspring
is probabilistic. Operators in GP are normally mutually exclusive (unlike
other evolutionary algorithms where offspring are sometimes obtained via a
composition of operators). Their probability of application are called oper-
ator rates. Typically, crossover is applied with the highest probability often
being 90% or higher. On the contrary, the mutation rate is much smaller,
typically being near 1%. When the sum of crossover and mutation rates are
equal to p which is less than 100%, an operator called reproduction is also
used. Reproduction is the selection of an individual based on fitness and the
insertion of a copy of it in the next generation, with a rate of 1− p [52].

The next two sections provide a brief description of the most common
GP operators.
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Figure 3.5: Example of subtree crossover (the trees on the left are copies of
the parents)

Crossover

The most commonly used form of crossover is subtree crossover. Given two
parents, subtree crossover randomly (and independently) selects a crossover
point (a node) in each parent tree. Then, it creates the offspring by replacing
the subtree rooted at the crossover point in a copy of the first parent with
a copy of the subtree rooted at the crossover point in the second parent, as
illustrated in Figure 3.5. Copies are used to avoid disrupting the original
individuals. This way, if selected multiple times, they can take part in the
creation of multiple offspring programs. It is also possible to define a version
of crossover that returns two offspring, but this is not commonly used.

Often crossover points are not selected with uniform probability. Typical
GP primitive sets lead to trees with an average branching factor (the number
of children of each node) of at least two, so the majority of the nodes will
be leaves. Consequently the uniform selection of crossover points leads to
crossover operations frequently exchanging only very small amounts of ge-
netic material. Some times the operation is reduced to simply swapping two
leaves. To counter this, Koza suggested [54] the widely used approach of
choosing functions 90% of the time and leaves 10% of the time. Many other
types of crossover are possible, such as [52]:
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Figure 3.6: Example of subtree mutation

• One-point crossover;
• Uniform crossover;
• Context-preserving crossover;
• Size-fair crossover;

Mutation

The most common type of mutation in GP is called subtree mutation and
randomly selects a mutation point in a tree and substitutes the subtree rooted
there with a randomly generated subtree. This is illustrated in Figure 3.6.

Another kind of mutation implementation is the point mutation, which
is the GP’s equivalent of the bit-flip mutation used in genetic algorithms.
Point mutation, on the other hand, is typically applied on a per-node basis.
A random node is selected and the primitive stored there is replaced with a
different random primitive of the same arity taken from the primitive set. If
no other primitives with that arity exist, nothing happens to that node, but
other nodes may still be mutated. Each node is considered in turn and, with
a certain probability, it is altered as explained above. This allows multiple
nodes to be mutated independently in one application of point mutation.
Many other types of mutation are possible, such as [52]:
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• Size-fair subtree mutation;
• Hoist mutation;
• Shrink mutation;
• Permutation mutation;
• Mutating constants at random;
• Mutating constants systematically;

3.4.5 Terminal Set

GP is commonly described as evolving programs, but is not typically used to
evolve programs the same way humans do for software development. Instead,
it is more common to evolve programs (or expressions, or formulae) in a more
domain-specific language. The definition of the terminal and function sets
specify such a language. That is, together they define the ingredients that
are available to GP to compose computer programs.

The terminal set may consist of:

• the program’s external inputs - these typically take the form of named
variables (e.g., x, y);

• functions with no arguments - these may be included because they
return different values each time they are used, such as the function
rand() which returns random numbers, or a function distance to wall()
that returns the distance to an obstacle from a robot that GP is con-
trolling. Another possible reason is because the function produces side
effects. Functions with side effects do more than just return a value:
they may change some global data structures, print or draw something
on the screen, control the motors of a robot, etc;

• constants - these can be pre-specified, randomly generated as part of
the tree creation process, or created by mutation;

Using rand() as terminal can cause the behaviour of an individual pro-
gram to vary every time it is called, even if it is given the same inputs. This
is desirable in some applications. However, it is more common to want a
set of fixed random constants that are generated as part of the process of
initialising the population. This is typically accomplished by introducing a
terminal that represents an ephemeral random constant. Every time this ter-
minal is chosen in the construction of an initial tree (or a new subtree to use
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in an operation like mutation), a different random value is generated which
is then used for that particular terminal, and which will remain fixed for the
rest of the run. The use of ephemeral random constants is typically denoted
by including the symbol < in the terminal set, see example in Eq. (3.1).

T = {x, y,<} . (3.1)

3.4.6 Function Set

The function set used in GP is based on the nature of the problem domain.
For example, in a simple numeric problem the function set can be only the
arithmetic functions (+,−, ∗, /). However, all sorts of other functions typi-
cally encountered in computer programs can be used, such as:

• Arithmetic;
• Mathematical;
• Boolean;
• Conditional;
• Looping;
• Signal processing functions;
• etc;

Closure

For GP to work effectively, function sets are required to have an important
property known as closure [54]. The closure property can be divided into
consistency and evaluation safety properties.

Subtree crossover, as described in Section 3.4.4, can mix and join nodes
arbitrarily, thus the need for type consistency. As a result, it is necessary
that any subtree can be used in any of the argument positions for every func-
tion in the function set, because it is always possible that subtree crossover
will generate that combination. So, all the functions must return values of
the same type, and that each of their arguments also have this type. For
example +, −, ∗, and / can be defined so that they each take two integer
arguments and return an integer. Sometimes type consistency can be weak-
ened somewhat by providing an automatic conversion mechanism between
types. It is possible, for example, convert numbers to Booleans by treating
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all negative values as false, and non-negative values as true. However, con-
version mechanisms can introduce unexpected biases into the search process,
so they should be used with care [52].

The other component of closure is evaluation safety, this property is re-
quired because many used functions can fail at run time. An evolved ex-
pression might, for example, divide by 0. This is typically dealt with by
modifying the normal behaviour of primitives. It is common to use pro-
tected versions of numeric functions that can otherwise throw exceptions,
such as division, logarithm, exponential and sqrt. The protected version of
a function first tests for potential problems with its input(s) before execut-
ing the corresponding instruction. If a problem is spotted then some default
value is returned. It is common to use the prefix my to denote protected
functions, for example mySqrt.

An alternative way to protect functions is to trap run-time exceptions and
strongly reduce the fitness of programs that generate such errors. However, if
the likelihood of generating invalid expressions is very high, this can lead to
too many individuals in the population having nearly the same (very poor)
fitness. This makes it hard for selection to choose which individuals might
make good parents.

Sufficiency

Sufficiency is another property that primitives sets should have. Sufficiency
means it is possible to express a solution to the problem being solved using the
elements of the primitive set. Unfortunately, sufficiency can be guaranteed
only for those problems where theory, or experience with other methods, tells
that a solution can be obtained by combining the elements of the primitive
set.

An example of an insufficient set is +,−, ∗, /, x, 0, 1, 2, which is unable to
represent the function exp(x). This function cannot be expressed as a ratio
of polynomials, so, it cannot be represented exactly by any combination of
+,−, ∗, /, x, 0, 1, 2. When a primitive set is insufficient, GP can only generate
programs that approximate the desired one. However, in many cases such
an approximation can be very close and good enough for the user’s purpose.
Adding a few unnecessary primitives in an attempt to ensure sufficiency does
not tend to slow down GP overmuch, although there are cases where it can
bias the system in unexpected ways [52].
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Evolving Structures

There are many problems where solutions cannot be directly generated as
computer programs. This is common in many design problems were the so-
lution is an artifact of some type: a bridge, a circuit, an antenna, a lens,
a terrain, etc. To address this issue the primitive set is set up so that the
evolved programs construct solutions to the problem. For example, if the
goal is the automatic creation of an electronic controller for a plant, the
function set might include common components such as integrator, differ-
entiator, lead, lag, and gain, and the terminal set might contain reference,
signal, and plant output. Each of these primitives, when executed, inserts
the corresponding device into the controller being built. If, on the other
hand, the goal is to synthesise analogue electrical circuits, the function set
might include components such as transistors, capacitors, resistors, etc.

3.4.7 Fitness Function

The fitness function has the task to measure how good programs are and
rank them. It is through the fitness function that a high-level statement of
the problem’s requirements is given to the GP system. For example, suppose
the goal is to get GP to synthesise an amplifier automatically. Then the
fitness function is the mechanism which tells GP to synthesise a circuit that
amplifies an incoming signal.

Fitness can be measured in many ways. For example, in terms of: the
amount of error between its output and the desired output; the amount of
time (fuel, money, etc.) required to bring a system to a desired target state;
the accuracy of the program in recognising patterns or classifying objects; the
payoff that a game-playing program produces; the compliance of a structure
with user-specified design criteria.

Fitness functions used in GP are different from those used in other evo-
lutionary algorithms. This happens because the structures being evolved in
GP are computer programs, were fitness evaluation normally requires execut-
ing all the programs in the population and typically multiple times. While
one can compile the GP programs, the overhead of building a compiler is
substantial, so it is much more common to use an interpreter to evaluate the
GP programs.

Interpreting a program tree means executing the nodes in the tree in
an order that guarantees that nodes are not executed before the value of
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Figure 3.7: Interpretation example of a GP tree (the terminal x is a vari-
able and has a value of -1). The number to the right of each internal node
represents the result of evaluating the subtree root at that node.

their arguments is known. This is done by traversing the tree recursively
starting from the root node, and postponing the evaluation of each node until
the values of its children (arguments) are known. This depth-first recursive
process is illustrated in Figure 3.7.

In some problems the solution that is being looked for is the output pro-
duced by a program, such as the returned value of the evaluated tree. On
other problems the solution that is being looked for is the actions performed
by a program composed of functions with side effects. In either case the
fitness of a program typically depends on the results produced by its execu-
tion on many different inputs or under a variety of different conditions. For
example the program might be tested on all possible combinations of inputs
x1, x2, . . ., xN . Alternatively, a robot control program might be tested with
the robot in a number of starting locations. These different test cases typi-
cally contribute to the fitness value of a program incrementally, and for this
reason are called fitness cases [52].

There are also interactive GP systems were the individuls’ evaluation is
performed by a human. The main reason for this approach is the impossibil-
ity, or impracticability, to define a fitness function to represents the desired
solution. This type of evaluation is commonly used to evolve aesthetic de-
signs or other forms of art work.
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3.4.8 GP Parameters

There are several parameters that need to be specified before running the
GP system. The most important control parameter is the population size.
Other control parameters include the probabilities of performing the genetic
operations and the maximum size for programs. There are no general recom-
mendations for setting optimal parameter values, as these depend too much
on the details of the application. However, genetic programming is in prac-
tice robust, and it is likely that many different parameter values will work.
As a consequence, one need not typically spend a long time tuning GP for it
to work adequately. It is common to create the initial population randomly
using ramped half-and-half with a depth range from 2 to 6. The initial tree
sizes will depend upon the number of the functions, the number of terminals
and the arities of the functions. However, evolution will quickly move the
population away from its initial distribution [52].

The main limitation on the population size is the time taken to evaluate
the fitnesses. So, it is preferable to have the largest population size that
the system can handle gracefully. Normally, the population size should be at
least 500, but lager populations are often used. GP runtime can be estimated
by the product of: the number of runs R, the number of generations G, the
size of the population P , the average size of the programs s and the number
of fitness cases F [52].

Typically, the number of generations is limited to between 10 and 15. The
most productive search is usually performed in those early generations, and
if a solution has not been found then, it’s unlikely to be found in a reasonable
amount of time. A common wisdom on population size is to make it as large
as possible. It is also common to impose either a size or a depth limit or
both on tree’s sizes to prevent bloat - the uncontrolled growth of program
sizes during GP runs [52].

3.4.9 Termination

The last step of GP algorithm is the specification of the termination crite-
rion and the method of designating the result. The termination criterion may
include a maximum number of generations to be run as well as a problem-
specific success predicate. Typically, the single best-so-far individual is des-
ignated as the result of the run, although additional data might be returned.
In case of interactive systems the user decides when to stop the run.
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Chapter 4

Genetic Terrain Programming

Current terrain generation techniques have their own advantages and disad-
vantages, which are detailed in Section 2.4. Notwithstanding the importance
of real looking terrains, none of the existing methods focused on generating
terrains accordingly to designers’ aesthetic appeal. The main goals of Genetic
Terrain Programming are to address the weaknesses of existing methods and
also to allow the generation of aesthetic terrains. Thus, providing a better
way of generating virtual terrains for a broad range of applications, with a
special emphasis on video games.

In light of the idealised terrain generator (Section 2.2), the goals of Ge-
netic Terrain Programming are (in order of decreasing importance):

1. Capable of generating diverse features and terrain types, both aesthetic
and realistic;

2. Extensibility;

3. Intuitive to control;

4. Automated generation with arbitrary LOD;

5. Low requirements of human input;

To achieve these goals we use aesthetic evolutionary design with GP,
where the phenotypes are terrains represented as height maps. This approach
consists of a guided evolution, through Interactive Evolution, accordingly to
a specific desired terrain feature or aesthetic appeal. The extensibility and

45
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ability to generate diverse features and terrain types are assured by the GP.
The diversity of solutions is directly dependent on the GP terminal and
function sets. So, the extensibility feature can be easily achieved by adding
new functions and terminals. The designer will guide the terrains evolution,
preforming this way the control of the outcome, by selecting which ones
he preferres for his specific goals. Consequently, the software tool will be
easy and intuitive to use with low input input requirements. The outcome
of the interactive evolution will be TPs (Terrain Programmes) which are
mathematical expressions with incorporated randomness. Those TPs can be
used, like a procedural technique, to automatically generate different terrains
but consistently with the same features and with different LODs.

Section 4.1 describes the GP implementation details (parameters, func-
tion and terminal sets) of our technique and the differences with regard to
other GP evolutionary systems. To demonstrate the GTP feasibility the
GenTP tool was developed whose functionalities are presented in Section
4.2. Finally, Section 4.3 shows the obtained results in three sets of experi-
ments.

4.1 Method

The initial population is created randomly, with trees depth size limited
initially to 6 and a fixed population size of 12. The number of generations
is decided by the designer, who can stop the algorithm at any time. The
designer can select one or two individuals to create the next population and
the genetic operators used depend upon the number of selected individuals.
If one individual is selected only the mutation operator will be used. In case
the designer chooses to select two individuals both the standard crossover
and mutation operators [54] will be applied. Like in others IEC systems, the
fitness function relies exclusively on designers’ decision, either based on his
aesthetic appeal or on desired features.

Accordingly to Bentley [45] the designer is likely to score individuals
highly inconsistently as he might adapt his requirements along with the
evolved results. So, the continuous generation of new forms based on the
fittest from the previous generation is essential. Consequently, non-convergence
of the EA is a requirement. Evolutionary art systems do not usually use
crossover operators on their algorithms, because EAs are used as a continu-
ous novelty generators, not as optimisers. Therefore, in our algorithm, the
use of two individuals for breeding the next generation should be limited.
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Table 4.1: GP Functions
Name Description

plus(h1, h2)
arithmetical functionsminus(h1, h2)

multiply(h1, h2)
sin(h)

trigonometric functions
cos(h)
tan(h)
atan(h)

myLog(h)
returns 0 if h = 0 and log(abs(h))
otherwise

myPower(h1, h2)
returns 0 if hh2

1 is NaN or Inf , or has

imaginary part, otherwise returns hh2
1

myDivide(h1, h2)
returns h1 if h2 = 0 and h1 ÷ h2

otherwise

myMod(h1, h2)
returns 0 if h2 = 0 and mod(h1, h2)
otherwise

mySqrt(h) returns sqrt(abs(h))
negative(h) returns −h

FFT (h) 2-D discrete Fourier Transform
smooth(h) circular averaging filter with r = 5

gradientX(h)
returns the gradient (dh/dx or dh/dy)

gradientY (h)
of a hight map h. Spacing between
points is assumed to be 1

The extensive use of crossover operator will converge the population to a
single solution, leading to the loos of diversity and limiting the designer to
explore further forms.

Each GP individual is a tree composed by functions, listed in Table 4.1,
and height maps as terminals (see Table 4.2).

Most terminals depend upon a Random Ephemeral Constant (REC) to
define some characteristics, such as the spectrum value of fftGen. All ter-
minals have some form of randomness, which means that consecutive calls
of the same terminal will always generate a slightly different height map.
This is a desired characteristic because we want to be able to create different
terrains by each TP, but that will share the same features. All terminals
generate forms that are proportional to the side size of the height map. This
ensures that the terrain features of a TP are scale invariant. Figures 4.1, 4.2,
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Table 4.2: GP Terminals
Name Description

rand map with random heights between 0 and 1

fftGen
spectral synthesis based hight map, whose
spectrum depends on a REC: 1/(fREC)

gauss
gaussian bell shape hight map, whose wideness
depends on a REC

plane
flat inclined plane hight map whose orientation
depends on a REC within 8 values

step
step shape hight map whose orientation
depends on a REC within 4 values

sphere
semi-sphere hight map whose centre location
is random and the radius depends on a REC

Figure 4.1: Example of hight map terminal fftGen

Figure 4.2: Example of hight map terminal gauss
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Figure 4.3: Example of hight map terminal step

Figure 4.4: Example of hight map terminal sphere

4.3 and 4.4 show height maps of size 30× 30 generated by terminals fftGen,
gauss , step and sphere.

While in [49, 50] the mathematical equations are used to calculate both
the pixel value and its coordinates, in GenTP only the height will be calcu-
lated. The (x, y) coordinates will be dictated by the matrix position occupied
by the height value.

sin

0.125
gauss

2.0
fftGen

myDivide

Figure 4.5: Example of a GTP tree individual with two RECs (in grey el-
lipses)
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Table 4.3: Parameters for a GTP run
Objective: Generate realistic or aesthetic terrains
Function set: Functions from Table 4.1, all operating on ma-

trices with float numbers
Terminal set: Terminals from Table 4.2 chosen randomly
Selection and
Fitness:

Decided by the designer accordingly to desired
terrain features or aesthetic appeal

Population: Fixed size with 12 individuals; initial depth
limit 6; no tree size limits; random initialisa-
tion

Parameters: If 2 individuals are selected: 90% subtree
crossover and 10% mutation; if just one in-
dividual is selected: 50% mutation (without
crossover)

Termination: Can be stopped at any time by the designer,
the “best” individual is chosen by the designer

4.2 GenTP

To implement this new technique we developed GenTP (Generator of Terrain
Programs) [3], an application developed with GPLAB 1, an open source GP
toolbox for Matlab 2. GenTP has three functional modules (depicted in
Figure 4.6):

• Interactive evolution;
• Analyse;
• Generation;

The interactive evolution module is where the GP is implemented and the
designer chooses the desired terrains for the next generation, for the analyse
or generation modules. Figure 4.7 shows the GUI (Graphical User Interface)
of GenTP ’s main interface, which is the visible part of the interactive evo-
lution module. The 12 individuals of current population are represented as
3D surfaces and displayed in a 3× 4 grid. Each TP is evaluated to produce
a height map of size 100 × 100 to be displayed to the designer. The height
map size can be changed, but should be kept small otherwise it might have

1http://gplab.sourceforge.net/
2http://www.mathworks.com/

http://gplab.sourceforge.net/
http://www.mathworks.com/
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2
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morphological 
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Generation n-1

Main Interface Analyse Interface
Resolution,

rotation,
zoom

Generation Module

Output as VRML 2.0

Figure 4.6: GenTP ’s functional modules

a negative impact in the tool responsiveness. For more details about this see
Section 4.3.3.

The GenTP main GUI allows a designer to select one or two individuals
to create the next population generation. The number of selected TPs will
influence their evolution. If just one TP is selected - only the mutation
operator will be applied - the next generation will present few variations from
the selected individual and the TP will evolve slowly. On the other hand, if
the designer opts to select two individuals, the next generation will present
more diversity and the evolved TPs can change their look more dramatically.

On the buttom of the main GUI the designer can see the TP mathematical
expression that generated the selected terrain and save it on a text file or
database. This option will allow the integration of TPs, as a procedural
technique, to produce terrains for example on a video game.

Although the main interface serves its purpose, some times it is difficult
to see all TP features due the display angle used to show the generated
terrain. It is also difficult to inspect small details of a generated terrain
and it is not possible to test the TP’s features perseverance across multiple
executions. For these reasons it might be difficult for the designer to chose
the TPs for the next generation. To solve these limitations the analyse
module was added to our application. This new functionality opens a new
windows, see Figure 4.8, and performs 8 consecutive executions of the TP
selected from the main interface. To allow a more detailed analysis of the TP
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Figure 4.7: GenTP main user’s interface

characteristics this interface allows the designer to rotate, zoom and change
the terrains resolution. This way the designer has more information about a
TP to decide if it will be selected, or not, for the next generation.

When the designer achieves the desired TP can save it in a file, or can pass
it to the generator module. This module is responsible for the generation of
height maps, as many as desired, from the selected TP. Those height maps
can be saved as VRML 2.0 permitting its import from other applications,
such as 3D modeling and render tools.

4.3 Results

Three kind of experiments were conducted:

1. obtaining aesthetic appealing terrains (regardless of their realism);

2. achieve terrains with a specific feature in mind;

3. test the perseverance of terrain features across several resolutions and
generation time impact;
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Figure 4.8: GenTP analyse user’s interface

4.3.1 Aesthetic Terrains

On the first kind of experiments we were able to get aesthetic appealing
terrains after about 30 to 70 generations. On those experiments we were
able to obtain very different kinds of terrains types, see Figures 4.9, 4.10,
4.11, 4.12 and 4.13. Most of them are difficult to describe due to their exotic
look. For example, the TP represented in Eq. 4.1 creates terrains with a
bank of knolls with two ridges that give them an alien look (see Figure 4.9).

4.3.2 Terrains with specific features

On the second kind of experiments we tried to obtain TPs to generate ter-
rains with specific features, such as mountains, cliffs or corals. In this case
the number of necessary generations varies widely until we are able to get ac-
ceptable results. These number is highly dependent on the initial population
and could vary between 10 to more than 100 generations. When running the
experiments, if after a number of generations an interesting result is not ob-
tained, we have preferred to cancel the experiment and begin again, avoiding
this way a long run. We also verified that, for realistic landscapes, the range
of terrains types were narrower than in the first experiment.

For example, the Eq. 4.7 has a TP that was evolved having in mind to
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Figure 4.9: Exotic terrains generated by TP 4.1

TP = myLog(sin(mySqrt(smooth(fftGen(1.25))))) . (4.1)
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Figure 4.10: Exotic terrains generated by TP 4.2

TP = myLog(myLog(myLog(myLog(myLog(myLog(fftGen(3.00))))))) .
(4.2)
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Figure 4.11: Exotic terrains generated by TP 4.3

TP = myPower(cos(myDivide(myLog(smooth(fftGen(2.75))), myMod(

sin(fftGen(0.50)), myDivide(myLog(smooth(fftGen(2.75))),

myMod((sin(fftGen(0.50))), fftGen(2.25)))))) . (4.3)
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Figure 4.12: Exotic terrains generated by TP 4.4

TP = myLog(myLog(myMod(myLog(fftGen(3.75)), myLog(myLog(

fftGen(4.25)))))) . (4.4)
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Figure 4.13: Exotic terrains generated by TP 4.5

TP = myDivide(myDivide(myDivide(myDivide(plane(1), fftGen(4.00)),

fftGen(4.00)), fftGen(4.00)), fftGen(4.00)) . (4.5)
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achieve a coral looking terrain.

In the set of pictures from Figures 4.14, 4.15, 4.16, 4.17 and 4.18, it is
visible that the terrains generated by each TP are allways different, but still
present the same features.

4.3.3 Level of Detail

A detailed terrain model involves a huge amount of polygons to be repre-
sented, even when considering only the portion of the scene that is visible.
Clark suggested [17] using simpler versions of the geometry for objects that
had lesser visual importance, such as those far away from the viewer. These
simplifications are called Levels of Detail (LODs) and allow adapting struc-
tures, such as terrains, to the processing power requirements. The third
experiment was conducted to test the perseverance of terrain features across
several LODs (or resolutions) and the consequent impact in generation time
on our evolutionary tool [2].

A set of TPs was chosen to generate terrains with grid sizes from 50 to
450 with increments of 50. To perform these tests it was necessary to modify
the terminals in order to include the variable s to specify the resulting height
map size. However, this variable is not evolved, it is like it does not exists
from the GP point of view.

The selected TPs are shown in Eq. 4.11, 4.12, 4.13 and 4.14. Figures
4.19, 4.20, 4.21 and 4.22 present the results at three different LODs with
grid sizes of 50× 50, 150× 150 and 450× 450.

In this experience all TPs have preserved their main features indepen-
dently of the chosen grid size. Due to terminals’ randomness consecutive
calls of the same terminal will always generate a slightly different height
map. This is a desired characteristic, that can be controlled by fixating the
random number seed. However, this approach does not work for generating
terrains at different LODs, because the amount of necessary random num-
bers will vary accordingly with the chosen LOD. This explains the differences
from terrains at different LODs generated by the same TP.

Figure 4.23 shows the average time of 10 execution of each TP at each
grid size on a Pentium Core 2 Duo at 1,66 GHz with 2 GB of RAM. As
expected, the generation time increases at a quadratic pace with the increase
of the number of grid points, e.g. for TP 4.14 from 18, 4 ms at 50 × 50 to
1066, 0 ms at 450× 450. The generation time also increased, as anticipated,
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Figure 4.14: Terrain evolved with cliffs in mind, generated by TP 4.6

TP = myMod(smooth(smooth(fftGen(0.50))), smooth(plane(5))) .
(4.6)
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Figure 4.15: Terrain evolved with corals in mind, generated by TP 4.7

TP = myLog(minus(fftGen(2.75), myLog(minus(smooth(

fftGen(1.50)), fftGen(2.50))))) . (4.7)
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Figure 4.16: Terrain evolved with mountains in mind, generated by TP 4.8

TP = times(sin(fftGen(3.00)), smooth(times(sin(cos(sin(cos(times(

fftGen(1.75), fftGen(0.75)))))), fftGen(0.50)))) . (4.8)
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Figure 4.17: Terrain evolved with volcanoes in mind, generated by TP 4.9

TP = plus(fftGen(2.00), smooth(myMod(gauss(0.75), cos(

fftGen(1.00))))) . (4.9)
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Figure 4.18: Terrain evolved with rivers in mind, generated by TP 4.10

TP = myLog(myLog(cos(minus(fftGen(2.00), fftGen(3.75))))) . (4.10)
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Figure 4.19: Exotic terrain generated by TP 4.11, with resolutions 50*50,
150*150 and 450*450

TP = myLog(myLog(myMod(myLog(fftGen(s, 3.75)), myLog(myLog(

fftGen(s, 4.25)))))) . (4.11)
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Figure 4.20: Exotic terrains generated by TP 4.12, with resolutions 50*50,
150*150 and 450*450

TP = myPower(cos(myDivide(myLog(smooth(fftGen(s, 2.75))), myMod(

sin(fftGen(s, 0.50)), myDivide(myLog(smooth(fftGen(s, 2.75))),

myMod((sin(fftGen(s, 0.50))), fftGen(s, 2.25)))))) . (4.12)
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Figure 4.21: Mountains generated by TP 4.13, with resolutions 50*50,
150*150 and 450*450

TP = times(sin(fftGen(s, 3.00)), smooth(times(sin(cos(sin(cos(times(

fftGen(s, 1.75), fftGen(s, 0.75)))))), fftGen(s, 0.50)))) . (4.13)
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Figure 4.22: Volcanoes generated by TP 4.14, with resolutions 50*50,
150*150 and 450*450

TP = plus(fftGen(s, 2.00), smooth(myMod(gauss(s, 0.75), cos(

fftGen(s, 1.00))))) . (4.14)
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with the number of TP’s nodes.

The time values presented on Figure 4.23 are the times for generating each
individual. The time to generate the entire population must be multiplied
by the population size. For TP 4.12 (with 17 nodes) with a resolution of
450 × 450, each individual takes 3, 122 seconds. So, to generate an entire
population of 12 individuals it will be necessary 37, 464 seconds. A delay
of this magnitude is not negligible and will have a negative impact on the
response time of interactive application such as our tool. Accordingly to
Card et al. [57] and Testa et al. [58]:

• 0, 1 second is about the limit for having the user feel that the system is
reacting instantaneously, meaning that no special feedback is necessary
except to display the result;

• 1, 0 second is about the limit for the user’s flow of thought to stay
uninterrupted, even though the user will notice the delay. Normally,
no special feedback is necessary during delays of more than 0.1 but less
than 1.0 second, but the user does lose the feeling of operating directly
on the data;

• 10 seconds is about the limit for keeping the user’s attention focused
on the dialogue. For longer delays, users will want to perform other
tasks while waiting for the computer to finish, so they should be given
feedback indicating when the computer expects to be done. Feedback
during the delay is especially important if the response time is likely
to be highly variable, since users will then not know what to expect;

The response times should be as fast as possible to keep user’s attention
focused on the application. Our goal is to keep generation times for the entire
population arround 1 second and never exceding 10 seconds. The generation
time depends on the chosen resolution and on each individual’s number of
nodes, which tends to increase with the number of GP generations. So, from
the responsiveness point of view, the use of the lowest resolutions for the
evolutionary phase is better. However, if the used resolution is too low the
output might not represent all the terrain features, specially small details,
and force the designer to use the analyse window more often. This will
increase the time needed by the designer to chose the best terrain at each
generation and consequently the overall time to acheive the desired terrain. A
compromise must be made between the terrain resolution for the evolutionary
phase and the application responsiveness. From our set of experiences we
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Figure 4.23: Terrain generation times versus grid sizes
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found the grid size of 100× 100 to be the best settlement. Short generation
times will be also advantageous for the future implementation of automated
terrain evolution.
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Chapter 5

Conclusions

On this report we present the Genetic Terrain Programming technique for
terrain generation. The idea behind this new approach is to use interac-
tive evolution with GP to generate TPs. To employ this technique a first
implementation of GenTP has been carried out with GPLAB and Matlab.
Through a series of experiments we have shown that multiple execution of
the same TP will allways generate differrent terrains, because of the random-
ness present on its terminals, but with the same features (e.g. mountains,
valleys). With a single technique designers will be able to evolve very differ-
ent kinds of TPs, from real looking terrains to more exotic ones with an alien
semblance. Those TPs can be inserted in video games like any other proce-
dural technique, to generate terrains, with the same features. Furthermore,
through a series of experiments we have shown that the feature perseverance
is independent - to a limited extent - of the chosen LOD. This means that
during the evolutionary phase low LODs can be used without compromising
the result. Consequently less time will be required for our evolutionary tool
enabling it to be more responsive, which is an important characteristic of
interactive tools.

Some game publishers require that all players have the same game ”ex-
perience” if they make the same choices. They want to measure or obtain
quality control both on the user experience side as well as on the development
and testing end. This requirement seems to contradict our goal of achieving
different terrains with the same TP. However, if a TP is incorporated on a
video game as a procedural technique, our technique can deliver two levels
of control regarding randomness. First, a specific TP will always generate
terrains with the same features, this means that in spite of the present ran-
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domness those terrains are similar and not completely random. Second, if
full control over the final terrain is required the seed for the random number
generator can be kept the same across separate runs of the TP, allowing the
same terrain to be regenerated as many times as desired.



Chapter 6

Future work

The potential shown by GenTP suggests several lines for future develop-
ments:

• Augment the GP terminal set in order to try obtain a wider range of
realistic terrain types with fewer generations;

• Compose a terrain through the use of several TPs, where the generated
terrains will have to be joined on a credibly and smooth way;

• Create a database of TPs and allow users to classify them and their
resulting features. Upon such database, game programmers will be
able to generate new terrains based on one TP for each localisation
and build a landscape with the desired features composed by several
TPs;

• Incorporate the Genetic Terrain Programming technique on a video
game to automatically generate terrains;

• Implement the Genetic Terrain Programming technique as a Blender
plugin (a 3D modeling tool), to increase the flexibility of our technique;

• Add more features to our technique so that whole scenarios, including
vegetation and buildings, can be generated;

• Develop fitness functions to allow the automatic evolution of TP’s and
avoid designers fatigue (a common problem of interactive evolutionary
applications [45]) to achieve the desired terrain;

75
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On a later stage, we will try to involve a large number of users, by means
of volunteer computing, to create a whole set of different TPs.



Bibliography

[1] Miguel Frade, F. Fernandez de Vega, and Carlos Cotta. Modelling video
games’ landscapes by means of genetic terrain programming - a new
approach for improving users’ experience. In Mario Giacobini et al.,
editor, Applications of Evolutionary Computing, volume 4974 of LNCS,
pages 485–490, Napoli, Italy, 2008. Springer.

[2] Miguel Frade, F. Fernandez de Vega, and Carlos Cotta. Genetic terrain
programming - an aesthetic approach to terrain generation. In Computer
Games and Allied Technology 08, pages 1–8, Singapore, 2008.

[3] Miguel Frade, F. Fernandez de Vega, and Carlos Cotta. Gentp – uma
ferramenta interactiva para a geração artificial de terrenos. In M. Perez
Cota, editor, Third Iberian Conference in Systems and Information
Technologies (CISTI 2008), volume 2, pages 655–666, Ourense, Spain,
2008. LibroTeX. ISBN 978-84-612-4840-7.

[4] Georgios N. Yannakakis and John Hallam. A scheme for creating digital
entertainment with substance. In David W. Aha, Héctor Muñoz-Avila,
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