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Abstract—The exponential growth of data production empha-
sizes the importance of database management systems (DBMS)
for managing vast amounts of data. However, the complexity
of writing Structured Query Language (SQL) queries requires
a diverse range of skills, which can be a challenge for many
users. Different approaches are proposed to address this challenge
by aiding SQL users in mitigating their skill gaps. One of
these approaches is to design recommendation systems that
provide several suggestions to users for writing their next SQL
queries. Despite the availability of such recommendation systems,
they often have several limitations, such as lacking sequence-
awareness, session-awareness, and context-awareness. In this pa-
per, we propose TRANSQLATION, a session-aware and sequence-
aware recommendation system that recommends the fragments
of the subsequent SQL query in a user session. We demonstrate
that TRANSQLATION outperforms existing works by achieving,
on average, 22% more recommendation accuracy when having a
large amount of data and is still effective even when training data
is limited. We further demonstrate that considering contextual
similarity is a critical aspect that can enhance the accuracy and
relevance of recommendations in query recommendation systems.

I. INTRODUCTION

Given the exponential growth in the amount of data being
produced, it is undeniable that having powerful tools for
managing such voluminous data is of paramount importance.
One such tool that plays a fundamental role in data manage-
ment is Database Management Systems (DBMS). A recent
survey by StackOverflow [1] about the top-used DBMSs in
2022 revealed that several relational DBMSs, i.e., MySQL,
PostgreSQL, SQLite, and Microsoft SQL Server, were among
the top five most frequently-used DBMSs. This fact leads to
the result that most database users rely on Structured Query
Language (SQL) to access and query their data. However,
writing SQL queries can be challenging for different users,
as it demands diverse skills [2], [3], including: (i) expertise in
SQL syntax [2], (ii) familiarity with the database schema [2],
[4], and (iii) a comprehensive understanding of the application
domain [3].

Since many users are deficient in at least one of the skills
mentioned above, a considerable amount of research has been
conducted to aid SQL users in mitigating such skill gaps.
These research works can be classified into several categories,
a few of which are as follows:

1) A popular research trend in this regard is to develop tools
for converting users’ requirements expressed in Natural
Language (NL) to SQL queries, a.k.a. NL2SQL. This

approach is particularly advantageous for novice users
encountering challenges in comprehending the complex
syntax of SQL [5], [6], [7], [8], [9], [10], [11].

2) Another approach is to design tools for clustering and
identifying similar SQL queries based on different query
similarity metrics [12], [13].

3) Another practical approach is to design recommendation
systems that utilize previous queries submitted by a user
to suggest the subsequent SQL query. This approach of-
fers notable benefits; first, it enables the personalization
of suggestions based on a user’s query history during
a particular user session; second, it benefits users with
varying proficiency levels [14], [2], [15], [16], [17], [3].

From the three approaches mentioned above, using rec-
ommendation systems presents significant advantages in ad-
dressing the skill gap challenges faced by SQL users. Such
systems also provide notable benefits to a broad spectrum
of users by offering personalized suggestions. The output
of such recommendation systems can be either a full SQL
query or specific parts of the query. Recommending a full
SQL query is challenging, given the rigid and complex
syntax of SQL; thus, a considerable amount of research
has been dedicated to recommending specific parts of the
query, named fragments, rather than recommending the full
query [14], [18], [2], [15]. In other words, most works focus
on recommending the next SQL query’s fragments, which
are the attributes and the table names used in a query.
We explain the concept of query fragments in more detail
in Section II; however, to clarify, let us illustrate it using
an example. Given an SQL query as SELECT ATTR_1,
ATTR_2 FROM TABLE_1 WHERE ATTR_3=1, the set of
fragments for this query would be: {ATTR_1, ATTR_2,
TABLE_1, ATTR_3}. Recommending only query fragments
may have limitations in isolation, as it does not cover the entire
query construction. However, when combined with other query
structure recommendation systems, users can utilize a two-
stage process: first, they select their query structure, and then
they choose fragments to fill the query structure. This approach
enhances the overall SQL query creation process [4], [19], [3].

In query recommendation systems, users’ query history can
provide valuable insight into their preferences and objectives,
which can be used to enhance the relevance of future recom-
mendations. In other words, by considering the context of a
user’s current session, known as session-awareness, a system
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can provide more personalized recommendations tailored to
their current needs. Moreover, by analyzing the sequence of
queries in a user session, referred to as sequence-awareness,
the system can capture the temporal dependencies between
queries and better understand the user’s intentions. Therefore,
incorporating session-awareness and sequence-awareness into
query recommendation systems provides the potential for
having more effective and personalized recommendations that
align better with the users’ goals [19], [3].

There are different types of recommendation systems, such
as collaborative filtering, content-based filtering, and hybrid
methods, which combine collaborative filtering and content-
based filtering to take advantage of their strengths [20], [21].
However, these methods often fall short regarding sequential
and context-aware recommendations [20], [21]. A potential
solution to overcome these limitations and provide sequential
and context-aware recommendations is to use Natural Lan-
guage Processing (NLP) techniques. These techniques leverage
sequential models to encode a user’s historical interactions into
a vector representation that can be used to provide personalized
recommendations [20], [21]. By considering the sequence of
events and modeling the context in which the user interacts
with the system, these models can provide more accurate and
contextually relevant recommendations.

According to the available literature, only a few studies
have considered session-awareness and sequence-awareness
for providing effective and personalized suggestions [19], [3].
However, these studies employed one-hot encoding to repre-
sent user session queries, missing out on capturing semantic
similarities and context-awareness. Notably, considering con-
textual and semantic similarity can improve the relevance of
suggestions in various applications [20], [21]. Nevertheless,
to date, no research has utilized the contextual and semantic
similarities between queries to enhance the accuracy of rec-
ommendations. Therefore, the lack of considering contextual
similarity is a critical limitation in query recommendation
systems.

In this paper, we propose TRANSQLATION, a session-
aware and sequence-aware recommender system that suggests
fragments of the next SQL query in a user session by consider-
ing contextual and semantic similarities between queries. We
propose a BERT-based architecture for TRANSQLATION that
takes a user session as input and recommends the fragments of
the subsequent SQL query in the same session. By leveraging
BERT, we can take advantage of its sequence-awareness and
context-awareness capabilities. We evaluate TRANSQLATION
on two frequently-used datasets and demonstrate that, in
case of having a large amount of data, TRANSQLATION
outperforms existing works by 22% on average. Moreover,
even when training data is limited, TRANSQLATION can still
outperform the baselines due to its transferability. Overall,
TRANSQLATION has significant potential to improve the
accuracy and relevance of recommendations in query recom-
mendation systems.

II. PRELIMINARIES

The main goal of TRANSQLATION is to propose a session-
based, sequence-aware model for SQL query recommenda-
tions. This section begins with a formal definition of key
concepts and terms related to the problem and then provides
a brief overview of BERT, the language model used in
TRANSQLATION.

A. Terminology

DEFINITION 1 (Query). A query, denoted by Q, is composed
of |Q| tokens, and the sequence of the tokens in Q is
shown as (t1, t2, · · · , t|Q|). As an example, assume Q1 rep-
resents a query statement as: SELECT ATTR_1, ATTR_2
FROM TABLE_1. Then, the sequence of tokens of Q1 is:
(SELECT, ATTR_1, ATTR_2, FROM, TABLE_1).

DEFINITION 2 (Fragments). Given a query Q, its fragments
are the set of all attributes and table names in Q, repre-
sented by fragments(Q). Accordingly, the fragment set of
Q1 is equal to: fragments(Q1) = {ATTR_1, ATTR_2,
TABLE_1}.

DEFINITION 3 (Session). A user session is a sequence of
queries submitted by the user in chronological order. The
following notation represents a session: S = (Q1, · · · , Q|S|),
where |S| denotes the session length, i.e., the number of
queries submitted by the user. The use of a numerical subscript
to denote the order of queries in a session, such as i in Qi,
indicates the sequence-awareness. The sequence of queries in
a user session often reflects the intention of the user [22],
[17]. Moreover, if Qt represents a query in the user session
S and t ≤ |S|, then Qt+1 and Q∗

t+1 show the actual and
recommended next query in the user session, respectively.

DEFINITION 4 (Log File). A log file is a sequence of user
sessions. The number of user sessions in the log file defines
the length of the log file. Therefore, a log file L, with length
|L|, is represented as L = (S1, · · · , S|L|).

DEFINITION 5 (Fragment Recommendation). If a log file L
comprises of |L| user sessions, i.e., L = (S1, · · · , S|L|), then,
the current user session is represented by Si = (Q1, · · · , Qt),
where 1 ≤ i ≤ |L|. The primary objective in the fragment
recommendation is to predict the set of fragments of the next
query, fragments(Q∗

t+1).

DEFINITION 6 (Accuracy). To evaluate the prediction ac-
curacy of fragments(Q∗

t+1), similar to [3], we divide it
into the table and attribute accuracy. Assuming Qt+1 as the
actual next query, we calculate the table accuracy by con-
sidering only the table names present in fragments(Qt+1)
and fragments(Q∗

t+1). Similarly, we calculate the at-
tribute accuracy by considering only the attribute names in
fragments(Qt+1) and fragments(Q∗

t+1). The formula is
as follows:

|fragments(Qt+1) ∩ fragments(Q∗
t+1)|

|fragments(Qt+1)|
(1)



B. BERT Language Model

BERT [23] is a fundamental model leveraged in the design
of TRANSQLATION. It is a language model pre-trained on
significantly large datasets, which can be fine-tuned using
smaller datasets to perform various downstream tasks such
as question-answering [24] and sentence classification [25].
BERT utilizes several special tokens to mark different parts
of input sequences to facilitate the pre-training and fine-
tuning processes. The most commonly-used special tokes are
[CLS] and [SEP]. The [CLS] token is employed as the
first token in the input sequence, and its output is often
used in a classification task. The [SEP] token is utilized
to differentiate between two sequences. BERT has different
specialized variants, each targeting specific objectives. One
widely-used variant is RoBERTa [26], which modifies the pre-
training process of BERT to enhance its performance and is
used as the base model for many other language models, such
as CodeBERT [27], a RoBERTa-based language model for
code-related tasks.

III. TRANSQLATION

As defined in Section II, the objective of the fragment
recommendation is to predict the set of fragments of the next
query of a user session. Figure 1 shows the architecture of
TRANSQLATION. Below, we first elaborate on the different
components of this architecture, and then we provide further
details about the training and fine-tuning process.

A. Component Architecture

The architecture of TRANSQLATION’s fragment prediction is
depicted in Figure 1. The insight behind TRANSQLATION is
as follows:

1) We create a representation for every fragment that has
appeared in the user session so far. To do so, we format
the input and feed it to the BERT language model. By
using BERT, TRANSQLATION becomes aware of the
sequence of queries in each user session, making it both
sequence-aware and context-aware.

2) The obtained representations from BERT are fed to the
recommender layer, which is a binary classifier.

3) The recommender layer estimates the likelihood of each
fragment being included in the next query.

In what follows, we explain each of these steps in more detail.

Input Formatting. This step aims to format and prepare
the input for being fed to the language model. To this
end, each query in the current user session is first to-
kenized, and (i) a classification token (e.g., [CLS] for
BERT and <s> for RoBERTa) is inserted before each frag-
ment, and (ii) a separation token (e.g., [SEP] for BERT
and </s> for RoBERTa) is appended at the end of it.
We use Q̃i to denote the formatted input of query Qi.
For example, if Qi is SELECT ATTR_1 FROM TABLE_1,
then Q̃i will be SELECT [CLS] ATTR_1 FROM [CLS]
TABLE_1 [SEP].

After creating such augmented representation for each
query in a user session, they are concatenated to form the
final input representation (Figure 1). However, it is essential
to consider that the maximum length of BERT input tokens
is 512. To ensure compliance, if concatenating a query to
the previous ones results in a representation that exceeds the
512 token limit, we remove a query from the beginning of
the concatenation, allowing the input length to stay within
512. Finally, we feed the concatenation of such formatted
and augmented representations to the BERT language model.
Accordingly, BERT returns the encoded representation
of all tokens ({R1, R2, · · · }). Among all the encoded
representations, the representation of the classification tokens
(R[CLS]) is extracted and passed to the subsequent layer.
The representations of the classification tokens capture the
contextual information of the whole user session and are used
to make predictions for the fragments of the next query.

Recommender Layer. The recommendation layer is a binary
classifier comprised of a basic linear neural network that
accepts the encoded representation of the classification tokens
from the language model. As shown in Figure 1, if there are c
classification tokens, then the input to the recommendation
layer is {R′

1, R′
2, · · · , R′

c}. For each input, the output of
the recommendation layer (represented by { Ŷ1, Ŷ2, · · · , Ŷc

}) is the probability of the corresponding fragment being
included in the subsequent query. More specifically, having
W and b as the parameters of the recommender layer, then:
Ŷi = sigmoid(WR′

i + b) : 1 ≤ i ≤ c. According to
the predicted probabilities, Ŷi, a straightforward strategy is
employed to determine whether the fragments are expected to
appear in the next query. Specifically, if the value of Ŷi exceeds
0.5, it is inferred that the corresponding fragment will appear
in the next query.

B. Model Learning

To train and evaluate TRANSQLATION, we leverage SQL
log files to create train and test datasets. The procedure for
creating both datasets is the same. Let L be the log file
from which the train (or test) dataset is created, where L
comprises |L| user sessions, i.e., L = (S1, S2, · · · , S|L|). For
each session Si in L, the queries (Q1, Q2, · · · , Qt) are iterated
over and formatted according to the input formatting method
described in Section III-A. Let (Q̃1, Q̃2, · · · , Q̃t) represent the
formatted and augmented queries of Si. Then, we create the
inputs and their corresponding ground-truth labels as follows:

∀j ∈ [1, t) :

{
inputj = concat(Q̃1, ..., Q̃j)

labelj = fragments(Qj+1)
(2)

To clarify the procedure of creating the datasets, assume a
session consisting of three queries denoted as Q1, Q2, and
Q3, alongside their respective formatted versions denoted as
Q̃1, Q̃2, and Q̃3. These queries and their formatted versions
are represented in the first and second columns of Table I
respectively.



Recommender Layer

Language Model (BERT, CodeBERT, ...)

SELECT [CLS] ATTR_1 [CLS] ATTR_2 FROM [CLS] TBL_1 [SEP] SELECT [CLS] ATTR_3 FROM [CLS] TBL_2 [SEP]

RSELECT R[CLS] RATTR_1 R[CLS] RATTR_2 RFROM R[CLS] RTBL_1 R[SEP] RSELECT R[CLS] RATTR_3 RFROM R[CLS] RTBL_2 R[SEP]

R′ATTR_1 R′ATTR_2 R′TBL_1 R′ATTR_3 R′TBL_2

ŶATTR_1 ŶATTR_2 ŶTBL_1 ŶATTR_3 ŶTBL_2

Fig. 1: Architecture of the Fragment Prediction Component

TABLE I: An Example of a User Session

Q1: SELECT ATTR_1 FROM TBL_1 WHERE ATTR_3 = 1 Q̃1: SELECT [CLS] ATTR_1 FROM [CLS] TBL_1 WHERE [CLS] ATTR_3 = 1 [SEP]
Q2: SELECT ATTR_3 FROM TBL_2 Q̃2: SELECT [CLS] ATTR_3 FROM [CLS] TBL_2 [SEP]
Q3: SELECT ATTR_1, ATTR_2 FROM TBL_1 Q̃3: SELECT [CLS] ATTR_1, [CLS] ATTR_2 FROM [CLS] TBL_1 [SEP]

Accordingly, for such a user session, the inputs and labels
are created according to Table II:

IV. EXPERIMENTS

In this section, we describe the datasets, introduce the base-
lines, and provide an overview of the experiments conducted
to evaluate the effectiveness of TRANSQLATION in predicting
the fragments of the user’s next SQL query.

A. Datasets

For training and evaluating TRANSQLATION, we need to
select several SQL log files for creating the train and test
datasets according to the procedure mentioned in Section III-B.
However, since TRANSQLATION is a session-aware and se-
quential recommendation system, the SQL log files should
satisfy two requirements: (1) they need to be session-based,
and (2) the sequence of queries in each session should be
specified.

In this regard, we extract all the SQL log files used in
similar related work [18], [14], [2], [15], [4], [12], [28], [19],
[17], [16], [3] and filter them based on the two mentioned
requirements, resulting in having only two SQL log files: Sloan
Digital Sky Survey (SDSS) and SQLShare [29]. SDSS is an
astronomical survey containing data for over three million
astronomical objects, and SQLShare is collected from the
SQLShare platform, a database-as-a-service platform where
users can upload data and write queries to interact with it.

For both SDSS and SQLShare, we use the pre-processed
data provided by [3], [19]. The data has several attributes,
including session ID and query text. In both datasets, the
number of user sessions is 11317. However, the average
number of queries per user session in SQLShare and SDSS
is 12 and 86, respectively. Thus, SDSS is about seven times
larger than SQLShare. Such a huge difference makes these
two datasets a perfect match for our work. By evaluating

the performance of TRANSQLATION on both large and small
datasets, we better understand how well the model generalizes
across different data sizes and characteristics. This also helps
us determine the scalability of the approach and its potentiality
for being used in real-world scenarios, where the size and
characteristics of data may vary significantly.

B. Baseline

To choose suitable baselines for comparison with TRAN-
SQLATION, we conducted a thorough review of various re-
lated works [18], [14], [2], [15], [4], [12], [28], [19], [17],
[16], [3]. Nevertheless, these works utilize diverse resources
for their recommendations, such as log files, database data,
and database schema. Given that TRANSQLATION relies on
log files as the primary resource for recommendation, we can
only compare it with other methods that also rely on log
files. After filtering the related works based on this criterion,
we ended up with five suitable ones as [2], [4], [19], [17],
[3]. Among these, [2], [17] are not appropriate as baselines
due to their limitations: the former lacks the capability to
suggest new fragments–merely selecting fragments from the
input, while the latter focuses on selecting the range or the
value for attributes in where clauses. Hence, as baselines,
we have chosen [4], [19], [3]. Notably, in [3], the authors
proposed two different approaches, namely the convolutional
sequence-to-sequence model (ConS2S) and the transformer-
based model (Workload-aware), both of which are considered
in our evaluations.

C. Fragment Prediction

This section presents the evaluation results of
TRANSQLATION on SDSS and SQLShare log files.
The train, test, and validation datasets are derived from the
log files used in [3], following the approach explained in
Section III-A. The accuracy of TRANSQLATION is assessed
according to the metrics defined in Section II and summarized



TABLE II: Examples of Inputs and Labels for the User Session

Input Label
1 input1 = Q̃1 label1 = fragments(Q2) = { ATTR_3, TBL_2 }
2 input2 = concat(Q̃1, Q̃2) label2 = fragments(Q3) = { ATTR_1, ATTR_2, TBL_1 }

in Table III. Here, we analyze the evaluation results for both
log files. The source code of TRANSQLATION is publicly
available on GitHub1.

SDSS. As explained in Section IV-A, since SDSS is a large
dataset, evaluating TRANSQLATION on SDSS gives us an
insight into TRANSQLATION’s ability to generalize and per-
form well when provided with sufficient training data. In our
study, we introduced two models: TRANSQLATION-BERT
and TRANSQLATION-CodeBERT, based on BERT-base and
CodeBERT, respectively. We chose BERT-base to evaluate
how changing the input format for a basic transformer-based
variant affects performance and CodeBERT to measure how
using this input format for a structure-aware language model
improves performance.

Rows 1 to 5 in Table IIIa describe the results of these
models. The results confirm that both TRANSQLATION-BERT
and TRANSQLATION-CodeBERT significantly outperform
the baseline using a proper input format. Specifically,
TRANSQLATION improves table accuracy by up to 15% and
attribute accuracy by up to 30% 2.

SQLShare. SQLShare is a smaller dataset than SDSS, and
using it enables us to evaluate TRANSQLATION’s performance
with limited training data. Given that TRANSQLATION-
BERT outperforms TRANSQLATION-CodeBERT for SDSS,
we chose BERT as the base language model for SQLShare
and proposed the TRANSQLATION-BERT model. Row 1 of
Table IIIb shows the evaluation result of TRANSQLATION-
BERT on SQLShare. The results indicate that while TRAN-
SQLATION achieves comparable results to the baseline, it does
not outperform it due to having limited training data. Thus,
to improve TRANSQLATION’s performance on such small
datasets, we hypothesized that fine-tuning the model on a large
dataset and transferring it to a small dataset could enhance its
performance.

We proposed TRANSQLATION-BERT-Transferred, which
uses the TRANSQLATION-BERT model fine-tuned on SDSS
as the base model and then fine-tuned it on SQLShare.
The evaluation results in row 2 of Table IIIb show that
TRANSQLATION-BERT-Transferred outperforms the baseline
in terms of both table and attribute accuracy, improving them
by 8% and 2%, respectively. Thus, thanks to the scalability
and transferability of TRANSQLATION, it can outperform the
baseline even with limited training data.

1https://github.com/ShirinTahmasebi/TranSQLation
2The improvement percentage of two values v1 and v2 is calculated as:
v1−v2

(v1+v2)/2
× 100

Freezing BERT Layers. As mentioned earlier, in TRAN-
SQLATION-BERT, we have used the BERT-base, in which
all of its 12 layers are trained during the fine-tuning phase
by default. However, a common approach is to freeze some
of the layers to prevent them from being updated during
fine-tuning [30], [31], [32]. This helps the model focus on
learning task-specific features and optimizing only the last few
layers, which results in reducing the overall training time and
computation cost and potentially improving the performance
by focusing on more task-specific features.

Here, we analyze the effect of freezing the BERT layers on
the performance of TRANSQLATION when trained on SDSS.
Specifically, we investigate the impact of freezing each of
the 12 BERT layers in a bottom-up order on the model’s
performance. Consequently, we obtain 12 models, each with
different frozen layers. Then, we train each of the 12 models
for four epochs and capture the loss value four times per epoch,
resulting in 16 captured loss values per model. These loss
values for each of the 12 models are depicted in Figure 2a.
Moreover, the training time for each of the 12 models for
each epoch is plotted in Figure 2b. We also ensure that these
models do not overfit by evaluating their accuracy in predicting
attributes and tables on the test dataset–presented in Figure 2c
and Figure 2d, respectively.

After analyzing Figure 2a, Figure 2c, and Figure 2d, it
can be inferred that the number of frozen layers significantly
impacts the total loss value, loss convergence rate, models’
prediction accuracy, and models’ training time. Freezing all
12 layers and only training the recommender layer results in
model underfitting, as the loss value increases significantly,
and the accuracy on both attribute and table prediction reduces
dramatically. Conversely, training all the layers improves the
loss value and models’ accuracy for both table and attribute
prediction, despite increasing training time. An interesting
finding is that the training time decreases significantly by
freezing four layers, but the loss value improves, and the
accuracy for both table and attribute prediction increases.
Furthermore, by freezing four layers, the accuracy is even
higher than the model in which all the layers are trained.
Therefore, the insight gained from this experiment is that by
freezing some of the BERT model layers, the model can learn
task-specific features better and, in some cases, achieve better
accuracy while spending less time training.

V. RELATED WORK

Figure 3 illustrates a timeline presenting the most prominent
SQL query recommendation systems. This figure indicates
that the idea of designing such systems emerged in 2009.
Since then, this topic has attracted significant attention from



TABLE III: Accuracy of Fragment Prediction (The accuracy of baselines are reported according to [19], [3].)
(a) Results on SDSS

Model Table Accuracy Attribute Accuracy
1 TRANSQLATION-BERT 75.89 78.43
2 TRANSQLATION-CodeBERT 70.99 74.34
3 Workload-aware [3] 65 58
4 ConS2S [3] 65 56
5 QueRIE [4] 46 26

(b) Results on SQLShare

Model Table Accuracy Attribute Accuracy
1 TRANSQLATION-BERT 66.10 60.40
2 TRANSQLATION-BERT-Transferred 70.16 67.28
3 Workload-aware [3] 64 66
4 ConS2S [3] 46 55
5 QueRIE [4] 16 26
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Fig. 2: The Impact of Freezing BERT Layers in TRANSQLATION-BERT on (2a) Loss Value, (2b) Training Time, (2c) Attribute
Accuracy, and (2d) Table Accuracy

researchers investigating ways to enhance the efficiency of
these systems.

This section aims to review and compare previous works on
SQL query recommendation systems, in order to demonstrate
their evolution from 2009 to the present day. To accomplish
this, we extracted the primary features and requirements of
such systems and used them to categorize and compare the
works. Furthermore, we discuss the limitations and shortcom-
ings of previous works that we aim to address in ours.

The requirements and features used for comparing the
existing works are as follows:

• Session-awareness: Incorporating session-awareness can
be advantageous in providing personalized and relevant
suggestions by taking into account other queries within
a user session. Thus, this feature can be used as a
point of comparison when evaluating different SQL query
recommendation systems.

• Sequence-awareness: Considering sequence-awareness
can enable the system to capture temporal dependencies
between queries, allowing for a better understanding of
users’ intentions.

• Contextual Similarity: Contextual similarity has been
shown to enhance the quality of recommendations in

many recommendation systems by considering the se-
mantic and contextual similarities between items [20],
[21] As such, this feature is also used as a comparison
metric when investigating SQL query recommenders.

• Recommendation Type: Recommendations may come in
different forms. Specifically, they can either take the form
of auto-completion of the query that is currently being
written or suggestions for the next query.

• Basis of Recommendation: SQL query recommenders
leverage different sources to provide suggestions. The
three most frequently-used sources are database data,
database schema, and query logs.

In what follows, the SQL query recommendation systems,
mentioned in Figure 3, are described. Moreover, we present
a summary of the comparison of these systems based on the
aforementioned features and requirements in Table IV.

In the pioneering paper of [14], the authors designed a
system for recommending join predicates–including join tables
and join conditions. The sources of such recommendations
are query logs and database schema. This system receives
two inputs; input specification–the tables used in WHERE, and
output specification–attributes in SELECT clauses. Then, given
these two specifications as the system’s input, the system
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Fig. 3: Timeline of SQL Query Recommendation Systems

TABLE IV: Summary of SQL Recommendation Systems

Session-aware Sequence-aware Contextual Similarity Recommendation Type Based on
Auto-completion Next Query Data Schema Logs

Join Queries [14]
Interactive Refinement [18]

SnipSuggest [2]
SQLSugg [15]

QueRIE [4]
Blaeu [12]

ExplIQuE [28]
PyExplore [16]
DASQR [17]

Sequence-aware [19]
Workload-aware [3]
TRANSQLATION

generates a join query graph based on which it recommends
join predicates. Therefore, the output of the system is a
join query graph. The authors evaluated their work on a
dataset named ’AT&T Proprietary Database,’ which is not
publicly available. The evaluation metric is the accuracy of the
suggested join tables. However, this work has several critical
limitations. First, the recommendations are based on a static
join query graph that does not update by the addition of new
data to the database. Second, it only recommends the join
tables and conditions without focusing on the query structure
or any other query parts. Third, it is neither session-aware nor
sequence-aware.

The main focus of [18] is to address the many/few answers
problem. This problem states that, while submitting queries to
databases, for some queries, too many or very few tuples are
returned. In such situations, the proposed innovative model
aids users in refining their queries to return a reasonable
number of tuples. Specifically, this model receives a query
as input and returns a refined set of recommendations for ad-
justing the ranges of WHERE attributes. The recommendations
are according to the database schema and data. However, the
challenge is that multiple ways exist for narrowing down or
expanding the ranges of WHERE attributes. Thus, in this work,
the policy used for choosing a proper way to refine the ranges
is to interact with users. The limitations of this work can be
outlined as follows: first, it may require resubmitting queries,
which can cause a heavy workload for most databases. Second,
it only recommends the ranges of WHERE attributes without
considering other aspects of the query structure. Third, the
refinement process heavily relies on user involvement. Fourth,
it does not take user sessions or the sequence of queries in
each session into account for recommendations.

SnipSuggest [2] is a context-aware auto-completion system

for SQL queries. In this case, context-aware denotes that the
suggestions given by the system depend on the query written
thus far. The main approach in this insightful work is as
follows; first, a Directed Acyclic Graph (DAG) is created
based on the log of submitted SQL queries, which is called
workload DAG. Subsequently, depending on what the user is
typing, the nodes of the workload DAG are ranked according
to the probability of their appearance in the continuation of
the query. Finally, the most probable nodes are provided as
suggested fragments to the user. The recommendations are
generated based on query log files. This model is evaluated
on Sloan Digital Sky Survey (SDSS)3 dataset. The evaluation
metric is the accuracy of the recommended fragments. The
limitations of this approach can be summarized as follows:
first, the recommendations rely on a static DAG that is created
only once and not updated as new data is added to the
database. Second, the system does not consider user sessions
or the sequence of queries within each session for generating
recommendations.

In [15], the authors proposed an SQL recommendation
system, named SQLSugg, which takes the current partial query
written thus far as input; then, as output, the system recom-
mends the fragments for the same query. The suggestions are
based on database schema and data. The approach has two
steps: (a) an offline step, in which two sets of graphs–schema
and data graphs, known as templates4–are created and indexed.
(b) an online step in which users type the query keywords.
Then, the keywords are mapped to database attributes. Based
on the matching between keywords and attributes, the most
relevant schema graphs are selected. These selected graphs
are ranked based on the number and relevance of the matched

3http://skyserver.sdss.org/dr16/en/home.aspx
4The template word here differs from what it means in our work.



data graphs. The model is evaluated on two datasets: (1)
DBLP, a dataset of publication records, and (2) DBLife, a
dataset of activity information of top people in the database
community. To evaluate their approach, they asked experts
to score the relevance of their suggestions. However, this
approach has several critical limitations, including its reliance
on having a static database schema and data, failure to consider
user sessions, and neglect of the sequence of queries in each
session.

In [4], the authors proposed a model, named QueRIE, which
takes a full query from users as input. Then, as output, it
selects the most probable query in the log file and returns it
as the recommended next query. This work is evaluated on the
SDSS dataset. Notably, this work considers the concept of user
sessions; to do so, it leverages the queries within each session
to create a vector representation for each session. Then, by
comparing these vectors, it can identify similar user sessions.
The limitation of this work is that it does not consider the
sequence of queries in each user session for recommendations.

Blaeu [12] is an interactive system that facilitates data
exploration and refinement. As input, Blaeu takes the users’
initial query and clusters the data based on the result set of
the query. The system then presents interactive cluster maps
to users, allowing them to navigate and zoom into areas of
interest. Moreover, Blaeu provides users with a query that
can be used for selecting that area of data. The authors
proposed several algorithms for creating the data clusters
and evaluated their accuracy on two datasets: (1) US Bureau
of Transportation Statistics, which describes delays of US
internal flights during January 2010. (2) Hollywood films,
which describes a few economic indicators for 785 movies
released between 2007 and 2012. The limitations of this work
are: first, generating data maps requires resubmitting queries,
which can be computationally expensive for large databases.
Second, users need to have a high level of involvement in the
process. Third, it does not consider user sessions and sequence
of queries for recommendation.

ExplIQuE [28] is a framework for query refinement rec-
ommendations to assist users in improving their queries. The
model takes a full query as input and produces clustered
result sets, accompanied by the WHERE clauses needed to
retrieve each cluster. The recommendations are based on data
records rather than logs and database schema. The system is
evaluated on a dataset for bacteria growth on solid plates.
The limitations of this work can be summarized as follows:
the approach presented is only applicable when the database
schema and data are static and do not change. Furthermore,
the recommendation system does not consider user sessions or
the sequence of queries in each session for recommendations.

PyExplore [16] is a framework that takes users’ initial query
with WHERE clause. Then, as output, it recommends a query
with refined WHERE clause based on the data. The method
involves measuring the correlation between attributes in the
database and dividing them into several groups. Each group
is then represented by one attribute, and a decision tree is
created per representative attribute. Each node in each of these

decision trees defines the split point of the corresponding
attribute at that level. Then, the data rows of the database
are clustered based on the leaves of the created decision tree.
Thus, when users type an input query, the input query is
mapped to a node of the decision tree. By navigating from the
mapped node to the root, sample data is selected for each node
and recommended to the user. The framework is evaluated on
several datasets: CORDIS5, SDSS, Movies6, Car Sales (IBM)7,
Intel Lab Data8. For measuring the performance, expert users
are asked to score the recommendations. The limitations of
this work include the assumption that the database schema and
data are static and never change, the absence of user session
and sequence information for recommendation.

In the inspiring paper of [17], the authors provide a data-
aware query recommendation system, called DASQR, capable
of suggesting complete queries, query templates, and query
fragments. The system is considered data-aware as it takes
into account actual data values when recommending filtering
conditions and predicates. In this work, the methods used
for query representation are (1) feature-based, (2) tuple-based,
and (3) access-area-based. The similarity between queries is
evaluated based on the utilized representation approach. In
case of using the first and second representation approach,
cosine similarity is used as the metric. In case of using the
third representation approach, two metrics–named overlap and
closeness–are proposed for evaluation. The limitation of this
work is that it does not consider the sequence of queries in
each user session for recommendations.

In the insightful papers of [19], [3], an innovative recom-
mendation system is introduced, which takes a full query as
input and recommends the templates and fragments for the
next query as output. This system is capable of providing
sequence-aware and session-based suggestions at both the
query fragment and query template levels. For the query
fragment level, they exploited several models based on the
encoder-decoder architecture–such as Sequence-to-Sequence
(Seq2Seq) CNN, Seq2Seq RNN, and transformers–to predict
the next query; then, the predicted query is parsed to extract
its fragments. Also, for the query template level, the same
Seq2Seq models are used as a classification task. In both
levels, one-hot encoding is leveraged as the way of query
vectorization. They have evaluated their methods on two open-
source datasets–SDSS and SQLShare. The evaluation metrics
for fragment prediction are precision–which equals the number
of correct fragment predictions over the number of total
fragment predictions, and recall, which equals the number of
correct fragment predictions over the number of total target
fragments. The evaluation metric for template prediction is
prediction accuracy. A noteworthy advantage of this system
is that it is session-aware and sequence-aware. However, a
critical limitation of this work is the utilization of one-hot
encoding for embedding queries, which does not consider

5https://data.europa.eu/euodp/en/data/dataset/cordisH2020projects
6https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
7https://www.kaggle.com/thatbrock/ibm-watson-saleswinloss
8http://db.csail.mit.edu/labdata/labdata.html



word similarities in queries and consequently leads to reduced
performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed TRANSQLATION, a recommen-
dation system for suggesting SQL query fragments within
a user session. TRANSQLATION is designed to be session-
aware, sequence-aware, and context-aware, addressing limi-
tations in existing SQL recommenders. Our results showed
that TRANSQLATION outperforms existing solutions, achiev-
ing a 22% performance boost when trained on ample data
and remaining effective even with limited data. As a future
work, we aim to predict query templates and integrate them
into TRANSQLATION for an enhanced recommender. This
combination will allow users to choose a template for their
next query and fill it in with recommended fragments.
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