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The description of metastable fluids, those in a local but not global equilibrium, remains an important problem
of thermodynamics and it is crucial for many industrial applications and all first order phase transitions. One
way to estimate their properties is by extrapolation from nearby stable states. This is often done isothermally,
in terms of a virial expansion for gases, or a Taylor expansion in density for liquids. This work presents
evidence that an isochoric expansion of pressure in temperature is superior to an isothermal density expansion.
Two different isochoric extrapolation strategies are evaluated, one best suited for vapors and one for liquids.
Both are exact for important model systems, including the van der Waals equation of state. Moreover, we
present a simple method to evaluate all the coefficients of the isochoric expansion directly from a simulation in
the canonical ensemble. Using only properties of stable states, the isochoric extrapolation methods reproduce
simulation results with Lennard-Jones potentials mostly within their uncertainties. The isochoric extrapolation
methods are able to predict deeply metastable pressures accurately even from temperatures well above the
critical. Isochoric extrapolation also predicts a mechanical stability limit, i.e. the thermodynamic spinodal. For
water, the liquid spinodal pressure is predicted to be monotonically decreasing with decreasing temperature,
in contrast to the re-entrant behavior predicted by the direct extension of the reference equation of state.

I. INTRODUCTION

Metastable fluids,1 residing in a state of temporary
equilibrium before transitioning to a more stable phase,
stand as an intriguing topic of research in the area of ther-
modynamics. Examples include supersaturated steam,
namely water vapor at a pressure above the dew pres-
sure,2,3 and supercooled water, which is liquid water at
a temperature below the freezing point.4 The concept of
metastability is fundamental in the context of nucleation
and phase transitions,5,6 and to understand diverse phe-
nomena such as transport of sap in trees,7 the persistence
of supercooled cloud droplets,8 or the behavior of fluids
in mineral inclusions, which represents a crucial tool to
determine paleotemperatures.9 Moreover, metastable flu-
ids play important roles in industrial applications such as
choked two-phase flows,10 boiling liquid expanding vapor
explosions,11 and rapid phase transitions.12 Despite their
theoretical and practical importance, their ephemeral na-
ture makes it difficult to evaluate properties in deeply
metastable states.

For model systems, thermodynamic perturbation
theories13–15 can be developed which can accurately calcu-
late both stable and metastable properties. For simple in-
teraction potentials, several accurate equations of state ex-
ist, such as SAFT-VR Mie and its modifications,16–19 and
uv-theory.20–22 For model systems with well-defined inter-
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action potentials, metastable properties can also be inves-
tigated in detail using molecular simulations. Restricted
ensembles can be used to delay or prevent the sponta-
neous phase transformation, maintaining the metastable
state sufficiently long to sample their properties.23–27 In
these ensembles, one stabilizes the fluid by prohibiting
configurations that lead to spontaneous phase transition,
and the thermodynamic properties are then available by
averaging over the permissible states. One drawback is
that the properties depend on the choice of restricted
ensemble, albeit this dependence is in many cases small.
An alternative, more direct method is to simulate the
system in one of the standard ensembles and to stop sam-
pling just before it phase-separates.28–30 This strategy
only works at moderate metastabilities.

Very often, the properties of a fluid in the metastable
region are just estimated directly from an equation of
state (EoS) regressed to data measured experimentally
or simulated in the stable region. The extension of the
equation of state into the metastable region is not free
from spurious behaviors, such as the artificial, second
Maxwell loop shown by multiparameter EoS.31

Despite the progress achieved in the theoretical and
simulation characterization of metastable states for cer-
tain model systems,32 simple and more general methods,
applicable to arbitrary interaction potentials, real fluids
and mixtures, are desirable.

Several works have noted that isochores, when plot-
ted in temperature-pressure space, are quite linear.33,34

Baidakov and Skripov34 observed that this linearity con-
tinues to hold when crossing the liquid binodal into the
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superheated liquid region. It is in this context we place
our contribution, by analyzing simple methods to evaluate
the properties of metastable phases based on isochoric
temperature expansion. The only ingredients involved
are the thermal pressure coefficient and its temperature
derivative, which can be straightforwardly evaluated ei-
ther from the EoS, simulations or even experimental data
in the stable region. In addition, we present a simple
procedure to evaluate these coefficients directly by using
molecular simulations in the canonical ensemble. Using
this method, it is possible to map the properties of the
whole metastable region just from one isotherm simulated
at a reference temperature.

By comparing to simulation results for pure fluids and
mixtures of Lennard-Jones fluids, we find that isochoric
extrapolation methods are robust, reliable, and accurate.
For real fluids, we verify a similar performance of the
extrapolation behavior in the stable regime. In particular,
we show that when this extrapolation is applied to the
reference EoS of real water, IAPSW95,35 it eliminates
the controversial re-entrance of the liquid-vapor spinodal,
predicting a monotonous decrease upon cooling. In an-
other work,36 we show that the extrapolation protocols
presented in this work enable accurate estimation of sur-
face properties when combined with multiparameter EoS
and density gradient theory.

This work is organized as follows. In Sec. II we present
the theoretical rationale of the isochoric extrapolation
approach and specify the extrapolations that have been
evaluated. In Sec. III, we introduce the method to evalu-
ate the coefficients of the expansion directly from simu-
lations and discuss the technical details of the molecular
simulations. In Sec. IV we evaluate the accuracy of the
extrapolation methods by comparing to simulation results,
and also apply them to water as an example of a real
fluid. Sec. V offers conclusions and outlook.

II. THEORY

To simplify notation we treat the case of a pure fluid,
although the arguments also apply to a mixture with fixed
composition. Consider a pure fluid of N particles in a
volume V at temperature T . Thermodynamic properties
such as the residual Helmholtz energy Ares and residual
pressure P res = −(∂Ares/∂V )T are rigorously given as
sums (or integrals) over microstates:13

βAres = − ln
∑

i

exp(−βUi) (1)

βP res = −β

∑
i(∂Ui/∂V ) exp(−βUi)∑

i exp(−βUi)
(2)

where β = 1/kBT , kB is Boltzmann’s constant and
Ui = Ui(V, N) is the potential energy of microstate i.
The residual Helmholtz energy Ares and pressure P res are
just defined as the total Helmholtz energy A and pressure
P minus the ideal gas contribution, e.g. P res = P −ρkBT

where ρ is the density. In statistical-mechanical expres-
sions such as these, temperature T plays a different role
than the extensive variables (V, N). Whereas changes in
temperature determine the relative weights of microstates,
changes in extensive variables (V, N) change the set of
microstates altogether. Isochoric extrapolation strate-
gies may therefore behave differently than isothermal
expansion techniques such as the virial expansion. This
motivates a comparison of the two approaches.

A. Isochoric extrapolation

We will evaluate two simple options for isochoric ex-
trapolation. The first is a direct Taylor expansion of the
pressure P in temperature up to second order:

Prec(T, v) =Pstb(Tstb, v) + Pstb,T (Tstb, v)(T − Tstb)

+ 1
2Pstb,T T (Tstb, v)(T − Tstb)2 (3)

where subscript rec denotes the reconstructed pressure in
the metastable region, subscript stb refers to the stable
starting state, and PT and PT T are the first and second-
order derivatives of pressure with respect to temperature,
holding molar volume v and composition constant. We
refer to Eq. (3) as a T2 expansion, and more generally
an n-th order Taylor expansion as a Tn expansion.

The second extrapolation method is inspired by
statistical-mechanical expressions such as Eq. (2) and the
virial expansion (Eq. (16) below), which suggest Taylor-
expanding βP in β, since the natural variables appearing
in statistical mechanics are βP and β instead of P or T :

βPrec(T, v) =(βP )stb + (βP )stb,β(β − βstb)

+ 1
2(βP )stb,ββ(β − βstb)2.

(4)

We denote Eq. (4) a β2 expansion, and βn as the corre-
sponding n-th order expansion. In terms of temperature,
the β2 expansion can also be written

Prec(T, v) =Pstb(Tstb, v) + Pstb,T (Tstb, v)(T − Tstb)

+ Tstb

2T
Pstb,T T (Tstb, v)(T − Tstb)2.

(5)

Evidently, the T2 and β2 expansions only differ by the
scaling factor Tstb/T in the highest-order term. The
zeroth-order expansions also differ, since the T0 expansion
is Prec = Pstb while the β0 expansion is Prec = PstbT/Tstb.
The T1 and β1 expansions are, however, identical.

While the T2 and β2 expansions only go to second order
in temperature, there is no conceptual limitation prevent-
ing the use of higher-order terms. The third-order Taylor
expansions would require evaluating PT T T , a fourth-order
derivative of the Helmholtz energy. This quantity cor-
responds to a higher-order derivative of the Helmholtz
energy than most directly measurable thermodynamic
quantities, and is presumably associated with higher un-
certainty.
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We will next discuss some systems for which these
extrapolation methods are exact. First, they are clearly
exact for ideal gases. For an ideal gas, the β expansion is
in fact exact already at zeroth order.

A more realistic description of a fluid is provided by
the van der Waals equation of state

P = RT

v − b
− a

v2 , (6)

where a and b depend only on composition, but not on
density or temperature. In this case, the T1 expansion
becomes

Prec(T, v) = P (Tstb, v) + PT (Tstb, v)(T − Tstb) (7)

= RTstb

v − b
− a

v2 +
(

R

v − b

)
(T − Tstb) (8)

= RT

v − b
− a

v2 (9)

and hence the T1 expansion is exact for the van der
Waals equation of state, and the same is true for the β1
expansion. On the other hand, a Taylor expansion in
density would require an infinite number of terms to be
exact.

More generally, isochoric extrapolation is exact for
systems where the potential energy is equal for all mi-
crostates, e.g. hard bodies immersed in a uniform back-
ground potential. Indeed, it follows from Eq. (1) that
−βAres(T, V, N) = ln ω(V, N) − βU(V, N) where ω (the
number of microstates) and U do not depend on temper-
ature, and thus βP = ωV /ω − βUV . The T expansion
and the β expansion will thus both be exact at first order.
We therefore see that the argument for the van der Waals
EoS does not hinge on its crude representation of the
hard-sphere repulsion.

B. The starting point for isochoric extrapolation

We now discuss the starting point temperature for the
extrapolation, Tstb (cf. Fig. 1). One is often interested
in a range of metastable states at different densities, and
the starting points can be described by a function Tstb(v).
A natural option is to perform an isochoric extrapolation
from the binodal, i.e. choosing Tstb(v) = Tsat(v), where
subscript sat refers to saturation. The advantage of this
choice is that it minimizes the temperature range that
must be extrapolated across. What complicates starting
from the binodal is that the saturation temperature is
different for each density, and requires actually knowing
the location of the binodal. There are certainly many
mixtures for which the binodal is unknown.

A simpler choice is performing the extrapolation from a
supercritical isotherm Tstb = T0; i.e. starting the extrap-
olation from the same temperature T0 for all densities.
The choice of isotherm T0 is in principle arbitrary, but
should not be so high as to render attractive forces in-
significant. A simple choice that seems to work well when

Density

Te
m

pe
ra

tu
re

Stable isotherm
Binodal
Spinodal

FIG. 1. Different ways of extrapolating into the metastable
region. The gray curve is the binodal and the dotted curve the
spinodal. The metastable region is enclosed by the binodal
and the spinodal. The vertical arrows correspond to isochoric
extrapolation, where the orange arrow starts from a super-
critical isotherm, and the gray arrow starts from the binodal.
The blue, horizontal arrow illustrates isothermal extrapolation
from the binodal.

estimating metastable states is the critical temperature,
i.e. T0 = Tc, with the precaution of avoiding near-critical
densities since PT T may not be well-behaved, as discussed
in the next section. We will see that, for the potentials
examined, several choices of starting points in fact yield
accurate estimation of metastable properties.

C. Evaluating the isochoric expansion coefficients

There are different routes to evaluate the coefficients
appearing in the proposed isochoric expansion.

First, let’s consider the case where an analytical expres-
sion of the EoS is known, either obtained from theoretical
considerations or regressed from simulation or experimen-
tal data in the stable region. In this case, one can simply
evaluate analytically or numerically the first and second
order derivative of the pressure P at the reference tem-
perature for the extrapolation Tstb. If an accurate EoS
exists, this is by far the simplest option.

Other options rely on molecular simulation. First, note
that the expansion coefficients are connected to other mea-
surable thermodynamic quantities by Maxwell relations.
Relevant Maxwell relations are(

∂P res

∂T

)
v

=
(

∂sres

∂v

)
T

(10)(
∂(βP res)

∂β

)
v

= −
(

∂ures

∂v

)
T

(11)(
∂2P res

∂T 2

)
v

= 1
T

(
∂cres

v

∂v

)
T

(12)

where sres, ures, cres
v are the molar residual entropy, in-

ternal energy and isochoric heat capacity, respectively.
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This means that if pressure, internal energy (or entropy)
and isochoric heat capacity are correlated as functions
of density along an isotherm, one can evaluate the co-
efficients needed to obtain an approximate equation of
state P = P (T, v) through e.g. the T2 expansion. This
could be especially convenient in the context of molecular
simulations, since heat capacities and average internal
energies are straightforward to sample in the canonical
ensemble. In Sec. II C 1 we also show how to obtain these
derivatives directly and more efficiently from simulations
in the canonical ensemble.

Since PT T is connected by Eq. (12) to the isochoric
heat capacity which diverges at the critical point, this
suggests that a second-order isochoric extrapolation may
not be well-behaved if the stable starting state is chosen
in the vicinity of the critical point. In fact, EoS gener-
ally fail to predict the divergence of cv at the critical
point, as this requires non-analytic terms.37 Most EoS are
fully analytical and therefore predict finite isochoric heat
capacities at the critical point, with notable exceptions
being the multiparameter EoS for water35 and carbon
dioxide.38 Using an analytical EoS enables the use of a
second-order isochoric expansion from the binodal, also in
the critical region. Unlike PT T , the first-order derivative
PT is continuous at the critical point, where it equals the
limiting slope of the vapor pressure curve Psat(T ).

1. Direct simulation method to evaluate the isochoric
expansion coefficients

As noted in Sec. II C, one can evaluate the isochoric
expansion coefficients by correlating pressure, internal
energy and isochoric heat capacity along an isotherm,
and then evaluate analytically or numerically the deriva-
tive with respect to the molar volume. Here we present
another, more direct way to evaluate these coefficients
directly from a canonical simulation. The coefficients
can be calculated in a simulation performed at constant
number of particles N , volume V and temperature T in
terms of two quantities that are customarily monitored in
those simulations: the potential energy U and the internal
virial39 divided by the volume V , i.e. V = 1

3V

∑N
i=1 ri ·fi,

where ri is the position of atom i and fi is the net force
on atom i due to all other atoms. More precisely the
coefficients can be obtained by direct sampling:

P res = ⟨V⟩ (13)
P res

β = − Cov(U, V) (14)
P res

ββ = Cov((U − ⟨U⟩)2, V) (15)

where ⟨ ⟩ and Cov() are the ensemble average and covari-
ance in the canonical ensemble. Whereas Eq. (13) and
Eq. (14) are well-known,39 we did not find a derivation of
Eq. (15) in the literature. We therefore include a deriva-
tion in the supplementary material (SM), obtained by
a third-order differentiation of the configurational parti-
tion function. The derivation can be straightforwardly

extended to evaluate any higher-order coefficients of the
β or T -expansion, if needed.

Therefore, by simulating a single stable isotherm in
the canonical ensemble, we can calculate directly the
expansion coefficients needed to map the pressure in
the whole region at lower temperature. If desirable, the
residual Helmholtz energy can also be reconstructed as
ares

rec(T, v) = −
∫ v

0 P res
rec (T, v′)dv′. This requires much less

effort than simulating several isotherms in the stable re-
gion, regressing all the data using a flexible functional
form, and then extending it into the metastable region.

D. Isothermal extrapolation

To benchmark the performance of isochoric reconstruc-
tion, we compare with isothermal extrapolation methods.
The latter is typically implemented as a Taylor expansion
in either molar volume or density.

The virial expansion is an isothermal Taylor expansion
from zero density:

βP = ρ + B2(β)ρ2 + B3(β)ρ3 + B4(β)ρ4 + · · · . (16)

The virial coefficients Bn can be rigorously calculated from
the intermolecular potential via the partition functions of
a finite number of particles.13,40 For monatomic particles,
the second virial coefficient is

B2(β) = −2π

∫ ∞

0
(e−βu(r) − 1)r2dr, (17)

where u is the pair potential and r is the interparticle
distance. For the van der Waals EoS one obtains BvdW

2 =
b − aβ. For a square-well potential one obtains BSW

2 =
c0 exp(βϵ) + c1 where c0, c1 are temperature-independent.
These examples suggest including powers of β in isochoric
extrapolation at low densities, which seems to favor a β
expansion over a T expansion.

For liquids, at least a second-order polynomial in ρ or v
is needed to predict a spinodal limit. Speedy41 used such
an approach to estimate the liquid spinodal of water. To
predict metastable liquid properties, we have therefore
also considered a second-order density expansion:

Prec(T, ρ) =Pstb(T, ρstb) + Pstb,ρ(T, ρstb)(ρ − ρstb)

+ 1
2Pstb,ρρ(T, ρstb)(ρ − ρstb)2 (18)

which is most conveniently performed from the binodal,
where ρstb = ρsat. We will denote this a ρ2 expansion,
and it will be used to benchmark the performance of
the isochoric extrapolation methods for both vapors and
liquids.

III. SIMULATIONS

In order to test the validity and accuracy of the isochoric
extrapolation and of the method proposed in Sec. II C 1 to
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get the expansion coefficients, we have performed NV T
Monte Carlo simulations for Lennard-Jones potentials.
Starting from a face-centered cubic lattice, the system
was equilibrated by running 10 simulation blocks, each
block consisting of 5000 × Ntot attempts to displace a
random particle. The maximum displacement length of
each component was independently adjusted to achieve an
acceptance ratio between 30% and 50%. The production
run consisted of 20 blocks, each consisting of 105 × Ntot
attempts to displace a random particle. For the reference
isotherm at T = 1.5, the production run consisted of 150
blocks to ensure good statistics for P res

ββ , which exhibits
relatively large fluctuations. All properties of interest were
sampled after each 5th displacement attempt. Different
versions of the Lennard-Jones potential were simulated,
as explained in Sec. IV and the SM.

To illustrate the approach for mixtures, where equations
of state are generally less accurate, we simulated two
binary mixtures. These are denoted the S mixture and
the E mixture, and are defined by

σ22 = σ11/2, ε22 = ε11 (S mixture)

and

σ22 = σ11, ε22 = ε11/2 (E mixture)

where ϵ and σ denote the well-depth and particle size used
in the LJ potentials. In both cases, ε12 = √

ε11ε22 and
σ12 = (σ11+σ22)/2. Whereas the density and temperature
will be varied, the composition will be fixed to: z1 = z2 =
0.5.

For mixtures, simulations were performed with a total
number of particles of Ntot = 500, 250 of each compo-
nent. Potential interactions were included up to a cutoff
of rc = 3.5σ11 for all particles, and standard long-range
corrections were applied.39 Note that long-range correc-
tions yield temperature-independent contributions to the
pressure and the energy. We have used σ11 and ε11 to
adimensionalize the simulation results in the usual way.

IV. RESULTS AND DISCUSSION

We now present and discuss the main results. A more
comprehensive comparison of the extrapolation strategies
is provided in the SM, including a table with results from
all evaluated expansions. In the SM we also show results
for the LJ-spline21,42 potential, with similar conclusions
as discussed here.

A. Lennard Jones-type fluids

To test the extrapolation methods described in Sec. II,
we will compare them with simulation results for model flu-
ids interacting via the LJ potential. To test the approach
for pure fluids we consider the LJ potential truncated and
shifted at 2.5σ (LJTS2.5σ), which is a frequently used

benchmark fluid in the literature.43 In the calculations
with LJTS2.5σ, we have used the empirical, multiparam-
eter EoS by Thol et al.,44 while the simulations are from
Ref.43 The expansion coefficients were calculated directly
by taking the derivatives of the equation of state by Thol
et al.44 In the following, densities and temperatures are
given in Lennard Jones units.

Figure 2 compares the simulation results in the
metastable region from Ref.,43 the equation of state by
Thol et al.,44 and the T2 and β2 isochoric extrapolations
starting from Tstb = 1.5, approximately equal to 1.38Tc.
This high starting temperature is chosen merely to dis-
tinguish the different extrapolations, and does not yield
optimal accuracy. Notice that the equation of state pre-
dicts the existence of a second loop in the metastable
and unstable region, which is not present in the isochoric
extrapolations.

To quantify the accuracy of the extrapolation schemes
we use the mean normalized error

Z̄ = 1
Nsim

Nsim∑
i=1

|P (i)
rec − P

(i)
sim|

σ
(i)
sim

(19)

where the sum is over the Nsim metastable simulations,
σ

(i)
sim is the stated uncertainty of simulation i by Heier

et al.,43 and the sum includes all four temperatures (0.7,
0.8, 0.9, 1.0). The results are shown in Fig. 3, in separate
plots for the vapor and the liquid. Evidently most extrap-
olation schemes yield a high and comparable accuracy
when extrapolating from the binodal. The exception is
the ρ2 expansion in the liquid phase, exhibiting 3-4 times
higher error than the other expansions. The small dif-
ferences between the other binodal expansions could be
due to inaccuracies in the simulated pressures and their
uncertainty estimates, or in the calculated derivatives
from the EoS. When extrapolating from several different
starting points, however, a clear picture emerges: the
T2 expansion is superior in the liquid phase, and the β2
expansion is superior for describing the behavior in the
vapor phase. In the SM we have replotted Fig. 3 using
another equation of state (the PeTS EoS43) to calculate
the coefficients of the expansion, with similar conclusions.

To see the effect of increasing the order of extrapolation,
we have also evaluated the T1 and T3 expansions (Fig. 3).
Given its simplicity, the high accuracy of the T1 expansion
when extrapolating from the binodal is especially striking.
Although both the T1 and T3 expansions are excellent
when extrapolating from the binodal, their performance
is inferior to the T2 expansion when starting from higher
temperatures. For the T1 expansion this is due to the
inherent nonlinearity of the pressure isochore at high
temperatures. For the T3 expansion this may be due
to the EoS’ inaccurate representation of PT T T , which is
amplified by the (T − Tstb)3 factor as |T − Tstb| increases.

We have also tested the virial expansion up to fourth
order for the vapor phase, using the coefficients from
Shaul et al.45 The best results were obtained at third
order, but at Z̄ = 0.95 this was still notably worse than
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the other extrapolation schemes. When inspecting the
lowest temperature T = 0.7 in detail, the second-order
expansion is best, whereas the third and fourth-order
expansions are progressively worse.

Next, we compare the T2 and β2 expansions with the
ρ2 expansions (Fig. 4). To have a consistent comparison,
all expansions start from the binodal. Figure 4 shows
that the ρ2 expansion is clearly less accurate than the
T2 expansion at high metastabilities in the liquid phase.
Both the T2 and the β2 expansions from the binodal yield
metastable pressures that are almost identical with the
EoS in the metastable regions where simulation data are
available.

Figure 5 shows results for mixtures. Here, the extrap-
olation is performed from T = 1.5 at discrete densities.
These results were obtained by use of Monte Carlo simu-
lation with direct sampling of the expansion coefficients
using Eqs. (13)–(15). Since the extrapolations (stars and
hexagons) lie close to the simulations (circles), we confirm
that the isochoric extrapolations offer similar performance
for mixtures as for single-component fluids. Also for the
mixtures, we observe a clear superiority of the β2 expan-
sion at low densities, whereas the T2 expansion is slightly
better at high densities. In the SM, this is quantified with
mean normalized errors.

For the S mixture, the good agreement between the
extrapolation and simulation results at T = 1.25 is strik-
ing. For ρ > 0.4 the system is mechanically unstable
since (∂P/∂ρ)T < 0, but the isochoric extrapolation still
manages to achieve a reasonable prediction of the average
properties.

Interestingly, the pressures of systems in the thermody-
namically unstable region that remain single-phase due
to finite-size effects46,47 are also predicted well by the
extrapolations. An example is the T = 1.25 isotherm for
the S mixture (see SM for more details). We interpret
this as finite-size effects of the system that suppress phase
separation, with the resultant homogenized phase being
similar to its isochoric neighbor at the higher temperature
T = 1.5. This suggests that we can interpret isochoric
extrapolation as yielding the properties of a homogenized
phase. In the SM we also demonstrate that isochoric
extrapolation agrees well with the constrained ensemble
simulations by Corti and Debenedetti,24 which partitions
the simulation volume into small boxes, constraining the
allowed density fluctuations in each box.

B. Real fluids - water

Real fluids differ from the LJ fluid in many aspects,
such as many-body effects, quantum effects, and generally
incomplete knowledge of the underlying interactions be-
tween the particles. Still, the properties of fluids can be
accurately measured and correlated in the thermodynam-
ically stable region, which makes isochoric extrapolation
possible. Although there are experimental fluid data avail-
able in the metastable regions,48 they are mostly at low

metastabilities,49 since the time scale of homogeneous nu-
cleation becomes too short for experimental observation
at high metastabilities.

One of the fluids whose properties have been charac-
terized with greater accuracy is water. Water is also
remarkable due to the anomalous behavior of many of its
properties.50 Accurate description of the thermodynamic
properties of water with molecular perturbation theory
remains an unsolved challenge.51,52 This is attributed to
difficulties in capturing structural changes upon activation
of hydrogen bonds at low temperatures. This is incon-
sistent with perturbation theory’s implicit assumption
that the structure is primarily controlled by repulsive
interactions.52

Different scenarios have been proposed to explain the
thermodynamic anomalies of water.4,53 Some of these
scenarios are associated with a re-entrant behavior of the
liquid-vapor spinodal,41,54–56 consistent with the most
popular empirical equations of state for water compiled by
the International Association for the Properties of Water
and Steam (IAPWS).35 We have used a T2 expansion of
the IAPWS95 equation of state35 to evaluate the liquid-
vapor spinodal for real water. To ensure high accuracy, the
coefficients were evaluated using the binodal as starting
point; extrapolating from a supercritical isotherm yields
qualitatively similar results.

Figure 6 shows that a second-order temperature ex-
pansion of the IAPWS95 equation of state35 yields a
monotonically decreasing liquid-vapor spinodal for water,
contrary to the re-entrant behavior predicted by the di-
rect application of the IAPWS95 equation of state in the
metastable region. This is the same behavior obtained
from common intermolecular potential models developed
for water,56 including TIP4P/2005 which is the one repro-
ducing most closely the properties of real water.57 This
is also the behavior expected by the liquid-liquid critical
point and singularity-free scenarios.4,53

V. CONCLUSIONS

Thermodynamic properties of fluids in the metastable
region of the phase diagram are needed in a wide range
of applications. In particular, they are crucial to have
accurate predictions of nucleation rates. But they are
typically very difficult to evaluate precisely because the
propensity of metastable states to transform quickly and
spontaneously into the most stable phase. This work has
evaluated methods for estimating metastable properties
by extrapolation from stable states. We presented two
isochoric extrapolation protocols: the Tn expansion which
Taylor-expands P in T , and the βn expansion that Taylor-
expands βP in β = 1/kBT , where subscript n refers to the
order of the Taylor expansion. Notably, they become exact
for important model systems such as the van der Waals
equation of state, and accurately reproduce metastable
pressures from molecular simulations.

We investigated different starting points of the extrap-
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β2 extrapolations (dashed and dotted lines) from the temperature T = 1.5, which is 38% above the critical temperature. Colors
correspond to temperatures 0.7 (blue), 0.8 (orange), 0.9 (green) and 1.0 (red). The left panel shows all densities, the middle and
right panels zoom in on vapor and liquid densities, respectively.

binodal Tc 1.5 2.0
Tstb

0

1

2

3

4

5

M
ea

n 
no

rm
al

ize
d 

er
ro

r Vapor2
2

T1
T2
T3

binodal Tc 1.5 2.0
Tstb

0

3

6

9

12

15

M
ea

n 
no

rm
al

ize
d 

er
ro

r Liquid2
2

T1
T2
T3

FIG. 3. Mean normalized error Z̄ for several extrapolation
schemes, plotted against the starting point of the extrapolation.
Extrapolations were calculated using the Thol et al. EoS,44

while the metastable simulations and their uncertainties were
taken from Heier et al.43

olations, different equation of state, and different variants
of the Lennard-Jones system, including both pure fluids
and mixtures. For metastable liquids, the T2 expansion
was most accurate, whereas for supersaturated vapors the
β2 expansion was most accurate. Starting from the closest
temperature possible, typically at the binodal, generally
yielded the highest accuracy, and in this case even the T1
extrapolation was highly accurate.

We have also presented a method to evaluate all the
isochoric expansion coefficients directly from a simple
canonical ensemble NVT Monte Carlo or Molecular Dy-
namics simulation. This method can be used to map the
properties of the whole metastable and unstable region
from a single isotherm, which is appealing for complex
intermolecular potentials where simulations are demand-
ing.

Molecular-thermodynamic perturbation theories exist
that are able to calculate metastable properties, such as
uv-theory and SAFT-VR Mie. Through extrapolation,
any equation of state can be used to predict metastable
properties, also those with sole focus on accuracy for
stable states.

Isochoric extrapolation was also used to predict the
mechanical stability limit, i.e. the thermodynamic spin-
odal. For real water, the liquid spinodal was predicted
to be monotonic, in contrast to the re-entrant behavior
suggested by the direct extension of the multiparameter
EoS. The existence of a re-entrant spinodal is the cor-
nerstone supporting different scenarios to justify water
anomalies. The use of this extrapolation to evaluate other
properties of water in the deeply metastable region could
shed light on the different scenarios proposed to explain
water anomalies.

Since isochoric extrapolation yields an isotherm that is
well-behaved also in the unstable region, it can be used
in density gradient theory to improve the evaluation of
important properties such as the surface tension; this
approach is explored in detail in another work.36

The present work is a step toward rational guidelines
for estimating metastable fluid properties. Future work
should investigate whether there are better functional
forms for isochoric extrapolation of pressure, or whether
it is more fruitful to extrapolate other properties such as
cv. Another option is to explore multivariate expansions
in density and temperature. To more rigorously test the
extrapolation methods, it will be beneficial to consider
more complex interaction potentials, such as those in-
volving hydrogen bonding, three body interactions, and
quantum effects.
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SUPPLEMENTARY MATERIAL

The supplementary material contains the derivation of
the sampling formulas for the isochoric expansion coef-
ficients, the new simulation results, and more detailed
results for the Lennard Jones fluids.
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