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Abstract

Estimating surface settlement induced by excavation construction is an indispensable task in tunneling, particularly for earth pressure
balance (EPB) shield machines. In this study, predictive models for assessing surface settlement caused by EPB tunneling were established
based on extreme gradient boosting (XGBoost), artificial neural network, support vector machine, and multivariate adaptive regression
spline. Datasets from three tunnel construction projects in Singapore were used, with main input parameters of cover depth, advance
rate, earth pressure, mean standard penetration test (SPT) value above crown level, mean tunnel SPT value, mean moisture content,
mean soil elastic modulus, and grout pressure. The performances of these soft computing models were evaluated by comparing predicted
deformation with measured values. Results demonstrate the acceptable accuracy of the model in predicting ground settlement, while
XGBoost demonstrates a slightly higher accuracy. In addition, the ensemble method of XGBoost is more computationally efficient
and can be used as a reliable alternative in solving multivariate nonlinear geo-engineering problems.
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1 Introduction

Recently, land has been utilized more, both above and
below ground, and urban underground space has been
developed rapidly, such as the construction of urban sub-
way networks and underground shopping malls. A key
issue that must be addressed is the effect of tunneling on
the deformation of adjacent soil. If the deformation
exceeds a critical value, economic losses to a project may
be incurred (Bilgin, Ozbayir, Sozak, & Eyigun, 2009). To
reduce ground settlement caused by soil release stress and
avoid this situation as much as possible, an earth pressure
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balanced shield is frequently used in soft soil, which utilizes
mud pressure to balance the tunnel front face pressure to
minimize the effect on the surrounding deformation, partic-
ularly in urban environments comprising dense buildings
(Bouayad, Emeriault, & Maza, 2015). However, even with
this tunneling method, it is still challenging to determine
the surface settlement.

Experts have used various theories to calculate surface
deformation, which can be divided into theoretical calcula-
tions, experimental and numerical simulations, and
machine learning methods. As theoretical calculations are
typically more complicated, which involve many parame-
ters, a few factors can be ignored for simplifying the calcu-
lation to establish an empirical formula (Mair, Taylor, &
Bracegirdle, 1993; Loganathan & Poulos, 1998; Verruijt
& Booker, 1996; Chou & Bobet, 2002; Park, 2005).
Although solving problems experimentally is feasible, it is
ehalf of KeAi Communications Co. Ltd.
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time consuming and the cost incurred is high (Chapman,
Ahn, & Hunt, 2007; Marshall, Farrell, Klar, & Mair,
2012; Fang, Chen, Tao, Cui, & Yan, 2019; Lu, Shi,
Wang, & Wang, 2019). Models used in numerical simula-
tions are visually strong and intuitive. Researchers have
established several models to predict tunneling-induced
deformation for different projects (Mroueh & Shahrour,
2002; Ng & Lee, 2005; Ocak, 2009; Ercelebi, Copur, &
Ocak, 2011; Chakeri, Hasanpour, Hindistan, & Ünver,
2011; Lambrughi, Rodrı́guez, & Castellanza, 2012; Gong
et al., 2014; Huang et al., 2015; Huang, Huang, Ye,
Zhang, & Zhang, 2018; Xiang et al., 2018; Chen, Wang,
& Zhang, 2019). However, owing to software setting, a
few parameters that must be assigned in the modeling pro-
cess are neglected. Moreover, the constitutive model of soil
is generally assumed and cannot reflect the actual stratum
properties well when the stratum changes in a complex
manner. An inevitable error will occur between the calcu-
lated and actual values.

To avoid an artificially assumed interference, machine
learning is highly recommended for mapping all input vari-
ables to the response. The principle of this method is equiv-
alent to an expert learning a significant amount of data to
understand the relationship between the result and charac-
teristic variables. Hence, a new case can be assessed and
prediction results can be obtained. This process does not
disregard any information and maximizes the utilization
of the dataset obtained. Hence, many different machine
learning methods have been applied to study such geotech-
nical problems (Kim et al., 2001; Neaupane & Adhikari,
2006; Suwansawat & Einstein, 2006; Santos & Celestino,
2008; Cheng, Tsai, Ko, & Chang, 2008; Yao, Yang, Yao,
& Sun, 2010; Xu & Xu, 2011; Adoko, Zuo, & Wu, 2011;
Mahdevari & Torabi, 2012; Mahdevari, Torabi, &
Monjezi, 2012; Wang, Qiu, Xie, & Wang, 2012;
Ahangari, Moeinossadat, & Behnia, 2015; Kohestani &
Bazarganlari, 2017; Ding, Wei, & Wei, 2017; Goh,
Zhang, Zhang, Xiao, & Xiang, 2018; Zhang, Wu, Li,
Wang, & Samui, 2021; Zhang, Zhang, Wu, et al., 2020).
Adoko et al. (2013) established the predicting model of
the diameter convergence of a high-speed railway tunnel
in weak rock based on multivariate adaptive regression
spline (MARS) and artificial neural network (ANN).
Ocak and Seker (2013) used three different methods:
ANN, support vector machine (SVM), and Gaussian pro-
cesses (GPs) to predict the surface settlement of Istanbul
Metro tunnels excavated by earth pressure balance-tunnel
boring machine (EPB-TBM). In addition, the partial
least-squares regression models were adapted to link
ground surface displacements to TBM operation parame-
ters for two groups of observations during the construction
of the Toulouse (France) subway line B tunnel (Bouayad
et al., 2015). Furthermore, the characteristic parameter
analysis of mix shield tunneling was presented using K-
means clustering and meaningful protection measures for
the Nanning metro line were discussed (Xie, Wang,
Huang, & Qi, 2018).
However, the application methods above are mostly sin-
gle sophisticated algorithms. Nanni and Lumini (2009) and
Lessmann, Baesens, Seow, and Thomas (2015) reported
that ensemble methods are better than single machine
learning and other statistical methods, as they improve
machine learning speed and results reliability by combining
multiple models and therefore produce better predictions.

Therefore, this paper proposes development models that
combine ensemble learning extreme gradient boosting
(XGBoost) and three classical machine learning methods,
including ANN, SVM, and MARS to predict the maxi-
mum settlement caused by EPB tunneling projects in Sin-
gapore. A brief introduction of these four methods is
presented in the following section. In addition, a case study
is provided, which primarily introduces the geological con-
ditions and data collection related to the projects. The
fourth section explains the prediction performances of four
models and provides comparison analyses in detail. Mean-
while, feature importance analyses are presented in the dis-
cussion section. The main conclusions are summarized in
the final section.
2 Methodology

2.1 Basics of XGBoost

XGBoost is an ensemble algorithm that belongs to the
category of boosting algorithm in three typical methods
of integration (bagging, boosting, and stacking). The main
idea of this algorithm is to transform features to grow a
tree and add trees constantly. In fact, each time a tree is
added, a new function is learned to fit the residual of the
last prediction. When the training is completed, k trees
are obtained and subsequently the score of a sample can
be predicted. According to the characteristics of the sam-
ple, a corresponding leaf node will be obtained in each tree,
and each leaf node corresponds to a score that is finally
added up to the corresponding score; therefore, the pre-
dicted value of the sample is obtained (Chen & Guestrin,
2016).

The objective function of the XGBoost algorithm com-
prises two parts, which can be defined as Eq. (1). The first
part is used to measure the difference between the predicted
and true scores, called the loss function. The other part is
the regularization term, which is used to reduce the com-
plexity of the objective function. Meanwhile, the regular-
ization term comprises two parts, in which T represents
the number of leaf nodes and w the score of the leaf node.
The symbol c is used to control the number of leaf nodes,
and k can be used to control the score of leaf nodes to be
acceptable to prevent overfitting.

Obj ¼
Xn

i¼1

l yi; ŷið Þ þ
XK
k¼1

X f kð Þ; ð1Þ

X fð Þ ¼ cT þ 1

2
kk w k2: ð2Þ
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When t trees are generated, the newly generated tree is
used to fit the residual of the last prediction. The predicted
score can be written as Eq. (3). In addition, the objection
function can be rewritten as Eq. (4).

ŷ tð Þ
i ¼ ŷ t�1ð Þ

i þ f t xið Þ; ð3Þ

Obj ¼
Xn

i¼1

l yi; ŷ
t�1ð Þ
i þ f t xið Þ

� �
þ X f tð Þ: ð4Þ

The next step is to obtain a suitable f tð Þ that minimizes
the target function. Taylor’s second-order expansion at
f tð Þ ¼ 0 is used to approach the solution of XGBoost.
The simplified objective function is approximated as
follows:

Obj tð Þ ¼
Xn

i¼1

l gif t xið Þ þ 1

2
hif

2
t xið Þ

� �
þ X f tð Þ: ð5Þ

By transforming the formula above, the objective func-
tion can be written as a unary quadratic function on the
leaf node score w; therefore, the optimal w�

j and objective

function values are solved. The score of each leaf node
can be obtained using the derivation above.

w�
j ¼ � Gj

Hj þ k
; ð6Þ

Obj ¼ � 1

2

XT
j¼1

G2
j

Hj þ k
þ cT : ð7Þ

The strategy of XGBoost is to utilize the objective func-
tion value above as the evaluation function to traverse all
the feature points by a greedy algorithm. In particular,
the split objective function value is compared with the gain
of the objective function of a single leaf node under the pre-
defined threshold that limits the tree growth significantly,
and the split is performed only when the gain is greater
than the threshold. Therefore, the best features and split-
ting points can be defined to determine the tree structure.

2.2 Three comparative supervised learning methods

2.2.1 ANN

The ANN model is a useful tool for geo-engineering
applications owing to its high performance in the modeling
of nonlinear multivariety problems (Zhang & Goh, 2013;
Zhang & Goh, 2016). The multilayer perceptron (MLP)
is an advanced version of the ANN, which was adapted
in this study. It has been applied successfully to solve many
difficult and diverse problems by training them with a
highly popular learning algorithm, known as the back-
propagation algorithm (Ocak & Seker, 2013). The MLP
can be regarded as a directed graph comprising multiple
node layers that are connected to the next layer individu-
ally. In addition to the input nodes, each node is a neuron
with a nonlinear activation function.

Based on the biological neuron model, the basic struc-
ture of the MLP can be obtained. The typical MLP
includes input, output, or hidden layers, which are fully
connected between different layers; this means that any
neuron in the upper layer is connected to all neurons in
the next layer. ANNs comprise three basic elements: activa-
tion function, weight, and bias. The activation function
acts as a nonlinear map, which limits the output amplitude
of the neuron to a certain range, generally limited to �1 to
1 or 0 to 1. The strength of the connection between neurons
is represented by weight, and the magnitude of the weight
indicates the likelihood size. The bias, which is an essential
parameter in the model, is set to correctly classify the sam-
ple to ensure that the output value cannot be activated
casually.
2.2.2 SVM

SVM is a novel type of learning algorithm based on sta-
tistical theory, which was pioneered by Boser, Guyon, and
Vapnik (1992) and formally published in 1995 (Cortes &
Vapnik, 1995). The SVM can be used to solve linear or
nonlinear classification and regression problems (Samui,
2008a, 2008b; Ocak & Seker, 2013; Zhou, Li, & Mitri,
2015). In this section, the construction process of SVMs
for regression problems is briefly introduced.

First, assuming a training sample D ¼ x1; y1ð Þ;f
x2; y2ð Þ; � � � ; xm; ymð Þg; yi 2 R; the aim is to fit each point
xi; yið Þ of the training set to the linear model yi ¼ wTxþ b
as much as possible. The SVM is different from the tradi-
tional regression model, which can tolerate a maximum dif-
ference � between the model output and the real value (� >
0); this means that the loss is calculated only when the
absolute value of the difference between f xð Þ and y is more
than �. Therefore, the loss function metric of the SVM
regression model can be expressed as follows:

Err(xi,yi) = 0 for |yi�wTx�b|��,

otherwise Err(xi,yi) = |yi�wTx�b|��,
where w is an adjustable weight vector, and b is the scalar
threshold. Correspondingly, the SVM regression problem
requires a small w, which can be formalized as follows:

Minimize :
1

2
k w k2 þ C

Xm
i¼1

‘� f xið Þ � yið Þ; ð8Þ

in which C is the regularization constant, and ‘� is the �-

insensitive loss function. Using slack variables ni and bni,
the formula above can be rewritten as follows:

Minimize :
1

2
k w k2 þ C

Xm
i¼1

ni þ bni

� �
: ð9Þ

This optimization problem is solved using Lagrangian
multipliers (Vapnik, 1998). For nonlinear regression prob-
lems, it is essential to map the input data into a high-
dimensional feature space (Boser et al., 1992). To solve this
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nodus, the kernel function K xi; xj

� � ¼ / xið ÞT/ xj

� �
has

been proposed to reduce the complexity of computation
(Cortes & Vapnik, 1995); its solution is written as

f xð Þ ¼
Xn

i¼1

ai � a�i
� �

K xi � xj

� �þ b; ð10Þ

where ai and a�i are Lagrangian multipliers; n is the number
of support vectors (Gunn, 1998). In this case of SVM train-
ing, the kernel function that is a radial basis function was
used. The kernel representation, which is a powerful alter-
native, uses linear machines for hypothesizing complex
real-world problems.

2.2.3 MARS
MARS, proposed by Friedman (1991), is a statistical

method for fitting the relationship between a set of input
variables and dependent variables. Without assuming a
latent correlation between the input and output, it is char-
acterized with nonparametricity and is widely used in
geotechinical engineering problems (Zhang, Goh, Zhang,
Chen, & Xiao, 2015; Zhang, Zhang, & Goh, 2017; Goh,
Zhang, Zhang, Zhang, & Xiao, 2017; Zhang, Zhang,
Wang, et al., 2019). This method models the nonlinear
responses between the variables of a system by a series of
piecewise linear segments of differing gradients. The seg-
ments, i.e., each of the splines, are delimited by knots that
indicate subdivisions between two data regions such that
piecewise curves can be obtained. These piecewise curves
are referred to as basis functions (BFs). MARS generates
many BFs by searching in a stepwise manner. During this
process, an adaptive regression algorithm is used for select-
ing the knot locations. MARS models are constructed in a
two-phase procedure. The forward phase adds functions
and finds potential knots to enhance the simulating perfor-
mance, which results in an overfitting model. To mitigate
this problem, the backward phase is used to prune the least
effective terms. With these two construction phases, the
MARS model can be constructed satisfactorily as a linear
combination of BFs and their interactions and can be
expressed as Eq. (11).

f xð Þ ¼ b0 þ
XN
n¼1

bnkn xð Þ; ð11Þ

where each kn xð Þ is a basis function. It can be a spline func-
tion, or the product of two or more spline functions already
contained in the model. The coefficient bn is a constant esti-
mated using the least-squares method.

It is an adaptive technique because the selection of BFs
and variable knot locations are data driven, which is speci-
fic to the problems to be solved. In addition, the functional
relationship between the input variables and the output is
not required, which allows for greater flexibility, bends,
thresholds, and several types of BFs in modeling. An
open-source code of MARS from Jekabsons (Jekabsons,
2010), which implements the main functionality of the
MARS technique for the regression problem proposed in
(Friedman, 1991), was used to perform the analyses pre-
sented herein.

3 Case study

3.1 Brief description of ground conditions

Tunnel settlement data used were collected from three
separate mass rapid transit projects of the North South
and Circle Line in Singapore. The geographical location
is shown in Fig. 1, with an enlarged portion to indicate
the relative position of each construction line as well as
the stations. Three of the different-colored points corre-
spond to three construction lines’ stations. The geological
stratification of each construction site is shown in Fig. 2.
It is obvious that the Dhoby Ghaut station to the Prome-
nade station exhibits a complex geological condition, while
other lines share the similar soil content. Four main forma-
tions covering the entire area of Singapore have been
described in detail previously (Hulme & Burchell, 1999;
Sharma, Chu, & Zhao, 1999; Izumi, Khatri, Norrish, &
Davies, 2000; Shirlaw et al., 2003). For a brief introduc-
tion, one of the most widely distributed formations, i.e.,
the old alluvium, comprises dense alluvial silty sand and
clay. As shown in Fig. 2(a), the Fort Canning boulder
bed comprises a colluvial deposit of strong to very strong
quartzite boulders in a hard, clayey silt matrix. In addition,
the Jurong formation is primarily composed of residual
soils, medium-plastic clayey silt, and sandy clay, as well
as a limited volume of clayey to silty sand. The marine clay
layer covers the entire research area, in which the forma-
tion is named the Kallang formation. In addition to the
main content marine clay, which has an over consolidation
tatio of approximately 1, the Kallang formation comprises
layers of loose fluvial sand and moderately stiff fluvial clay.

According to survey data, soft soil is dominant in the
construction of the projects, and the groundwater level is
similar and stable among all construction sites; conse-
quently, it is feasible to adopt the EPB shield technology.
In addition, groundwater has not been pumped in all sites;
therefore, it can be considered to be constant during the
construction process, and the effect of groundwater table
drawdown is negligible in the subsequent parameter input
session.

3.2 Date collection and input parameters

The data for this study were obtained by installing
ground settlement points at intervals of approximately
25 m along the tunnel alignment. A total of 148 monitoring
points were used in all the projects. The representative
parameters for each points were considered, which con-
tained seven main characteristic variables and the final sur-
face settlement value. The statistical characteristic values
for each parameter are shown in Table 1.

These parameters consider three aspects of the parame-
ters: geological conditions, tunnel geometry, and EPB



Fig. 1. Project locations in Singapore MRT Network.

Fig. 2. Longitudinal profiles of the three projects (adapted from Goh et al., 2018).
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operation factors. The geological conditions primarily
involve the mean standard penetration test (SPT) value
of the soil layers above the crown level up to the ground
surface, S1; average of the SPT values at the crown, middle,
and invert levels, S2; average moisture content of the soil
layer driven through by the tunnel machine, CM; and aver-
age elasticity modulus of the soil layer driven through by
the tunnel machine, E.



Table 1
Statistical description of the model parameters (adapted from Goh et al., 2018).

Category Symbol Unit Minimum Maximum Average Standard deviation

Tunnel geometry Cover H m 8.5 30 17.5 4.3

EPB operation factors Advance rate RA mm/min 9.5 52.1 30.8 10.9
Earth pressure PE kPa 11 370 193.6 81.5
Grout pressure PG kPa 27.7 700 258.6 154.9

Geological conditions Mean moisture content CM % 5.95 66.48 27.1 18.7
Mean soil elastic modulus E MPa 5 120 72.9 50.8
Mean SPT above crown level S1 blows/300 mm 0.66 80.33 27.9 28.2
Mean tunnel SPT S2 blows/300 mm 0 100 57 41.8

Output Surface settlement St mm 0.2 98.5 13.6 17
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For the tunnel geometry, the tunnel diameter and depth
are major factors affecting ground deformation. However,
as the internal diameter of all three projects tunnel was
5.8 m and the outside diameter was approximately 6.5 m,
it was not considered as an input variable. The tunnel
depth is changeable at different monitoring points, and
the exposed stratum may change. Therefore, the tunnel
cover depth H must be considered.

Moreover, because the EPB shield machine was used for
tunneling in all projects, the operating factors will affect the
change in surface settlement and the final settlement. The
three primary parameters selected as inputs were the fol-
lowing: tunnel advance rate, RA; EPB earth pressure, PE;
grout pressure used for injecting grout into the tail void,
PG.

Generally, a certain correlation exists between various
parameters; a heat map of these seven parameters’ correla-
tion coefficient R is shown in Fig. 3. As shown, S1, S2, CM,
E, and PG exhibit moderate correlations with the measured
maximum surface settlement St, whereas the PE is weakly
correlated with St, while the RA and H are almost indepen-
dent of St. For the input parameters, it is clear that the CM,
Fig. 3. Heat map of correlation coefficients.
E, and S2 are strongly correlated with each other, and the
CM is moderately correlated with PG and S1. Figure 3 illus-
trates the correlation of all parameters according to the R

value (General guide: |R| < 0.19 means very weak correla-
tion; 0.2 < |R| < 0.39 means weak correlation; 0.4 < |R|<
0.59 means moderate correlation; 0.6 < |R| < 0.79 means
strong correlation; 0.8 < |R| < 1 means very strong
correlation).

4 Results

4.1 Prediction performance of four models

To evaluate the predictive performance of the model
accuracy, the k-fold cross-validation approach is frequently
adopted on a database (Kohavi, 1995; Rodriguez, Perez, &
Lozano, 2009; Wong, 2015). For k-fold cross-validation,
data samples are randomly split into k equal subsamples,
and a single subsample is used as validation data for testing
the model, while the remaining (k � 1) subsamples are used
as training data. This process is repeated k times such that
each subset is used for validating once. Herein, the devel-
oped models are systematically compared with each other
under a five-fold cross validation. The database was
divided into two parts for all models, where approximately
80% (118 datasets) of the datasets were used as the training
data and the remaining for testing purposes.

As shown in Fig. 4, all the data of the predicted lg(St)
against actual lg(St) are scattered along the reference line.
The left column of the scatter plots shows the accuracy
of the training model of the machine learning methods,
whereas the right represents the testing models’ accuracy.
It is clear that the accuracy of the training model is higher
than that of testing model regardless of the k value. Most
of the points of the XGBoost predictive model are closer
to the line of equality, indicating a better prediction.

4.2 Comparison analyses and discussion

In this section, three evaluation indicators are intro-
duced to quantitatively evaluate the accuracy of the train-
ing and testing models.
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The indices are root mean square error (RMSE), coeffi-
cient of determination (R2), and bias factor b, expressed as
Eqs. (12)–(14), respectively.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � ŷið Þ2
s

; ð12Þ

R2 ¼ 1�
P

yi � ŷið Þ2P
yi � y

�� �2 ; ð13Þ

b ¼ 1

n

Xn

i¼1

yi
ŷi
; ð14Þ

where yi is the ith observed element, ŷi is the ith predicted

element, yi
�
is the mean of the observed values of yi and n is

the number of datasets used. Theoretically, the RMSE
measures the deviation between the measured and pre-
dicted data, in which a lower RMSE value suggests a better
performance. R2 values that approach 1 indicates a better
fit of the model to the data. Accordingly, a prediction
model is considered excellent when the RMSE is 0 and
R2 � 1. The bias factor b is the sample mean of the actual
value divided by the predicted value. The model prediction
is unbiased when b is 1 (Ching & Phoon, 2014; D’Ignazio,
Phoon, Tan, & Länsivaara, 2016).

The mean value (l) and standard deviation (r) of the
evaluation index for the training and testing models
Fig. 4. Predictive results under
obtained with five-fold cross-validation (k = 5) are shown
in Table 2. Furthermore, the values corresponding to dif-
ferent machine learning methods can be compared using
every list, which enables an objective comparison between
the models’ performances. By comparing the RMSEs, the
l value of XGBoost is the minimum for both the training
and testing sets. Similarly, the coefficient R2 of XGBoost
approaches 1, whereas those of the others are smaller.
For the bias factor b, MARS performs better with a value
approximately 1, indicating the unbiased property of this
model. In general, the evaluation indices for XGBoost
are slightly better than those of the other three algorithms,
followed by the MARS model. The XGBoost-based model
fits extremely well with the database in terms of accuracy
and robustness. Moreover, the results indicate that the
ensemble model XGBoost is superior to the single sophis-
ticated algorithm for multisource data.

Feature importance selection, which calculates the con-
tribution rate of each feature to the results, is critical for
building an effective model. Different calculation methods
can yield the corresponding feature importance after the
prediction model is established. According to the predic-
tion results, the XGBoost-based model exhibits the highest
prediction accuracy. The importance of each feature based
on the XGBoost method is shown in Fig. 5. The feature
importance of the seven input parameters in this study is
five-fold cross validation.



Fig 4. (continued)

Table 2
Comparison of models’ performances.

Evaluation index RMSE R2 Bias

Training Testing Training Testing Training Testing

l r l r l r l r l r l r

XGBoost 0.11 0 0.26 0.03 0.97 0 0.79 0.05 1.09 0.23 0.81 0.4
MARS 0.17 0.01 0.32 0.04 0.91 0.01 0.67 0.09 1.04 0.13 0.97 0.2
SVM 0.28 0.01 0.32 0.03 0.77 0.01 0.69 0.05 0.92 0.07 1.14 0.22
ANN 0.23 0.01 0.31 0.04 0.84 0.02 0.71 0.06 1.37 0.32 1.11 0.35
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Fig. 5. Feature importance of input variables.
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represented numerically; a larger value indicates a better
importance.

As shown inFig. 5, themean tunnel SPT (S2) has the high-
est importance with 47%, followed by the mean soil elastic
modulus (E) andmean moisture content (CM); the other five
variables only accounted for 3%. That is, the effect of geolog-
ical conditions on tunnel excavation is obvious. Therefore, it
is necessary to conduct a detailed investigation of the SPT
value of the soil around the tunnel and the water content
of the soil layer driven through by the tunnel machine. This
result provides invaluable guidance for investigating the
characteristics of tunnel excavation.
5 Summary and conclusions

An alternative method to predict surface settlement
caused by tunneling using XGBoost, ANN, SVM, and
MARS algorithms based on five-fold cross-validation was
presented herein. Databases from three separate mass
rapid transit projects of the Circle Line in Singapore were
compiled.

The data points of the XGBoost predictive model were
closer to the line of equality for the training set; it exhibited
the highest accuracy, whereas MARS a slightly lower accu-
racy. To evaluate the model more accurately and quantita-
tively, the RMSE, R2, and b were presented to analyze the
predictive results of soft computing models. By comparing
the l and r of those three indices, it was observed that the
XGBoost algorithm exhibited excellent performance and
that this ensemble method was superior to the single algo-
rithm for multisource data. Nevertheless, the interpretabil-
ity of the XGBoost-based model was lower than those of
the other three models. In general, these four models are
suitable for determining EPB tunneling projects in similar
geological conditions.

In addition, the relative importance of the input vari-
ables was presented based on the XGBoost algorithm, in
which the S2 exhibited the highest importance followed
by the E and CM. This result differed from the importance
of the features presented by Goh et al. (2018). This was
because the database was divided into different parts for
both studies. Additionally, the value range was limited.
These aspects may change the relative importance of the
features. It is noteworthy that the data and features deter-
mine the upper limit of accuracies by soft computing meth-
ods, while the various models and algorithms approach this
limit differently. Hence, high-quality datasets and well-
extracted features that are closely related with the depen-
dent responses are critical for the successful application
of soft computing methods.
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