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Abstract

Plant breeding is the practice of breeding plants with desirable traits, for example, resistance to local
pathogens, adaptation to environmental stressors, and increased yield. With the recent development of
high-throughput phenotyping using remote sensing technologies and multispectral sensors, researchers can
derive metrics (i.e., bands and vegetation indices) that correlate with important agronomic traits like
yield and maturity time to study these traits in a high-throughput manner. There lies great potential in
multispectral data for dissecting the genetic architecture of spring wheat (Triticum aestivum), and previous
studies in a variety of crops (wheat, maize, and rice) have identified both known and novel genetic regions
influencing agronomic traits.

This thesis explored the integration of multispectral time-series with Genome-Wide Association Studies
(GWAS) in spring wheat. Given that spectral time-series are not typically used in association studies,
we also implemented a machine learning (ML) alternative based on genetic algorithms and support vector
regression (GA-SVR) for comparison with conventional GWAS using mixed linear models (MLM). Both
GWAS approaches were employed on agronomic traits data and spectral phenotypes derived from the
multispectral time-series.

Our results demonstrated that spectral phenotypes had moderate to large heritability, and correlated
well with certain traits such as grain yield. We identified several spectral Quantitative Trait Loci (QTL)
containing or near genes, like Rht-B1 and Vrn-A1, that overlapped with agronomic QTL related to the
function of these genes. We also identified temporal genetic patterns, where certain spectral regions were
significant only in specific time-periods (e.g., grain filling). In addition, the MLM detected few QTL
associated with yield and protein content that overlap with spectral QTL. This suggests that the data or
model may not be adequate for identifying spectral QTL related to complex physiological traits. On the
other hand, the GA-SVR method produced a greater number of significant markers and QTL compared to
MLM. It also found more spectral QTL overlapping with regions identified for yield and protein content,
indicating GA-SVR may be suitable for capturing and dissecting more complex traits. However, results
should be interpreted with care, as confounding variables were not accounted for in the GA-SVR pipeline.

In conclusion, this thesis demonstrates the potential usefulness of multispectral time-series for GWAS,
because we identified temporal differences in significant spectral QTL, as well as basic genes related to
height and maturity time. The GA-SVR method provided an alternative to MLM, and it is interesting to
see that it returns different genomic regions, indicating that it might be capturing different information
compared to MLM, and thus potentially overcoming some of the weaknesses of MLM. However, the effects
of confounding variables in the GA-SVR pipeline remains unknown and requires further investigation.
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1 Introduction

1.1 Background

Precision agriculture has emerged as a research area with the objective of employing technology and
data-driven solutions in farming practices to increase productivity, and improve efficiency (Nowak 2021).
Often PA-research is often facilitated by technological platforms that produce fast, accurate and large
volumes of informative data for various purposes, one of them being plant breeding. Plant breeding is the
practice of breeding plants with desirable traits like for example resistance to local pathogens, adaptation
to environmental stressors and increased yield (Jangra et al. 2021). To successfully breed crop with such
desirable traits both genetic and phenotypic variation have to be studied and quantified (Jang et al. 2020).
Large-scale analysis of phenotypic variation can be achieved through the use of remote imaging and sensor
technologies, also referred to as high throughput phenotyping (HTP). On the other hand, genetic variation
can be studied using Genome Wide Assocation Studies (GWAS). For this thesis, both HTP and GWAS
play a central role, as we will integrate HTP-derived data in GWA-study of spring wheat varieties (Triticum
aestivum).

HTP-platforms that have been employed for plant breeding are satellite and unmanned aerial vehicles
(UAVs) imaging, soil sensors, and deployment of field robots (Han et al. 2020, Hassan et al. 2021, Burud
et al. 2017). HTP is particularly useful because it allows researchers to objectively quantify observable
features like biomass, grain quality and canopy cover with greater precision compared to human observers
(Jangra et al. 2021). Also, HTP can be used to quantify physiological traits like chlorophyll and water
content, soil nitrogen levels, and root physiology (van Dijk et al. 2021, Sarić et al. 2022). A further benefit
of HTP is that it is non-destructive, which allows for repeated measurements of the same samples over time
(Sarić et al. 2022). This enables researchers to study temporal patterns in phenotypic variation in detail
as done by Wang et al. (2021). In their study, a large maize population was monitored using time series of
Normalized Difference Vegetation Index (NDVI) collected using UAV-based multispectral imagery. Their
results demonstrated the usefulness of multispectral data for genetic dissection of NDVI. Overall they
uncovered temporal changes in genetic effects, as well as interactions between genes and environments that
control NDVI. Overall, their study also demonstrates how HTP can monitor and quantify traits that are
challenging to measure.

Among the popular HTP-platforms is UAV-imagery, because they are cost-effective and easy to use to
collect large volumes of spectral imaging data (Burud et al. 2017, Ang & Seng 2021). For example,
UAVs have been used to monitor important developmental stages like senescence in bread wheat as done
by Hassan et al. (2021). In their research, multispectral imaging data derived from UAVs were used
to quantify senescence, as well as identify genetic regions associated with different developmental stages
(including senescence). Furthermore, the research of Rodrigues et al. (2018) exemplifies how UAV-imaging
allows researchers to predict and quantify more complex traits like grain yield and grain protein content by
using spectral data that correlate with underlying traits. In their research they used vegetation indices that
correlate with nitrogen utilization to predict grain yield and grain protein content. In general, HTP enables
researchers to measure secondary traits that are closely related to the main trait of interest. Overall, HTP
can be used to quantify and monitor challenging-to-measure traits through spectral data analysis.

Moreover, researchers can integrate and combine various HTP-platforms, resulting in diverse, multi-modal
data (Han et al. 2020, Chlingaryan et al. 2018). This approach could be more informative than relying on
only one HTP-technology as it may reveal additional patterns in phenotypic variation. As demonstrated
by Han et al. (2020) multi-modal data may enhance model predictions, leading to improved accuracy. In
their research they used soil sensors, weather data and spectral imaging to predict end-of-season grain yield
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in winter wheat.

Although data derived from HTP-platforms is useful, the high dimensionality and heterogeneity (in terms
of modes and spatial variation) provides a challenge for researchers (Ang & Seng 2021). In such data, there
may also be non-linear relations and complex interactions that are difficult to model using conventional
statistical methods (van Dijk et al. 2021). To solve this issue, machine-learning methods can be used, since
such methods have proven themselves to perform well with heterogeneous, noisy and large data (Ang &
Seng 2021, van Dijk et al. 2021). Machine Learning (ML) methods describe a broad range of algorithms,
both parametric and non-parametric, that learn from data and try to optimize a given objective function
or task (van Dijk et al. 2021). For the purposes of analyzing HTP-data, multiple ML-models have been
employed for purposes such as predicting yield potential, identifying superior lines resistant to disease,
and finding genomic regions associated with important agronomic traits (Mu et al. 2019, Fei et al. 2022,
González-Camacho et al. 2018, Yoosefzadeh-Najafabadi et al. 2022). In the research by Mu et al. (2019),
they developed Convolutional Neural Networks (CNN), a variant of deep learning algorithms, to predict
winter wheat yield. The input to the network was 19 different spectral indices captured using satellite
imagery collected over multiple seasons in different geographical regions. They concluded that the CNN
effectively extracted features related to yield, and their model performance was satisfactory for most
regions. Likewise, Fei et al. (2022) applied multi-layer neural networks on hyperspectral images collected
using spectrometers to predict grain yield in bread wheat using data recorded at various growth stages.

Keep in mind that spatial hyperspectral images are high-dimensional, since such data form a hyperspectral
cube (2 spatial dimensions in addition to a spectral dimension). Deep learning networks are well suited for
extracting features from such high-dimensional data, and the work of Fei et al. (2022) demonstrated that
the network performed well for yield prediction. In addition to feature extraction and trait prediction,
ML-methods can be used for plant breeding purposes by uncovering the genetic architecture of complex
traits as seen in the research of González-Camacho et al. (2018) and Yoosefzadeh-Najafabadi et al. (2022).
González-Camacho et al. (2018) demonstrated that random forest and support vector regression can be
used for genomic selection in wheat to breed rust-resistant lines. The work of Yoosefzadeh-Najafabadi et al.
(2022) showcased the use of ML-methods to uncover genetic variants associated with yield related traits
in soybean. In their work, they compared ML-methods and conventional statistical models to identify
such variants. Interestingly, they found that the ML-methods yielded more significant hits, and that the
identified markers overlap with previously reported Quantitative Trait Loci (QTL). QTL are genomic
regions that correlate with phenotypic variation of a quantitative trait (Myles & Wayne 2008). Identifying
such regions for a given trait is of great interest in plant breeding, since QTL can be used in plant breeding
to select superior lines that contribute to the improvement of crop (Aśıns 2002).

Although traits studied so far have mostly been traditional agronomic traits (like yield and height), also
spectral phenotypes, which are derived from multispectral or hyperspectral data, can serve as quantitative
traits. In fact relating genomic regions to spectral phenotypes has improved researchers’ understanding of
the genetic basis for plant growth (Xiao et al. 2022). This may be done by conducting GWAS. GWAS is
used in plant breeding to identify genetic variants associated with important traits, like yield or disease
resistance. With GWAS, one can locate genetic markers linked to these traits by examining the genomes
of different crop varieties. Plant breeders use GWAS identify markers that correlate well with traits of
interest, which can then be used to breed new plant varieties with improved characteristics (Aśıns 2002).
Traditionally, associations studies have been conducted using traits that are measured once during the
season (like heading date) or using end-of-season traits (like grain yield) as seen in the studies by Mroz
et al. (2023), Shariatipour et al. (2021), Li et al. (2019), and Pang et al. (2020) which all studied wheat
varieties. As discussed earlier, with the emergence of HTP-technology, some researchers have employed
features derived from imaging and sensor technology as traits to perform association analysis (Xiao et al.
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2022). However, the use of HTP for GWAS is still limited in various crops including wheat, as reviewed
by Xiao et al. (2022).

Unlike traditional end-of-season phenotyping, spectral phenotyping enables researchers to identify temporal
patterns in phenotypic variations which can be used to uncover temporal controls in genetic effects (Wang
et al. 2021, Guo et al. 2018). This can be extremely useful for complex traits such as growth and yield related
traits, since we assume such traits are affected by many different small-effect loci over a longer of period of
time (Gao et al. 2023). For example, in the research by Hassan et al. (2021), they identified novel genes that
control senescence-timing in bread wheat using multispectral data. Similarly, Gao et al. (2023) used features
derived from hyperspectral imaging (i-traits) for GWAS in bread wheat. Their study identified temporal
patterns in significant associations, where some associations were only significant at certain developmental
stages. They also found some pleiotropic regions (related to multiple i-traits) which identified a previously
reported region which affect flowering date. Another study by Feng et al. (2017) showed similar use of
i-traits derived from hyperspectral imaging and identified a gene controlling chlorophyll content in rice.
Both studies by Feng et al. (2017) and Gao et al. (2023) used spectral data collected at specific time-
points without any attempt at summarizing the data in any manner. Such summary statistics of spectral
dynamics over the season may be useful, as shown the research of Wang et al. (2021) and Guo et al. (2018).
In Wang et al. (2021) they fitted p-splines to the spectral time-series and derived summary statistics like
maximum growth rate and point of inflection. They found more genomic associations using these features
compared to using spectral data collected at specific time-points. Likewise, in Guo et al. (2018), they
used both i-traits measured at specific time points as well as deriving summary statistics like derivatives
and amplitudes of different spectral bands. The resulting analysis identified multiple genomic regions
associated with important traits in rice, the most interesting one being a previously reported gene which
controls chlorophyll content.

In light of the research reviewed so far, spectral time-series hold significant potential for identifying genetic
regions linked to important traits or developmental stages in wheat. Therefore this thesis will integrate
multispectral time-series with GWAS in spring wheat. Furthermore, given that spectral phenotypes have
not typically been employed in association studies, exploring alternative ML-algorithms also presents an
interesting opportunity to compare ML and classic GWAS. Hence, an alternative ML-pipeline will also be
explored in this thesis.

1.2 Problem Statement & Objectives

The spectral data used in this study is a time series, which provides an interesting opportunity to explore
different growth stages in spring wheat, like heading and grain filling stages. Spectral data captured at
different developmental stages may provide valuable insight into genes crucial to those specific stages.
Therefore, we sample spectral data from comparable growth stages within each season to
perform GWAS.

Moreover, accumulated metrics such as Area Under the Curve (AUC) can be used to characterize crop
development across the entire season. Performing GWAS on AUC may reveal the same or different genetic
regions as reflectance data captured at specific time-points. GWAS using accumulated metrics may also
reveal genetic associations related to complex trait such as grain yield and protein content, since they
capture spectral information from the entire season. Therefore, we will also include the AUC-values
of vegetation indices for a GWA-study.

Finally, given that we have data on agronomic traits as well, we will also conduct GWAS on these traits.
By performing GWAS on agronomic traits, we may be able to identify agronomic QTL that overlap
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with identified spectral QTL. Identifying overlapping QTL may enhance our understanding of identified
spectral QTL, especially if the genomic regions have not been previously described. We will therefore be
performing GWAS on the agronomic traits, as it may reveal shared QTL between agronomic
traits and spectral phenotypes.

Finally, two different approaches will be used to identify significant markers. The first method
is conventional GWAS using mixed-linear models (MLM), and this will be carried out according to the
methodology described in Mroz et al. (2023). Their study also performed GWAS on the same wheat panel
used in this study. The second method is a single nucleotide polymorphism (SNP) selection pipeline using
support vector regression (SVR) and genetic algorithms (GA). This ML approach has been previously been
described by de Oliveira et al. (2014). We implement the two different pipelines because multispectral data
are not typically used for GWAS, and the literature on this topic is limited. Therefore it is worth exploring
an ML-alternative, since ML is well suited for HTP-data. In addition to implementing both approaches,
we will also be comparing the resulting assocaitions to see if we identify the same genomic
regions using ML and MLM.

To summarize, the objectives of this thesis is:

1. Perform conventional GWAS using MLM on both spectral phenotypes and agronomic traits, and
compare identified QTL. Look into literature to see if the identified agronomic QTL have previously
been described and can thus explain identified spectral QTL.

2. Implement an ML-alternative for SNP-selection for spectral phenotypes and agronomic traits, and
compare identified QTL to those identified using conventional GWAS.

In conclusion, it is important to highlight that while some research has been conducted using spectral
imaging features for GWAS, an even smaller number have explored the use of spectral time series. Addi-
tionally, there are few ML pipelines developed specifically for association studies. Therefore, this thesis is
novel in that it integrates multispectral time-series with association studies. Also, we develop and test the
feasibility of an alternative ML pipeline.
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2 Theory

2.1 Remote Sensing for High Throughput Phenotyping

HTP and UAV-based Systems

High-throughoutput phenotyping (HTP) are a collection methods that utilize imaging or sensor technolo-
gies for rapid and accurate phenotyping. Unlike traditional phenotyping, which can be labor-intensive and
slow, such platforms can be automated and yield large volumes of data (Xiao et al. 2022, Jangra et al.
2021). Furthermore, HTP can be non-invasive, meaning that traits can be monitored through time without
needing to destroy crop for sampling (Xiao et al. 2022, Gao et al. 2023). Essentially, HTP allows us to
monitor traits at various stages of crop development and may thus reveal temporal patterns phenotypic
and genetic variation (Gao et al. 2023, Wang et al. 2021).

HTP-platforms can be used in controlled conditions, such as greenhouses, or in the field. Typically,
unmanned aerial vehicles (UAVs) are used for phenotyping crop under field conditions, and for this report
UAVs have been used to do exactly this. Moreover, the UAVs are generally equipped with spectral sensors
that detect the reflectance of visible light and beyond visible light from the crop canopy (Burud et al. 2017,
Sarić et al. 2022).

While phenotyping in field conditions provide a more realistic estimate of crop performance, it may be
challenging for a variety of reasons (Jangra et al. 2021). For instance, rain, cloud, and lodging cover can
reduce the quality of spectral reflectance collected by UAVs (Sarić et al. 2022). In addition, changing solar
illumination, which can occur throughout the day, may also significantly affect the spectral data captured
(Shafiee et al. 2023). For this study, weather data was cross-referenced in order to explain and exclude
flight missions were weather had an impact on the spectral reflectance data (see section 3.2)

Multispectral Data: Bands & VIs

Multispectral sensors capture discrete bands of light reflected from the crop canopy. The reflected light
provides optical information detailing things like condition of the crop’s tissue, biochemical components
such as water and chlorophyll-content, and photochemical activity (Sarić et al. 2022, Jangra et al. 2021).
Specific spectral bands contain different types of information. For example, near infrared (NIR) can be
used to measure water content in soil and crop tissue (Sarić et al. 2022). Also, visible light can be used to
evaluate morphological traits, such as greenness, height, structure, or discolouration due to disease (Azim
et al. 2021, Xiao et al. 2022, Sarić et al. 2022).

Although spectral bands may be useful, they can also be noisy because they are easily affected by back-
ground reflectance and changing solar illumination (Shafiee et al. 2023, Sarić et al. 2022). Therefore, in
addition to including spectral bands in our analysis, we will also derive vegetation indices (VIs). VIs are
less noisy compared to spectral bands, and are derived using one or more combinations of spectral bands
(Sarić et al. 2022, Verrelst et al. 2015, Hatfield et al. 2008). VIs are also useful because they tend to
enhance the spectral information contained in the separate bands they are computed from (Verrelst et al.
2015). Selected VIs for this report are normalized difference vegetation index (NDVI), green normalized
difference vegetation index (GNDVI), and simple ratio index (SR). NDVI was first described by Deering
(1978), and it is derived using the NIR and red bands. These bands are indicators of vegetation health
and vigour, as healthy crop emit light in the red to NIR region (Chang-Brahim et al. 2024). For these
reasons, NDVI is widely used, since it is an indicator of greenness, vegetation density, and plant health
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(Hatfield et al. 2008). NDVI, however, saturates easily for red band when vegetation is dense due high
chlorophyll content. In other words, NDVI is not as sensitive for regions with high vegetation density.
Using the green or red-edge bands instead solves this issue of saturation for highly dense vegetation as
they are sensitive to higher chlorophyll content (Hatfield et al. 2008, Rahman & Robson 2016). Therefore,
GNDVI is a useful VI, as it does not suffer from the same issues of saturation as NDVI does. GNDVI,
uses the green band instead of red, which solves the issue of saturation. It therefore specifically targets
green vegetation, and can be used for vegetation monitoring (Gillani et al. 2023). It is also better suited
for evaluating chlorophyll content, and it is correlated with water and nitrogen content (Gillani et al. 2023,
Yang et al. 2020). Another interesting VI is SR, which was first described by Birth & McVey (1968). SR is
the simplest of the three indices, and it is a ratio between the NIR and red bands. The red band is sensitive
to chlorophyll content, since red light is absorbed by chlorophyll, while NIR is sensitive to differences in
leaf structure (Silleos et al. 2006). Therefore, this index is suitable for studying vegetation biomass, while
being robust to differences in landscape causing variable illumination.

All three VIs (NDVI, GNDVI and SR) capture important crop properties such as vegetation density, health,
and moisture content, while complementing each others weaknesses, such as sensitivity to topographic
variations and saturation. Therefore, we have chosen to use these three VIs, as they may provide a
complete picture that can help us better understand crop status and the agronomic traits under study. In
addition to VIs, we will also be using spectral bands, as they provide insight into important physiological
traits such a photo-chemical activity and chlorophyll content.

2.2 Experimental Design and MLM

There are two main sources of effects that contribute to the observed phenotypes, namely environmental
and genetic effects. To account for and separate the two sources of variance, mixed linear models (MLMs)
are used, because such models contain both random and fixed effects. Often, random effects are nuisance-
factors whose variance we want to eliminate or account for while modelling fixed effects (Mathews & Crossa
2022). In plant breeding, field trial data often contains noise that can be attributed to environmental
factors (like water or fertility gradients) or statistical design (like blocking effects) Mathews & Crossa
(2022). MLMs is therefore useful, since it allows us to account for and separate these effects from genetic
effects.

In its most basic form, MLM can be described as:

y = Xb+ Zu+ e[
u
e

]
∼ N

([
G 0
0 R

])
The term b are fixed effects to be estimated, and their estimates are referred to as best linear unbiased
estimators (BLUEs). On the other hand, y and u are random effects to be predicted, and their solutions
are called best linear unbiased predictors (BLUPs). The matrices X and Z are design matrices for the
fixed and random effects respectively. Normally, we assume the random effects follow a multivariate normal
distribution with mean 0, and that they have a specific variance-covariance structure (denoted by G and
R).

In addition to MLM, experimental designs with blocking is used in field trials to group plots in close
proximity, since we anticipate that they will be more similar to each other (Mathews & Crossa 2022).
Alpha-lattice designs are among the most widely used blocking-designs (Piepho et al. 2006, Kumar et al.
2020), and it is used for the field trials described in our study. Its purpose is to allow for many treatments
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while having block sizes that are small enough to account for the heterogeneity within each block (Piepho
et al. 2006, Kumar et al. 2020).

Furthermore, for this study there are spatial effects (such column position of a plot), temporal effects (time
of the flight missions), and environmental effects (season) that we need to consider when modelling the
multispectral time-series. Therefore, MLMs are used to estimate the variance and separate these sources
of variance from the computed BLUEs for genotypic effects.

Prior to setting genotype as a fixed effect for BLUEs computation, we model it as a random effect to
compute broad sense heritability (H2). It is simply a measure of the experiment’s repeatability, and
provides a measure of the proportion of total phenotypic variance that can be attributed to genetic effects
(Schmidt et al. 2019). It can also be described as a measure of repeatability, which is a useful metric when
evaluating the quality of field trials (Schmidt et al. 2019).

2.3 Genome-Wide Association Studies

Association Studies

GWAS is a tool which facilitates the discovery of causal variants by identifying the approximate regions
casual variants are located in. It does so by using markers (like single nucleotide polymorphisms, or
SNPs) to identify genomics regions that are significantly associated with a trait(Xiao et al. 2022). The
identified markers do not need to be casual variants themselves, however, they may be in linkage with
casual variants. GWAS is therefore an exploratory analysis, and the identified regions need to be further
annotated and functionally validated before making any conclusions about causality. Furthermore, GWA-
studies are successful only if the population size under study is large enough, has high genetic diversity,
and if the trait under study has high heritability (Sukumaran et al. 2022, Xiao et al. 2022).

The underlying mechanism which GWAS takes advantage of is linkage disequilibrium (LD). LD describes
how different loci are associated due to proximity on the chromosome and limited recombination occurring
in these regions (linkage) (Hedrick 2011, Sukumaran et al. 2022). In other words, we anticipate that
certain genomic regions will more often be inherited in unison (coupling), or alternatively, always segregate
(repulsion) from one generation to the next due to LD. In other words, we will observe non-random
associations between different genomic regions due to LD.

Despite its usefulness, GWA-studies have to correct for multiple factors like multiple-testing, relatedness
and population structure. Multiple hypothesis-testing have to be corrected for because of the high number
of markers tested will inevitably lead to false-positive associations (Saini et al. 2021). The main correction
methods used for GWAS on wheat populations are Bonferroni correction and Benjamini–Hochberg method
(BH) (Saini et al. 2021). Bonferroni correction of p-values ensures that the family-wise error rate for a
collection of n-tests is below or at a given significance level α, while BH-procedure controls the false
discovery rate (FDR) and ensures that it is below a certain level α (Chen et al. 2021). There is no
consistent correction-scheme when reviewing literature on GWAS in wheat population, and some studies
employ p-value thresholds instead (like p < 0.001) as described by Saini et al. (2021). Although Bonferroni
correction is stringent, resulting associations are unlikely to be false-positive, and therefore worth further
study (Saini et al. 2021). However, it may yield many false negatives, making FDR correction a preferred
balance between false positives and missed associations. As there is no consensus, this study compares
GWAS results using Bonferroni-correction and an alternative p-value threshold (p < 0.001) (see 3.4).
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Accounting for Population and Kinskip Structures via MLM

MLM is the most widely used GWAS model (Saini et al. 2021, Lozano et al. 2023). As discussed earlier,
MLM can be used to account for factors influencing the target variable (confounding variables). We need
to consider two confounding variables: 1) population structure, 2) familial relatedness (kinship) (Yu et al.
2006, Zhang et al. 2010). Failing to account for these variables will result in spurious associations (Zhang
et al. 2010, Lozano et al. 2023). To account for these factors using MLM, we first add population structure
as a fixed effect to the model. Next, kinship (computed using pedigrees or markers) is accounted for by
modelling it in the covariance-structure of the random effect of individuals (Zhang et al. 2010).

Population structure may be modelled using principal component analysis (PCA) or admixture-models
(Engelhardt & Stephens 2010). PCA is a procedure which takes a set of observations (individuals), and
projects them onto a lower-dimensional subspace using linear combinations of the original features (Engel-
hardt & Stephens 2010). These linear combinations (principal components, PCs) are created so that they
capture the most variance in the observations, while being orthogonal (i.e. uncorrelated). PCA is done
using the genotype matrix (G), hence the original features used to create PCs in this case is the genetic
markers of individuals. By performing PCA on G, the resulting PCs capture genetic variation between in-
dividuals (Engelhardt & Stephens 2010). For example, observations that are close in the subspace spanned
by PCs are assumed to be more genetically similar compared to those further apart. These PCs may be
added as covariates in an MLM to remove the effect of population structure on GWAS. By using PCs in
this manner, we are assuming that the genetic variation they capture is variation which arises as a result
of population structure, which may not always be the case (Xu 2022).

An alternative method is deriving a Q matrix from admixture analysis (Engelhardt & Stephens 2010).
Admixture models attempt to determine the proportion of an individual’s ancestry that can be attributed to
a specific population (Engelhardt & Stephens 2010, Xu 2022). These estimated proportions are summarized
in a matrix Q, where each entry signifies the probability of a sample belonging to a given ancestral
population (or sub-population). Similarly to PCs, columns in Q may be added as fixed effects in the MLM
to control for population structure. In choosing between the two methods, the work by Zhao et al. (2007)
shows that the MLM with Q-matrix (with kinship matrix, K) performed similarly to MLM with PCs (with
K-matrix).

Although MLM can account for population structure and kinship, the model does have some drawbacks.
First, MLM is a single-locus model which may not capture complex traits affected by multiple loci well
(Saini et al. 2021). MLM evaluates each SNP independently, however, complex traits are known to be
controlled by many small-effect loci which may not be revealed with small populations using MLM (Zhang
et al. 2010). Alternative multi-locus models exist, like the multi-locus mixed-model (MLMM) (Segura et al.
2012). Unlike MLM, MLMM is capable of accounting for causative alleles that are spread across multiple
loci using a forward-backward stepwise linear mixed-model regression (Segura et al. 2012). Additionally,
these models can be further extended to multi-trait variants that consider the co-variance between traits
and between environments under study Lozano et al. (2023).

For this report, we are studying a natural population of wheat varieties originating from multiple countries.
For this reason, we expect there to be strong population structure present in the wheat panel, as shown
in the work by Nannuru et al. (2022) and Mroz et al. (2023). We will therefore be including population
structure as a co-variate in our analysis using the Q-matrix derived in the work by Nannuru et al. (2022).
Also, it becomes natural to derive kinship from the markers themselves, as there is no pedigree information
available. Hence the model to be used in this report is a Q+K MLM.
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2.4 Machine Learning & Genetic Algorithm for GWAS

Support Vector Regression

Support vector regression (SVR) is an extension of support vector machines (SVM), where the response
variable is continuous. SVM is a binary classification algorithm whose objective is to maximize the margin,
which refers to the distance between a separating hyperplane and samples closest to this hyperplane in
the feature space (Raschka & Mirjalili 2019a). The purpose of the separating hyperplane is to ensure that
samples belonging to different classes are positioned on opposite sides of the plane. To achieve this, the
hyperplane should have the two following properties:

For all samples i ∈ [1, n]

w0 + w1xi1 + w2xi2 + · · ·+ wnxin = −1 if yi = −1

w0 + w1xi1 + w2xi2 + · · ·+ wnxin = 1 if yi = 1

Note that xij refers to a feature belonging to sample i, and yi the class of sample i. The weights w are
associated with each feature, and need to be determined via an optimization algorithm. To determine the
weights a loss function is needed, which is what we will define in the equations below by combining the
two constraints on the hyperplane (Raschka & Mirjalili 2019a):

wT (xp − xn)

||w||
=

2

||w||

⇒ M =
2

||w||

The term M refers to the margin which we want to maximize in SVM. Although the overall goal is to
maximize the margin, most optimization algorithms in ML are defined to solve minimization problems.
Hence we inverse the expression for M to derive a loss function to be minimized. Furthermore, the
definition of the margin above requires that all samples are classified correctly. This is called hard-margin
classification (James et al. 2013, Raschka & Mirjalili 2019a). It is difficult, and at times impossible, to find
such a hyperplane, hence we introduce slack variables ξ to allow for some misclassification to occur (James
et al. 2013, Raschka & Mirjalili 2019a). This version is called soft-margin classification and the loss for
this is (Raschka & Mirjalili 2019a):

J(w) =
1

2
||w||+ C

(
n∑

i=1

ξi

)

C is a regularization term which determines how much the model should be penalized for misclassifications.

The concepts SVM is built on can be extended to solve continuous or regression problems as well, which
is what SVR does. For SVR, the optimization problem is not finding a separating hyperplane, but rather
minimize the regression error. This may be expressed as the following regression problem (for the linear
case) (González-Camacho et al. 2018):

f(x) = wTx+ w0

To find the most appropriate solution, we use the same loss function as earlier, however the slack variables
is replaced with the regression error which is defined as |f(x)− y| (González-Camacho et al. 2018).
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Moving on, one should note that there is no obvious way to account for confounding variables when using
SVR for SNP identification. Accounting for kinship becomes difficult, since there is no specific variance
structure we can incorporate relatedness into when using SVR. On the other hand, population structure
may be accounted for by including principal components (PCs) or Q-matrix in the feature set. When the
PCs (or Q-matrix columns) are included in the feature set, we are including information we have about
population structure in the SVR-model. The phenoRegressor.SVR in the R package GROAN uses such an
approach, where PCs can be included as co-varieties in the feature set for the SVR-function (Nazzicari &
Biscarini 2022).

Kernel Methods and Pearson’s Universal Kernel

The SVR algorithm described so far can only solve linearly separable problems. However, with the use of
kernel-methods, SVR can solve non-linear problems as well (Raschka & Mirjalili 2019b). Kernel methods
are an efficient way of computing projections of samples onto a higher dimensional space where classes are
more easily separable by a linear hyperplane (James et al. 2013, Raschka & Mirjalili 2019b). For SVR, the
regression problem changes into the following when using a kernel function K (González-Camacho et al.
2018):

f(x) = w0 +

n∑
i=1

αiK(xi,xj)

Various kernels exist, each appropriate to its set of classification or regression problems (Üstün, Melssen &
Buydens 2006). A special property of kernels is that they measure similarity between samples in different
manners (James et al. 2013, González-Camacho et al. 2018). Among these kernels is Pearson’s Universal
Kernel VII (PUK), which was first described by Üstün, Melssen & Buydens (2006):

K(xi, xj) =
1[

1 +

(
2
√

∥xi−xj∥2
√

2(1/ω)−1

σ

)2
]ω

Compared to polynomial or radial basis function (RBF) kernels, PUK generalizes better to a wide range
of regression problems (Üstün, Melssen & Buydens 2006). This is because it has two hyperparameters σ
and ω, which enables it to from various peak-shapes like Gaussian or Lorentzian shapes (Üstün, Melssen
& Buydens 2006, Qifu et al. 2009). The idea of using the PUK function for SVR is that the user avoids
having to switch between multiple kernels and having to tune their hyper-parameters, which can be time-
consuming and computationally expensive. Instead, the user may use this universal kernel and tune it to
achieve similar results.

Genetic Algorithms for Feature Selection

Genetic algorithms (GAs) are optimization algorithms inspired by evolutionary biology, meaning that
concepts like mutation, selection, crossover and fitness are used to find optimal solutions (Scrucca 2013).
GA is a flexible optimization algorithm because it can solve a wide range of optimization problems, including
problems that are non-differentiable, combinatorial problems and problems that require integer solutions
(Scrucca 2013, Lambora et al. 2019). This makes GA suitable for solving problems involving feature
selection, since selected features can be assigned integer values 0 and 1, while still allowing us to define a
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real-valued performance function. When GA is used for feature selection, then a set of features make up
a chromosome (i.e. a solution), while a single feature represents a gene (which has value 0 or 1).

As mentioned, GA works by maximizing a function f (fitness), which for feature selection can be described
as the following:

Select {xj} so that: f = max
xi∈X

f(x1, x2, . . . , xk), X ∈ {0, 1}

Before outlining the workflow of GA, we will first discuss genetic operators used to mimic evolutionary
processes. The first is selection, which determines solutions which solutions will be part of the reproducing
population (Scrucca 2013). Typically, linear rank selection is used, which entails that the solutions are first
sorted and then assigned rank based on their fitness values. Probabilities p is assigned to each solution
based on this ranking, where p denotes the the probability of reproducing. A reproducing population is
made by sampling from the original population using p as weights. The selection strategy is normally
combined with elitism, in which the k fittest individuals are passed on to the next generation regardless of
their assigned p-value (Lambora et al. 2019).

The two other operations, mutation and crossover, define how new solutions (offspring) should be generated
(Scrucca 2013, Lambora et al. 2019).

From the reproducing population, the mutation operator generates new solutions by randomly modifying
the genes of a given solution (Lambora et al. 2019). Various mutation methods exist, such as adding Gaus-
sian noise to the vector of solutions, or altering values at random vector positions with equal probability
(uniform random mutations, see Figure 1) (Scrucca 2013).

Figure 1: Illustration of mutation of genes (features included or not). The blue lines signify chromosomes
(solutions), while the change in genes is highlighted in orange.

The crossover operator produces new solutions by randomly combining the genes of two other solutions
(Lambora et al. 2019). Similar to the actual cross-over of chromosomes, one or more points of cross-over
is randomly assigned to the two parent solutions, and combined solutions are generated (see Figure 2 for
one-point cross-over).
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Figure 2: Illustration of one-point cross-over. The numbers refer to genes (features included or not), and
the orange/blue lines are chromosomes (solutions)

We may now describe the workflow of GAs: (Lambora et al. 2019):

1. Initialize a random population of solutions θ
(0)
i of size n, and let k denote the current generation

(which is 0 for the initial population):

{θ(0)1 , θ
(0)
2 , . . . , θ(0)n }

2. Define a fitness function f(θ
(k)
i ) which evaluates the performance of an individual solution with

respect to the defined problem.

3. Assign each individual solution a value p
(k)
i which denotes its probability of being part of the repro-

ducing population. Usually, scaled fitness values that lie between [0, 1] are used to compute p
(k)
i .

4. Sample from the current population using the generated probabilities {p(0)1 , p
(0)
2 , . . . , p

(0)
3 } as weights

to create a reproducing population.

5. Let cross-over, mutation and elitism generate new solutions from the reproducing population which
form the next generation k + 1:

{θ(1)1 , θ
(1)
2 , . . . , θ(1)n }

6. Repeat steps 3-5 until a convergence criteria or maximum iteration criteria is met.

For this report, GA will be used as a wrapper to select features (SNPs) for the SVR-model. GA are suitable
for identifying not only SNPs that are important to predict the spectral phenotype, but may also capture
interactions between SNPs as shown in the work by (Mooney et al. 2012). GA-wrappers have been used
in combinations for SVR for SNP selection in both animal (de Oliveira et al. 2014), and for human studies
(Mooney et al. 2012, Dı́ez Dı́az et al. 2021).
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3 Methodology

3.1 Data Collection: Spectral, Agronomic and Genotypic

Trial Design and Lines

As described by Mroz et al. (2023), a spring wheat panel (MASBASIS) from the Norwegian University of
Life Sciences (NMBU) was studied for this report. The panel consisted of both Norwegian and Scandinavian
wheat lines, and non-Scandinavian lines provided by International Maize and Wheat Improvement Cente
(CIMMYT) originating from countries such as Brazil, France and UK. This report limits itself to data
collected at one research field near NMBU (Vollebekk), and considers only 4 seasons (2019-2022). Within
each season, field trials with an alpha lattice design was conducted with 46 blocks in 2019, and 48 blocks
in the remaining seasons. One block contained 6 plots, and wheat lines were assigned to plots at random
and replicated twice (randomized trial). Prior to analysis, border plots and plots showing lodging were
removed to avoid border effects and effects lodging has on spectral imaging data. Number of unique lines
within each season can be found in Table 1.

Multispectral Data Collection

Multispectral data was collected using UAVs, as described in Mróz et al. (2024) and Shafiee et al. (2024).
UAVs were equipped with multispectral sensors, and two different sensors were used to collect spectral
data. Micasense RedEdge-M Camera was used in seasons 2019-2020, and DJI Phantom 4 Multispectral
(DJI-P4M) was used in seasons 2021-2022. For each plot in the field, the median spectral reflectance value
was computed for bands blue, green, red, red-edge and NIR. Details of this process is described in Shafiee
et al. (2024). These median band-values per plot are among the spectral phenotypes used for GWAS. The
frequency of flight missions differs between seasons (see Table 1). Despite this, the dates of flight missions
encompass a short period before heading, the entirety of the heading-stage, and the beginning to middle
of maturity-stage.

Table 1: Number of unique lines from the MASBASIS-panel, number of flight missions within each season,
and cameras used within each season.

Season Number of Lines # Flight missions Sensor used

2019 220 7 RedEdge-M
2020 268 12 RedEdge-M
2021 293 22 DJI-P4M
2022 296 23 DJI-P4M

Agronomic Traits Collection

Agronomic traits recorded in the field were grain yield (GY, g/m2), days to heading (DH, dss), days to
maturity (DM, dss), plant height (PH, cm), grain protein content (GPC, %). The collection of these traits
are described in Mroz et al. (2023) and Mróz et al. (2024). GY, PH and GPC were measured at the end
of each season. DH and DM were recorded when at least 50 % of plants within a plot had reached the
respective states (heading or maturity). Correlations between agronomic traits and spectral phenotypes
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were computed prior to GWAS. Also, mean DH and DM were computed and used to identify different
development stages, and to adjust the frequency within each season.

Genotypic Data Collection

Lines were genotyped using TraitGenetics 25 K SNP Chip, and the methodology is further described in
(Nannuru et al. 2022). The markers were filtered such that only markers with minor allele frequency (MAF)
greater than 0.05 and missing values less than 10 % were kept, making the genotypic dataset identical to
the one used by (Mroz et al. 2023). Heterozygous individuals were input as 1 prior to analysis with GAPIT,
and as missing values for analysis with GA-SVR.

3.2 Preprocessing of Spectral Data

Computation of VIs

VIs were derived from median spectral reflectance bands for each plot, and used as spectral phenotypes as
well. NDVI, GNDVI and SR were computed according to Table 2.

Table 2: Computation of vegetation indices using median spectral reflectance

Vegetation Index Formula Reference

NDVI NIR−R
NIR+R Deering (1978)

Buschmann & Nagel (1993)

GNDVI NIR−G
NIR+G Gitelson & Merzlyak (1994)

Gitelson & Merzlyak (1996)

SR NIR
R Birth & McVey (1968)

Missing Value Imputation

Missing values for agronomic traits and spectral reflectance values were treated differently. For agronomic
data, plot numbers with missing values for agronomic traits were removed.

Spectral reflectance values were measured multiple times during the season (time-series). Therefore, missing
values for spectral reflectance bands were imputed using the last observation prior to the date with the
missing value (last observation carried forward method, LOCF). This was done since the number of flight
mission within each season differed (see Table 1). Hence, to ensure that we had flight mission from
comparable growth stages, we had to sample spectral data for dates with missing values using the LOCF-
method.

Outlier Detection for Spectral Data

Outlier detection was performed only for the spectral reflectance data using hierarchical clustering along
the time-axis with the R package TSclust (v.1.3.1). The purpose of clustering was finding a group of
time-points whose spectral reflectance values deviate greatly from the remaining time-points. After each
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clustering, a dendrogram was made and 5 groups were made (using base R-function cutree). Potential
outliers were identified by finding the group that contained the fewest time-points. Weather data was
cross-referenced to explain these outliers, and outliers that could be explained by this data (such as recent
rainfall) were excluded from further analysis.

Adjusting Frequency of Time-Series and Binning

Time series of spectral data was sampled so that time-points across seasons were from comparable devel-
opmental stages. The stages are defined according to the work of Krause et al. (2019) (see Table 3). As
described in Shafiee et al. (2024), the sowing dates as well as mean DH within each season were used to find
a reference to the following days from heading (DFH): -2, 5, 17, 24, 31, 40. These specific values for DFH
were selected because most seasons contain flight missions corresponding to or close to these time-points.
The reference point for DFH (DFH = 0) was computed by averaging the DH values for all the plots in the
field for each season. This mean value was set as DFH = 0.

Figures displaying the six selected time-points with growth-stages and distribution of DH/DM is given in
the appendix (A1). Also in the appendix are plots of the adjusted frequency for average spectral reflectance
values and VIs (A2).

In addition to having 6 time-points, we created time-bins HEAD and GF (see Table 3), where the HEAD-
bin contained T1-T2, while GF-bin contained T3-T6. The use of these bins are elaborated on in section
3.4

Table 3: Developmental stages and their definitions with respect to DH and DM

Stage Definition according to Krause et al. (2019)

Vegetative stage (VEG) ”Period between germination and 50% of plots at heading”
Heading stage (HEAD) ”Period between 50% of plots at heading and 100% of plots at heading”
Grain Filling (GF) ”Period between 100% of plots at heading and 100% of plots at maturity”

Computations of AUC-values for VIs

Area under the curve (AUC-value) was computed for the VIs of respective plots. The computation was
done using the R-package DescTools (v. 0.99.53). AUC-values were computed by using a trapezoid-method.
The computed AUC-values for VIs per plot were among the spectral phenotypes for GWAS. Distribution
of computed plot AUC-values within each season are given in the appendix (Figure A3).

Correlation Between Agronomic Traits and Adjusted Spectral Data/AUC-values

After frequency adjustment, Pearson’s correlation coefficient was computed between agronomic traits and
the following: spectral bands and VIs at each time-point (see Figure 7), and AUC-values of VIs (see Figure
8). Purpose of correlation computations was to investigate if there were linear relationships between
agronomic traits of interest (GY, DM, DH, PH and GPC) and the spectral reflectance data at given
time-points or accumulated VIs.
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3.3 Statistical Models (BLUEs)

For all traits (spectral bands, VIs, AUC-values and agronomic traits) BLUE was computed for the genotypic
effect. This was done to account for and remove the effects of spatial variation, environmental effects, and
statistical design in the estimated BLUEs for genotype. Since the spectral bands and VIs are time-series,
while the AUC-values and agronomic traits are not, we have defined the BLUEs for the latter group
differently. Note that BLUEs definitions are similar to those defined in the research by Mroz et al. (2023).
Also, in the model definitions upper-case letters (excluding the random error term) refer to random effects
(BLUPs), while the lower-case letters refer to fixed effects (BLUEs).

Note that prior to fitting the models specified below, the genotypic effect was modelled as a random effect
This was to estimate the the amount of variance attributed to genotype (σ2

g) compared to the random
error term (σ2

e).

Spectral Bands and VIs

The first model is the flight trial means, which are themean phenotypic value of spectral bands/VIs
at a given time-point for one year and one location (e.g. T1 for Vollebekk in 2019):

Pijkl = µ+ gi +Rj +R : Bjk + Cl + eijkl (1)

The symbols signify the following:

• Pijk is the mean phenotypic value of line (genotype) i, for replicate j, under block k and given location
column l.

• µ is the overall mean phenotypic effect

• gi is the effect of line (genotype) i

• Rj is the effect of replicate j

• R : Bjkis the effect of block k nested under replicate j

• Cl is the effect of column l

• eijkl is the random error term

The second model is the trial means, which describe the mean phenotypic value of spectral
bands/VIs across time-points for one year and location (e.g. Vollebekk in 2019):

Pijklm = µ+ gi + Tm + T : Rjm + T : R : Bjkm + T : Clm + eijklm (2)

Tm is the random effect of time-point m, and all variables except the genotypic effect is nested under this.
With nesting we are able to account for variability occurring due to repeated measurements over time, and
eliminate this in our estimated BLUEs for trial means. The paper by Krause et al. (2019) had a similar
when computing BLUES across all time-points within a season.
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The third model is the global means, which are the mean phenotypic value of spectral bands/VIs
across seasons and across time-points(e.g. Vollebekk across 2019-2022):

Pijklm = µ+ gi + Yn + Y : Tmn + Y : T : Rjmn

+Y : T : R : Bjkmn + Y : T : Clmn + eijklnm
(3)

Yn is the random effect of season/year n, and all terms except the genotypic effect are nested under this
in the global means. Similar BLUEs were estimated in the papers by Mroz et al. (2023) and Mróz et al.
(2024), however, they were referred to as cross-season means. For this thesis, there is only one location,
thus we refer to cross-season means as global means.

Agronomic traits and AUC-values of VIs

Note that both agronomic traits and AUC-values are traits measured once per season. Hence we define
the exact same BLUEs for these phenotypes.

The first model is the seasonal trial means, which defines the mean phenotypic value of a pheno-
type P for a given year and location:

Pijkl = µ+ gi +Rj +R : Bjk + Cl + eijkl (4)

Pijkl refers to either the mean AUC-value for a VI or the mean value for a agronomic trait. The remaining
terms are defined in the same manner as earlier.

The next model is the global means for AUC-values of VIs, which definesmean phenotypic of a
phenotype P across years and for a given location:

Pijklm = µ+ gi + Ym + Y : Rjm + Y : R : Bjkm + Y : Clm + eijklm (5)

Broad-Sense Heritability

Broad-sense heritability (H2) was computed only for flight trial means seasonal trial means (for both
AUC-values and agronomic traits). H2 was computed by modelling the genotypic effect in equations 2 and
4 as a random effect on the slope so that it is: gi ∼ N (0, σg). Using this, H2 is defined as:

H2 =
σ2
g

σ2
g + σ2

e

(6)

Model Fitting and Solving Convergence Issues

All models were fitted using the R-package lmerTest (v. 3.1.3) and with restricted likelihood estimation
(REML). During the fitting of some models, we received error or warning messages related to convergence.
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Therefore, prior to fitting, the spectral bands values, VIs and AUC-values of VIs were scaled (using base
scale-function in R). This was done to aid the optimization process. Despite this, some models still had
convergence failure warnings. To solve this the following procedure was implemented to rule out the
possibility of false convergence (inspired by the notebook (lme4 Convergence Warnings: Troubleshooting
2024))

1. Check for singularity.

2. Restarting the fitting using more iterations. If warning does not disappear, then do 3.

3. Restarting the fitting using a new solver and add more iterations.

Re-estimated models and those estimated initially were compared using model performance metrics such as
Akaike’s information criterion (AIC), Bayesian information criterion (BIC), and log-likelihood. All re-fitted
models using the procedure above either resulted in the same performance (indicating false convergence-
failure warning), or better (indicating that the initial model had not converged towards to an optimal
solution). All models with convergence warnings were replaced with the ones refitted using the procedure
described above.

3.4 Conventional GWAS-Implementation Using MLM

Mixed Linear Modelling with GAPIT

GWAS was performed using GAPIT 3.4 (v. 2023.9.5). Input data provided were genetic markers (SNPs),
genetic map, and a population structure file containing a Q-matrix. Phenotypic input data were the
estimated BLUEs described in section 3.3. Peak detection algorithm selected was the single locus, mixed-
linear model (MLM). Other agruments in the GAPIT-function was the minor allele frequency (MAF),
which was set to MAF > 0.05

Criteria for Significant Associations

We used the following criteria for significant associations to identify consistent peaks in GAPIT-results,
which are associations that were replicated across multiple environments (e.g., flight trials or trial means).

1. Passed Bonferroni correction for the global means, and for two different environments (flight trials
or trial means). Otherwise, we have

2. Passed a lowered p-value threshold of p < 0.001 for global means, and for at least two different
environments.

Due to few significant hits with Bonferroni correction, the second criteria was used for all GWAS-runs for
further comparative analysis.

Time-points of flight trials were binned prior to determining if the associations were replicated across
seasons. Time-points were binned according to definitions in Table 3, so that T1-T2 correspond to the
heading stage (HEAD), and T3-T6 correspond to grain filling stage (GF). This was done to down-sample
the resolution of time-points, making it easier to compare if associations had been replicated across seasons.
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Expanding Regions around Peaks

To identify QTL we expanded the regions around consistent peaks. A window of 40 Mbp, as done in
Mroz et al. (2023), was used to search for significant SNPs (p < 0.001) that were replicated in at least 2
environments and significant for global means as well.

3.5 SNP-Identification Using Genetic Algorithms and Support Vector Regression

The analysis was adopted from the article by de Oliveira et al. (2014). The alternative ML-pipeline was
only implemented for AUC-values and agronomic traits. This is because fitting SVR is computationally
expensive, and time-consuming. It was impractical to fit SVR-models for all spectral phenotypes due to
limited computational resources and time.

The pipeline for GA-SVR consists of 3 main steps:

1. Group SNPs based on the significance of their correlation (Spearman’s) with a given phenotype.

2. Fit SVR with PUK-kernel to each group where SNP are the predictors, and a given phenotype are
the target variable (AUC-value or agronomic trait). Also, perform k-fold cross-validation to identify
optimal kernel parameters for each group.

3. Select the best performing group and do feature selection by combining the identified SVR-model
and a custom GA-wrapper.

Grouping SNPs Using Spearman’s Correlation

Spearman’s rank correlation coefficient was computed between individuals SNPs and BLUEs of a given
phenotype. The resulting p-value was used to group the SNPs into 5 groups. Table 4 shows p-value
thresholds used to group SNPs.

Table 4: SNP-grouping, which is similar the method outlined in de Oliveira et al. (2014). P-value refers
to Spearman’s correlation test computed for phenotype and individual SNPs.

Group no. p-value

1. < 10−5

2. < 10−6

3. < 10−7

4. < 10−8

5. < 10−9

Model Performance Evaluation

For the remaining parts of the pipeline, model performance was evaluated using Pearson’s correlation
coefficient (r). It was used to evaluate the performance of each fold during the cross-validation step, and
it was used to select the best performing group (as described in the next sections). Furthermore, it was
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used in the fitness-function developed for the GA-wrapper. r was computed using the formula specified in
Equation 7. The metric was computed using the SciPy-package (v. 1.11.2) (Virtanen et al. 2020).

r =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑

(y − ȳ)2
(7)

Cross-Validation with SVR & Model Performance Metric

SVR-models with Pearson Universal Kernel VII (PUK) were fitted to each group. The kernel is currently
only implemented in Weka, hence a custom Python implementation as used (Phillips 2017). In addition,
10-fold cross-validation was performed on the individual groups. This was done to identify optimal hyper-
parameters for the kernel terms ω and ϵ. Model performance within each fold was evaluated by r between
predicted phenotype and real phenotype.

The group which produced the highest average r was selected for further analysis. All cross-validation and
SVR-fitting was performed in Python using Sci-Kit Learn (v. 1.4.0) (Pedregosa et al. 2011).

GA-Wrapper with SVR

A GA-wrapper for feature selection was implemented using the R-package GA (v.3.2.4). The algorithm
implemented was a binary algorithm, which encodes features (i.e. SNPs) as 0 or 1, where 1 means the
feature was included in the predictor-set for SVR, and 0 means it was not included. A custom fitness
function was made so that the GA was tasked to select the best subset of features producing r between
the SVR predicted phenotype and the true phenotype. Selected parameters for the GA-wrapper is given
in Table 5. Genetic operators were set to default-modes, meaning that linear rank selection, single-point
cross-over and uniform random mutation were used.

Table 5: Parameter settings for GA

Parameter Name Value/Setting

P(crossover) 0.8
P(mutation) 0.1
Generations 20

Population size 50
Elitism 1

Final Evaluation of Selected SNPs

The GA-SVR pipeline was run for all seasonal trials and global means of agronomic traits and spectral
phenotypes separately. Like for MLM, the goal is to identify assocaitions that remain consistent across
environments. Therefore, the following criteria were applied to SNPs that remained after running the
GA-wrapper:

1. The association appeared in the final set for at least two environments (seasons) of the seasonal trials
run
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Figure 3: Illustration of the SVR-GA pipeline.

2. The association appeared in the final set of the global means run

The region around consistent peaks (identified by the criteria outlined above) were expanded using the
same procedure described in section 3.4

3.6 Stacking of GWAS Results

Once QTL had been identified for both spectral phenotypes and for agronomic traits, we performed a
comparative analysis to identify overlapping QTL. The procedure was implemented for QTL identified
using MLM and the GA-SVR pipeline seperately. The following procedure was used to identify agronomic
QTL that overlap with spectral QTL:
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1. For a given agronomic QTL, create a window of 40 Mbp (+/- 20 Mbp) around the region the QTL
spans

2. Identify spectral QTL (bands, VIs or AUC QTL) that are within the defined window created in 1.

3. Report location of overlapping spectral and agronomic QTL

3.7 Code Availability

All code used to produce the results presented in this thesis is published on the public GitLab repository:
https://gitlab.com/awoarab/master_thesis.git. Data sets and result sets have not been published
in this repository.
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4 Results

4.1 Heritability

Flight Trials

Starting with the heritability computed for flight trial means, we see that all years show high to moderate
heritability for spectral bands, having values between 0.60-0.92, with an exception for year 2020 (see Figure
4). The spectral bands with the lowest heritability were NIR in most seasons (2019, 2020, 2021). For VIs,
there is no clear pattern, and they appear to be alternating with respect to heritability through time-points
and seasons. In year 2020, the lowest heritability was observed for all spectral bands and VIs, with values
ranging from 0.57-0.10. Time-point 2 stands out in particular for in year 2020, heritability in this season
ranging from 0.37-0.10 for spectral bands and VIs. In this season, the blue and red bands show the most
stability having heritability between 0.47-0.57 across all time-points. Interestingly, we observe the lowest
heritability of VIs and spectral bands for time-point T2 in both years 2019 and 2020, whereas in 2021-2022
the lowest heritability appears in the last time-point, T6. Despite heritability being lower in T6 compared
to other time-points for seasons 2021-2022, it is still moderate to high having values between 0.67-0.93.

Figure 4: A-D for respective years. Plot of heritability of bands and VIs for flight trials
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Seasonal Trials (AUC-values)

Heritability of AUC-values for VIs show more stability over years, including the year 2020. We see the
same pattern as in Figure 5, being that heritability in year 2020 is considerably lower compared to the
other seasons, having values from 0.41-0.50 (indicating low heritability). In year 2020, SR had a higher
heritability value than any of the other VIs, although the difference between VIs is quite small. Excluding
year 2020, heritability for ranges from 0.88-0.96. There is no particular pattern with one AUC-value of VI
having consistently higher/lower AUC-value, and the differences are minimal.

Figure 5: A-D for respective years. Plot of heritability of AUC-values of VIs for seasonal trials
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Seasonal Trials (Agronomic Traits)

The heritability of agronomic traits is summarized in Figure 6, and across all seasons we observe high
heritability (between 0.76-0.96) for all traits. In general the three traits PH, GPC and GY appear to be
producing the highest heritability estimates across all seasons, while DM and DH appear to be slightly
lower than the three in all seasons (except in 2022). The greatest estimated heritability appear for GPC
in year 2021, while the lowest heritability estimate also appear for GPC in season 2022. Second to GPC
is both GY and PH which produce similar estimated heritability throughout all seasons, with 2021 being
the season with highest heritability estimates for the two traits (H2 ≈ 0.94 for both). For DH the greatest
heritability estimate appears in 2021 (H2 ≈ 0.92), while for DM this value appear in 2019 (H2 ≈ 0.88).
Lowest values for DH and DM appear in seasons 2019 for DH (H2 ≈ 0.88) and in 2022 for DM (H2 ≈ 0.81).

Figure 6: A-D for respective years. Plot of heritability of agronomic traits for seasonal trials
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4.2 BLUEs Estimation

Trial Means and Global Means of Spectral Bands/VIs

As described in section 3.3, genotype was modelled as a random effect prior to fitting BLUEs for all models
(including trial means and global means). This was to estimate the the amount of variance attributed to
genotype (σ2

g) compared to the random error term (σ2
e).

Over all years for trial means the estimated error (σ̂e) is greater than or of the same size as estimated
standard deviation of genotype (σ̂g). To illustrate this pattern, we have included the results for trial means
in 2019, where genotype is modelled as a random effect in the appendix (see Table A1). Note in Table
A1 that random error term for NDVI is estimated as = 0.138, while the estimated standard deviation of
genotype is estimated as σ̂g = 0.068. This is the greatest difference between σ̂e and σ̂g that appears in table
A1, but the general patterns holds for all other bands and VIs. A similar pattern appears in global means
as well (see table A2), where the estimated error (σ̂e) is significantly larger than the estimated standard
deviation of genotype (σ̂g). Overall, this pattern indicates that there is a large portion of variability in the
spectral phenotypes that remains unexplained.

Global Means for AUC-values of VIs and Agronomic Traits

We also modelled genotype as a random effect before fitting BLUEs for AUC-values and agronomic traits.
For the global means of AUC-values and agronomic traits, a different pattern appeared when comparing
estimated variance components (σ̂e vs. σ̂g) compared to the results in the section above.

For both the AUC-values and agronomic traits, the global means resulted in estimated variance components
of genotype that were considerably larger than those estimated for the random error term. Table A3-
A4 display the BLUEs estimated for global trials (AUC-values and agronomic traits respectively) where
genotype is modelled as a random effect.

In A3, we see how for example the AUC-value of GNDVI resulted in standard deviation of σ̂g = 0.765
while the random error term was estimated to σ̂e = 0.359. This pattern holds for all global means for VIs.
In A4, we see how for example GY resulted in estimated variance for σ̂g = 74.739 while the random error
term was estimated to σ̂e = 29.880.

Unlike the genotype effect estimated for spectral time-series data, it appears that models for AUC-values
and agronomic traits estimate larger genotype effetcs (i.e. larger σ̂g) compared to the estimated random
error (σ̂e).

4.3 Correlation Between Spectral Data and Agronomic Traits

Spectral Bands and VIs

Correlations between spectral bands/VIs at each time-point and agronomic traits are summarized in Figure
7. Starting with the first trait DH, the correlations at the initial time points (T1-T2) is near 0.0-0.1 for
all spectral bands/VIs for all years except in year 2020. There is a general trend where the VIs (GNDVI,
NDVI and SR) increases over time, and reach a maximum value at the latest time-point (T6) with values
between 0.4-0.5. The spectral bands show a opposite trend of decreasing over time in all seasons, with
red for example reaching the largest negative values at the last time-points (T5-T6) with value between
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-0.4 and -0.6. The remaining bands’ correlation with DH tend to fluctuate or decrease throughout the
season, where for example NIR reaches a maximum the middle of the season (T3-T4) of 0.4-0.5, before it
decreases. This pattern for NIR appears for all seasons except in 2019.

DM is among the traits that produce the largest correlations in terms of absolute value (between -0.7 and
0.8). The spectral bands and VIs follow as similar pattern as described for DH. We observe that the VIs
(GNDVI, NDVI, and SR) begin with values close to 0.0-0.1 initially (T1-T2) and produce large positive
correlation in later time-points (T5-T6) between 0.6 and 0.8. The spectral band show an opposite pattern
(except red-edge), in particular the red band, which start with very low correlations initially and reaches
negative correlations of between -0.5 and -0.7 at later time-points (T5-T6). Red-edge appears to be quite
in 2022, and fluctuates in the remaining seasons with correlation between -0.1 to 0.3.

Next, we consider correlation between spectral data and GPC, where we observe large fluctuations in
correlations in seasons 2021 and 2019, and in seasons 2020 and 2022 we observe more stable patterns.
We observe moderate correlations with bands/VIs with values between -0.4 and 0.4 in seasons 2020 and
2022, while the correlation in 2019 and 2021 are lower (between -0.2 and 0.2). The red band tends to
show the largest positive correlation with GPC in most seasons, with initial correlation of 0.0-0.4 in T1-T2
and correlations of 0.2-0.4 in T5-T6. The VIs (NDVI, GNDVI and SR) tend to show the largest negative
correlations with GPC in 2020 and 2022 with correlations between -0.3 4and -0.4 throughout the seasons.

Next, we consider correlation between spectral bands and GY. GY (like DM) shows the greater correlations
with bands and VIs compared to other traits in terms of absolute value (between -0.6 and 0.7). For GY
there is a clear pattern where VIs (NDVI, GNDVI, and SR) show large positive correlation with GY across
most time-points across all seasons (between 0.3-0.7). The greatest correlation for VIs occurs in the mid
time-points (T3-T4) for all seasons except in 2020. In 2020 the largest correlation for VIs appears in T6
with values between 0.4-0.7. For the spectral bands, an opposite pattern appears, and this is particularly
clear with the red band. The red band produces the largest negative correlations with values between -0.3
and -0.6 throughout the season. For the mid time-points (T3-T4) the largest negative values are produced
with values between -0.4 and -0.6.

Lastly, we look into the correlations produces for PH, which produces fluctuating correlations throughout
the seasons. where we observe moderate correlations between -0.3 and 0.5 in seasons 2019 and 2022. In
seasons 2021 and 2020 the correlations are somewhat larger (absolute values) with values -0.5 and 0.6.
Furthermore the red-edge band tends to increase over time in most seasons, starting with initial values of
0.0 reaching maximum value in T5-T6, with values between 0.3 and 0.6. GNDVI has an opposite pattern
starting near 0 and reaching its largest negative values at the last time-point (T6) for most seasons, with
value between -0.3 and -0.4. However, in 2020, GNDVI shows a high, consistent correlation with PH with
values between 0.4 and 0.5 throughout the season.

AUC-values of VIs

Correlations between AUC-values of VIs and agronomic traits are summarized in Figure 8. We observe a
positive correlation between AUC-values of VIs and agronomic traits DH, DM and GY across all seasons
with correlation coefficients ranging from 0.2-0.8. There’s a negative correlation between AUC-values and
GPC (between -0.4 and -0.2). For PH, the correlation with AUC-values ranges from moderately (between
-0.4 and -0.2) negative to near zero and moderately positive (0.1-0.2), with an exception for 2020. In year
2020, we observe the greatest positive correlation between VIs and PH (0.5-0.6).

All VIs show the greatest correlation with the trait DM across all seasons, with values ranging from 0.4-0.8.
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The AUC-value of NDVI appears to have the greatest correlation with DM (0.7-0.8) throughout all seasons.
For GY, GNDVI shows the greatest correlation throughout all seasons (0.6-0.7).

Figure 7: A-D for respective years. Plot of Pearson’s correlation between agronomic traits and spectral
reflectance values /VIs at different time-points (T1-T6).
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Figure 8: A-D for respecive years. Plot of Pearson’s correlation between agronomic traits and AUC-values
for VIs.
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4.4 GWAS Results with MLM

4.4.1 Flight Trials

We first look into results for flight trials. No significant associations (peaks) identified for flight trials were
replicated across seasons when using Bonferroni correction. This may be due to the stringent correction
of p-values. When using the alternative p-value threshold (p < 0.001), 354 associations were replicated
across seasons. Keep in mind that environments for flight-trials were defined in terms of both seasons and
time-bins (meaning that time-points were assigned to either HEAD or GF time-bin).

Furthermore, the alternative p-value threshold identified a considerably greater number of significant peaks
compared to Bonferroni correction, as seen in Table 6. Regardless of which criteria we use, we detect
most associations in season 2021. In 2021 we detected 23 associations (13 unique SNPs) with Bonferroni
correction, while with the p-value threshold we detected 1877 associations (474 unique SNPs).

In addition, flight trial phenotypes contain information about developmental stage (HEAD vs GF), and
Table 6 shows the number of peaks identified within each time-bin for Bonferroni correction and alternative
p-value threshold. We observe that most significant associations are identified for the GF-stage. For
Bonferroni correction, there are no associations that appear for spectral phenotypes recorded in the HEAD-
stage in seasons 2020 and 2022. We observe a similar pattern for peaks identified with the alternative p-
value, where for example in 2021 there are only 259 peaks identified in the HEAD-stage, while the GF-stage
contains 1618 associations (see Table 6).

We may look further into the specific positions of these associations identified with the p < 0.001. For
the GF-stage, most significant associations appear on chromosomes 2A, 5A and 4B (598, 393 and 334
respectively). On chromosome 2A, most peaks appear in the region 74-78 Mbp. On 5A, most peaks
appear on 438 Mbp, while on chromosome 4B most peaks appear in the region 20-79 Mbp.

For HEAD-stage, most significant associations appear on 3B, 3A and 5A (151, 141 and 121 respectively).
On chromosome 3B, the peaks appear in the region 563-576 Mbp. On 3A the peaks appear in 445 Mbp
and between 615-620 Mbp, while on 5A peaks appear mostly in the region 617-646 Mbp.

Table 6: Summary of GWAS-results for flight trials

Season # peaks Bonferroni # peaks Alt p-val # peaks Bonferroni # peaks Alt p-val
(unique SNPs) (unique SNPs) HEAD/GF HEAD/GF

2019 7 (5) 1366 (514) 4/3 437/929

2020 2 (2) 684 (293) 0/2 210/474

2021 23 (13) 1877 (474) 3/20 259/1618

2022 6 (3) 1261 (492) 0/6 397/864

4.4.2 Trial Means

GWAS for trial means produced no or only one significant peak in all seasons, with an exception for 2021
when using Bonferroni correction (see Table 7). When considering the alternative p-value, we identify more
peaks for all seasons compared to Bonferroni correction. Season 2021 produced the greatest number of
peaks for the alternative threshold with 446 associations (197 unique SNPs). Furthermore, no associations
were replicated across seasons with the Bonferroni corrected results. On the other hand, 74 associations
were replicated when using the alternative threshold.

30



Next, we consider the associations identified with p < 0.001. The majority of associations appeared for the
blue and green bands, and for GNDVI in all seasons. Since most assocaitions are appearing for these bands,
we may look into the specific positions of these associations. Starting with the blue and green bands, most
associations appear on chromosome 2A, 7A, 5A when all seasons are considered. For the GNDVI most
associations appear on 2A, 5A and 5B.

Table 7: Summary GWAS-results for trial means

Season # peaks Bonferroni # peaks Alt p-val
(unique SNPs) (unique SNPs)

2019 1 201 (114)

2020 0 132 (66)

2021 7 (4) 446 (197)

2022 0 223 (151)

4.4.3 Global Means of Spectral Bands/VIs

First, we summarize the differences in significant peaks when using Bonferroni-correction and the alterna-
tive p-value threshold. The number of associations detected using p < 0.001 is significantly greater than
that of Bonferroni corrected results. As we can see in Table 8, the alternative threshold produced 318 sig-
nificant associations, where 222 of these were replicated in at least 2 environments. Bonferroni correction
produced only 8 significant peaks, with only two of them being replicated in 2 or more environments. For
Bonferroni corrected markers, most associations appear on chromosome 2A. The remaining associations
appear on 1A and 3D.

Table 8: Summary GWAS-results for global means

Correction method # peaks # replicated in 2 environments
(unique SNPs) (unique SNPs)

Bonferroni 8 (7) 2 (2)

p < 0.001 318 (183) 222 (138)

Since the alternative p-value threshold produced a greater number of associations, these results were used
to identify replicated peaks and expand the regions around such peaks to find QTL (see section 3.4). The
identified QTL for the spectral time-series data is given in the appendix (see Table A5). Most associations
appeared for the spectral phenotypes red-edge, green and NIR. The VIs NDVI and GNDVI produced
the fewest number of QTL. Furthermore, most QTL appeared on chromosomes 2A , 3B and 4B. For all
these chromosomes, most associations were related to the red-edge, green and NIR bands. Furthermore,
there are multiple QTL that overlap for different phenotypes. For example, in the region 591-592 Mbp of
chromosome 1A, QTL were found for all spectral bands (blue, green, NIR, red, and red-edge). Also, the
QTL spanning 31-59 Mbp on 4B appears for both the red-edge and red band.

4.4.4 Seasonal Trials of AUC-values for VIs

With Bonferroni correction the seasonal trials did not produce any significant peaks. The alternative
p-value threshold produced some results which are summarized in Table 9 for the different VIs. There
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are a significant number of associations in 2019 (90 peaks) and 2021 (78). For all seasons, except 2022,
AUC-values for GNDVI produce more peaks compared to the other two VIs. We see this particularly
in 2019 where GNDVI produced 50 peaks, whereas NDVI and SR produced 22 and 18 respectively. The
difference in number of significant peaks between phenotypes in the remaining seasons is quite small.

Table 9: Summary of GWAS-results for seasonal trials of AUC-values

Season # Peaks Total # Peaks NDVI # Peaks GNDVI # Peaks SR
(Unique SNPs)

2019 90 (79) 22 50 18
2020 35 (22) 11 12 11
2021 78 (65) 21 29 28
2022 47 (39) 14 15 18

Next, we look into the specific results for seasonal trials. The alternative p-value threshold identified 250
associations on chromosomes 4B (29/250), 7A (29/250), and 4A (25/250). The majority of associations on
chromosome 4B were for NDVI (20/29). On 7A, the majority of associations were produced by GNDVI
(12/29). On 4A, all VIs were found in the 25 associations with comparable frequency.

4.4.5 Global Means for AUC-values for VIs

A summary of GWAS-results is given in Table 10, which shows both associations identified for global means
and associations that are replicated in two environments for seasonal trials. Since no peaks were identified
for global means of AUC-values for VIs with Bonferroni correction, the alternative p-value (p < 0.001) was
used to identify significant markers. Using this alternative threshold, the total number of peaks for global
means of AUC-values for VIs is 52. SR produces the greatest number of associations (22/52). Of these
52 associations, only a total of 11 peaks have been replicated in at least two environments in the seasonal
trials.

Table 10: Summary of GWAS-results for global means of AUC-values

Phenotype # Peaks # replicated in 2 environments

NDVI 15 2
GNDVI 15 5

SR 22 4

Table A6 in the appendix summarizes QTL identified for the AUC-values. QLTs were identified as described
earlier (see 3.4). We see that most peaks appeared on chromosome 4B and 6B. Associations on chromosome
4B were related to NDVI, while assocaitions on 6B were related to SR. Most QTL described in Table A6
were related to NDVI, and NDVI produced additional QTL on chromosome 5A and 7A. The QTL identified
on chromosome 7A is also related to GNDVI.

4.4.6 Seasonal Trials for Agronomic Traits

A summary of peaks identified for seasonal trials is given in Table 11. As seen earlier, the alternative
p-value produces more assocaitions compared to the Bonferroni corrected results. The total number of
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associations identified with the alternative threshold is 807 (517 unique SNPs), while with Bonferroni we
only identify 79 associations (42 unique SNPs) when all seasons are considered. Common for the two
correction methods is that the greatest number of associations occurred in season 2019. Furthermore, in
season 2022 we identify the fewest number of assocaitions for both methods.

Table 11: Summary GWAS-results for seasonal trials of agronomic traits

Season # peaks Bonferroni # peaks Alt p-val
(unique SNPs) (unique SNPs)

2019 43 (37) 313 (255)

2020 5 (5) 174 (154)

2021 18 (18) 163 (151)

2022 12 (13) 157 (149)

Most associations produced with p < 0.001 appeared on chromosomes 2A, 7B and 5A (46, 44 and 43 unique
SNPs respectively). On 2A peaks appeared for DM, while on 7B and 5A most assocaitions appeared for
GY and GPC. Moving on, when considering all associations identified, we see that most associations are
produced for GPC, DM and GY (172, 152 and 145 unique SNPs respectively). There were fewer SNP
identified for PH and DH (86 and 70 unique SNPs respectively). Furthermore, it should be noted that out
of all associations identified with the alternative p-value, 120 assocaitions were replicated across 2 or more
seasons.

4.4.7 Global Means for Agronomic Traits

A summary of peaks identified for global means is given in Table 12, which show both associations identified
for global means and associations that are also replicated in two environments for seasonal trials. We
identify 17 peaks using Bonferroni correction, all of them related to PH and located on chromosomes
4A-4D. On chromosome 4B, the assocaitions span the region 31-79 Mbp.

Using the alternative threshold we identify 169 peaks, which is considerably larger. Most of these as-
sociations are related to DM, GY and PH (43, 39 and 35 peaks respectively). The greatest number of
associations appear on chromosomes 4B, 2A and 6B. We may look further into the associations appearing
on these chromosomes, starting with 4B where most peaks were related to PH and span the region 31-79
Mbp. The remaining assocaitions on 4B were related to DM and GY. On chromosome 2A most assocaitions
were related to DM and PH. On chromosome 6B most associations occurred for DM.

Table 12: Summary GWAS-results for agronomic traits

Correction method # peaks # replicated in 2 environments
(unique SNPs) (unique SNPs)

Bonferroni 17 (17) 17 (17)

p < 0.001 169 (148) 80 (74)

The alternative p-value threshold was used to identify QTL, and results are summarized in Table A7. First
note that Q PH 4B 1, located in the region 13-79 Mbp, contains the greatest number of peak markers.
Many of the identified QTL in A7 are produced by only 1-2 markers with an exception for Q PH 4B 1
and Q PH 4D 1, where the first was identified by 18 peak markers while the latter was identified by 3
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peak markers. These QTL, in addition to Q PH 4A 1, were significant when using Bonferroni correction
as well, hence we can be confident in the significance of these QTL.

4.4.8 Stacking of Agronomic and Spectral GWAS-results

As described in section 3.6, the identified QTL for spectral phenotypes and agronomic traits were stacked
to identify overlapping QTL. These results are given in Table 13. There are 29 instances of spectral time
series QTL overlapping with agronomic QTL. Furthermore, we see that most overlapping spectral QTL
overlap with regions identified for DM and PH. We may look further into the results for each phenotype.

Starting with DH, we see that there are 5 unique QTL for DH that overlap with regions identified for the
spectral time-series. Note that although they overlap, they share only 1 peak marker. Spectral phenotype
that overlap with DH are NIR, NDVI and SR. Interestingly, the QTL for NDVI and SR (Q NDVI 7A 2,
Q sr 7A 2 ) appear on the same location and overlap with Q DH 7A 1.

For DM, there are 13 unique spectral QTL that overlap with genomic regions identified for this trait. The
spectral QTL Q green 2A 1, Q NIR 2A 1 and Q rededge 2A 1 span a larger region, and they are within
the 40 Mbp window defined for the DH related region Q DM 2A 1. Next, we see how on chromosome 4A,
Q NDVI 4A 1 and Q red 4A 1 are located in the exact same positions as Q DM 4A 1. Moving regions
on chromosome 4B for the spectral phenotypes NDVI, SR, red-edge and red (located on 20-32 Mbp and
31-59 Mbp) overlap with Q DM 4B 1. This particular overlap is interesting, and will be further discussed
in 5.2. Lastly, a single overlap appears on chromosome 5A between a QTL identified for the blue band and
DM (548-549 Mbp).

Next, for GPC we see co-localized QTL on chromosome 1B and 5A. On 1B the overlap is in the region
662-672 Mbp, and appears for the spectral phenotypes green and red-edge. On 5A, a QTL for NIR is near
a QTL identified for GPC appearing in the region 2-10 Mbp.

For GY, we observe overlapping QTL on chromosome 2A and 7A. On chromosome 2A the region spans
758-773 Mbp. The overlap appears for three spectral phenotypes (red, red-edge, and green bands), while
on 7A only 1 phenotype overlaps with GY QTL.

For PH we identify overlapping QTL on 4B chromosome in the region 20-59 Mbp. The number of peak
markers is greater than 2 for both the PH QTL and spectral QTL with an exception for Q sr 4B 1. The
band red-edge and red bands produce the greatest number of peaks compared to the remaining spectral
phenotype. The importance of this region for PH will be further discussed in section 5.2.

Table 13: Results for agronomic QTL that overlap with spectral time-series QTL (bands and VIs)

Spectral QTL Agronomic QTL Agronomic Trait Span Span # Markers # Markers
(Spectral) (Agronomic) (Spectral) (Agronomic)

Q NIR 3A 1 Q DH 3A 1 DH dss 267 267 1 1
Q NIR 5A 1 Q DH 5A 1 DH dss 10 10 1 1
Q NDVI 7A 2 Q DH 7A 1 DH dss 669 669 1 1
Q SR 7A 2 Q DH 7A 1 DH dss 669 669 1 1
Q NIR 7B 1 Q DH 7B 1 DH dss 62 62 1 1
Q green 2A 1 Q DM 2A 1 DM dss 74-78 63 6 1
Q NIR 2A 1 Q DM 2A 1 DM dss 74-77 63 13 1
Q rededge 2A 1 Q DM 2A 1 DM dss 74-78 63 18 1
Q NDVI 4A 1 Q DM 4A 1 DM dss 25 25 1 1
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Table 13 continued: Results for agronomic QTL that overlap with spectral time-series QTL (bands and
VIs)

Spectral QTL Agronomic QTL Agronomic Trait Span Span # Markers # Markers
(Spectral) (Agronomic) (Spectral) (Agronomic)

Q red 4A 1 Q DM 4A 1 DM dss 25 25 1 1
Q NDVI 4B 1 Q DM 4B 1 DM dss 20-32 32 3 1
Q red 4B 1 Q DM 4B 1 DM dss 31-59 32 6 1
Q rededge 4B 1 Q DM 4B 1 DM dss 31-59 32 8 1
Q SR 4B 1 Q DM 4B 1 DM dss 20 32 1 1
Q blue 5A 2 Q DM 5A 1 DM dss 549 548 1 1
Q green 5A 3 Q DM 5A 1 DM dss 549 548 1 1
Q NIR 5A 2 Q DM 5A 1 DM dss 549 548 1 1
Q rededge 5A 2 Q DM 5A 1 DM dss 549 548 1 1
Q green 1B 1 Q GPC 1B 2 GPC pct 672 662 2 1
Q rededge 1B 1 Q GPC 1B 2 GPC pct 668 662 1 1
Q NIR 5A 1 Q GPC 5A 1 GPC pct 10 2 1 1
Q green 2A 3 Q GY 2A 1 GY g m2 773 758 1 2
Q red 2A 2 Q GY 2A 1 GY g m2 773 758 1 2
Q rededge 2A 3 Q GY 2A 1 GY g m2 770 758 1 2
Q green 7A 2 Q GY 7A 1 GY g m2 51-92 112 4 2
Q NDVI 4B 1 Q PH 4B 1 PH cm 20-32 13-79 3 18
Q red 4B 1 Q PH 4B 1 PH cm 31-59 13-79 6 18
Q rededge 4B 1 Q PH 4B 1 PH cm 31-59 13-79 8 18
Q SR 4B 1 Q PH 4B 1 PH cm 20 13-79 1 18

Moving on, we look into overlapping QTL for agronomic traits and AUC-values of VIs. Table 14 summarizes
these results. There is only one AUC-QTL for NDVI which overlaps with DM and PH. It is the previously
described region on chromosome 4B (13-79 Mbp).

Table 14: Results for agronomic QTL that overlap with spectral time-series QTL (bands and VIs)

AUC QTL Agronomic QTL Agronomic Trait Span Span # Markers # Markers
(AUC) (Agronomic) (AUC) (Agronomic)

Q NDVI 4B Q DM 4B 1 DM dss 20-32 32 3 1
Q NDVI 4B Q PH 4B 1 PH cm 20-32 13-79 3 18

4.5 GWAS-Results with GA-SVR Pipeline

4.5.1 Grouping of SNPs: AUC-values

Grouping of SNPs was done as described in section 3.5 using using the p-value derived from Spearman’s
correlation coefficient. The purpose was to test the correlation between AUC-values of VIs and individual
SNPs. Starting with the results for seasonal trials of AUC-values given in Table A10, we see that group
size decreases as the p-value threshold decreases for all seasons and all phenotypes. Also, there are large
differences in group sizes across seasons. For example, in years 2020-2021 we observe generally smaller
groups across all p-value thresholds. In 2020 NDVI produced the largest groups with 78 SNPs (p < 10−5),
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and in 2021 SR produced the largest groups with 169 SNPs (p < 10−5). All p-value groups are significantly
larger in 2022 for all phenotypes, especially for groups with the lower p-value thresholds. The largest group
for 2022 appears for GNDVI with 774 SNPs (p < 10−5). When we consider the group with the lowest
p-value threshold (p < 10−9) in year 2022, we see that we have 33 SNPs and the group is for GNDVI.

Similar grouping was done for the global means of AUC-values as well (see table A11). We observe a
similar pattern with respect to group size and p-value thresholds. The larger groups are the ones with the
highest p-value thresholds. Moreover, GNDVI produced larger groups when compared to the other VIs,
which was also the case for seasonal trials. Unlike seasonal trials, the group sizes for the lowest p-value
thresholds are larger.

4.5.2 Grouping of SNPs: Agronomic Traits

Next we look into the grouping of SNPs done for agronomic traits, starting with the results for seasonal
trials. As seen earlier for the AUC-values, group size decreases as p-value threshold decreases for all seasons
and all phenotypes (as seen in Table A12).

Season 2019 produced the smallest groups for all phenotype across all thresholds. Furthermore, we see that
GY and GPC produces the largest groups for all years. For example in 2019, GY produced 167 SNPs and
GPC produced 26 SNPs for the highest p-value group (p < 1 × 10−5). In the remaining seasons, the two
phenotypes produced considerably larger groups. For example in 2022 GY produced 4973 SNPs for the
highest p-value threshold (p < 1× 10−5), while GPC in 2020 produced 2922 SNPs for the highest p-value
threshold (p < 1× 10−5).

The phenotypes DH, DM and PH generally had smaller groups compared to GY and GPC for most seasons.
This is particularly true for DH, which had only 11 SNPs for the highest p-value threshold (p < 1× 10−5)
in 2019. In season 2022, DH had 182 SNPs for the highest p-value threshold. On the other hand, DM
produced 1755 in the same season (2022) for the highest p-value threshold (p < 1×10−5). PH produced its
greatest number of SNPs in season 2021, with 247 SNPs for the highest p-value threshold (p < 1× 10−5).

For the global means of agronomic traits, we observe a similar pattern (Table A13). The larger groups
are the ones with the highest p-value thresholds. Furthermore, GY and GPC produced the largest groups
across all p-value groups.

4.5.3 Cross-Validation Results for SVR-Tuning: AUC-values

Starting with seasonal trials, Table 15 contains results for the best-performing group after fitting SVR
with 10-fold CV to each group identified in the previous step. The best performing group (in terms of
Pearson’s correlation) for seasons 2019-2021 is group 1 or 2 (p < 10−5, 10−6). For 2022, groups with lower
p-value thresholds have better performance. For example for GNDVI in 2022, the best performing group
is group 4 (p < 10−8). For NDVI and SR in 2022, the the best performing group is group 3 (p < 10−7).
This difference between seasons is not surprising, since the groups in year 2022 is much larger than groups
in 2019-2021. Therefore, groups that have lower p-value thresholds in 2022 may still contain sufficient
number of SNPs to perform well with SVR.
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Table 15: Results for cross-validation for seasonal trials of AUC-values.

Year Phenotype Group No. p-threshold Pearson’s correlation

2019 GNDVI 2 1× 10−6 0.980
2019 NDVI 1 1× 10−5 0.988
2019 SR 2 1× 10−6 0.934
2020 GNDVI 1 1× 10−5 0.836
2020 NDVI 1 1× 10−5 0.886
2020 SR 1 1× 10−5 0.607
2021 GNDVI 1 1× 10−5 0.629
2021 NDVI 1 1× 10−5 0.939
2021 SR 2 1× 10−6 0.954
2022 GNDVI 4 1× 10−8 0.989
2022 NDVI 3 1× 10−7 0.988
2022 SR 3 1× 10−7 0.796

For the global means, we see that the groups with the lower p-value thresholds (p < 10−7, 10−8) perform
best (see Table 16). Again, this may be due to these groups generally being large, hence the reduction in
SNPs may have improved performance of the SVR-model as it may have removed redundant SNPs. This
in combination with hyperparameter tuning may have resulted in better models.

Table 16: Results for cross-validation for global trials of AUC-values

Phenotype Group No. p-threshold Pearon’s correlation

1 GNDVI 4 1× 10−8 0.972
2 NDVI 3 1× 10−7 0.971
3 SR 3 1× 10−7 0.985

4.5.4 Cross-Validation Results for SVR-Tuning: Agronomic Traits

In Table 17 is the cross-validation results for SVR-tuning done for seasonal trials (agronomic traits). The
best performing group is generally either group 1 (p < 10−5) or 2 (p < 10−6). We see that for some years
and phenotypes, the lower p-value thresholds have the best performance, like for GY and GPC in years
2020-2021 where the best performing group p < 10−9 (strictest threshold). We observe the same thing in
years 2021-2022 for DM, where the best performing groups have threshold p < 10−9.

As discussed for earlier for AUC-values, large groups in these seasons may allow for the elimination of SNPs
without affecting the overall correlation with phenotype. For DH (which had small groups), we observe
that the first or second group (p < 10−5 and p < 10−6) has the best performance across all seasons. DH
has few SNPs in its largest group to begin with. Therefore, there might not be any redundant SNPs to
remove before the correlation with the phenotype is negatively impacted.

Table 17: Results for cross-validation for seasonal trials of agronomic traits

Year Phenotype Group No. p-threshold Pearson’s correlation

2019 DH dss 1 1× 10−5 0.395
2019 DM dss 1 1× 10−5 0.914
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Table 17 continued: Results for cross-validation for seasonal trials of agronomic traits

Year Phenotype Group No. p-threshold Pearson’s correlation

2019 GPC pct 2 1× 10−6 0.675
2019 GY g m2 1 1× 10−5 0.770
2019 PH cm 2 1× 10−6 0.917
2020 DH dss 1 1× 10−5 0.789
2020 DM dss 2 1× 10−6 0.979
2020 GPC pct 5 1× 10−9 0.857
2020 GY g m2 5 1× 10−9 0.779
2020 PH cm 1 1× 10−5 0.874
2021 DH dss 1 1× 10−5 0.770
2021 DM dss 5 1× 10−9 0.983
2021 GPC pct 5 1× 10−9 0.998
2021 GY g m2 5 1× 10−9 0.719
2021 PH cm 2 1× 10−6 0.940
2022 DH dss 2 1× 10−6 0.941
2022 DM dss 5 1× 10−9 0.989
2022 GPC pct 2 1× 10−6 0.955
2022 GY g m2 5 1× 10−9 0.706
2022 PH cm 1 1× 10−5 0.962

In Table 18 we have the cross-validation results for global means. We see that overall significant correlation
between the best-performing groups and the different phenotypes. We observe a similar pattern as earlier
for seasonal trials for agronomic traits.

Table 18: Results for cross-validation for global means of agronomic traits

Phenotype Group No. p-threshold Pearson’s correlation

DH dss 1 1× 10−5 0.878
DM dss 3 1× 10−7 1.000
GPC pct 5 1× 10−9 0.857
GY g m2 5 1× 10−9 0.780
PH cm 1 1× 10−5 0.952

4.5.5 Performance of GA-Wrapper: AUC-values

Keep in mind that the purpose of the GA-wrapper was to select a subset of SNPs. The SNPs inputted were
the best performing groups (see 4.5.3). Table 19 contains the performance of tuned SVR-models before
and after feature-selection with GA (for seasonal trials). We see that GA reduced the number of features
(SNPs) by almost half for the largest groups, like for GNDVI, NDVI and SR in year 2022. The number of
features also decreased somewhat in the remaining seasons, although not by half. For example GNDVI has
15 SNPs in 2020 initially, but after running the GA-wrapper, 11 SNPs remains. The group is small prior
to feature selection, hence the small change in features is not unexpected. However, it is interesting to see
that model performance either remains the same or slightly increases despite the elimination of features
via the GA-wrapper.
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Table 19: Results for feature selection with GA-wrapper for seasonal trials (AUC-values)

Year Phenotype # Features # Features Pearson’s correlation Pearson’s correlation
before GA after GA before GA after GA

2019 GNDVI 37 29 0.980 0.980
2019 NDVI 73 47 0.988 0.989
2019 SR 29 21 0.934 0.934
2020 GNDVI 15 11 0.836 0.836
2020 NDVI 78 50 0.886 0.895
2020 SR 20 12 0.607 0.619
2021 GNDVI 26 16 0.629 0.665
2021 NDVI 23 16 0.939 0.931
2021 SR 71 36 0.954 0.959
2022 GNDVI 78 32 0.989 0.988
2022 NDVI 68 41 0.988 0.988
2022 SR 49 27 0.796 0.810

For the global means of AUC-values, we observe in Table 20 a similar pattern as for seasonal trials. The
performance of the SVR-models remain unchanged despite reducing the number of features considerably.
The GA-wrapper eliminates between 15-32 features for the different spectral phenotypes.

Table 20: Results for feature selection with GA-wrapper for global trials (AUC-values)

Phenotype # Feature # Feature Pearson’s correlation Pearson’s correlation
before GA after GA before GA after GA

GNDVI 34 19 0.972 0.973
NDVI 42 30 0.971 0.971

SR 68 36 0.985 0.985

4.5.6 Performance of GA-Wrapper: Agronomic Traits

The performance of GA-wrapper for agronomic traits is summarized in Table 21. Starting with seasonal
trials, the GA-wrapper reduced the number of features (SNPs) by almost half or more for the largest
groups, like for GY and GPC, in all seasons. For example in season 2020, GY initially had 1172 SNPs,
and only 568 SNPs remained after feature selection with GA. Also, for smaller groups the number of SNPs
eliminated was large. For example for DH in 2019 the number of SNPs initially was 11, however, after
feature selection the number of SNPs was reduced to 4. However, for GPC in the same season, number of
SNPs remained the same before and after feature selection (5 SNPs).
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Table 21: Results for feature selection with GA-wrapper for seasonal trials (agronomic traits)

Year Phenotype # Features # Features Pearson’s correlation Pearson’s correlation
before GA after GA before GA after GA

2019 DH dss 11 4 0.395 0.396
2019 DM dss 53 25 0.914 0.918
2019 GPC pct 5 5 0.675 0.675
2019 GY g m2 167 78 0.770 0.781
2019 PH cm 53 35 0.917 0.938
2020 DH dss 23 16 0.789 0.790
2020 DM dss 182 90 0.979 0.980
2020 GPC pct 644 282 0.857 0.865
2020 GY g m2 1172 568 0.779 0.782
2020 PH cm 29 18 0.874 0.876
2021 DH dss 55 33 0.770 0.772
2021 DM dss 72 42 0.983 0.982
2021 GPC pct 291 150 0.998 0.998
2021 GY g m2 1056 482 0.719 0.724
2021 PH cm 83 46 0.940 0.942
2022 DH dss 57 31 0.941 0.940
2022 DM dss 142 78 0.989 0.989
2022 GPC pct 33 21 0.955 0.961
2022 GY g m2 1470 679 0.706 0.709
2022 PH cm 65 39 0.962 0.963

We observe a similar pattern for the global means results as well, as can been seen in Table 22.

Note that for both seasonal trials and for global means, the performance of the SVR-models remain mostly
unchanged before and after feature selection with GA.

Table 22: Results for feature selection with GA-wrapper for global trials (agronomic traits)

Phenotype # Feature # Feature Pearson’s correlation Pearson’s correlation
before GA after GA before GA after GA

DH dss 56 33 0.878 0.879
DM dss 595 278 1.000 1.000
GPC pct 483 214 0.857 0.863
GY g m2 1786 835 0.780 0.781
PH cm 88 42 0.952 0.961

4.5.7 Final Selection of SNPs: AUC-values

As Table 23 shows, there were 338 associations in total for the final set of selected SNPs for seasonal trials.
The greatest number associations appear in year 2019 and 2022. Unlike for the seasonal trials with MLM,
GNDVI produced the greatest number assocaitions only in 2022. For the remaining seasons, NDVI and SR
had the greatest number of assocaitions. Next, we may look into the resulting set of selected SNPs. Most
associations appear on chromosomes 4A (63/338), 6B (45/338) and 3A (35/338). On these chromosomes,
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NDVI accounts for most associations on all three of these chromosomes (38/65 on 4A, 27/45 on 6B and
14/35 on 3A).

Table 23: Resultssummarizing the final SNP-set for seasonal trials (AUC-values)

Season # Peaks # SNPs GNDVI # SNPs NDVI # SNPs SR
(Unique SNPs)

2019 97 (87) 29 47 21
2020 73 (63) 11 50 12
2021 68 (59) 16 16 36
2022 100 (78) 32 41 27

For global means, NDVI and SR account for most SNPs selected using the GA/SVR-pipeline (see Table
24). Despite there being in total 85 SNPs identified in the global means, only 20 SNPs were also replicated
in the seasonal trials. Similarly for the MLM-results, the majority of assocaitions that were significant for
global means of AUC-values were not replicated in the seasonal trials.

Table 24: Resultssummarizing the final SNP-set for global means (AUC-values)

Phenotype # Peaks # Replicated in 2 environments

GNDVI 19 6
NDVI 30 9
SR 36 5

As done for MLM, we expanded the regions around identified peaks to find QTL (see section 3.5). For the
QTL identified using the GA-SVR pipeline (see table A8), we see most QTL appeared on chromosomes
4A (5/20), 1A(3/20) and 3A (3/20). On chromosome 4A, all three VIs had QTL appearing. On 1A, all
QTL were related to NDVI. On chromosome 3A, there were QTL for GNDVI (2/3) and SR (1/3).

When comparing the final set of SNPs identified using GA-SVR with MLM for AUC-values (Tables A8
vs. A6), we see that the ML-method identified more QTL. Also, some of the regions identified with GA-
SVR does overlap with QTL identified with MLM (see chromosome 4A and 7A). Otherwise, the GA-SVR
identified different regions (and chromosomes) compared to MLM approach. For instance, the GA-SVR
found QTL on chromosomes 1A, 5B, 1B and 3A, while the MLM approach did not identify any significant
QTL on these chromosomes.

4.5.8 Final Selection of SNPs: Agronomic Traits

As seen in Table 25, there are 2722 assocaitions (1708 unique SNPs) identified for seasonal trials of agro-
nomic traits across all seasons. The greatest number of associations was for seasons 2020 and 2022.
Similarly as when using MLM on agronomic traits, most assocaitions across all seasons appeared for phe-
notypes GY, GPC and DM (1807, 458, and 235 unique SNPs) (see Table 26). Also, most assocaitions
appeared on chromosomes 7B, 3B and 7A (202, 150 and 137 unique SNPs). On these chromosomes most
assocaitions were related to GY.
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Table 25: Results summarizing the final SNP-set for seasonal trials (agronomic traits)

Season # Peaks
(Unique SNPs)

2019 147 (140)
2020 974 (847)
2021 753 (688)
2022 848 (836)

These results mostly agree with the ones we got with MLM, however, the number of assocaitions and
unique SNPs identified is greater. We identified a considerably smaller number of significant SNPs with
MLM, even with the lowered p-value threshold. Furthermore, with MLM most significant peaks were
located on chromosome 2A. For the GA-SVR a different set of chromosomes produced the greatest number
of assocaitions, namely 7B, 3B and 7A. Also, the number of replicated associations (across seasons) was
greater for GA-SVR compared that of MLM, as seen in Table 26. In total we have 1249 assocaitions that
are replicated for GA-SVR, which is much greater than number replicated associations identified using
MLM, which was 80. When we consider only SNPs that were replicated across seasons, then we see that
GY, GPC and PH (948, 129, and 90 unique SNPs) had the greatest number of SNPs (see Table 26).

Table 26: Results summarizing the final SNP-set for global means (agronomic traits)

Phenotype # Peaks # Replicated in 2 environments

DH 84 11
DM 235 71
GPC 458 129
GY 1807 948
PH 138 90

For the GA-SVR pipeline, we identified 149 unique agronomic QTL using the criteria outlined in section
3.5 (significant in global means and replicated in 2 environments for seasonal trials). These QTL are
summarized in A9. In total, we identified more QTL using the GA-SVR pipeline compared to MLM. Most
QTL are on chromosomes 7B (16), 3B (12) and 5A (10).

We may look into results for each phenotype as well, starting with DH where we have identified only two
QTL on chromosomes 4A and 7B. Both QTL identified consists of 1-2 peak markers. For DM there were
considerably more QTL (14 in total), however, even these QTL contain 1-2 peaks. For GPC we identified
21 QTL, and some of the QTL span larger regions, like Q GPC 3B 1 (562-587 Mbp), Q GPC 7B 1 (519-
541 Mbp). Similarly, there were more QTL in total for GY (76 QTL), with the larger ones located on 5A
(687-708 Mbp), 7B (124-191 Mbp and 539-584 Mbp). For PH, we identified fewer QTL (8 in total), however
the identified QTL span larger regions. For example, Q PH 4B 1 spans 31-59 Mbp, and Q PH 4D 1 which
spans 19-26 Mbp.

4.5.9 Stacking of GA-SVR Results

As we did earlier for spectral and agronomic QTL identified using MLM, we stacked the QTL identified
using the alternative ML-pipeline. The procedure for this is outlined in section 3.6, and results are sum-
marized in Table 27. First, note that GA-SVR identified far more overlapping QTL compared to MLM.
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For MLM, we identified only two AUC-QTL overlapping with agronomic QTL. Next, unlike earlier with
MLM, we identified far more QTL that are related to GY, GPC and DH. In fact, most overlapping QTL
identified with GA-SVR are related to GY and GPC. There are no DM QTL identified, and only one which
overlaps with a PH QTL (on 3A). Keep in mind that with MLM, there was only one AUC-QTL (NDVI)
on 4B which overlapped with both DM and PH-related QTL. It is therefore interesting to see that this
QTL does not appear for the stacked ML-results.

Next, we look into the specific results for GY and GPC. For GY, two overlapping QTL related to GNDVI
and SR appeared on chromosomes 1A and 5B. For the remaining GY QTL, only 1 AUC QTL overlapped
with them. The largest QTL which is close to a AUC QTL is Q GY 3A 3 which is near Q NDVI 3A 1.
For GPC, we observe similarly GNDVI and SR QTL overlapping with Q GPC 1A 1. The GNDVI QTL
contains the entirety of Q GPC 1A 1, while the SR QTL only shares one position with Q GPC 1A 1. The
remaining overlapping QTL for GPC share only 1 overlapping marker with AUC QTL, and appear on
chromosomes 5A and 7A.

Table 27: Results for agronomic QTL that overlap with AUC-values

AUC QTL Agronomic QTL Agronomic Trait Span Span # Markers # Markers
(AUC) (Agronomic) (AUC) (Agronomic)

Q NDVI 3A 1 Q DM 3A 1 DM dss 603-615 603 3 1
Q NDVI 7A 1 Q DM 7A 1 DM dss 11 27 1 1
Q GNDVI 1A 1 Q GPC 1A 1 GPC pct 29-31 26-27 2 2
Q SR 1A 1 Q GPC 1A 1 GPC pct 29 26-27 1 2
Q GNDVI 5A 1 Q GPC 5A 3 GPC pct 570 585-587 1 4
Q NDVI 7A 1 Q GPC 7A 1 GPC pct 11 8 1 1
Q GNDVI 1A 1 Q GY 1A 1 GY g m2 29-31 27-33 2 2
Q SR 1A 1 Q GY 1A 1 GY g m2 29 27-33 1 2
Q NDVI 3A 1 Q GY 3A 3 GY g m2 603-615 572-589 3 2
Q NDVI 4A 1 Q GY 4A 2 GY g m2 97 103-105 2 2
Q GNDVI 5A 1 Q GY 5A 4 GY g m2 570 570-586 1 2
Q GNDVI 5B 1 Q GY 5B 1 GY g m2 36 36 1 1
Q SR 5B 1 Q GY 5B 3 GY g m2 686 687 1 1
Q NDVI 7A 1 Q GY 7A 1 GY g m2 11 4-27 1 3
Q SR 7B 1 Q GY 7B 11 GY g m2 707 713 1 1
Q NDVI 3A 1 Q PH 3A 2 PH cm 603-615 599 3 1
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5 Discussion

5.1 Correlations and Heritability Estimates

Spectral Data and Correlation with Agronomic Traits

As discussed previously, spectral data may be used as proxies for agronomic traits (Shafiee et al., 2023).
We see in Figures 7-8 that GNDVI, NDVI, and SR (both AUC-values of VIs and time-series VIs) and
the red and NIR bands were the bands/VIs that showed moderate to high correlation with DM and GY.
Starting with GY, the study by Burud et al. (2017) also demonstrated high correlation between GY and
NDVI. High correlations between spectral bands/VIs and GY may stem from the fact that GY is affected
by a wide range of underlying factors, such as biomass and plant height (Li et al. 2019). As summarized by
Hatfield et al. (2008), bands and VIs derived from the red and near-infrared region tend to correlate with
agronomic traits such as green biomass. Hence, time-series and AUC-values of bands/VIs may be able to
capture development in biomass, which may somewhat explain why GY is among the traits that produce
the highest correlations with spectral bands/VIs in our results.

Next, the high correlation between DM and spectral phenotypes may be explained by changes in pho-
tosynthetic activity and chlorophyll content as crop reach maturity. As previously mentioned (see 2.1),
spectral data can capture changes in both these biophysical properties, as well as apparent changes in color
that occur during senescence (Hatfield et al. 2008). In the study by Hassan et al. (2021), they used NDVI
collected over time to quantify senescence related QTL, which they succeeded at. Their work demonstrates
that temporal spectral data can capture physiological changes in wheat, in particular changes that appear
in later stages.

Also, we observe that the correlations change over time for the spectral time-series data. As discussed
earlier, spectral data captured at different developmental stages contains information specific to that stage
(Wang et al. 2021). For example spectral reflectance data captured at grain-filling stages has shown higher
correlation with or resulted in better predictions for traits like GY compared to reflectance captured at
earlier stages (Fei et al. 2022, Han et al. 2020). Observing temporal changes in correlation were expected,
in particular for traits such as GY, PH and DM. This is because as these traits develop, there are apparent,
physical changes linked to these traits, such as gain in biomass or apparent changes in colour, that can be
captured by spectral reflectance data.

Furthermore, we see that accumulated VIs (AUC-values) tend to produce higher correlations with agro-
nomic traits (in particular GY and DM) in comparison to VIs captured at single time-points. Also, we
observe that the correlations between traits and VIs in the spectral time-series fluctuates considerably in
certain seasons (see Figure 7, seasons 2019 and 2022). Unlike VIs captured at single time-points, AUC-
values summarize VIs for an entire season, hence they may be more robust to variations in reflectance
appearing in only some flight missions. This may explain why accumulated VIs produce comparable or
higher correlations. Moreover, the accumulated VIs may show higher correlation because they capture
growth dynamics better (like faster gain in biomass for some lines). Previous studies have shown that
summary metrics (over a temporal window) or modelling of spectral time-series can be used to detect
phenological stages (Liu et al. 2022, Hill & Donald 2003). Examples of metrics which have been used to
identify phenological stages is finding the time when a VI exceeds a given threshold, finding the largest
slopes/derivatives in a spectral time-series, and finding inflection points (Zeng et al. 2020, Hill & Donald
2003). A review of the literature shows that AUC-values are typically not used to study phenological
development. However, the work by Tangpattanakul et al. (2015) show that AUC-values derived from the
VI Excessive Green (ExG) can be used to identify stages like seedling, heading and maturity in rice. The
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study demonstrates that AUC-values of VIs may indicate crop maturity, explaining why we see AUC-values
being highly correlated with late stage traits like DM and GY in our results.

BLUEs Estimation for Spectral Data and Differences in Heritability

Interestingly, when genotype was modelled as a random effect in the spectral time-series it resulted in
larger estimated errors compared to estimated errors for the AUC-values (see Tables A1-A4). This holds
especially true for the trial means and global means equations for the spectral time-series. On the other
hand, for flight trials the estimated error and overall heritability is comparable to that of seasonal trials for
AUC-values (Figures 4-5). While heritability was not computed for trial means and global means of the
spectral time-series, the results in A1-A2 suggest heritability would be low because the estimated genotypic
effect is considerably smaller than the estimated error.

The computation of BLUEs for flight trials in our study was similar to that of Shafiee et al. (2024) and
Krause et al. (2019). For our study, the main difference between the flight trial models and models for trial
and global means (Equations 2-3) is the use of nesting. In the trial means model all effects except genotypic
effects are nested under time-points, and for global means there is nesting under season as well. Although
such nesting was done by Krause et al. (2019) as well, whether it is correct is debatable. This is because
in their research they also computed BLUEs for developmental stages as well, which entail more than one
mission (see Table 3). It could be worth looking into such an approach as one flight mission might not
contain enough information about crop status, whereas integration over individual developmental stages
(like VEG, HEAD and GF) that have multiple flight missions may contain enough relevant information.

Another alternative explanation is that there are other sources of variance in the spectral data that we have
not accounted for, like interactions between genotypic effects and time-points. For the flight trials model,
we are fitting BLUEs within each time-point, hence no such interaction can occur. However, for the trial
means and global means model, we are modelling time-point as a random effect, hence it may be worth
exploring if there are significant interactions between time-points and genotypic effects. Such interaction
are likely to be present for the spectral time-series, since studies have demonstrated that such data captures
temporal genetic controls (Wang et al. 2021). In other words, the effect of different genotypes on spectral
data may depend on the time in which spectral data was recorded. Also, as discussed earlier, spectral time-
series are useful in identifying different phenological stages, making it plausible that interactions between
genetic effects and time of flight missions exist.

Furthermore, our models may have large estimated errors because we fail to account for environmental
factors such weather conditions. As discussed in the section 2.1, spectral reflectance can easily be affected
by changing solar illumination or recent rainfall. We attempted to identify flight missions affected by
rainfall in the days prior to the flight by cross-referencing weather data provided in the supplementary
material by Mroz et al. (2023). However, we may have overlooked other weather related factors that could
have an impact on the included flight missions.

An alternative explanation for the large estimated error is that the BLUEs equations are mis-specified.
Alternative BLUEs were explored for both trial means and global means, such as having time-point as
a fixed effect, and not nesting effects under time-points. However, such models produced equally large
estimated error terms. Furthermore, the alternative models did not make sense with respect to the goal of
the analysis and when comparing them to the models found in literature (Krause et al. 2019, Shafiee et al.
2024).

Next, we address the differences in heritability when comparing AUC of VIs and VIs from time series, where
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AUC-values produced considerably larger heritability estimates (Figures 4-5). Again, this may show that
accumulated VIs computed over entire seasons are more stable and contain less noise compared to spectral
data recorded for individual flight missions. Overall, the differences in estimated error and heritability
for spectral bands/VIs time-series and seasonal AUC demonstrates the potential usefulness of deriving
summary metrics from spectral time-series. It may reduce the influence of noise factors and contain more
information relating to growth dynamics. Individual time-points and developmental stages can still be
useful, as seen in the research by Wang et al. (2021) and Gao et al. (2023), as they may reveal temporal
control patterns that are difficult to detect using summary statistics alone. Hence the two approaches for
dealing with spectral time-series data may complement each other.

Lastly, it is worth noting that in the work by Krause et al. (2019), they developed BLUEs for both individual
flight missions and growth stages (VEG, HEAD, and GF). For our work, the trial means and global means
for spectral time-series nest all effects under time-point (excluding genotype), which effectively removes
any temporal effects spectral bands/VIs may have on genotype. This also removes the opportunity to
study temporal QLTs effectively, since BLUEs for trial means and global means are mean estimates across
all time-points.

5.2 GWAS-Results with MLM

GWAS on Spectral Phenotypes

In contrast to the GWAS-results for AUC-values of VIs, the spectral time-series data detected more signif-
icant SNPs and QTL. As discussed earlier, GWAS is successful only if a large population is studied with
enough diversity (phenotypic and genetic) (Sukumaran et al. 2022, Xiao et al. 2022). Different plots may
not have shown enough phenotypic variation with respect to AUC-values (see Figure A3). Distribution of
NDVI and GNDVI AUC-values are narrow in all seasons, while SR is wider. Additionally, the computation
of AUC-values for each plot could have affected the GWAS results. This report used a trapezoid method
derived from the median spectral reflectance. Other methods (including Simpson integration) can also be
used, but we have not explored them. Also, all QTL identified for AUC-values overlaps with the ones
identified for the spectral time-series. This raises the question of whether accumulated VIs are useful or
not compared to spectral time series. For our report, it seems like AUC-values of VIs do not capture
anything different from spectral time-series.

Next, we need to consider that the time-series contained six spectral phenotypes organized into two develop-
mental bins (HEAD and GF). This provides a unique opportunity to study dynamic changes in significant
peaks. GF-stage shows the greatest number of peaks for flight trials. There may be two reasons why we
detect more peaks in GF compared to HEAD. First, the HEAD-bin contains fewer flight missions (T1-T2)
compared to GF-stage (T3-T6). Time points were binned using the definitions of developmental stages
discussed in Krause et al. (2019) and seen in Table 3. The HEAD-bin contains fewer flight missions because
we do not have many flight missions early in the season. The second reason may be biological, meaning
that the spectral reflectance data contains more biologically relevant information in the GF-bin compared
to HEAD-bin.

As well as observing more significant peaks in the GF-stage than the HEAD-stage, we discovered that
some peaks are time-bin specific. GF, for instance, shows significant peaks on chromosomes 4B (20-79
Mbp) and 2A (74-78 Mbp) but these peaks were not replicated the HEAD-stage. Also, some identified
regions appeared in both time-bins like on chromosome 5A (549 Mbp). This may indicate that there are
temporal genetic controls which can be identified using multispectral time-series. The GF-specific region
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on 4B has been reported previously to be related to PH, while the region on 2A has been reported to be
related to flowering (anthesis) in spring wheat. It should therefore not be surprising that these regions
appear significant for spectral data captured later in the season.

Next, our results demonstrate that it is difficult to identify replicated associations when using a Bonfer-
roni correction scheme on multispectral time-series. There were no association in flight trials and trial
means that were replicated when using Bonferroni correction, while with the lowered p-value threshold
we identified replicated peaks across seasons. One possible explanation is that spectral phenotypes are
highly quantitative, meaning that they depended on multiple small-effects loci. For this reason, it may be
difficult to replicate associations between seasons with the MLM-method. Therefore, using a less stringent
p-value may be reasonable to identify replicated associations. Bonferroni correction is a correction method
which is poorly suited for detecting small-loci effects and multi-locus interactions, as it depends on markers
displaying large effects individually (Zhang et al. 2010, Saini et al. 2021).

To summarize, we identified significantly more QTL using the spectral time-series compared to accumulated
VIs. The spectral time-series also provided a more interesting study, as it identified the exact same QTL
as the accumulated VIs, but it also enabled us to identify temporal genetic controls. Also, with a lower
p-value threshold we were able to identify more significant peaks that were replicated across seasons.

Overlapping QTL: Spectral and Agronomic QTL

We observed multiple spectral QTL which overlapped with agronomic QTL (see 4.4.8, Tables 13-14).
The most interesting ones are the ones that span a large region or contain genes that have been previously
reported. Since the time-series QTL contain all QTL identified for AUC-values, we will only be considering
the results summarized in Table 35, which contains agronomic QTL and time-series QTL that overlap.

Starting with PH, Q PH 4B 1, which spans 13-79 Mbp, contains an important height related gene, namely
Rht-B1. Both this gene and Rht-D1, are semi-dwarfing genes in wheat which together results in a reduction
of plant height, while increasing yield by allowing for more tillers (Jobson et al. 2019). Breeding for these
genes played a significant role in the Green Revolution, which refers to a period between 1960-1970s when
more productive crop varieties were developed (Jobson et al. 2019, Zhang et al. 2006). The presence of
specific alleles of these genes (Rht-B1b and Rht-D1b) has in one study shown to reduce PH significantly
(by up to 41%) (Flintham et al. 1997). The presence of just one of the alleles (like Rht-B1b) has also shown
to result in a reduction of PH (Flintham et al. 1997). It is interesting to see that GWAS on multispectral
time-series is able to capture PH-related genes. This is despite most spectral bands, AUC-values of VIs
and VIs showing little to moderate correlation with PH (see Figures 7-8). The bands and VIs with QLTs
which overlap with this region containing Rht-B1 are red , red-edge, NDVI, and SR. The red-region is well
suited for capturing differences in canopy coverage and plant height (Payero et al. 2004, Tenreiro et al.
2021). Therefore, it should not be surprising that bands and VIs derived from this region are capturing
physical properties related PH and canopy coverage, and thus acting as proxies for these properties. In
the study by Hassan et al. (2019), they also identified Rht-B1 and Rht-D1 using imaging data collected
by UAVs. Gao et al. (2023) also identified a PH QTL containing this genomic region using imaging data
(qPH 4B 1 ). Both these studies show and our own results showcase the potential of using imaging data as
a proxy for PH or PH-related features. Keep in mind though that the spectral QTL and agronomic QTL
we identified in this region are quite large. The spectral phenotypes lie in the region 20-59 Mbp, while the
agronomic QTL lies in the region 13-79 Mbp. Hence, there may be other genomic factors in these regions
which may effect PH which we have not described here.

Next, we also observed many DM QTL overlapping with spectral QTL. DM QTL were co-localized with
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spectral QTL on chromosomes 2A (74-78 Mbp), 4B (20-59 Mbp) and 5A (548-549 Mbp) (Table 13). The
gene discussed earlier on chromosome 4B (Rht-B1 ) may also play role in the photosynthetic activity, as the
variant Rht-B1b reduces both photosynthetic activity and chlorophyll content during anthesis, as shown in
Jobson et al. (2019). The findings in this study should be interpreted carefully, however, it does somewhat
coincide with our results since spectral imaging should be able to capture differences in chlorophyll content.
We may therefore speculate that the overlapping QTL which appear between DM and spectral phenotypes
on 4B is due to its effect chlorophyll and photosynthetic activity content during the later developmental
stages.

Next, we consider the QTL on 5A. There are numerous studies that have identified QTL related to senes-
cence in spring wheat on chromosome 5A, as seen in the study by Hassan et al. (2021) were they used
remote spectral imaging to find senescence and GY related QTL. Their study identified a senescence related
QTL (QTL-caas.5A 1) which does not overlap with our QTL for DM. However, it may be close enough to
speculate that the spectral QTL is close because it captures information related to the senescence stage.
Senescence refers to the final developmental stages where nutrients are mobilized from the plant and into
the developing grain (Janusauskaite 2022). During senescence photosynthetic activity is reduced quickly,
and the leaves gradually turn yellow. Spectral imaging data should be able to capture changes in color
which appear during the senescence process, hence it should not be surprising that we identify both DM
QTL and spectral QTL (for the green, NIR, red-edge and blue) which are somewhat near QTL reported
for senescence. The particular bands too which overlap with DM are also interesting, since as leaves turn
yellow, they reflect less light in the green, NIR and red-edge regions. All these bands are indicative of
plant health and vigor (Wang et al. 2021), hence it may explain why QTL identified for these bands are
co-localized with DM and senescence QTL.

Another study which identified maturity time related QTL on chromosome 5A was Semagn et al. (2021),
where they found QTL for maturity that overlap with the ones we identified for DM (QMat.dms-5A.1
located on 569-570 Mbp and QMat.dms-5A.2 located on 587 Mbp). In their study, they performed mapping
of QTL related to various developmental stages like flowering, heading and maturity. Their identified QTL
do not directly overlap with the DM QTL on 5A in our study, however, we may consider them to be
somewhat close. They found that one of the QTL (QMat.dms-5A.1 ) contained the gene Vrn-A1, and our
QTL (Q DM 5A 1 ) is the near the region containing this gene. Vrn-A1 is among the genes which regulate
how wheat crop respond to prolonged periods of lower temperatures (Zhang et al. 2008). Together with
other genetic factors, they regulate flowering time, and this gene has been shown to effect the maturity
time of wheat crop (Zhang et al. 2008, Chen et al. 2010).

Also, we observed multiple spectral QTL co-localized with DM QTL on chromosome 2A (Q DM 2A 1,
74-78 Mbp). This region is overlaps with meta-QTL identified by Shariatipour et al. (2021) related to
green-leaf area (50% green leaf area and 75% green leaf area). As discussed earlier, DM is a late-season
trait where the crop undergoes colour changes (yellowing). Hence identifying previously reported QTL
related to leaf green area should not be surprising, and it makes sense that the spectral phenotypes green,
NIR and red-edge are co-localized with green-leaf area QTL. As mentioned earlier, these are spectral
bands which capture variations in green colour as well as the yellowing process which occurs in the later
development stages of wheat.

Furthermore, we observed some spectral QTL co-localized with GY and GPC QTL. As reported in Table
13, we identify very few of these overlapping regions. This is despite the fact that we identified multiple
QTL related to these two phenotypes in the MLM-results for agronomic traits (see Table A7). Both GY
and GPC are complex, physiological traits which depend on multiple loci. Unlike PH and DM, which are
agronomic traits that when recorded over time will display apparent changes in the crop, GY and GPC
are traits which do not necessarily give rise to apparent changes. PH results in changes of biomass or
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canopy cover, and crop become yellow as they reach maturity. Therefore, both PH and DM are visually
observable changes, while GY and GPC are not as apparent. This may explain why we have not identified
many spectral QTL co-localized with GY and GPC.

Starting with GY, we identified QTL on 2A overlapping with spectral QTL for the red-edge, green and
red bands (758-773 Mbp), and on 7A co-localized with a QTL for the green band (51-112 Mbp). Starting
with 2A, Li et al. (2019) reported GY related QTL in regions near or overlapping with our reported GY
QTL. In their study they reported thousand kernel weight (TKW), kernel length (KL), and kernel weight
(KW) QTL in regions 760, 740 and 758-760 Mbp respectively on chromosome 2A. TKW, KL and KW
are all traits underlying GY, since they effect the final yield. They also reported a QTL for TKW on
chromosome 7A (49.1-50.0 Mbp) which overlaps with our identified QTL on the same chromosome. It
is difficult to explain exactly what the spectral bands red-edge, green and red capture which results in
them being co-localized with reported GY related QTL and our own identified regions. However, previous
studies have shown that genomic prediction using spectral data predicts GY with high accuracy (?Mróz
et al. 2024). Also, we have shown that spectral imaging correlates well with end-of-season yield (Figures
7-8). Therefore, although the exact genetic information which spectral imaging data may be capturing
remains unknown and warrants further investigation, spectral imaging may still be useful as it provides
a non-invasive method for predicting and selecting high yielding varieties. For this report, we have only
uncovered previously reported GY QTL which are co-localized with some of our spectral QTL and GY
QTL. We have not, however, described candidate genes that directly affect GY in our GY QTL.

Next, we may look into GPC QTL which overlap with spectral QTL. We identified only two GPC QTL
located on chromosome 1B (662-672 Mbp) and 5A (2-10 Mbp) that overlap with spectral QTL for the
green, red-edge and NIR bands. Starting with 1B, Shariatipour et al. (2021) identified one meta QTL
(MQTL 1B 3 on 678.45–681.00 Mbp) which is related to grain-filling duration (GFD), among other traits.
GFD is related to GPC, as GFD is an important developmental stage in wheat crop where the size
and weight of the grain increases, and its protein content is determined (Kartseva et al. 2023). During
this period, proteins like gluten proteins are synthesized and deposited in the endosperm (Shewry 2023).
Therefore, the length of GFD can significantly affect the final GPC (Kartseva et al. 2023, Uhlen et al.
1998). However, it is important to note that while there is a relationship between the GFD and GPC, it
is complex and influenced by many other factors (Uhlen et al. 1998). It is still interesting to identify a
region related to GPC co-localized with GFD QTL given the known relationship between the two. For the
remaining QTL on 5A, we found no reported QTL related to GPC or traits which affect GPC.

To summarize, the spectral QTL found in our study does overlap with some agronomic QTL previously
reported in the literature. Not all spectral QTL contain or are close to genes that fully explain their
relation to the agronomic QTL they overlap with. For instance, we did not find spectral QTL overlapping
with GY and GPC QTL that contain or are near genes that explain their relation to GY or GPC. On the
other hand, for spectral QTL shared with PH and DM we identified genes (Rht-B1, Vrn-A1 ) that may
explain their relation to PH and DM. Overall, our findings demonstrate that multispectral data may be
able to genetically dissect simple traits (like height and maturity time), but fails for more complex traits
(like yield and protein content).
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5.3 GWAS-Resutls for GA-SVR

General Results and Differences in No. of Hits

It is important to note that the GA-SVR pipeline was applied only to the agronomic traits (see A9) and
AUC values of VIs (see A8). Interestingly, the GA-SVR pipeline identified more QTL than the MLM
approach for both agronomic traits and AUC values.

As highlighted in section 2.4, there are fundamental differences between SVR and MLM in terms of
identifying significant associations. MLM is a single-locus model which is typically effective in detecting
associations between markers and traits when the effects of markers is large (Zhang et al. 2010, Saini et al.
2021). MLM is not suitable for detecting minor-effect loci. Therefore, MLM may fail to capture significant
genomic regions if a trait is influenced by multiple loci, and if each locus contributes with small effects.

On the contrary, SVR addresses limitations inherent to MLM, since it is well-suited for tackling multi-
regression problems. GWAS can be viewed as multi-regression problem, because the goal is to identify a
set of markers that influence or correlate with an observed phenotype, and also quantify their influence
(effects) as well. Unlike MLM, SVR considers multiple loci simultaneously when determining the best
separating margin. This allows SVR to capture more complex patterns in the data, potentially making it
more effective in modelling multi-locus effects. This is particularly true when SVR is paired with non-linear
kernels, enabling it to discover non-linear relationships between markers and the phenotype under study.
Despite this advantage SVR has over MLM, it remains challenging to account for population structure
and familial relatedness when implementing ML-methods. ML are often considered a ’black-box’ with no
apparent variance-structure or fixed effects in which confounding variables like kinship can be modelled.
This holds true for SVR, since it is difficult to explain or interpret patterns in data the model learns. In
addition, it is difficult to assess how confounding variables (such as familial relatedness and population
structure) influence the model’s performance.

As discussed earlier, MLM accounts for these confounding variables in its model definition. However, in this
report, we attempted to consider population structure by adding columns from the Q-matrix to the SVR
model’s feature set. The idea was that PCs (o Q-matrix columns) would act as additional dimensions in the
feature space. In these additional dimensions, samples could be more easily separated based on common
ancestry, as related samples will lie more closely in space compared non-related samples. Whether this is
an efficient way of accounting for population structure when using SVR is difficult to say. It is also difficult
to say if there is a need to account for such confounding variables as the studies by de Oliveira et al. (2014)
and Dı́ez Dı́az et al. (2021) made no attempt in correcting for them when using SVR for GWAS. It may
therefore be worth investigating whether spurious correlations are occurring as a result of failing to account
for confounding variables when implementing ML-alternatives for GWAS.

The GA-SVR pipeline, as discussed in the study by de Oliveira et al. (2014), indeed presents a significant
computational challenge, particularly when it comes to the calculation of p-value groups. The SVR models
are fitted within groups of SNPs that pass a specific p-value threshold, which is determined by Spearman’s
correlation coefficient. In our results, we noticed considerable variations in the sizes of the p-value groups,
depending on both the spectral phenotype and the set p-value threshold. This approach of fitting SVR
models only within p-value groups is computationally efficient, considering that fitting SVR models to large
predictor sets is both computationally demanding and memory-intensive. This method also conveniently
allows for the initial elimination of any redundant markers before the fitting of SVR models, as discussed
by de Oliveira et al. (2014). However, the use of p-groups introduces a challenge that would not exist if
all SNPs were used to fit the SVR model. As previously discussed, SVR models are better equipped to
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capture multi-locus effects. However, by dividing the markers into multiple groups and fitting SVR models
only within these groups, we risk missing interactions between loci if they occur in different p-value groups.
Unfortunately, the potential impact of separating markers into p-value groups is not sufficiently addressed
in the work by (de Oliveira et al. 2014).

Identified QTL: MLM vs. GA-SVR

Table 27 contains the stacked GWAS-results for AUC-values and agronomic data when using GA-SVR.
Interestingly, we identified more overlapping QLTs using the GA-SVR pipeline compared to using MLM
for AUC-values of VIs (see Table 14). When using the MLM approach, however, we identified overlapping
QTL in a region that has a well-known gene that affects crop height (Rht-B1 on 4B). In general, we
identified more PH and DM related QTL with MLM when considering the stacked results (Tables 13-14).
In contrast, the GA-SVR pipeline identified a greater number of spectral QTL overlapping with the more
complex traits GY and GPC. In fact, the majority of the overlapping QTL identified were for GY and
GPC. It is important to note that SVR does not account for familial relatedness, and the implications of
including a Q-matrix into the model’s feature set have not been discussed in existing literature. Therefore,
the results presented in Table 27 should be interpreted with caution. However, the fact that the GA-SVR
method produced more overlapping spectral QTL in regions where we have identified GY and GPC QTL
may suggest that the model is capable of capturing the complex relationships between markers and traits
underlying GY and GPC.

Nevertheless, it is somewhat strange the peak-markers on chromosome 4B (13-79 Mbp) were not captured
by the GA-SVR approach. This region was significant even with Bonferroni-correction for MLM. We can
therefore be confident that the association identified on 4B has a significant influence on crop height, and
failing to identify this with GA-SVR may indicate that the method is somewhat flawed. Furthermore,
when comparing results in Table 14 and 27, we see that there are no overlapping spectral or agronomic
QTL for MLM and GA-SVR.

Also identifying GY and GPC QTL with GA-SVR that lie in the exact same regions may indicate that
there are some problems with the method. It has been documented that yield and protein content tend to
be negatively correlated (Kibite & Evans 1984, Sandhu et al. 2021). Figure 8 shows that there is negative
correlation between GPC and GY for all seasons (in particular in 2020). The reason these traits tend
to show such correlation is because both GY and GPC are influenced by nitrogen utilization and excess
nitrogen content in the soil (Ayadi et al. 2022). Typically, nitrogen concentrations in the soil is kept high
as it results in higher yield. However, any excess nitrogen not absorbed by the crop accumulates in the soil,
leading to delayed senescence, which in turn shortens the grain filling rate and reduces protein content.
For example Ayadi et al. (2022) put durum wheat lines under contrasting fertilization regimes, and they
observed a general trend of low GPC under high nitrogen treatment, while GY remained high. To avoid
spurious associations, it is important to control for this effect when identifying GPC-related markers. To
account for this correlation, Rapp et al. (2018) showed that grain protein deviation (GPD), which subtracts
the effect GY has from GPC, identified GPC-related QTL. GPD showed little correlation with GY, which
demonstrates the metric removes the influence of GY on GPC effectively. For the GA-SVR implementation
in this study, we have not made such adjustments. Hence it may both explain why we identify most QTL
for GY and GPC, and also why they appear to be co-localized. For example, Q GPC 1A 1, Q GPC 5A 3
and Q GPC 7A 1 are all located in regions identified for GY (see Table 27). The exact overlap indicates
the GA-SVR analysis might be identifying QTL related to GY instead of GPC.

However, as documented by Shariatipour et al. (2021), observing co-localization of GPC and GY QTL
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does not always indicate failure to account for this relation between the two. In their study, they identified
numerous GPC meta-QTL which were co-localized with GY related traits like TKW (frequency of co-
localization 63% ). Overall they found that numerous GY related and GPC related meta-QTL appeared
to be co-localized. This was done by aggregating data from numerous GWA-studies using met-aQTL
analysis, which enabled the researchers to study the genetic correlation between traits. Therefore the
identified QTL for GPC with SVR-GA pipeline may truly affect GPC, while still being co-localized with
GY related QTL.

6 Conclusion

Overall, our results demonstrate that phenotypes derived from multispectral time-series data may provide
valuable insight into the genetic controls underlying important agronomic traits. We identified that spectral
bands and VIs recorded over time correlated well with some agronomic traits (like GY), and showed high
heritability. Additionally, simultaneous GWAS on both agronomic traits data and spectral phenotypes
helped uncover known and basic genetic controls underlying traits like PH and DM. Seeing that QTL for
spectral bands overlapped with or were near genes like Rht-B1 and Vrn-A1, and that we identified these
regions for the agronomic traits data as well demonstrates that the spectral data might capture simple
traits like height and maturity time.

Also, uncovering large effects for regions containing or near Rht-B1 and Vrn-A1 for GWAS on spectral
time-series provides a sanity check on whether multispectral data contains sufficient biologically relevant
information to reveal genetic architecture of important traits. Despite these interesting findings for PH
and DM, GWAS on spectral data did not uncover as many significant markers in regions related to GY and
GPC. This may be for various reasons, including that the selected model (MLM) is not suitable for complex
traits affected by many small-effect loci. It would therefore be interesting to explore multi-locus model
alternatives like MLMM, Fixed and Random Model Circulating Probability Unification (FarmCPU) or
Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK). For future GWA-
studies using spectral time-series, these multi-locus models should be explored as they may help uncover
interactions between markers and small-effect markers.

Furthermore, the spectral phenotypes derived from the time-series should be further refined into their
respective developmental stages. In this thesis, the trial means and global means models provide mean
genotypic values across the entire season. However, as seen in our results, the information contained
within spectral bands and VIs changes over the season. Additionally, their correlation and explainability
of agronomic traits changes over the season. Therefore, for future work, the BLUEs for trial means and
global means need to be defined so that they account for these differences in developmental stages. GWAS
on spectral phenotypes specific to developmental stages may also provide a more interesting study, as they
may uncover more temporal genetic control. We attempted to uncover such temporal effects using GWAS
on flight missions, which was partially successfully.

Lastly, it is interesting to see that the implemented ML-alternative resulted in different peak markers and
genomic regions compared to MLM. Overall, GA-SVR is a feasible alternative, because it produced some
QTL overlapping with those identified with MLM. However, the regions identified with the alternative
pipeline need to be further studied. For this report, we did not review the literature for the QTL found
with GA-SVR. We simply compared these regions with those found using MLM. In future studies, this
should be done, as it will reveal if GA-SVR detects genetic elements relevant to the phenotype under study.
The implications of confounding variables (population structure, kinship, and correlation between GY and
GPC) should also be addressed before any conclusions on QTL identified for GA-SVR are made.
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7 Appendix

7.1 Variance Components Estimation: Trials Means and Global Means for Bands/VIs

Table A1: Results for trial means in 2019 when genotype is modelled as a random effect. SD refers to σ̂. See equation 2.

blue green red red-edge NIR NDVI GNDVI SR

(Intercept) -0.001 0.000 0.000 0.000 0.000 0.000 0.000 -0.001
(0.373) (0.390) (0.423) (0.405) (0.437) (0.432) (0.419) (0.427)

SD (Intercept Time Pointrepblock) 0.246 0.221 0.148 0.169 0.142 0.170 0.220 0.214
SD (Intercept Time Pointcolumn) 0.065 0.067 0.049 0.067 0.018 0.000 0.025 0.038
SD (Intercept Line Number) 0.291 0.258 0.148 0.217 0.068 0.108 0.172 0.113
SD (Intercept Time Pointrep) 0.151 0.117 0.052 0.110 0.056 0.033 0.030 0.105
SD (Intercept Time Point) 0.905 0.949 1.034 0.989 1.069 1.057 1.026 1.043
SD (Residuals) 0.376 0.337 0.235 0.305 0.138 0.162 0.198 0.137

R2 Cond. 0.875 0.901 0.953 0.920 0.984 0.966 0.984
AIC 3467.1 2905.8 933.9 2269.6 -1616.9 -695.1 544.6 -995.3
BIC 3508.2 2946.9 975.0 2310.7 -1575.8 -654.0 585.7 -954.2
ICC 0.9 0.9 1.0 0.9 1.0 1.0 1.0
RMSE 0.33 0.30 0.21 0.27 0.12 0.14 0.17 0.12
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Table A2: Global means for bands/VIs time-series when genotype is modeled as a random effect. SD refers to σ̂. See equation 3.

blue green red red-edge NIR NDVI GNDVI SR

(Intercept) 0.000 0.022 0.009 0.019 0.005 −0.003 −0.011 −0.004
(0.162) (0.175) (0.192) (0.169) (0.184) (0.197) (0.197) (0.198)

SD (Intercept Seasontime Pointrepblock) 0.244 0.198 0.178 0.244 0.326 0.195 0.192 0.232
SD (Intercept Seasontime Pointcolumn) 0.036 0.046 0.032 0.044 0.029 0.000 0.000 0.027
SD (Intercept Line Number) 0.342 0.329 0.186 0.327 0.175 0.140 0.181 0.145
SD (Intercept Seasontime Pointrep) 0.111 0.082 0.041 0.114 0.112 0.049 0.047 0.113
SD (Intercept Seasontime Point) 0.783 0.848 0.940 0.818 0.894 0.965 0.961 0.963
SD (Intercept Season) 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000
SD (Residuals) 0.494 0.428 0.295 0.459 0.302 0.207 0.206 0.165

R2 Cond. 0.916 0.801 0.959
AIC 20 784.7 17 186.9 8532.8 19 221.5 11 071.5 1208.1 1193.7 −2561.1
BIC 20 844.2 17 246.3 8592.3 19 280.9 11 130.9 1267.6 1253.1 −2501.7
ICC 0.9 0.8 1.0
RMSE 0.46 0.40 0.27 0.43 0.27 0.19 0.19 0.15
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7.2 Variance Components Estimation: Global Means of AUC-values and Agronomic Traits

Table A3: Global means for AUC-values when genotype is modeled as a random effect. SD refers to σ̂. See equation 5.

NDVI GNDVI SR

(Intercept) −0.027 −0.048 −0.033
(0.059) (0.058) (0.076)

SD (Intercept seasonrepblock) 0.614 0.610 0.670
SD (Intercept line number) 0.730 0.765 0.677
SD (Intercept seasoncolumn) 0.082 0.097 0.116
SD (Intercept seasonrep) 0.068 0.040 0.149
SD (Intercept season) 0.000 0.000 0.000
SD (Residuals) 0.342 0.359 0.350

R2 Cond. 0.888
AIC 4103.5 4329.8 4264.6
BIC 4144.6 4371.0 4305.7
ICC 0.9
RMSE 0.29 0.31 0.30
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Table A4: Global means for agronomic traits when genotype is modeled as a random effect. SD refers to σ̂. See equation 5.

DH dss DM dss GY g m2 PH cm GPC pct

(Intercept) 64.975 109.864 604.971 88.236 10.979
(1.544) (2.820) (28.499) (2.680) (0.171)

SD (Intercept seasonrepblock) 0.379 1.344 43.204 3.183 0.370
SD (Intercept line number) 1.378 2.503 74.739 7.092 0.874
SD (Intercept seasoncolumn) 0.109 0.252 5.637 0.174 0.054
SD (Intercept seasonrep) 0.172 0.291 1.309 0.951 0.201
SD (Intercept season) 3.080 5.626 56.128 5.242 0.290
SD (Residuals) 0.614 1.608 29.880 2.943 0.445

R2 Cond. 0.968 0.939 0.923 0.911 0.839
AIC 5544.6 9603.4 22 734.3 12 571.4 4215.9
BIC 5584.3 9643.0 22 774.0 12 611.1 4255.5
ICC 1.0 0.9 0.9 0.9 0.8
RMSE 0.53 1.37 24.82 2.49 0.38
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7.3 DH and DM Distribution with Selected Time-Points

Figure A1 shows the distribution of days to heading (DH) and days to maturity (DM) within each season
relative to sowing dates. The figure also contains black horizontal lines signifying the time-points sampled
from the multispectral time-series for downstream analysis. Furthermore, the colored lined refer to different
developmental stages, and are based on the definitions of (Krause et al. 2019). The green line refers to the
vegetative stage (VEG), the orange line signifies the heading stage (HEAD) and the red line signifies the
grain filling stages (GF). All observations falling to the left of a coloured line belong to the given stage.

Figure A1: A-D show the distribution of DH and DM within the respective seasons. Black lines are the
selected time points (T1-T6). Coloured lines signify the growth stages (green = VEG, orange = HEAD,
red = GF)
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7.4 Time-Series Data After Frequency Adjustment

Figure A2 showcases the averaged time-series for each spectral band and VI after we have sampled 6 flight
missions (T1-T6) within each season. Average values for each band/VIs was derived by averaging over all
plots within each time-point.

Figure A2: The averaged spectral reflectance value for bands and VIs across the selected time points
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7.5 Distribution of AUC-values of VIs

Figure A3: A-D show the distribution of AUC-values for plots within respective seasons.
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7.6 QTL Identified for Spectral Time-Series Using MLM

Table A5: QTL identified for spectral time-series (p < 0.001)

Phenotype QTL Chr Span # Markers Peak-marker P.value MAF Effect
blue Q blue 1A 1 1A 591-592 2 RAC875 c85550 73 0.00042 0.066 -0.15
blue Q blue 1A 1 1A 591-592 2 BS00021780 51 0.00042 0.066 -0.15
blue Q blue 2A 1 2A 127 1 Kukri c441 891 0.00013 0.076 -0.17
blue Q blue 3A 1 3A 594 1 Kukri c7087 896 0.00043 0.066 0.19
blue Q blue 3B 1 3B 571-576 2 AX-158557916 0.00088 0.14 0.14
blue Q blue 3B 1 3B 571-576 2 AX-158541479 0.00018 0.093 0.19
blue Q blue 3B 2 3B 800 1 RAC875 c39339 400 4.4e-05 0.055 -0.22
blue Q blue 4A 1 4A 623 1 Excalibur c25699 113 0.001 0.16 -0.1
blue Q blue 4A 2 4A 673 1 Excalibur c53864 331 2e-05 0.067 0.21
blue Q blue 5A 1 5A 36 1 wsnp Ku c4389 7970859 0.0002 0.18 -0.12
blue Q blue 5A 2 5A 549 1 AX-94501987 5.8e-06 0.074 0.22
blue Q blue 5A 3 5A 599 1 BS00000929 51 0.00084 0.12 0.15
blue Q blue 6B 1 6B 714 1 GENE-4008 395 0.00035 0.1 0.16
blue Q blue 7A 1 7A 59 1 Excalibur c57078 255 0.00017 0.074 0.18
blue Q blue Unkown 1 Unkown 144 1 BobWhite c12261 130 0.00059 0.1 0.15
GNDVI Q GNDVI 2A 1 2A 127 1 Kukri c441 891 0.00099 0.076 0.07
GNDVI Q GNDVI 3A 1 3A 594 1 Kukri c7087 896 0.00061 0.066 -0.091
GNDVI Q GNDVI 4A 1 4A 512 1 RAC875 c91464 170 0.00019 0.062 0.087
GNDVI Q GNDVI 5A 1 5A 687 1 Ku c19516 384 0.0009 0.13 0.068
GNDVI Q GNDVI 5B 1 5B 50 1 RAC875 c16827 292 0.00083 0.13 0.056
GNDVI Q GNDVI 7A 1 7A 51 1 AX-94617750 1.6e-05 0.061 0.11
GNDVI Q GNDVI 7A 2 7A 482 1 Kukri c52429 81 0.00033 0.059 0.087
green Q green 1A 1 1A 403 1 AX-110387060 0.001 0.087 -0.14
green Q green 1A 2 1A 591-592 2 RAC875 c85550 73 4.2e-06 0.066 -0.18
green Q green 1A 2 1A 591-592 2 BS00021780 51 4.2e-06 0.066 -0.18
green Q green 1B 1 1B 672 2 AX-158521058 0.00052 0.061 -0.23
green Q green 1B 1 1B 672 2 BS00023105 51 0.00052 0.061 -0.23
green Q green 2A 1 2A 74-78 6 BS00036767 51 4.3e-05 0.073 -0.21
green Q green 2A 1 2A 74-78 6 Kukri rep c83485 398 4.3e-05 0.073 -0.21
green Q green 2A 1 2A 74-78 6 AX-110428187 7.9e-05 0.08 -0.18
green Q green 2A 1 2A 74-78 6 BS00039983 51 7.9e-05 0.08 -0.18
green Q green 2A 1 2A 74-78 6 Kukri rep c104727 91 7.4e-05 0.054 -0.24
green Q green 2A 1 2A 74-78 6 wsnp Ex rep c68113 66877517 2.3e-05 0.054 -0.26
green Q green 2A 2 2A 105-127 7 wsnp Ex c1782 3365844 0.00045 0.22 -0.1
green Q green 2A 2 2A 105-127 7 wsnp Ex rep c101866 87158671 0.00062 0.21 -0.1
green Q green 2A 2 2A 105-127 7 AX-158546418 0.00061 0.21 -0.1
green Q green 2A 2 2A 105-127 7 TA003045-1227 0.00061 0.21 -0.1
green Q green 2A 2 2A 105-127 7 wsnp Ex rep c69124 68035485 0.00061 0.21 -0.1
green Q green 2A 2 2A 105-127 7 AX-94457129 0.00038 0.27 -0.097
green Q green 2A 2 2A 105-127 7 Kukri c441 891 4.5e-07 0.076 -0.21
green Q green 2A 3 2A 773 1 BS00091763 51 5.2e-05 0.09 -0.15
green Q green 3A 1 3A 594 1 Kukri c7087 896 0.00056 0.066 0.18
green Q green 3A 2 3A 743 1 AX-95254393 0.0006 0.25 -0.1
green Q green 3B 1 3B 473-474 4 AX-110403928 7.5e-05 0.095 -0.15
green Q green 3B 1 3B 473-474 4 RAC875 c50787 146 8.6e-05 0.097 -0.15
green Q green 3B 1 3B 473-474 4 AX-110958104 0.00089 0.087 -0.13
green Q green 3B 1 3B 473-474 4 AX-158538397 0.00052 0.08 -0.13
green Q green 3B 2 3B 501 1 RAC875 c2044 170 0.00043 0.16 0.14
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Table A5 continued: QTL identified for spectral time-series (p < 0.001)

Phenotype QTL Chr Span # Markers Peak-marker P.value MAF Effect
green Q green 3B 3 3B 576 1 AX-158541479 0.00037 0.093 0.17
green Q green 3B 4 3B 627 1 AX-158598230 0.00013 0.19 0.13
green Q green 3B 5 3B 800 1 RAC875 c39339 400 2e-05 0.055 -0.21
green Q green 4A 1 4A 512 1 RAC875 c91464 170 0.00012 0.062 -0.17
green Q green 4A 2 4A 673 1 Excalibur c53864 331 4.4e-05 0.067 0.19
green Q green 4B 1 4B 644 1 AX-89771703 0.00011 0.067 -0.18
green Q green 5A 1 5A 35-36 2 AX-94958984 0.00048 0.092 -0.16
green Q green 5A 1 5A 35-36 2 wsnp Ku c4389 7970859 0.00042 0.18 -0.11
green Q green 5A 2 5A 445 1 AX-158542603 0.00038 0.19 -0.11
green Q green 5A 3 5A 549 1 AX-94501987 3.8e-05 0.074 0.18
green Q green 5A 4 5A 680 1 BobWhite c8906 83 0.00047 0.1 -0.16
green Q green 6A 1 6A 616 1 BS00082460 51 0.00026 0.059 -0.17
green Q green 6B 1 6B 644 1 TA004372-0730 0.00026 0.12 -0.14
green Q green 7A 1 7A 14 1 BS00068863 51 0.00035 0.16 -0.11
green Q green 7A 2 7A 51-92 4 AX-94617750 0.00027 0.061 -0.17
green Q green 7A 2 7A 51-92 4 Excalibur c57078 255 0.00013 0.074 0.17
green Q green 7A 2 7A 51-92 4 BS00091891 51 0.00071 0.064 -0.17
green Q green 7A 2 7A 51-92 4 BobWhite c24295 777 0.00091 0.12 -0.12
green Q green Unkown 1 Unkown 796 1 IAAV1529 0.00011 0.057 -0.18
green Q green Unkown 2 Unkown 1081 1 Kukri c3570 1817 0.00011 0.055 -0.19
green Q green Unkown 3 Unkown 1127 1 Kukri c7914 99 4.3e-05 0.073 -0.21
green Q green Unkown 4 Unkown 1335 1 RAC875 rep c71921 672 9.4e-05 0.066 -0.15
green Q green Unkown 5 Unkown 1376 1 RFL Contig5758 757 0.00043 0.17 0.14
NDVI Q NDVI 4A 1 4A 25 1 wsnp Ex c22913 32130617 0.00042 0.062 0.059
NDVI Q NDVI 4B 1 4B 20-32 3 Kukri rep c74376 188 0.00071 0.29 -0.032
NDVI Q NDVI 4B 1 4B 20-32 3 AX-94685504 0.00037 0.48 0.034
NDVI Q NDVI 4B 1 4B 20-32 3 AX-89380014 0.00042 0.39 0.036
NDVI Q NDVI 5A 1 5A 300 1 AX-110003331 3.8e-05 0.21 0.045
NDVI Q NDVI 7A 1 7A 49-51 2 AX-95133112 0.00077 0.09 0.059
NDVI Q NDVI 7A 1 7A 49-51 2 AX-94617750 0.00014 0.061 0.075
NDVI Q NDVI 7A 2 7A 669 1 BS00021261 51 0.00083 0.078 -0.065
NIR Q NIR 1A 1 1A 591-592 2 RAC875 c85550 73 9.2e-05 0.066 -0.091
NIR Q NIR 1A 1 1A 591-592 2 BS00021780 51 9.2e-05 0.066 -0.091
NIR Q NIR 2A 1 2A 74-77 13 AX-110998568 0.0002 0.099 -0.087
NIR Q NIR 2A 1 2A 74-77 13 BS00036766 51 0.00042 0.11 -0.08
NIR Q NIR 2A 1 2A 74-77 13 BS00036767 51 0.00012 0.073 -0.11
NIR Q NIR 2A 1 2A 74-77 13 Kukri rep c83485 398 0.00012 0.073 -0.11
NIR Q NIR 2A 1 2A 74-77 13 Tdurum contig9731 121 0.00011 0.083 -0.11
NIR Q NIR 2A 1 2A 74-77 13 Excalibur c15733 252 0.00011 0.083 -0.11
NIR Q NIR 2A 1 2A 74-77 13 Excalibur rep c111743 194 0.00064 0.073 -0.098
NIR Q NIR 2A 1 2A 74-77 13 GENE-1365 255 0.00011 0.083 -0.11
NIR Q NIR 2A 1 2A 74-77 13 RAC875 c20700 853 0.00011 0.083 -0.11
NIR Q NIR 2A 1 2A 74-77 13 Tdurum contig48302 532 0.00011 0.083 -0.11
NIR Q NIR 2A 1 2A 74-77 13 Tdurum contig5311 67 0.00011 0.083 -0.11
NIR Q NIR 2A 1 2A 74-77 13 AX-110428187 0.00026 0.08 -0.097
NIR Q NIR 2A 1 2A 74-77 13 BS00039983 51 0.00026 0.08 -0.097
NIR Q NIR 2B 1 2B 114 1 Excalibur c37649 125 0.00024 0.1 -0.083
NIR Q NIR 3A 1 3A 267 1 BS00110129 51 0.00044 0.42 -0.05
NIR Q NIR 3A 2 3A 445 1 IAAV4343 0.00045 0.18 0.057
NIR Q NIR 3A 3 3A 466-484 3 wsnp JD rep c64325 41024646 0.001 0.37 -0.046
NIR Q NIR 3A 3 3A 466-484 3 wsnp JD c5699 6859527 0.00091 0.1 0.071
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Table A5 continued: QTL identified for spectral time-series (p < 0.001)

Phenotype QTL Chr Span # Markers Peak-marker P.value MAF Effect
NIR Q NIR 3A 3 3A 466-484 3 wsnp RFL Contig2011 1216801 0.0009 0.11 0.071
NIR Q NIR 3A 4 3A 511 1 AX-95205191 0.00014 0.16 0.085
NIR Q NIR 3B 1 3B 473 2 AX-110403928 0.00014 0.095 -0.084
NIR Q NIR 3B 1 3B 473 2 RAC875 c50787 146 0.00032 0.097 -0.078
NIR Q NIR 3B 2 3B 497-507 12 AX-109475553 5e-05 0.16 0.09
NIR Q NIR 3B 2 3B 497-507 12 IAAV4105 5e-05 0.16 0.09
NIR Q NIR 3B 2 3B 497-507 12 Tdurum contig12941 1413 5e-05 0.16 0.09
NIR Q NIR 3B 2 3B 497-507 12 Excalibur c14999 712 5e-05 0.16 0.09
NIR Q NIR 3B 2 3B 497-507 12 BobWhite c45623 215 5e-05 0.16 0.09
NIR Q NIR 3B 2 3B 497-507 12 RAC875 c2044 170 1.6e-05 0.16 0.096
NIR Q NIR 3B 2 3B 497-507 12 RAC875 c32792 231 5e-05 0.16 0.09
NIR Q NIR 3B 2 3B 497-507 12 Tdurum contig9132 102 5e-05 0.16 0.09
NIR Q NIR 3B 2 3B 497-507 12 AX-158555838 5e-05 0.16 0.09
NIR Q NIR 3B 2 3B 497-507 12 AX-110527999 0.00017 0.2 0.078
NIR Q NIR 3B 2 3B 497-507 12 AX-94407975 5e-05 0.16 0.09
NIR Q NIR 3B 2 3B 497-507 12 Tdurum contig10107 580 2.9e-05 0.16 0.095
NIR Q NIR 3D 1 3D 86 1 IAAV2729 2.1e-06 0.11 0.09
NIR Q NIR 4A 1 4A 673 1 Excalibur c53864 331 0.00025 0.067 0.097
NIR Q NIR 5A 1 5A 10 1 tplb0029e02 1186 0.00012 0.23 0.057
NIR Q NIR 5A 2 5A 549 1 AX-94501987 3.5e-05 0.074 0.1
NIR Q NIR 5B 1 5B 421 1 AX-95099091 0.00086 0.069 -0.079
NIR Q NIR 7A 1 7A 59 1 Excalibur c57078 255 0.00013 0.074 0.1
NIR Q NIR 7B 1 7B 62 1 Kukri c14766 484 8.1e-06 0.055 0.13
NIR Q NIR Unkown 1 Unkown 1127 1 Kukri c7914 99 0.00012 0.073 -0.11
NIR Q NIR Unkown 2 Unkown 1376 1 RFL Contig5758 757 3.5e-05 0.17 0.091
red Q red 1A 1 1A 591-592 2 RAC875 c85550 73 0.00064 0.066 -0.076
red Q red 1A 1 1A 591-592 2 BS00021780 51 0.00064 0.066 -0.076
red Q red 2A 1 2A 127 1 Kukri c441 891 5e-06 0.076 -0.1
red Q red 2A 2 2A 773 1 BS00091763 51 0.00015 0.09 -0.081
red Q red 3A 1 3A 594 1 Kukri c7087 896 0.00018 0.066 0.11
red Q red 4A 1 4A 25 1 wsnp Ex c22913 32130617 0.00069 0.062 -0.078
red Q red 4B 1 4B 31-59 6 TG0010a 0.00078 0.28 0.056
red Q red 4B 1 4B 31-59 6 TG0010b 0.00078 0.28 0.056
red Q red 4B 1 4B 31-59 6 AX-89380014 0.00066 0.39 -0.048
red Q red 4B 1 4B 31-59 6 AX-158564633 0.0005 0.42 0.048
red Q red 4B 1 4B 31-59 6 IAAV971 0.00027 0.26 0.065
red Q red 4B 1 4B 31-59 6 Excalibur c56787 95 0.0008 0.24 0.058
red Q red 5A 1 5A 505 1 Excalibur c6567 845 0.00033 0.29 -0.063
red Q red 7A 1 7A 51 1 AX-94617750 0.00043 0.061 -0.096
rededge Q rededge 1A 1 1A 591-592 2 RAC875 c85550 73 1.2e-06 0.066 -0.2
rededge Q rededge 1A 1 1A 591-592 2 BS00021780 51 1.2e-06 0.066 -0.2
rededge Q rededge 1B 1 1B 668 1 AX-158540222 0.00021 0.064 -0.2
rededge Q rededge 1D 1 1D 324 1 AX-94922494 0.00017 0.09 -0.15
rededge Q rededge 2A 1 2A 74-78 18 AX-110998568 0.00023 0.099 -0.15
rededge Q rededge 2A 1 2A 74-78 18 BS00036766 51 0.00062 0.11 -0.14
rededge Q rededge 2A 1 2A 74-78 18 BS00036767 51 2.1e-06 0.073 -0.25
rededge Q rededge 2A 1 2A 74-78 18 Kukri rep c83485 398 2.1e-06 0.073 -0.25
rededge Q rededge 2A 1 2A 74-78 18 Tdurum contig9731 121 1.4e-05 0.083 -0.22
rededge Q rededge 2A 1 2A 74-78 18 Excalibur c15733 252 1.4e-05 0.083 -0.22
rededge Q rededge 2A 1 2A 74-78 18 Excalibur rep c111743 194 0.00016 0.073 -0.2
rededge Q rededge 2A 1 2A 74-78 18 GENE-1365 255 1.4e-05 0.083 -0.22
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Table A5 continued: QTL identified for spectral time-series (p < 0.001)

Phenotype QTL Chr Span # Markers Peak-marker P.value MAF Effect
rededge Q rededge 2A 1 2A 74-78 18 RAC875 c20700 853 1.4e-05 0.083 -0.22
rededge Q rededge 2A 1 2A 74-78 18 Tdurum contig48302 532 1.4e-05 0.083 -0.22
rededge Q rededge 2A 1 2A 74-78 18 Tdurum contig5311 67 1.4e-05 0.083 -0.22
rededge Q rededge 2A 1 2A 74-78 18 AX-110428187 1.8e-05 0.08 -0.21
rededge Q rededge 2A 1 2A 74-78 18 BS00039983 51 1.8e-05 0.08 -0.21
rededge Q rededge 2A 1 2A 74-78 18 Kukri rep c104727 91 0.0001 0.054 -0.24
rededge Q rededge 2A 1 2A 74-78 18 wsnp CAP11 rep c8768 3788007 0.0005 0.062 -0.2
rededge Q rededge 2A 1 2A 74-78 18 wsnp CAP12 c901 472535 0.0005 0.062 -0.2
rededge Q rededge 2A 1 2A 74-78 18 wsnp Ex rep c68113 66877517 6.9e-05 0.054 -0.25
rededge Q rededge 2A 1 2A 74-78 18 wsnp JD c12088 12411845 0.0005 0.062 -0.2
rededge Q rededge 2A 2 2A 119-127 2 AX-94457129 0.00098 0.27 -0.094
rededge Q rededge 2A 2 2A 119-127 2 Kukri c441 891 2.2e-06 0.076 -0.21
rededge Q rededge 2A 3 2A 770 1 AX-109961625 0.00067 0.22 -0.12
rededge Q rededge 2B 1 2B 114-129 2 Excalibur c37649 125 0.00046 0.1 -0.14
rededge Q rededge 2B 1 2B 114-129 2 BobWhite c6166 319 0.00016 0.13 -0.15
rededge Q rededge 2B 2 2B 114-139 2 AX-89770172 0.00095 0.32 -0.11
rededge Q rededge 2B 2 2B 114-139 2 BS00059315 51 0.00036 0.28 -0.13
rededge Q rededge 3A 1 3A 478 1 AX-95247676 9.9e-05 0.12 0.13
rededge Q rededge 3A 2 3A 743 1 AX-95254393 6.5e-05 0.25 -0.13
rededge Q rededge 3B 1 3B 191-206 2 AX-94853637 0.00052 0.062 -0.17
rededge Q rededge 3B 1 3B 191-206 2 CAP7 c3916 256 0.00052 0.062 -0.17
rededge Q rededge 3B 2 3B 237 1 AX-89355524 0.00052 0.062 -0.17
rededge Q rededge 3B 3 3B 473-474 5 AX-110403928 4.5e-06 0.095 -0.18
rededge Q rededge 3B 3 3B 473-474 5 AX-110918031 0.00017 0.09 -0.15
rededge Q rededge 3B 3 3B 473-474 5 RAC875 c50787 146 6.9e-06 0.097 -0.17
rededge Q rededge 3B 3 3B 473-474 5 AX-110958104 0.00029 0.087 -0.15
rededge Q rededge 3B 3 3B 473-474 5 AX-158538397 0.00062 0.08 -0.13
rededge Q rededge 3B 4 3B 501-507 2 RAC875 c2044 170 3.1e-05 0.16 0.17
rededge Q rededge 3B 4 3B 501-507 2 Tdurum contig10107 580 5.2e-05 0.16 0.17
rededge Q rededge 3B 5 3B 576 1 AX-158541479 0.00019 0.093 0.18
rededge Q rededge 3B 6 3B 627 1 AX-158598230 3.3e-05 0.19 0.15
rededge Q rededge 3D 1 3D 86 1 IAAV2729 6.3e-05 0.11 0.13
rededge Q rededge 4A 1 4A 673 1 Excalibur c53864 331 6.7e-06 0.067 0.22
rededge Q rededge 4B 1 4B 31-59 8 TG0010a 0.0001 0.28 0.12
rededge Q rededge 4B 1 4B 31-59 8 TG0010b 0.0001 0.28 0.12
rededge Q rededge 4B 1 4B 31-59 8 AX-111081978 0.00038 0.3 0.1
rededge Q rededge 4B 1 4B 31-59 8 AX-158564543 0.0006 0.29 0.1
rededge Q rededge 4B 1 4B 31-59 8 IAAV971 0.00076 0.26 0.11
rededge Q rededge 4B 1 4B 31-59 8 Tdurum contig81797 369 0.00063 0.093 -0.15
rededge Q rededge 4B 1 4B 31-59 8 wsnp Ex c8913 14881924 0.00063 0.093 -0.15
rededge Q rededge 4B 1 4B 31-59 8 Excalibur c56787 95 0.00044 0.24 0.11
rededge Q rededge 5A 1 5A 445 1 AX-158542603 0.00065 0.19 -0.11
rededge Q rededge 5A 2 5A 549 1 AX-94501987 3.8e-06 0.074 0.21
rededge Q rededge 5A 3 5A 683 1 Tdurum contig62286 271 0.00034 0.097 -0.16
rededge Q rededge 5B 1 5B 421 2 AX-95099091 0.00065 0.069 -0.14
rededge Q rededge 5B 1 5B 421 2 Excalibur c24638 380 0.00077 0.066 -0.15
rededge Q rededge 5B 2 5B 589 1 AX-158525626 0.00073 0.18 -0.11
rededge Q rededge 6B 1 6B 644 1 TA004372-0730 0.00073 0.12 -0.13
rededge Q rededge 6B 2 6B 701 1 BobWhite c35035 317 0.00017 0.23 0.1
rededge Q rededge 6D 1 6D 2 1 CAP7 c1208 150 0.00057 0.09 0.13
rededge Q rededge 6D 2 6D 26 1 D GB5Y7FA02FHK0M 407 0.00064 0.08 -0.15
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Table A5 continued: QTL identified for spectral time-series (p < 0.001)

Phenotype QTL Chr Span # Markers Peak-marker P.value MAF Effect
rededge Q rededge 7A 1 7A 59 1 Excalibur c57078 255 5.6e-06 0.074 0.22
rededge Q rededge 7B 1 7B 658 1 Tdurum contig43995 370 0.00066 0.087 -0.14
rededge Q rededge Unkown 1 Unkown 1127 1 Kukri c7914 99 2.1e-06 0.073 -0.25
rededge Q rededge Unkown 2 Unkown 1335 1 RAC875 rep c71921 672 1.8e-05 0.066 -0.18
rededge Q rededge Unkown 3 Unkown 1376 1 RFL Contig5758 757 7.8e-05 0.17 0.16
SR Q SR 2A 1 2A 4 1 Kukri c16650 797 0.00038 0.11 0.072
SR Q SR 4B 1 4B 20 1 Kukri rep c74376 188 0.00079 0.29 -0.033
SR Q SR 5A 1 5A 300 1 AX-110003331 0.00013 0.21 0.043
SR Q SR 6A 1 6A 615 4 BobWhite rep c50324 373 0.0004 0.1 0.073
SR Q SR 6A 1 6A 615 4 Kukri rep c103067 383 0.0004 0.1 0.073
SR Q SR 6A 1 6A 615 4 RAC875 c24832 252 0.00041 0.1 0.074
SR Q SR 6A 1 6A 615 4 RAC875 c8088 61 0.00012 0.11 0.077
SR Q SR 6B 1 6B 718-721 3 RFL Contig2615 700 0.00023 0.11 0.072
SR Q SR 6B 1 6B 718-721 3 Kukri c19426 489 0.00038 0.11 0.072
SR Q SR 6B 1 6B 718-721 3 Kukri c64223 135 0.00024 0.11 0.074
SR Q SR 6D 1 6D 471-473 3 BobWhite c13202 312 0.0004 0.1 0.073
SR Q SR 6D 1 6D 471-473 3 Kukri c48283 78 0.00051 0.11 0.072
SR Q SR 6D 1 6D 471-473 3 RAC875 rep c104893 620 0.00051 0.11 0.072
SR Q SR 7A 1 7A 51 1 AX-94617750 8.2e-05 0.061 0.079
SR Q SR 7A 2 7A 669 1 BS00021261 51 0.0005 0.078 -0.07
SR Q SR Unkown 1 Unkown 1569 1 Tdurum contig68258 1773 0.00051 0.11 0.072

7.7 QTL Identified for AUC-values of VIs Using MLM

Table A6: QTL identified for AUC-values of VIs (p < 0.001)

Phenotype QTL Chr Span # Markers Peak marker P.value MAF Effect

GNDVI Q GNDVI 4A 4A 512 1 RAC875 c91464 170 9× 10−5 0.062 0.38
GNDVI Q GNDVI 7A 7A 51 2 AX-94617750 2.5× 10−5 0.061 0.43
NDVI Q NDVI 4B 4B 20-32 3 Kukri rep c74376 188 0.00045 0.29 -0.17
NDVI Q NDVI 4B 4B 20-32 3 AX-89747834 0.00052 0.31 -0.18
NDVI Q NDVI 4B 4B 20-32 3 AX-89380014 0.00016 0.39 0.2
NDVI Q NDVI 5A 5A 300 1 AX-110003331 3.1× 10−5 0.21 0.23
NDVI Q NDVI 7A 7A 51 2 AX-94617750 0.00014 0.061 0.38
SR Q SR 2A 2A 4 1 Kukri c16650 797 0.00019 0.11 0.35
SR Q SR 6A 6A 615 1 RAC875 c8088 61 9.1× 10−5 0.11 0.37
SR Q SR 6B 6B 718-719 2 RFL Contig2615 700 0.00012 0.11 0.36
SR Q SR 6B 6B 718-719 2 Kukri c19426 489 0.00019 0.11 0.35

7.8 QTL Identified for Agronomic Traits Using MLM

Table A7: QTL identified for agronomic trait (p < 0.001)

Phenotype QTL Chr Span # Markers Peak-marker P.value MAF Effect
DH dss Q DH 1A 1 1A 14 1 AX-94741250 0.00073 0.49 -0.34
DH dss Q DH 1B 1 1B 1-2 2 BS00022180 51 0.00036 0.072 -0.91
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Table A7 continued: QTL identified for agronomic trait (p < 0.001)

Phenotype QTL Chr Span # Markers Peak-marker P.value MAF Effect
DH dss Q DH 1B 1 1B 1-2 2 BS00071161 51 6.7e-05 0.079 -0.92
DH dss Q DH 2A 1 2A 733 1 BS00024921 51 0.00031 0.38 -0.38
DH dss Q DH 3A 1 3A 267 1 BS00110129 51 8.7e-05 0.42 -0.41
DH dss Q DH 5A 1 5A 10 1 tplb0029e02 1186 0.00016 0.23 0.4
DH dss Q DH 7A 1 7A 669 1 BS00021261 51 0.00062 0.077 -0.7
DH dss Q DH 7A 2 7A 724 1 wsnp Ku c28104 38042857 0.00018 0.076 0.68
DH dss Q DH 7B 1 7B 62 1 Kukri c14766 484 9.1e-06 0.058 0.89
DH dss Q DH 7B 2 7B 634 1 AX-110369629 0.00092 0.1 0.57
DH dss Q DH Unkown 1 Unkown 38 1 AX-158598740 0.00021 0.45 0.35
DM dss Q DM 2A 1 2A 63 1 JD c3930 358 7.8e-05 0.052 -1.6
DM dss Q DM 2A 2 2A 415 1 AX-94499272 1.2e-05 0.076 -1.6
DM dss Q DM 2A 3 2A 504-505 2 Kukri c15489 626 9.1e-05 0.34 -0.7
DM dss Q DM 2A 3 2A 504-505 2 AX-158540703 1.9e-05 0.24 -0.87
DM dss Q DM 2B 1 2B 441 1 Kukri c57491 156 0.00014 0.34 -0.67
DM dss Q DM 2D 1 2D 318 1 AX-158572764 1.2e-05 0.076 -1.6
DM dss Q DM 4A 1 4A 25 1 wsnp Ex c22913 32130617 3.3e-05 0.065 1.2
DM dss Q DM 4B 1 4B 32 1 AX-89380014 0.00027 0.39 0.62
DM dss Q DM 4B 2 4B 167 1 Excalibur c52517 464 2e-05 0.41 0.73
DM dss Q DM 4D 1 4D 90 1 AX-95073308 0.00049 0.3 0.63
DM dss Q DM 5A 1 5A 548 1 AX-158585104 0.0001 0.3 -0.7
DM dss Q DM 6A 1 6A 74 1 RAC875 c17297 341 0.00021 0.29 0.66
DM dss Q DM 6A 2 6A 214 1 RAC875 c15872 141 2e-05 0.41 0.73
DM dss Q DM 6B 1 6B 132 2 Kukri rep c71420 511 0.00013 0.16 0.84
DM dss Q DM 6B 1 6B 132 2 Tdurum contig14559 741 0.00021 0.29 0.66
GPC pct Q GPC 1A 1 1A 537 1 AX-158556627 1.9e-05 0.079 -0.4
GPC pct Q GPC 1B 1 1B 472 1 wsnp RFL Contig3866 4228783 4.2e-05 0.2 -0.25
GPC pct Q GPC 1B 2 1B 662 1 AX-158570571 1e-04 0.088 -0.34
GPC pct Q GPC 2D 1 2D 62 1 AX-94459264 0.00043 0.086 -0.26
GPC pct Q GPC 3A 1 3A 211 1 AX-108875928 4.2e-05 0.2 -0.25
GPC pct Q GPC 3A 2 3A 402 1 wsnp Ku c44089 51445136 4.2e-05 0.2 -0.25
GPC pct Q GPC 4A 1 4A 700 1 wsnp BG313770B Ta 1 1 0.00026 0.058 -0.39
GPC pct Q GPC 5A 1 5A 2 1 AX-95114232 4.1e-05 0.21 -0.27
GPC pct Q GPC 6B 1 6B 10 1 AX-158559508 0.00017 0.13 -0.31
GPC pct Q GPC Unkown 1 Unkown 820 1 IAAV6234 0.00066 0.053 -0.4
GPC pct Q GPC Unkown 2 Unkown 994 1 Kukri c2121 2345 5.4e-05 0.13 -0.33
GPC pct Q GPC Unkown 3 Unkown 1674 1 TGWA25K-TG0223 0.00015 0.06 -0.4
GY g m2 Q GY 1B 1 1B 472 1 wsnp RFL Contig3866 4228783 0.00031 0.2 14
GY g m2 Q GY 1B 2 1B 530 1 GENE-0410 71 0.00088 0.31 -16
GY g m2 Q GY 2A 1 2A 758 2 AX-158540701 0.00024 0.086 24
GY g m2 Q GY 2A 1 2A 758 2 Excalibur c52319 257 6.8e-05 0.084 27
GY g m2 Q GY 2D 1 2D 62 1 AX-94459264 0.00075 0.086 17
GY g m2 Q GY 3A 1 3A 211 1 AX-108875928 0.00031 0.2 14
GY g m2 Q GY 3A 2 3A 402 1 wsnp Ku c44089 51445136 0.00031 0.2 14
GY g m2 Q GY 6B 1 6B 7-10 2 BobWhite c43135 397 7.3e-05 0.14 22
GY g m2 Q GY 6B 1 6B 7-10 2 AX-158559508 0.00021 0.13 20
GY g m2 Q GY 6D 1 6D 54 1 TA001847-0566 0.00028 0.11 -19
GY g m2 Q GY 7A 1 7A 112 2 RAC875 c67063 703 0.00025 0.16 -16
GY g m2 Q GY 7A 1 7A 112 2 RAC875 c67063 984 0.00038 0.16 -15
GY g m2 Q GY Unkown 1 Unkown 1265 1 RAC875 c48703 189 0.00049 0.055 26
GY g m2 Q GY Unkown 2 Unkown 1804 1 wsnp BQ161779D Ta 2 1 0.00063 0.11 -26
PH cm Q PH 2A 1 2A 528-543 2 AX-158561839 0.0008 0.082 -2.9
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Table A7 continued: QTL identified for agronomic trait (p < 0.001)

Phenotype QTL Chr Span # Markers Peak-marker P.value MAF Effect
PH cm Q PH 2A 1 2A 528-543 2 AX-110399256 0.00083 0.079 -3
PH cm Q PH 4A 1 4A 570-578 2 CAP11 c3631 75 0.00028 0.33 2.4
PH cm Q PH 4A 1 4A 570-578 2 RAC875 c19303 228 3.8e-07 0.33 3.2
PH cm Q PH 4B 1 4B 13-79 18 AX-158583339 0.00026 0.23 2.2
PH cm Q PH 4B 1 4B 13-79 18 BS00037094 51 0.00024 0.24 2.1
PH cm Q PH 4B 1 4B 13-79 18 Tdurum contig93710 409 4.9e-05 0.23 2.4
PH cm Q PH 4B 1 4B 13-79 18 AX-94685504 5e-06 0.48 -2.4
PH cm Q PH 4B 1 4B 13-79 18 TG0010a 1.7e-10 0.29 4.3
PH cm Q PH 4B 1 4B 13-79 18 TG0010b 1.7e-10 0.29 4.3
PH cm Q PH 4B 1 4B 13-79 18 AX-89380014 0.00016 0.39 -2.1
PH cm Q PH 4B 1 4B 13-79 18 AX-111081978 2.7e-08 0.3 3.5
PH cm Q PH 4B 1 4B 13-79 18 AX-158564543 2.2e-08 0.3 3.6
PH cm Q PH 4B 1 4B 13-79 18 AX-158564633 1.3e-06 0.42 2.6
PH cm Q PH 4B 1 4B 13-79 18 AX-158537142 2.5e-08 0.29 3.5
PH cm Q PH 4B 1 4B 13-79 18 AX-158564542 6.7e-07 0.33 3.1
PH cm Q PH 4B 1 4B 13-79 18 Tdurum contig33737 157 4.4e-08 0.29 3.5
PH cm Q PH 4B 1 4B 13-79 18 IAAV971 5.8e-08 0.26 3.8
PH cm Q PH 4B 1 4B 13-79 18 AX-158618805 1.2e-05 0.25 2.9
PH cm Q PH 4B 1 4B 13-79 18 Excalibur c56787 95 8.3e-08 0.24 3.6
PH cm Q PH 4B 1 4B 13-79 18 Excalibur c17607 542 1.9e-06 0.24 3.2
PH cm Q PH 4B 1 4B 13-79 18 AX-158558529 2.2e-06 0.23 3.2
PH cm Q PH 4D 1 4D 19-26 3 TG0011a 2.8e-10 0.22 4.4
PH cm Q PH 4D 1 4D 19-26 3 TG0011b 8.1e-10 0.25 4.1
PH cm Q PH 4D 1 4D 19-26 3 BobWhite s64797 152 4.9e-08 0.29 3.5
PH cm Q PH 5D 1 5D 563 1 RAC875 rep c78258 214 0.00018 0.07 -3.8
PH cm Q PH 7A 1 7A 691 1 Excalibur c61749 474 0.00014 0.24 2.2
PH cm Q PH Unkown 1 Unkown 1610 1 TGWA25K-TG0011 6.7e-11 0.21 4.7

7.9 QTL Identified for AUC-values of VIs using GA-SVR

Table A8: QTL identified using GA/SVR-pipeline for AUV-values of VIs

Phenotype (AUC) QTL SNP Chr Span

GNDVI Q GNDVI 1A RAC875 c14926 589 1A 29-31
GNDVI Q GNDVI 1A AX-94682787 1A 29-31
GNDVI Q GNDVI 4A AX-108900808 4A 543
GNDVI Q GNDVI 5A wsnp Ex c22984 32207214 5A 570
GNDVI Q GNDVI 5B AX-158526286 5B 36
GNDVI Q GNDVI 6B wsnp Ex c45348 51169164 6B 199
NDVI Q NDVI 1B BobWhite c11044 322 1B 567
NDVI Q NDVI 3A wsnp Ex c18223 27035083 3A 603-615
NDVI Q NDVI 3A AX-94481094 3A 603-615
NDVI Q NDVI 3A AX-89351265 3A 603-615
NDVI Q NDVI 4A Kukri c6954 320 4A 97
NDVI Q NDVI 4A Excalibur c25699 113 4A 623
NDVI Q NDVI 6B Ra c26319 331 6B 606
NDVI Q NDVI 7A RAC875 c11969 384 7A 11
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Table A8 continued: Final set of SNPs identified using GA/SVR-pipeline

Phenotype (AUC) QTL SNP Chr Span

NDVI Q NDVI Unkown wsnp Ex c36701 44603531 Unkown 1934
SR Q SR 1A RAC875 c14926 589 1A 29
SR Q SR 4A AX-158581619 4A 451
SR Q SR 4A tplb0024j12 840 4A 538
SR Q SR 5B wsnp Ku c38713 47298856 5B 686
SR Q SR 7B wsnp Ex c3738 6809767 7B 707

7.10 QTL Identified for Agronomic Traits Using GA-SVR

Table A9: Final set of QTL identified using GA/SVR-pipeline for agronomic traits

Phenotype (agronmic) QTL Chr Span Peak Marker(s)

DH dss Q DH 4A 1 4A 684-685 CAP11 c18 238
DH dss Q DH 4A 1 4A 684-685 Excalibur c4325 1150
DH dss Q DH 7B 1 7B 42 wsnp Ex c11106 18002976
DM dss Q DM 1A 1 1A 482 BS00087600 51
DM dss Q DM 1A 2 1A 516 AX-158560524
DM dss Q DM 1B 1 1B 516 AX-158570189
DM dss Q DM 2D 1 2D 9 D contig17313 245
DM dss Q DM 2D 2 2D 97 AX-94636903
DM dss Q DM 3A 1 3A 603 wsnp Ex c18223 27035083
DM dss Q DM 4A 1 4A 38 wsnp Ex rep c67145 65628860
DM dss Q DM 4A 2 4A 597 AX-158524717
DM dss Q DM 4A 2 4A 597 BS00049911 51
DM dss Q DM 4B 1 4B 559 RAC875 c2545 1186
DM dss Q DM 4B 2 4B 647 AX-158550174
DM dss Q DM 5A 1 5A 549 AX-94386305
DM dss Q DM 5B 1 5B 435 AX-110592681
DM dss Q DM 5D 1 5D 4 TG0028
DM dss Q DM 7A 1 7A 27 IAAV6131
GPC pct Q GPC 1A 1 1A 26-27 wsnp Ku c42878 50516167
GPC pct Q GPC 1A 1 1A 26-27 Kukri c7436 2259
GPC pct Q GPC 1A 2 1A 520 IAAV2694
GPC pct Q GPC 1D 1 1D 34 BS00108305 51
GPC pct Q GPC 3A 1 3A 734 RAC875 c61934 186
GPC pct Q GPC 3B 1 3B 562-587 AX-158541608
GPC pct Q GPC 3B 1 3B 562-587 AX-158538436
GPC pct Q GPC 3B 1 3B 562-587 AX-95629008
GPC pct Q GPC 3B 1 3B 562-587 wsnp Ex c3096 5709369
GPC pct Q GPC 4A 1 4A 597 AX-158524643
GPC pct Q GPC 4A 1 4A 597 TA005380-0966
GPC pct Q GPC 4B 1 4B 27 BS00010925 51
GPC pct Q GPC 5A 1 5A 111 wsnp Ex c31570 40343841
GPC pct Q GPC 5A 2 5A 505 RAC875 c28819 281
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Table A9 continued: Final set of QTL identified using GA/SVR-pipeline for agronomic traits

Phenotype (agronmic) QTL Chr Span Peak Marker(s)

GPC pct Q GPC 5A 3 5A 585-587 RAC875 rep c116420 103
GPC pct Q GPC 5A 3 5A 585-587 AX-158551053
GPC pct Q GPC 5A 3 5A 585-587 wsnp Ex rep c66689 65010988
GPC pct Q GPC 5A 3 5A 585-587 BS00022071 51
GPC pct Q GPC 5A 4 5A 708 AX-158550750
GPC pct Q GPC 5A 4 5A 708 wsnp Ex c2171 4072995
GPC pct Q GPC 5B 1 5B 589 AX-158525626
GPC pct Q GPC 6A 1 6A 523 wsnp JD rep c48797 33040150
GPC pct Q GPC 6B 1 6B 11 AX-94465053
GPC pct Q GPC 7A 1 7A 8 TA001746-1415
GPC pct Q GPC 7A 2 7A 730-734 BS00020236 51
GPC pct Q GPC 7A 2 7A 730-734 RFL Contig602 627
GPC pct Q GPC 7B 1 7B 519-541 wsnp BE443010B Ta 2 1
GPC pct Q GPC 7B 1 7B 519-541 AX-158560004
GPC pct Q GPC 7B 1 7B 519-541 AX-94395385
GPC pct Q GPC 7B 1 7B 519-541 AX-158592758
GPC pct Q GPC 7B 2 7B 584 RAC875 c60770 82
GPC pct Q GPC 7B 3 7B 743 Tdurum contig30909 76
GPC pct Q GPC 7D 1 7D 5 TA013055-0991
GPC pct Q GPC 7D 2 7D 488 AX-94678472
GY g m2 Q GY 1A 1 1A 27-33 RAC875 c8245 272
GY g m2 Q GY 1A 1 1A 27-33 CAP11 c3218 126
GY g m2 Q GY 1A 2 1A 474 AX-95110122
GY g m2 Q GY 1A 3 1A 501-520 wsnp Ra c3270 6136601
GY g m2 Q GY 1A 3 1A 501-520 IAAV2694
GY g m2 Q GY 1B 1 1B 4-41 BS00022504 51
GY g m2 Q GY 1B 1 1B 4-41 Tdurum contig78972 316
GY g m2 Q GY 1B 1 1B 4-41 Kukri c47342 73
GY g m2 Q GY 1B 1 1B 4-41 GENE-0427 442
GY g m2 Q GY 1B 2 1B 629 Tdurum contig57927 171
GY g m2 Q GY 1B 3 1B 680 Tdurum contig13879 352
GY g m2 Q GY 1D 1 1D 13-36 Ex c6145 1877
GY g m2 Q GY 1D 1 1D 13-36 RAC875 c7752 145
GY g m2 Q GY 1D 1 1D 13-36 BS00025736 51
GY g m2 Q GY 1D 1 1D 13-36 Kukri c9693 1890
GY g m2 Q GY 1D 1 1D 13-36 wsnp CAP12 c633 339740
GY g m2 Q GY 1D 2 1D 274 BobWhite c8428 346
GY g m2 Q GY 2A 1 2A 18-21 AX-94992901
GY g m2 Q GY 2A 1 2A 18-21 wsnp Ex c6924 11936998
GY g m2 Q GY 2A 2 2A 707-710 AX-111993689
GY g m2 Q GY 2A 2 2A 707-710 AX-158572604
GY g m2 Q GY 2A 2 2A 707-710 Ku c35823 743
GY g m2 Q GY 2B 1 2B 68 AX-158562556
GY g m2 Q GY 2B 2 2B 139 wsnp Ku c11665 18999583
GY g m2 Q GY 2B 3 2B 675-690 AX-94720460
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Table A9 continued: Final set of QTL identified using GA/SVR-pipeline for agronomic traits

Phenotype (agronmic) QTL Chr Span Peak Marker(s)

GY g m2 Q GY 2B 3 2B 675-690 CAP11 c2194 115
GY g m2 Q GY 2B 3 2B 675-690 wsnp Ra c10658 17500498
GY g m2 Q GY 2D 1 2D 27 AX-94732155
GY g m2 Q GY 2D 2 2D 567 AX-95120131
GY g m2 Q GY 2D 3 2D 650 IAAV6032
GY g m2 Q GY 3A 1 3A 14 AX-158523996
GY g m2 Q GY 3A 2 3A 511-534 AX-95205191
GY g m2 Q GY 3A 2 3A 511-534 wsnp Ex c15269 23491104
GY g m2 Q GY 3A 3 3A 572-589 Excalibur c33545 134
GY g m2 Q GY 3A 3 3A 572-589 IAAV3838
GY g m2 Q GY 3A 4 3A 706 AX-94843318
GY g m2 Q GY 3A 5 3A 729-734 IAAV3851
GY g m2 Q GY 3A 5 3A 729-734 AX-110447070
GY g m2 Q GY 3A 5 3A 729-734 RAC875 c61934 186
GY g m2 Q GY 3B 1 3B 172 tplb0062h15 59
GY g m2 Q GY 3B 2 3B 215 AX-111014699
GY g m2 Q GY 3B 3 3B 414-416 TA001218-0519
GY g m2 Q GY 3B 3 3B 414-416 AX-94800373
GY g m2 Q GY 3B 3 3B 414-416 AX-110409073
GY g m2 Q GY 3B 4 3B 455-480 BS00095061 51
GY g m2 Q GY 3B 4 3B 455-480 RAC875 c44365 203
GY g m2 Q GY 3B 4 3B 455-480 Excalibur c29625 222
GY g m2 Q GY 3B 5 3B 514 AX-158541642
GY g m2 Q GY 3B 6 3B 556-562 AX-95151132
GY g m2 Q GY 3B 6 3B 556-562 IACX3871
GY g m2 Q GY 3B 6 3B 556-562 AX-158541608
GY g m2 Q GY 3B 7 3B 594-595 AX-95155468
GY g m2 Q GY 3B 7 3B 594-595 AX-158579145
GY g m2 Q GY 3B 8 3B 690-697 AX-158562999
GY g m2 Q GY 3B 8 3B 690-697 Excalibur c47250 726
GY g m2 Q GY 3B 8 3B 690-697 wsnp CAP11 c2309 1201554
GY g m2 Q GY 3B 8 3B 690-697 AX-110483820
GY g m2 Q GY 3B 9 3B 750-782 BS00077967 51
GY g m2 Q GY 3B 9 3B 750-782 BS00063624 51
GY g m2 Q GY 3B 9 3B 750-782 AX-158541480
GY g m2 Q GY 3B 9 3B 750-782 AX-108865765
GY g m2 Q GY 3D 1 3D 332 AX-95210805
GY g m2 Q GY 3D 2 3D 416 AX-94808747
GY g m2 Q GY 4A 1 4A 39 wsnp Ex c5690 9994305
GY g m2 Q GY 4A 2 4A 103-105 GENE-2768 150
GY g m2 Q GY 4A 2 4A 103-105 TA001684-0426
GY g m2 Q GY 4A 3 4A 424 AX-94639791
GY g m2 Q GY 4A 4 4A 662 AX-95257547
GY g m2 Q GY 4B 1 4B 429 Excalibur rep c106935 390
GY g m2 Q GY 4B 2 4B 663-666 AX-94689886
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Table A9 continued: Final set of QTL identified using GA/SVR-pipeline for agronomic traits

Phenotype (agronmic) QTL Chr Span Peak Marker(s)

GY g m2 Q GY 4B 2 4B 663-666 AX-94575968
GY g m2 Q GY 4B 2 4B 663-666 RAC875 c48025 483
GY g m2 Q GY 4D 1 4D 444 AX-94632374
GY g m2 Q GY 5A 1 5A 343 RAC875 rep c106044 137
GY g m2 Q GY 5A 2 5A 427 AX-158551075
GY g m2 Q GY 5A 3 5A 482 Kukri rep c77459 316
GY g m2 Q GY 5A 4 5A 570-586 wsnp Ex c22984 32207214
GY g m2 Q GY 5A 4 5A 570-586 wsnp Ex rep c66689 65010988
GY g m2 Q GY 5A 5 5A 687-708 Ku c19516 384
GY g m2 Q GY 5A 5 5A 687-708 AX-158564918
GY g m2 Q GY 5A 5 5A 687-708 AX-95097524
GY g m2 Q GY 5A 5 5A 687-708 BobWhite c8266 227
GY g m2 Q GY 5A 5 5A 687-708 Excalibur c2171 2728
GY g m2 Q GY 5A 5 5A 687-708 wsnp Ex c2171 4072774
GY g m2 Q GY 5B 1 5B 36 AX-158526286
GY g m2 Q GY 5B 2 5B 571-577 AX-158599552
GY g m2 Q GY 5B 2 5B 571-577 Ku c55173 549
GY g m2 Q GY 5B 2 5B 571-577 Tdurum contig32812 325
GY g m2 Q GY 5B 2 5B 571-577 AX-94914862
GY g m2 Q GY 5B 3 5B 687 AX-94503590
GY g m2 Q GY 6A 1 6A 18-22 CAP8 c1881 215
GY g m2 Q GY 6A 1 6A 18-22 Ex c13223 1847
GY g m2 Q GY 6A 1 6A 18-22 AX-94990595
GY g m2 Q GY 6A 1 6A 18-22 Tdurum contig75595 586
GY g m2 Q GY 6A 2 6A 49 AX-109290505
GY g m2 Q GY 6A 3 6A 499 Excalibur rep c69275 346
GY g m2 Q GY 6A 4 6A 564 Kukri rep c104521 601
GY g m2 Q GY 6A 5 6A 603-613 AX-158526938
GY g m2 Q GY 6A 5 6A 603-613 AX-109869840
GY g m2 Q GY 6A 5 6A 603-613 AX-158552191
GY g m2 Q GY 6B 1 6B 538-556 AX-110914919
GY g m2 Q GY 6B 1 6B 538-556 AX-111013457
GY g m2 Q GY 6B 1 6B 538-556 wsnp Ku c1876 3666308
GY g m2 Q GY 6B 2 6B 634 RAC875 c7965 80
GY g m2 Q GY 6B 3 6B 710 AX-94549612
GY g m2 Q GY 6D 1 6D 461-463 AX-158530763
GY g m2 Q GY 6D 1 6D 461-463 Ex c7086 187
GY g m2 Q GY 6D 1 6D 461-463 RAC875 c3156 630
GY g m2 Q GY 6D 1 6D 461-463 wsnp Ex c4942 8793029
GY g m2 Q GY 7A 1 7A 4-27 Tdurum contig52015 1320
GY g m2 Q GY 7A 1 7A 4-27 RAC875 c23140 909
GY g m2 Q GY 7A 1 7A 4-27 AX-158626374
GY g m2 Q GY 7A 2 7A 65-66 BS00098026 51
GY g m2 Q GY 7A 2 7A 65-66 AX-109439139
GY g m2 Q GY 7A 3 7A 106-128 AX-94815778
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Table A9 continued: Final set of QTL identified using GA/SVR-pipeline for agronomic traits

Phenotype (agronmic) QTL Chr Span Peak Marker(s)

GY g m2 Q GY 7A 3 7A 106-128 AX-95090243
GY g m2 Q GY 7A 3 7A 106-128 BS00021769 51
GY g m2 Q GY 7A 3 7A 106-128 AX-158539493
GY g m2 Q GY 7A 3 7A 106-128 Ex c44379 2197
GY g m2 Q GY 7A 3 7A 106-128 AX-94534717
GY g m2 Q GY 7A 3 7A 106-128 AX-158567167
GY g m2 Q GY 7A 3 7A 106-128 BS00022435 51
GY g m2 Q GY 7A 4 7A 225 Ku c17257 926
GY g m2 Q GY 7A 5 7A 611-625 BS00092630 51
GY g m2 Q GY 7A 5 7A 611-625 Tdurum contig42140 871
GY g m2 Q GY 7A 6 7A 733-734 Tdurum contig28828 664
GY g m2 Q GY 7A 6 7A 733-734 RFL Contig602 627
GY g m2 Q GY 7B 1 7B 38 IACX3991
GY g m2 Q GY 7B 2 7B 83 GENE-2472 462
GY g m2 Q GY 7B 3 7B 124-191 AX-158544168
GY g m2 Q GY 7B 3 7B 124-191 GENE-4867 119
GY g m2 Q GY 7B 3 7B 124-191 Ra c11468 305
GY g m2 Q GY 7B 3 7B 124-191 Ra c7974 1192
GY g m2 Q GY 7B 3 7B 124-191 Ra c7974 559
GY g m2 Q GY 7B 3 7B 124-191 BS00031611 51
GY g m2 Q GY 7B 3 7B 124-191 Tdurum contig51313 408
GY g m2 Q GY 7B 3 7B 124-191 AX-158554342
GY g m2 Q GY 7B 3 7B 124-191 AX-94652419
GY g m2 Q GY 7B 3 7B 124-191 AX-158593566
GY g m2 Q GY 7B 3 7B 124-191 RAC875 c52266 76
GY g m2 Q GY 7B 3 7B 124-191 BS00072941 51
GY g m2 Q GY 7B 3 7B 124-191 AX-109509402
GY g m2 Q GY 7B 3 7B 124-191 Tdurum contig75931 1967
GY g m2 Q GY 7B 4 7B 254 AX-94428852
GY g m2 Q GY 7B 5 7B 327-331 Kukri c15760 212
GY g m2 Q GY 7B 5 7B 327-331 TA004043-0135
GY g m2 Q GY 7B 5 7B 327-331 BS00062785 51
GY g m2 Q GY 7B 6 7B 463 AX-158554043
GY g m2 Q GY 7B 7 7B 488-506 Excalibur c16687 476
GY g m2 Q GY 7B 7 7B 488-506 Kukri c48870 115
GY g m2 Q GY 7B 7 7B 488-506 BS00053287 51
GY g m2 Q GY 7B 7 7B 488-506 AX-158592412
GY g m2 Q GY 7B 7 7B 488-506 RAC875 c7474 1661
GY g m2 Q GY 7B 8 7B 539-584 wsnp Ex c47153 52447553
GY g m2 Q GY 7B 8 7B 539-584 AX-158560004
GY g m2 Q GY 7B 8 7B 539-584 AX-94395385
GY g m2 Q GY 7B 8 7B 539-584 Tdurum contig56342 134
GY g m2 Q GY 7B 8 7B 539-584 AX-158592790
GY g m2 Q GY 7B 8 7B 539-584 Excalibur c41452 997
GY g m2 Q GY 7B 8 7B 539-584 AX-111868806
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Table A9 continued: Final set of QTL identified using GA/SVR-pipeline for agronomic traits

Phenotype (agronmic) QTL Chr Span Peak Marker(s)

GY g m2 Q GY 7B 8 7B 539-584 BobWhite c3269 141
GY g m2 Q GY 7B 8 7B 539-584 wsnp BE498323B Ta 2 1
GY g m2 Q GY 7B 8 7B 539-584 AX-95217675
GY g m2 Q GY 7B 8 7B 539-584 BS00108573 51
GY g m2 Q GY 7B 8 7B 539-584 AX-158592756
GY g m2 Q GY 7B 8 7B 539-584 Kukri c20611 293
GY g m2 Q GY 7B 8 7B 539-584 wsnp Ku rep c68953 68153061
GY g m2 Q GY 7B 8 7B 539-584 Kukri c7495 824
GY g m2 Q GY 7B 8 7B 539-584 RAC875 c60770 82
GY g m2 Q GY 7B 9 7B 606 BobWhite c3541 152
GY g m2 Q GY 7B 9 7B 606 RAC875 c7123 1703
GY g m2 Q GY 7B 10 7B 634-649 AX-110369629
GY g m2 Q GY 7B 10 7B 634-649 AX-94992026
GY g m2 Q GY 7B 10 7B 634-649 AX-158592717
GY g m2 Q GY 7B 10 7B 634-649 AX-158592724
GY g m2 Q GY 7B 10 7B 634-649 AX-158601244
GY g m2 Q GY 7B 11 7B 713 AX-94694846
GY g m2 Q GY 7B 12 7B 742 RFL Contig2647 624
GY g m2 Q GY 7D 1 7D 5 TA013055-0991
GY g m2 Q GY 7D 2 7D 576 AX-158554692
PH cm Q PH 3A 1 3A 557 AX-94770277
PH cm Q PH 3A 2 3A 599 TA001092-0715
PH cm Q PH 3B 1 3B 562 AX-158598372
PH cm Q PH 4A 1 4A 578 RAC875 c19303 228
PH cm Q PH 4B 1 4B 31-59 AX-94685504
PH cm Q PH 4B 1 4B 31-59 AX-111081978
PH cm Q PH 4B 1 4B 31-59 AX-158537142
PH cm Q PH 4B 1 4B 31-59 IAAV971
PH cm Q PH 4B 1 4B 31-59 BS00040305 51
PH cm Q PH 4B 1 4B 31-59 Excalibur c56787 95
PH cm Q PH 4B 2 4B 86 AX-158618580
PH cm Q PH 4D 1 4D 19-26 TG0011a
PH cm Q PH 4D 1 4D 19-26 TG0011b
PH cm Q PH 4D 1 4D 19-26 BobWhite s64797 152
PH cm Q PH 6A 1 6A 214 RAC875 c15872 141
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7.11 Manhattan Plots for Spectral Time Series

(a) 2019 (b) 2020

(c) 2021 (d) 2022

Figure A4: Manhattan plots flight trials in the years 2019-2022
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(a) 2019 (b) 2020

(c) 2021 (d) 2022

Figure A5: Manhattan plots trial means in the years 2019-2022
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Figure A6: Manhattan plot for global means trial
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7.12 Manhattan Plots for AUC-values of VIs

(a) Seaonsal Trials (b) Global Means

Figure A7: Manhattan plots seasonal trials and global means for AUC-values of VIs
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7.13 Manhattan Plots for Agronomic Traits

(a) Seaonsal Trials (b) Global Means

Figure A8: Manhattan plots seasonal trials and global means for agronomic traits
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7.14 Grouping of SNPs of VIs Using Spearman’s Correlation

Table A10: Results for grouping SNPs for seasonal trials of AUC-values

Year Phenotype p-thresholds Group Size

2019 gndvi median 1× 10−9 1
2019 gndvi median 1× 10−8 4
2019 gndvi median 1× 10−7 12
2019 gndvi median 1× 10−6 37
2019 gndvi median 1× 10−5 123
2019 ndvi median 1× 10−6 10
2019 ndvi median 1× 10−5 73
2019 sr median 1× 10−8 1
2019 sr median 1× 10−7 5
2019 sr median 1× 10−6 29
2019 sr median 1× 10−5 106
2020 gndvi median 1× 10−6 2
2020 gndvi median 1× 10−5 15
2020 ndvi median 1× 10−8 1
2020 ndvi median 1× 10−7 3
2020 ndvi median 1× 10−6 15
2020 ndvi median 1× 10−5 78
2020 sr median 1× 10−6 1
2020 sr median 1× 10−5 20
2021 gndvi median 1× 10−8 1
2021 gndvi median 1× 10−7 3
2021 gndvi median 1× 10−6 4
2021 gndvi median 1× 10−5 26
2021 ndvi median 1× 10−8 1
2021 ndvi median 1× 10−7 2
2021 ndvi median 1× 10−6 6
2021 ndvi median 1× 10−5 23
2021 sr median 1× 10−9 7
2021 sr median 1× 10−8 7
2021 sr median 1× 10−7 20
2021 sr median 1× 10−6 71
2021 sr median 1× 10−5 169
2022 gndvi median 1× 10−9 33
2022 gndvi median 1× 10−8 78
2022 gndvi median 1× 10−7 198
2022 gndvi median 1× 10−6 438
2022 gndvi median 1× 10−5 774
2022 ndvi median 1× 10−9 14
2022 ndvi median 1× 10−8 33
2022 ndvi median 1× 10−7 68
2022 ndvi median 1× 10−6 234
2022 ndvi median 1× 10−5 556
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Table A10: Results for grouping SNPs for seasonal trials of AUC-values

Year Phenotype p-thresholds Group Size

2022 sr median 1× 10−9 8
2022 sr median 1× 10−8 23
2022 sr median 1× 10−7 49
2022 sr median 1× 10−6 133
2022 sr median 1× 10−5 338

Table A11: Results for grouping SNPs for global means of AUC-values

p-thresholds GNDVI NDVI SR

1× 10−9 14 4 14
1× 10−8 34 17 32
1× 10−7 89 42 68
1× 10−6 230 169 132
1× 10−5 559 380 355

Table A12: Results for grouping SNPs for seasonal trials of agronomic traits

Year Phenotype p-thresholds Group Size

2019 DH dss 1× 10−5 11
2019 DM dss 1× 10−6 10
2019 DM dss 1× 10−5 53
2019 GPC pct 1× 10−6 5
2019 GPC pct 1× 10−5 26
2019 GY g m2 1× 10−8 1
2019 GY g m2 1× 10−7 4
2019 GY g m2 1× 10−6 43
2019 GY g m2 1× 10−5 167
2019 PH cm 1× 10−9 10
2019 PH cm 1× 10−8 20
2019 PH cm 1× 10−7 29
2019 PH cm 1× 10−6 53
2019 PH cm 1× 10−5 117
2020 DH dss 1× 10−6 1
2020 DH dss 1× 10−5 23
2020 DM dss 1× 10−9 10
2020 DM dss 1× 10−8 25
2020 DM dss 1× 10−7 71
2020 DM dss 1× 10−6 182
2020 DM dss 1× 10−5 464
2020 GPC pct 1× 10−9 644
2020 GPC pct 1× 10−8 946
2020 GPC pct 1× 10−7 1378
2020 GPC pct 1× 10−6 2034
2020 GPC pct 1× 10−5 2922
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Table A12 continued: Results for grouping SNPs for seasonal trials of agronomic traits

Year Phenotype p-thresholds Group Size

2020 GY g m2 1× 10−9 1172
2020 GY g m2 1× 10−8 1681
2020 GY g m2 1× 10−7 2387
2020 GY g m2 1× 10−6 3226
2020 GY g m2 1× 10−5 4321
2020 PH cm 1× 10−9 2
2020 PH cm 1× 10−8 4
2020 PH cm 1× 10−7 9
2020 PH cm 1× 10−6 19
2020 PH cm 1× 10−5 29
2021 DH dss 1× 10−7 1
2021 DH dss 1× 10−6 16
2021 DH dss 1× 10−5 55
2021 DM dss 1× 10−9 72
2021 DM dss 1× 10−8 145
2021 DM dss 1× 10−7 302
2021 DM dss 1× 10−6 588
2021 DM dss 1× 10−5 1158
2021 GPC pct 1× 10−9 291
2021 GPC pct 1× 10−8 544
2021 GPC pct 1× 10−7 907
2021 GPC pct 1× 10−6 1459
2021 GPC pct 1× 10−5 2184
2021 GY g m2 1× 10−9 1056
2021 GY g m2 1× 10−8 1484
2021 GY g m2 1× 10−7 1977
2021 GY g m2 1× 10−6 2701
2021 GY g m2 1× 10−5 3656
2021 PH cm 1× 10−9 22
2021 PH cm 1× 10−8 33
2021 PH cm 1× 10−7 44
2021 PH cm 1× 10−6 83
2021 PH cm 1× 10−5 247
2022 DH dss 1× 10−9 1
2022 DH dss 1× 10−8 4
2022 DH dss 1× 10−7 9
2022 DH dss 1× 10−6 57
2022 DH dss 1× 10−5 180
2022 DM dss 1× 10−9 142
2022 DM dss 1× 10−8 338
2022 DM dss 1× 10−7 614
2022 DM dss 1× 10−6 1076
2022 DM dss 1× 10−5 1755
2022 GPC pct 1× 10−9 1
2022 GPC pct 1× 10−8 4
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Table A12 continued: Results for grouping SNPs for seasonal trials of agronomic traits

Year Phenotype p-thresholds Group Size

2022 GPC pct 1× 10−7 11
2022 GPC pct 1× 10−6 33
2022 GPC pct 1× 10−5 144
2022 GY g m2 1× 10−9 1470
2022 GY g m2 1× 10−8 2062
2022 GY g m2 1× 10−7 2701
2022 GY g m2 1× 10−6 3655
2022 GY g m2 1× 10−5 4973
2022 PH cm 1× 10−9 9
2022 PH cm 1× 10−8 14
2022 PH cm 1× 10−7 20
2022 PH cm 1× 10−6 34
2022 PH cm 1× 10−5 65

Table A13: Results for grouping SNPs for global means of agronomic traits

p-thresholds DH DM GY PH GPC

1× 10−9 0 162 1786 17 483
1× 10−8 0 316 2334 21 784
1× 10−7 1 595 3084 26 1171
1× 10−6 7 1068 4111 39 1765
1× 10−5 56 1810 5363 88 2684
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