
ChromaStarPy: A Stellar Atmosphere and Spectrum Modeling
and Visualization Lab in Python

C. Ian Short , Jason H. T. Bayer, and Lindsey M. Burns
Department of Astronomy & Physics and Institute for Computational Astrophysics, Saint Mary’s University, Halifax, NS B3H 3C3, Canada; ian.short@smu.ca

Received 2017 September 27; revised 2018 January 8; accepted 2018 January 18; published 2018 February 15

Abstract

We announce ChromaStarPy, an integrated general stellar atmospheric modeling and spectrum synthesis code
written entirely in python V. 3. ChromaStarPy is a direct port of the ChromaStarServer (CSServ) Java modeling
code described in earlier papers in this series, and many of the associated JavaScript (JS) post-processing
procedures have been ported and incorporated into CSPy so that students have access to ready-made data products.
A python integrated development environment (IDE) allows a student in a more advanced course to experiment
with the code and to graphically visualize intermediate and final results, ad hoc, as they are running it. CSPy allows
students and researchers to compare modeled to observed spectra in the same IDE in which they are processing
observational data, while having complete control over the stellar parameters affecting the synthetic spectra. We
also take the opportunity to describe improvements that have been made to the related codes, ChromaStar (CS),
CSServ, and ChromaStarDB (CSDB), that, where relevant, have also been incorporated into CSPy. The application
may be found at the home page of the OpenStars project: http://www.ap.smu.ca/OpenStars/.

Key words: line: identification – miscellaneous – stars: atmospheres

1. Introduction

A refreshing recent development in astronomy research and
higher education is the advent of computational tools for
commonplace platforms of the type that students are likely to
own. This has been enabled by the power and capacity of
consumer devices, which now exceed those of institutional
workstations of previous decades. This makes it easier to assign
lab activities as coursework, and for motivated students to
explore computational tools on their own initiative.

The development of the python programming language and of
free multi-platform python distributions that include an integrated
development environment (IDE), such as spyder, and plotting
libraries such as matplotlib (Hunter 2007), has been consequen-
tial. The IDE provides an interactive environment for code
analysis and development, and a visualization environment
similar to that of more established scientific plotting packages.
Python is increasingly being used by the observational astronomy
community, and there are standard libraries of astronomical
procedures such as astropy (Robitaille et al. 2013) and PyRAF
(see, for example, de La Peña et al. 2001). An added incentive for
python deployments is the advent of notebook applications, such
as juPyter, that are equipped with python kernels, and that allow
code blocks to be interspersed with marked-up text and plots.
The iSpec spectral analysis code (Blanco-Cuaresma et al. 2014)
is a recent example of an institutional research capability being
made available for more commonly accessible platforms by
implementation in python.

We introduce ChromaStarPy (CSPy; DOI:zenodo.1095687),
a general 1D static plane-parallel LTE atmospheric modeling,
spectrum synthesis, and post-processing code written entirely in
python, equipped with an optional jupyter notebook interface,
and freely available under the MIT license as a source tarball
from the home page of the OpenStars project (http://www.ap.
smu.ca/OpenStars). Additionally, there is a GitHub repository
for version-controlled collaborative development (https://
github.com/sevenian3/ChromaStarPy), and we note that the

version numbering scheme is date-based using the ISO 8601
system (YYYY-MM-DD). The code is a direct port of the
ChromaStarServer (CSServ) Java application that is described in
detail in Short (2016, hereafter S16) and Short (2017,
hereafter S17), and its methods and procedures are the same
as that code. Like CSServ, CSPy adopts significant modeling
approximations to expedite the computation so as to be more
suitable for pedagogical application, while retaining a level of
modeling realism suitable for projects in a pedagogical context,
and for research projects of a carefully limited scope. Given the
significance of a port to a more scientific programing language,
we take the opportunity to review the methods and major
approximations being made in Section 2, present comparisons
with observations in Section 3, and in Section 4 we propose
sample activities for which CSPy is especially suitable. Related
applications that have been described elsewhere include
ChromaStarDB (CSDB), a version of CSServ that implements
the line list as an SQL database and allows for novel flexibility in
selecting or deselecting which spectral lines to include in a
spectrum synthesis based on a wide variety of selection criteria
(Short 2017), and ChromaStar (CS), a pure JavaScript and html
version of the code that uses a small line list of only ∼20 lines
that runs entirely in the client browser and is suitable for broader
education and public outreach (EPO; Short 2014). In Section 5
we describe recent improvements to all these related OpenStars
codes that have been made since the last published report on
those codes, and which, where relevant, are also reflected
in CSPy.

2. Methods

2.1. Atmospheric Structure and Spectrum Modeling

A detailed description of the atmospheric structure modeling
and the spectrum synthesis performed by CSServ, and ported to
CSPy, including the crucial approximations for expediting the
calculation, along with the justifications and discussion of the

The Astrophysical Journal, 854:82 (5pp), 2018 February 20 https://doi.org/10.3847/1538-4357/aaa96d
© 2018. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0003-4045-128X
https://orcid.org/0000-0003-4045-128X
https://orcid.org/0000-0003-4045-128X
mailto:ian.short@smu.ca
http://www.ap.smu.ca/OpenStars/
https://doi.org/zenodo.1095687
http://www.ap.smu.ca/OpenStars
http://www.ap.smu.ca/OpenStars
https://github.com/sevenian3/ChromaStarPy
https://github.com/sevenian3/ChromaStarPy
https://doi.org/10.3847/1538-4357/aaa96d
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aaa96d&domain=pdf&date_stamp=2018-02-15
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aaa96d&domain=pdf&date_stamp=2018-02-15

limitations, are to be found in S16 and S17. The most
significant distinctions from the simplest research-grade
modeling are that CSPy obtains the vertical kinetic temper-
ature structure, Tkin(τ), as a function of optical depth, τ, by
simple rescaling with effective temperature, Teff, from one of
the three research-grade template models that sample the
populated quadrants of the HR diagram, and that the Voigt
profiles of spectral lines are approximated with a series
expansion (Gray 2005).

CSPy automatically performs a spectrum synthesis calcul-
ation after computing the atmospheric structure every time it is
run. The code can be run in a “spectrum synthesis” mode in
which a previously computed structure is read from a imported
source file (a python module), in which case CSPy auto-
matically limits itself to one iteration of the structure to ensure
that it has all needed quantities and proceeds quickly to the
spectrum synthesis stage. This expedites activities for which
the spectrum synthesis parameters should be varied for a fixed
atmospheric structure.

2.1.1. Line Lists

As of this work CSPy uses a line list of ∼26,000 atomic lines
in the wavelength (λ) range from 260 to 2600 nm (covering the
Johnson U, B, V, R, I, J, H, and K bands) extracted from the
NIST Atomic Spectra Database (Kramida et al. 2015). CSPy
expects to read the line list in byte-data form and the
distribution includes both the original ascii and the byte-data
versions of the line list. The utility procedure LineListPy.py is
included with the distribution and converts an ascii line list in
the format produced by the Atomic Spectra Database into the
byte-data format expected by CSPy. This allows a more
advanced user to produce their own custom line lists. Care must
be taken to set the numerous output options in the Atomic
Spectra Database interface so as to produce an output with
fields and units that match what LineListPy.py expects, and
some manual post-processing of the ascii output from the
database may be necessary to remove special characters. The
ascii version of the line list provided with the distribution
serves as a template for what is required.

2.2. User-defined Two-level Atom

A pedagogically significant additional capability that has
been ported from CS is modeling of the energy level
populations and the spectral line profile of an artificial atomic
species with only two abound states—a two-level atom (TLA).
The user can adjust the abundance of the TLA species on the
logarithmic A12 scale used in stellar spectroscopy, and the
atomic and line transition data for the TLA. This includes
the excitation energy of the lower E-level (Ei), the central
wavelength, λo, of the spectral line (which, along with the
value of Ei, determines the value of the upper energy level, Ej),
and the oscillator strength, f, among other things. The user can
ascribe the TLA to any of the first four ionization stages of the
corresponding artificial element, and set the first four ionization
energies. The user can adjust a pair of “fudge” factors—one for
the overall level of the background continuous opacity (κcλ; this
also affects the overall spectrum synthesis), and the logarithmic
enhancement of the Lorentzian wings in the case that the TLA
line is saturated. The macroscopic broadening parameters
accounting for macro-turbulence and rotation are also applied

to the TLA line. CSPy computes the equivalent width, Wλ, of
the TLA line.

2.3. Limb Darkening Coefficients

Like CS, CSServ, and CSDB, CSPy computes monochro-
matic continuum linear limb darkening coefficients (LDCs),
 l(), at each of the λ points sampling the continuum

l ql ()I , cosc distribution, where θ is the angle of emergence
of an Iλ pencil-beam with respect to the local surface normal,
and ò is defined by the linear limb darkening law,

 q q q= = - +l l() () () ()I Icos cos 1 1 cos . 1c c

Currently, CSPy simply solves Equation (1) for ò separately
for each l q(), cos pair and averages the resulting q l()cos ,
values over qcos at each λ value to produce ò(λ) values. We
plan to eventually replace this with a procedure that finds the
best fitting ò value for the q q =l l() ()I Icos cos 1c c values at
each λ value.

2.4. Comparison to iSpec

iSpec is another astronomical tool for working with model
stellar atmospheres and spectra that has been developed in
python (see Blanco-Cuaresma et al. 2014), and here we
contrast it with CSPy. The iSpec application is an environment
that allows a user to make use of libraries of atmospheric
models precomputed with research-grade modeling codes, and
to compute spectra with their choice of spectrum synthesis
codes precompiled from Fortran. This provides a powerful
spectral modeling and analysis environment for extracting
information from spectra with underlying research-grade
modeling codes. By contrast, CSPy is an atmospheric modeling
and spectrum synthesis code written entirely in python, and
could be run alongside iSpec in a python IDE to generate the
synthetic spectra.

Figure 1. t()Plog loggas (solid lines) and t()Plog loge (dashed lines) structures
after each of the 12 iterations of the atmospheric structure of a model of

[]T glog Fe Heff equal to 3600 K/0.0/0.0. Darker lines indicate later
iterations. The initial guess consisted of t()Plog loggas and t()Plog loge

structures that were approximately rescaled with Teff, glog , and [Fe/H] from a
template model of 4250 K/2.0/0.0 (see the text).

2

The Astrophysical Journal, 854:82 (5pp), 2018 February 20 Short, Bayer, & Burns

3. Tests

Figure 1 shows the t()Plog loggas and t()Plog loge structures
after each of the 12 iterations of the structure equations for a
red supergiant model of []T glog Fe Heff equal to 3600 K/
0.0/0.0. For these input parameters, CSPy determined its initial
guess at these structures by approximately rescaling from the
red giant template of Section 2 (4250 K/2.0/0.0). In addition to
demonstrating the convergence properties of our procedure,
Figure 1 is a good example of the kind of plot that a student can
easily make in a python IDE on their own device by simply
instrumenting the code with matplotlib plot statements.

S16 presented comparisons of synthetic spectra computed
with CSServ to those computed with Phoenix V. 15
(Hauschildt et al. 1999) for the Ca II region for stars of Teff/

[]glog Fe

H
/ξT equal to 5000 K/4.5/0.0/1.0 km s−1 and

5000 K/2.5/0.0/1.0 km s−1, and the Mg II λ 4481 region for
a model of 10,000 K/4.0/0.0/1.0 km s−1. As of S16, we were
not yet ready to compare synthetic and observed spectra in the
vicinity of H I lines for early-type stars because we had not yet
incorporated linear Stark broadening for the Balmer lines, and
the Mg II λ4481 line is the next most important MK
classification diagnostic for these stars. S17 presented the
equivalent comparisons for the TiO C3Δ−X3Δ (α system,
band origin, λ00=517.02 nm) and c1Φ−a1Δ (β system,
λ00=560.52 nm) bands for stars of solar metallicity of
Teff=3750 K and glog values of 4.5 and 2.0, and of
Teff=4250 K and =glog 2.0.

Figure 2 shows the flux spectrum, Fλ, of the Sun in the
heavily blanketed Ca II HK region based on observations with a
resolving power, R, of 300,000 described by Kurucz (2005),
and as computed with CSPy with a Lorentzian broadening
enhancement factor of 100.5. We note that the NIST atomic line
list is much less complete than current competitive research-
grade line lists, and we do not expect to completely treat the
line blanketing in this region. We adopt the standard
parameters of Teff=5777 K, =glog 4.44, and [Fe/H]=
0.0, and a value of the microturbulent velocity dispersion, ξT,
of 1 km s−1. Figure 3 shows the same region for Arcturus
(α Boo, HD124897, HR5340, K1-K1.5 III) as observed by
Hinkle & Wallace (2004) at R≈100,000 and as computed
with CSPy. We adopt the parameters of Griffin & Lynas-Gray

(1999), rounded to to the nearest canonical values, Teff=
4300 K, =glog 2.0, and [Fe/H]=−0.7, with an α-process
element enhancement of +0.3 (Peterson et al. 1993), and adopt
a value of ξT of 2 km s−1. Because our scaled radiative and
convective thermal equilibrium models lack a chromospheric
temperature inversion, we do not expect to reproduce the
emission core reversals that are apparent in the observed
spectrum of Arcturus. Because of the high spectral resolution
of the observational material, and the approximate nature of the
modeling that we are assessing, we make no attempt to
convolve the synthetic spectra to match the instrumental
resolution of the observations.
Figure 4 presents a comparison of the H I Hγ wings for Vega

(α Lyr, HD 172167, HR 7001, A0 V) as observed by Le
Borgne et al. (2003) at R≈2000, and as computed with CSPy
and broadened by convolution with a Gaussian kernel to the R
value of the observed spectrum. Hγ is the longest wavelength
Balmer line in the observed spectrum, and we chose it for

Figure 2. Observed Ca II HK region of the solar flux spectrum as presented by
Kurucz (2005; black line) and as computed with CSPy (gray line) with a
Lorentzian broadening enhancement factor of 100.5.

Figure 3. Ca II HK region of the flux spectrum of Arcturus (α Boo) as
observed by Hinkle & Wallace (2004; black line) and as computed with CSPy
(gray line) with no Lorentzian broadening enhancement. We note that our
models do not have a chromospheric temperature inversion and we do not
expect to fit the core emission reversals in the strong HK lines.

Figure 4. H I Balmer γ region of the flux spectrum of Vega (α Lyr) as observed
by Le Borgne et al. (2003; black line) and as computed with CSPy (light gray
line), and then instrumentally broadened to R=2000 (dark gray line). We note
that we expect to fit the far wings of the linear Stark broadening profile with our
current treatment.

3

The Astrophysical Journal, 854:82 (5pp), 2018 February 20 Short, Bayer, & Burns

comparison because we expect it to be the least blended with
neighboring lines. We adopt the parameters of Castelli &
Kurucz (1994) of Teff=9550 K, =glog 3.95, [Fe/H]=
−0.5, and ξT=2 km s−1 for the structure, and values of vRot
and i of 275 km s−1 and 5°, respectively, corresponding to a
v isin value of 24 km s−1 (Peterson et al. 2006), for the post-
processing of the spectrum. We note that currently we only
treat linear Stark broadening in the far wing, as described
in S17, for Δλ>2ΔλD, where ΔλD is the Doppler width, and
only expect to match the profile approximately in that regime.

4. Applications

As an integrated stellar atmospheric modeling and spectrum
synthesis code, CSPy takes as input the standard parameters
needed for unblanketed, static, 1D, plane-parallel, LTE, scaled-
solar abundance modeling: Teff, glog , and [Fe/H]. Because this
is a pedagogical code, it also allows the user to specify a stellar
mass, M, which it uses to compute and display the stellar
radius, R, and bolometric luminosity, Lbol, corresponding to the
values of Teff and glog . It also requires parameters specifying
the spectrum synthesis: the wavelength range, [λ1, λ2], the
microturbulent velocity dispersion, ξT, fudge factors for tuning
the background continuum opacity, κcλ, and the Lorentzian
line broadening. Because post-processing of the spectrum
accounting for natural effects is integrated, it also allows
specification of the macroturbulent dispersion, ξMacro, the
surface equatorial rotation velocity, vrot, and the inclination of
the rotation axis to the line-of-sight, i.

Because python is an interpreted rather than a compiled
language, it allows for flexible diagnostic interaction when
running in an IDE such as spyder. The values of intermediate
variables can be inspected, ad hoc, at the console prompt.
When accompanied by a plotting facility, such as matplotlib,
the code can be instrumented with ad hoc plot statements that
allow for visual inspection of how various structures are
converging from one iteration to the next, as exemplified by
Figure 1. Students can edit the code and rerun it while learning
about or developing the code. As a result, the IDE is effectively
an integrated computational astrophysics lab bench.

Students can post-process the synthetic spectra with
operations such as convolution in the IDE. Students in
observational astronomy courses who have acquired a sample
observed stellar spectrum can import the observational data
into the IDE and compare it, qualitatively or statistically, to
suitably post-processed model spectra generated ad hoc with
various trial stellar and spectrum synthesis parameters.
Students can extract the Wλ value of a spectral line, either
with the built-in procedure if they restrict the synthesis range to
isolate one line, or with a python procedure of their own. A
local example is that students in the fourth year observational
astronomy or experimental physics courses in our program at
Saint Mary’s University can acquire CCD spectra with the
spectrograph on the 60 cm telescope of the Burke-Gaffney
Observatory (BGO), and compare model spectra produced with
CSPy in a python IDE.

4.1. TLA

The TLA (see Section 2.2) can be used to study the simple
curve-of-growth (COG) of a spectral line, which, here,
is effectively being defined as l ([])Wlog A H . Because the
TLA is treated with a Voigt profile, the COG will exhibit

the weak, strong, and saturated regimes as [A/H] increases.
The student can experimentally investigate how the COG
varies with f and Ei.
The TLA can be used to model specific real spectral lines

that are important diagnostics. An effective example is to set
the TLA parameters to those of the Ca I λ4227 line, and then
the Ca II K line, and to study the l ()W Tlog eff behavior over the
Teff range of late-type stars (3500–6500 K). This provides a
good example of the role that ionization equilibrium plays in
the relation between Teff and the MK spectral class.

5. Improvements to the OpenStars Suite

A number of significant improvements to the related codes
CS, CSServ, and CSDB have been made since our last report,
and these have also been incorporated into CSPy where
relevant.

5.1. Partition Functions

As of S17, CS, CSServ, and CSDB estimated the value of
the partition function, Ui(θ), for species i by linear interpolation
among two values of θ, 0.5, and 1.0, where θ≡5040/T, with
the Ui(θ) values taken from Cox (2002). The treatment has been
improved by interpolating in T among the Ui(T) values of
Barklem & Collet (2016) for T values of 130, 500, 3000, 8000,
and 10,000 K. We incorporate the T values below 3000 K in
anticipation of eventually adapting the modeling so as to be
more suitable for brown dwarfs. For now, the interpolation in T
remains linear, but this new treatment yields ni(τ) distributions
that are more continuous and do not suffer from the small
discontinuities that were produced by the two-temperature
Ui(θ) treatment.

5.2. Non-solar Abundance Distributions

In addition to allowing for adjustment of the overall scaled-
solar metallicity, [Fe/H], the codes now also allow the user to
independently adjust the values of the logarithmic quantities
[He/Fe], [α/Fe], and [C/O], where α indicates eight α-process
elements (O, Ne, Mg, Si, S, Ar, Ca, and Ti). This affects the
computation of the Pgas(τ) and Pe(τ) structures through the
EOS and HSE treatment, and the value of the background κλ(τ)
distribution, as well as having a direct effect on the strengths of
the relevant lines in the spectrum synthesis. This allows
the user to investigate the effect on both the atmospheric
structure and spectrum of He enrichment in A and B stars,
α-enhancement in metal-poor RGB stars, and enhanced C/O
values in post-dredge-up AGB stars.

5.3. Photometry

The Johnson UBVRI filters employed by the integrated post-
processing suite have now been supplemented with the HJK
filters, and we have adopted the response curves of Johnson
(1965), as reported in the Asiago Database of Photometric
Systems (Moro & Munari 2000). The SED is now computed
from 260 to 2600 nm, and the additional filters allow us to
compute and display the standard V−K and J−K color
indices. These are relevant as our modeling currently extends
down to Teff values of 3400 K, and will become increasingly
important as we extend our treatment to even lower Teff values.

4

The Astrophysical Journal, 854:82 (5pp), 2018 February 20 Short, Bayer, & Burns

5.4. H Lines

CS is the version of the code that is implemented entirely in
JavaScript, and necessarily has a very limited line list of 20
lines, and only included the Balmer series lines of H I up to Hò.
Now that the SED is computed and displayed for l < 364 nm,
we have added two additional H lines, H(2–8) and H(2–9), and
a user who has their own installation can uncomment an
additional eight H lines, up to H(2–17). The H line treatment
includes Stark broadening, and these higher Balmer lines allow
for a somewhat more realistic treatment of the SED for
λ�364 nm.

5.5. Scalable Vector Graphics

As of our last report, CS used the HTML5 á ñcanvas element
for the graphical output. This is not scale invariant, and the
alphanumeric graphical elements were not sharp at any zoom
setting, and became increasingly pixelated in appearance at the
higher zoom setting sometimes required for accurate lab work.
We now use the HTML5 á ñSVG (scalable vector graphics)
element for the output and the graphical elements now remain
sharp at all zoom settings. Moreover, the á ñSVG element allows
for interactivity based on event handlers to be added to the
graphics, and we have taken advantage of this to provide the UI
with additional functionality that will help make the application
more enticing at a basic level of pedagogy and outreach:

1. On all plots, when the user hovers, the data coordinates
are displayed and this allows for more precise quantita-
tive information to be extracted from the plots.

2. The user can now set the input stellar parameters by
clicking on the HR diagram.

3. The user can now tune the narrow band filter by clicking
on the rendering of the spectral image.

6. Discussion

CSPy fills a gap between the research-grade stellar
atmosphere and spectrum synthesis codes that are compiled
from fortran and require a unix-like environment, and the web-
browser based pedagogical modeling of CS, CSServ, and
CSDB. Because python has a well-developed set of support
tools such as IDEs, signal processing, and plotting libraries,
CSPy is a unique lab for studying and developing an
astrophysical modeling code at the senior undergraduate or
introductory graduate level in an interactive and graphical way
on common student-owned devices.

Python supports multi-threaded programing, and many
commonplace devices now have multi-core CPUs, so the
way is open for improving the performance of CSPy and other
modeling codes in python, and enabling more realistic
modeling in a pedagogically engaging environment. Now that
the code has been ported to python, it would be relatively
straightforward to port it to Julia, a language with a similar
syntax that has been receiving increasing attention recently.
Julia is also an interpreted language, and so also offers the
flexibility and transparency of an interpreted development and

run-time environment, but promises to yield executable code
that runs significantly faster than that of python. Execution
speed is one of the main advantages that compiled languages
like fortran have over interpreted languages, so a port of
ChromaStarPy to Julia could be significant.
More generally, the OpenStars project is based on the

philosophy that if it is worth computationally modeling an
astronomical object for research purposes, then it is also worth
using the model to render what the object looks like in ways
that people outside the research community, or who are
learning the subject at a more basic level, will find intuitive and
relatable, and can interact with. Commonplace computing
technology now allows for this, and this represents a new way
for the astronomy research and higher education community to
be relevant beyond the research and higher education
institutions. We continue to encourage computational astro-
physicists to consider didacticizing the modeling and visualiza-
tion that they do and deploying it in forms that are relevant to
education and public outreach.

The authors acknowledge the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) grant RGPIN-
2014-03979. The authors also thank Saint Mary’s Astronomy
graduate students Mitchell Young and Diego Castañeda for
valuable guidance on python distributions.

ORCID iDs

C. Ian Short https://orcid.org/0000-0003-4045-128X

References

Barklem, P. S., & Collet, R. 2016, A&A, 588, A96
Blanco-Cuaresma, S., Soubiran, C., Heiter, U., & Jofre, P. 2014, A&A,

569, 111
Castelli, F., & Kurucz, R. L. 1994, A&A, 281, 817
Cox, A. N. (ed.) 2002, Allen’s Astrophysical Quantities (4th ed.; Berlin:

Springer)
de La Peña, M. D., White, R. L., & Greenfield, P. 2001, in ASP Conf. Proc.

238, Astronomical Data Analysis Software and Systems X, ed.
F. R. Harnden, Jr., F. A. Primini, & H. E. Payne (San Francisco, CA:
ASP), 59

Gray, D. F. 2005, The Observation and Analysis of Stellar Photospheres (3rd
ed.; Cambridge: Cambridge Univ. Press)

Griffin, R. E. M., & Lynas-Gray, A. E. 1999, AJ, 117, 2998
Hauschildt, P. H., Allard, F., Ferguson, J., Baron, E., & Alexander, D. R. 1999,

ApJ, 525, 871
Hinkle, K. H., & Wallace, L. 2004, BAAS, 36, 1423
Hunter, J. C. 2007, CSE, 9, 90
Johnson, H. L. 1965, ApJ, 141, 923
Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team 2015, NIST

Atomic Spectra Database ver.5.3 (Gaithersburg, MD: National Institute of
Standards and Technology), http://physics.nist.gov/asd

Kurucz, R. L. 2005, MSAIS, 8, 189
Le Borgne, J.-F., Bruzual, G., Pello, R., et al. 2003, A&A, 402, 433L
Moro, D., & Munari, U. 2000, A&A, 147, 361
Peterson, D. M., Hummel, C. A., Pauls, T. A., et al. 2006, Natur, 440, 896
Peterson, R. C., Dalle Ore, C. M., & Kurucz, R. L. 1993, ApJ, 404, 333
Robitaille, T. P., Tollerud, E. J., Greenfield, P., et al. 2013, A&A, 558, 33
Short, C. I. 2014, JRASC, 108, 230
Short, C. I. 2016, PASP, 128, 104503
Short, C. I. 2017, PASP, 129, 094504

5

The Astrophysical Journal, 854:82 (5pp), 2018 February 20 Short, Bayer, & Burns

https://orcid.org/0000-0003-4045-128X
https://orcid.org/0000-0003-4045-128X
https://orcid.org/0000-0003-4045-128X
https://orcid.org/0000-0003-4045-128X
https://orcid.org/0000-0003-4045-128X
https://orcid.org/0000-0003-4045-128X
https://orcid.org/0000-0003-4045-128X
https://orcid.org/0000-0003-4045-128X
https://doi.org/10.1051/0004-6361/201526961
http://adsabs.harvard.edu/abs/2016A&A...588A..96B
https://doi.org/10.1051/0004-6361/201423945
http://adsabs.harvard.edu/abs/2014A&A...569A.111B
http://adsabs.harvard.edu/abs/2014A&A...569A.111B
http://adsabs.harvard.edu/abs/1994A&A...281..817C
http://adsabs.harvard.edu/abs/2001ASPC..238...59D
https://doi.org/10.1086/300878
http://adsabs.harvard.edu/abs/1999AJ....117.2998G
https://doi.org/10.1086/307954
http://adsabs.harvard.edu/abs/1999ApJ...525..871H
http://adsabs.harvard.edu/abs/2004BAAS...36.1423H
https://doi.org/10.1109/MCSE.2007.55
http://adsabs.harvard.edu/abs/2007CSE.....9...90H
https://doi.org/10.1086/148186
http://adsabs.harvard.edu/abs/1965ApJ...141..923J
http://physics.nist.gov/asd
http://adsabs.harvard.edu/abs/2005MSAIS...8..189K
https://doi.org/10.1051/0004-6361:20030243
http://adsabs.harvard.edu/abs/2003A&A...402..433L
https://doi.org/10.1051/aas:2000370
http://adsabs.harvard.edu/abs/2000A&AS..147..361M
https://doi.org/10.1038/nature04661
http://adsabs.harvard.edu/abs/2006Natur.440..896P
https://doi.org/10.1086/172283
http://adsabs.harvard.edu/abs/1993ApJ...404..333P
https://doi.org/10.1051/0004-6361/201322068
http://adsabs.harvard.edu/abs/2013A%26A...558A..33A
http://adsabs.harvard.edu/abs/2014JRASC.108..230S
https://doi.org/10.1088/1538-3873/128/968/104503
http://adsabs.harvard.edu/abs/2016PASP..128j4503S
https://doi.org/10.1088/1538-3873/aa7f6d
http://adsabs.harvard.edu/abs/2017PASP..129i4504S

	1. Introduction
	2. Methods
	2.1. Atmospheric Structure and Spectrum Modeling
	2.1.1. Line Lists

	2.2. User-defined Two-level Atom
	2.3. Limb Darkening Coefficients
	2.4. Comparison to iSpec

	3. Tests
	4. Applications
	4.1. TLA

	5. Improvements to the OpenStars Suite
	5.1. Partition Functions
	5.2. Non-solar Abundance Distributions
	5.3. Photometry
	5.4. H Lines
	5.5. Scalable Vector Graphics

	6. Discussion
	References

