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1. Introduction

The mortality rate of nearly ten million deaths worldwide in 2020 
makes cancer a leading public health problem, and it is predicted to 
increase by about 50% within the next two decades [1]. Cancer is com
posed of a multitude of different diseases, all defined by malignant au
tonomous growth and spreading of somatic clones. Heterogeneity 
between and within cancer types is vast, presented by multi-layered 
disparities in morphology, (epi-)genetic changes and microenviron
mental aspects [2,3]. This diversity is also portrayed by the hetero
geneous efficacy profiles of both conventional radio(chemo)therapies 
and novel molecular targeted treatment approaches [4]. Inherent and 
acquired resistance, resulting from genetic and epigenetic alterations, are 
the cause of low or absent treatment responses. As a consequence, signal 
transduction favoring survival as well as changes in the tumor micro
environment, such as hypoxia, induced angiogenesis and deposition of 
extracellular matrix (ECM) are found [5–7].

The role of the ECM receives increasing attention as cell-ECM inter
action sites critically function in structural and regulatory processes. 
Cell-ECM interaction sites, called focal adhesions (FA), are formed by 
more than 200 adhesome proteins with 60 core regulators [8,9]. FAs are 
intricate and dynamic structural nodes that connect the cytoskeleton 
and ECM, as well as form hubs of signal transduction that are simulta
neously required for optimal regulation of numerous cellular functions 
such as adhesion, survival, proliferation, migration / invasion, and 
stemness [10,11]. This multifunctionality is enabled by diverse sets of 
integrins, receptor tyrosine kinases, intracellular protein kinases and 
adapter proteins [10,12]. Thus, in cancer, mechanical cues necessary for 
tissue remodeling and cell invasion as well as promitotic and prosurvival 
signaling are frequently hijacked to elicit the hallmarks of cancer [13,14]. 
The redundancy of adhesome proteins and how they influence down
stream signaling pathways remains variable and cancer type-specific, 
making conventional therapy and tailored approaches challenging [7]. 
However, numerous promising preclinical studies using various in
hibitors against adhesome receptor and adapter proteins demonstrate 
the efficacy and feasibility of overcoming treatment resistance in head 
and neck cancer [15], prostate cancer [16], breast cancer [17], brain tu
mors [18], pancreatic cancer [19], lung cancer [20], skin cancer [21], 
hematopoietic system [22] and other cancers [7,13].

The pioneering work of the Cordes lab on the cancer adhesion re
sistome uncovered shared traits in therapy resistance mechanisms 
across various cancer types. This paradigm indicates potentially con
served adhesion associated prosurvival signaling axes of general im
portance. To address this, the present meta-analysis took the published 
results of the Cordes lab over a period of 20 years to create a reasonable 
starting point for a connection with large cancer patient cohorts. 
Developments in next-generation sequencing technologies provide an 
unprecedented amount of publicly available cancer patient-specific 
omics data from large cooperative studies such as the Therapeutically 
Applicable Research to Generate Effective Treatments (TARGET) project 
[23] or The Cancer Genome Atlas (TCGA) [24]. By linking the expression 
and patient survival data of previously investigated cancer types with 
preclinical molecular targeting experiments on over 200 molecules, we 
demonstrated the reasonability and relevance of the body of work done 
in the Cordes lab. Specifically, we examined commonalities in adhesion 
associated genes identified critical for changes in therapy sensitivity in 
preclinical settings, placed them in a broader context, and explored their 
relevance to patient survival in general and with conventional radio 
(chemo)therapy in particular.

2. Materials and methods

2.1. Literature analysis

The publication body of the Cordes lab was examined between the 
years 2003 and 2022 for significant effects (p  <  0.05) upon molecular 

intervention with single targets. The focus was put on the two relevant 
experimental endpoints clonogenic survival and DNA damage under 
nonirradiated and irradiated conditions. The collected effects of 212 
targets in 51 normal and cancer cell models are shown in Fig. 1, Fig. S1
and Table S1. R (v4.2.1) was utilized for visualization (complex heatmap, 
v2.13.2). Additionally, an extensive PubMed literature search on similar 
endpoints was conducted on the 30 most investigated Cordes lab targets 
to gain a broad overview about the investigations by other research 
groups. For each target gene, original, free-full text articles published 
between 2003 and 2023 were considered fulfilling the following criteria: 
(1) the target gene plus its alias names had to be combined with one of 
the following terms: “Silencing”, “Knockdown”, “Inhibition”, “Inhibiting”, 
“Targeting”, “Perturbation”, or “Depletion”; (2) the articles had to contain 
one of the following terms: “Radiation”, “Radiosensitizing”, “Radio
resistance”, “Radioprotection”, “Radiotherapy”, “Radiochemotherapy”, 
“Chemoradiation”; (3) the articles had to include the terms “Cancer” or 
“Tumor”; (4) the research had to be conducted in human cells (“humans 
[Filter]”). Two approaches were pursued with this search formula: (a) a 
detailed, strict search, where the exact search terms had to be located in 
the text of the article ([tw] after each term combination) and (b) a 
broader text mining approach, where the search terms were allowed to 
be present in any combination in the article. To further filter the broad 
search, we merely selected publications with a radiation associated title 
and excluded publications already addressed in the detailed, strict search 
(a). In total, we investigated 408 publications in the detailed, strict search 
(a) and 1123 studies in the broader text mining approach (b). The ra
diation-specific results are presented in Fig. S2. The complete literature 
search data is listed in Table S1.

2.2. RNA expression data

The GEPIA (Gene Expression Profiling Interactive Analysis) web 
tool (http://gepia.cancer-pku.cn/index.html) provides processed 
RNA sequencing data from 9736 cancers and 8587 normal tissues 
from multiple publicly available large cohort studies [25]. From 
GEPIA build-in ANOVA analysis, significant (q-value cutoff < 0.05) 
differential expressed genes (DEGs) between 9 cancer types (Lung 
squamous cell carcinoma, LUSC; Lung adenocarcinoma, LUAD; 
Prostate adenocarcinoma, PRAD; Colon adenocarcinoma, COAD; 
Rectum adenocarcinoma, READ; Lower grade glioma, LGG; Glio
blastoma multiforme, GBM; Head and neck squamous cell carci
noma, HNSCC; Pancreatic adenocarcinoma; PAAD) and 
corresponding normal tissues were acquired. Raw RNA sequencing 
data for different cell models were downloaded from the DepMap 
database (https://depmap.org/portal/) [26] and further normalized 
using a standard processing pipeline in R (DeSeq2, v1.38.0). The fold 
changes of the DEGs from implemented cell models were generated 
by comparison to tissue specific control datasets obtained from 
OncoBoxPD (https://open.oncobox.com) [27]. Coding and non- 
coding DEGs demonstrating similar expression changes found in at 
least 8 out of the 9 cancer types were named similarly changed DEGs 
(scDEGs) and considered for further analysis (Table S2).

2.3. Transcription factors

TFs were retrieved via analysis of the 9 overlapping cancer da
tasets with g:profiler [28] web tool (https://biit.cs.ut.ee/gprofiler/ 
gost) and The Human Transcription Factors atlas v1.01 (http://hu
mantfs.ccbr.utoronto.ca/) [29]. Identified TFs were used in the net
work analyses (Table S2).

2.4. Gene enrichment and network analyses

All enrichment and protein-protein interaction network analyses 
were conducted through the CytoScape platform (v3.4.0) [30]. The 
Cordes lab gene pool was enriched via GeneMANIA [31] and STRING 
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[32] (75% confidence). By GeneMANIA, we reconstructed protein- 
protein interaction networks on the basis of physical interaction, co- 
expression, predicted colocalization, shared pathways, genetic in
teraction, and shared protein domains. The enriched dataset was 
overlapped with identified scDEGs and adhesion associated genes 
(defined by Gene Ontology (GO) [33]), and implemented into net
work analyses together with identified TFs. From the network ana
lyses, all genes with 1st neighbor interaction to the initial Cordes lab 
dataset were retained. Only genes with a minimum of 2 degrees in 
the network and corresponding scDEGs with an average fold change 
of either >  1.5 or <  0.5 from normal tissue were considered for 
subsequent survival analysis and network reconstruction. We 
termed the 206 resulting genes adhesion associated scDEGs (Table 
S2). The gene set obtained from the survival analyses (aaGOIs-All/RT) 
was used to reconstruct the interactions via the GeneMANIA app as 
mentioned above. Prior to GeneMANIA reconstruction, genes were 
ordered based on high expression in cancer compared to the cor
responding normal tissue.

2.5. Survival analysis

Survival and expression data of nine TCGA datasets (LUSC, LUAD, 
PRAD, COAD, READ, LGG, GBM, HNSCC, PAAD) were obtained from 
the Xena platform [34] and evaluated. The cancer type specific TCGA 
patient cohorts were divided for each analyzed gene into high and 
low expression cohorts by the group cutoff of median expression and 
subjected to individual Kaplan-Maier analysis. We selected over
expressed genes with positive or negative impact on patient overall 
survival (OS) after initial diagnosis for an explorative analysis, which 
were defined by p-value cutoffs (p  <  0.1; p  <  0.05; p  <  0.01) from 
independent log-rank testing. From the complete TCGA cancer type 
cohorts (“All”), we further classified subcohorts of patients receiving 
radio(chemo)therapy only (“RT”) versus patients receiving no 
radiotherapy (“No RT”). The TCGA phenotypic identifiers “radiation 
therapy” and “additional radiation therapy” were used for differ
entiation of subcohorts. The “RT” and “No RT” subcohorts of COAD 
and READ were combined into one colorectal cancer cohort (COAD / 
READ) because of the small number of “RT” patients in the two co
horts (COAD: 20/394; READ: 24/139; source data provided in Table 
S3). Survival analyses were performed by R (survival v3.4.0; surv
miner v0.4.9).

2.6. Functional enrichment analysis

Functional pathway enrichment analysis of the scDEGs was 
performed via R (clusterProfiler v3.8) for GO and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) [35]. The results were hierarchically 
clustered to classify the most suppressed and activated pathways. 
Adhesion associated scDEGs were additionally taken to reconstruct 
their 1st neighbor interaction between scDEGs. Functional analysis 
was performed on the identified gene set by OncoBoxPD to obtain 
equalized functional enrichment datasets. Genes identified after the 
survival analysis (aaGOIs-All/RT) were included in a pairwise clus
tering correlation evaluation of significant (p  <  0.05; FDR < 0.25) 
functional associations (1614 terms, acquired from Wikipathways, 
Reactome, KEGG, GO resources, Molecular Signatures Database 
(MSigDB); processed with g:profiler, ShinyGO, GSEA) [28,33,35–40]. 
The clusters with a correlation coefficient of >  0.75 were considered 

and summarized (Table S4). Additionally, the same genes were in
tegrated into a ClueGO [41] network analysis to identify an in
dependent abundance of the GO terms. The aaGOIs-All/RT included 
in GeneMANIA network analysis were classified in ShinyGO ac
cording to GO molecular functions into the categories “Integrins”, 
“Integrin binding”, “Matrisome associated”, “Kinase”, “Cytoskeleton 
component”, “Signal transduction”, and “Transcription factors”.

2.7. Statistical analysis

The significance level of p  <  0.05 and, where applicable, 
FDR <  0.05 was considered in this study if not stated otherwise. 
Pearson correlation analyses between different cell models and their 
corresponding cancer types were performed using the GraphPad 
Prism 7 software. Patient survival analyses for corresponding low- 
and high-expression patient cohorts were performed in R by log- 
rank testing for each gene in each cancer type independently with 
three p-value cutoffs (p  <  0.1; p  <  0.05; p  <  0.01) to indicate the 
degree of significance. Pairwise correlation clustering (p  <  0.05; 
FDR < 0.25) between genes and functional terms was conducted by 
python spyder (matplotlib v3.6.2, SciPy v1.9.3) [42,43].

3. Results

3.1. General workflow for dissecting common mechanisms in nine 
human cancer types in the context of molecular targeting approaches 
for adhesion associated molecules

The workflow in Fig. 1A indicates the various analytical steps in 
the presented meta-analysis. Firstly, we began to comprehensively 
collect experimental data on specific cancer targets in a radio
biological context from published Cordes lab studies between 2003 
and 2022. During this period, the research group worked on ade
nocarcinoma of the lung (LUAD), adenocarcinoma of the prostate 
(PRAD), adenocarcinoma of the colon (COAD), glioblastoma (GBM), 
squamous cell carcinoma of the head and neck (HNSCC), and ade
nocarcinoma of the pancreas (PAAD). These are common cancers 
that exhibit a marked phenotypic and genetic heterogeneity. To gain 
a broader view on the relevance of this experimental body and to 
identify potential new routes for cancer resistome targeting, the 
extensively studied targets of the Cordes lab gene set were enriched 
with the closest gene interaction networks. Then, we aligned RNA 
sequencing datasets of cancer cell models with their corresponding 
cancer type datasets. Similarly changed differentially expressed 
genes (scDEGs) associated with cell adhesion were identified, 
aligned with the Cordes lab gene pool, and enriched for transcription 
factors (TF) and adhesion genes. From this gene pool, 1st neighbor 
gene interactions were reconstructed to the Cordes lab genes, which 
formed the adhesion associated scDEGs. To further elucidate the 
most relevant gene targets, systematic TCGA patient survival ana
lyses were executed, followed by in-depth assembly of the interac
tion networks of radiotherapy- and poor prognosis associated genes 
to finally conclude with a functional enrichment analysis (Fig. 1A).

3.2. Cordes lab group literature analysis defines the study basis

The present study set out with a comprehensive data collection of 
the Cordes lab publication body, based on its broad expertise in the 

Fig. 1. Workflow, experimental background and targeting effects in cell models from various cancer types. (A) Schematic of the study workflow. (B) Characterization of 653 
published in vitro experiments (each consisting of a at least 3 biological replicates) performed in the Cordes lab. Differentiation was made between molecular intervention type, 
cancer type and cell culture condition. 212 unique targets were functionally classified by gene ontology analyses. (C) Top 30 targets affecting survival and DNA damage in 35 cell 
models from published Cordes lab experiments. Significant (p  <  0.05) adverse effects on survival are designated as cytotoxic (blue; under non-irradiated conditions) and 
radiosensitizing (red; under irradiated conditions). A significant increase in survival is designated as protective (green). A targeting-mediated enhancement in DNA damage after 
irradiation is indicated by black dots. Gray color indicates no effects on cell survival. HNSCC, Head and neck squamous cell carcinoma; PAAD, Pancreatic adenocarcinoma; GBM, 
Glioblastoma multiforme; LUAD, Lung adenocarcinoma; cSCC, Cutaneous squamous cell carcinoma; COAD, Colon adenocarcinoma.
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cancer cell adhesome and molecular targeting. Although numerous 
multi-targeting and chemotherapy-combination experiments were 
conducted over the years, the focus of this meta-analysis were single 
targeting experiments in order to obtain the distinct outcomes of in
dividual molecule inhibitions. Collectively, a total of 212 targets were 
extensively evaluated in 653 published experiments, each with a 
minimum of 3 biological replicates (Fig. 1B). Responses of 51 cell models 
from 10 cancer types, immortalized fibroblasts and keratinocyte cultures 
towards small molecule inhibitors, inhibitory antibodies or RNA inter
ference (RNAi)-mediated targeting approaches were recorded. Notably, 
in over 85% of experiments, more physiological 3D, matrix-based cell 
culture techniques were applied for relevant endpoints exploration such 
as clonogenic survival and DNA damage. The functional characteristics of 
the total pool of examined targets involved interactions with integrins, 
the cytoskeleton, cancer related signal transduction and DNA repair 
(Fig. 1B, left). In Fig. 1C, we show the significant cytotoxic and radio
sensitizing effects as well as enhanced DNA damage of the top 30 tar
geted genes in 35 cell models across six cancer types most widely used 
in the Cordes lab. A complete collection of experimental results is given 
in Fig. S1 and Table S1. The most prominent adhesion related cancer 
targets, whose inhibition caused cytotoxicity and radiosensitization, 
were integrin β1 (ITGB1), Focal adhesion kinase (FAK; PTK2) and Parti
cular Interesting New Cysteine-Histidine rich protein (PINCH1; LIMS1). 
Additionally, the Epidermal growth factor receptor (EGFR) and several 
DNA damage response related proteins like DNA-PKcs (PRKDC), Poly 
(ADP-Ribose) Polymerase 1 (PARP1) and Ataxia Telangiectasia Mutated 
(ATM) are among the top targets. In order to validate the observed 
Cordes lab perturbation effects, an extensive PubMed literature search 
on the top 30 targets (see Fig. 1C), comprising a total of 1531 publica
tions, was conducted. We observed that many adhesion associated 
genes, like LIMS1 (PINCH), ILK, or specific integrins, have only been 
marginally studied as cancer targets in radiation research (Fig. S2, Table 
S1). For one of our prime targets, ITGB1, we obtained confirmatory cy
totoxic and radiosensitizing effects upon deactivation in a total of 15 
studies. Similar validations were reported for other genes like PTK2 
(Focal adhesion kinase), HDAC1, EGFR, PARP1/2 or ATM. Taken together, 
this literature search showed many adhesion associated targets to be 
underexplored but with a high potential for therapeutic exploitability. 
Overall, this accumulated knowledge prompted us to hypothesize that 
combining our in vitro results with large publicly available cancer pa
tient databases and network-based analyses uncovers new promising 
targets for radiotherapeutic-relevant adhesome targeting.

3.3. Nine cancers with highly heterogenous transcriptomes share 
similar expression changes of adhesion associated genes compared to 
the corresponding normal tissues

We comparatively investigated differently expressed genes 
(DEGs) in 9 cancer types and their corresponding normal tissues and 
detected 27253 significantly overlapping coding and non-coding 
genes between squamous cell carcinoma of the lung (LUSC), LUAD, 
PRAD, COAD, adenocarcinoma of the rectum (READ), brain lower 
grade glioma (LGG), GBM, HNSCC and PAAD (Fig. S3A). Using prin
cipal component analysis of all overlapping genes (fold changes), we 
clearly identified variations between the 9 cancers with PAAD being 
the most variable (Fig. S3B). Therefore, only DEGs demonstrating 
similar expression changes found in at least 8 out of the 9 cancer 
types were considered for further analysis, hereafter named 

similarly changed DEGs (scDEGs, Fig. S3C). Of note, out of the 2619 
genes fitting the criteria, 89% were upregulated and 11% were 
downregulated (Table S2). Additionally, we acquired the DEG profiles 
of the corresponding cancer cell models and aligned them to the 
scDEGs with further hierarchical clustering (Fig. 2B). Intriguingly, the 
heatmap pinpoints towards the similarity between cancer tissue 
DEGs and cancer cell model DEGs fold changes, which is shown by 
more than 50% positive correlations (Fig. 2B, Table S2). The next step 
involved an overlapping of the enriched genes acquired from Cordes 
lab publications with the scDEGs dataset from Fig. 2B. More speci
fically, we identified adhesion associated scDEGs (workflow in 
Fig. 2 A), which overlapped with the Cordes lab genes (i.e. 212) and 
enriched them with the most closely associated transcription factors 
and adhesion genes (Table S2). We further selected genes with a 
minimum of 2 degrees (connections) in the network and DEGs with 
an average fold change of either >  1.5 or <  0.5 from normal tissue for 
subsequent survival analyses. A total of 206 genes were passing 
these criteria and formed our initial pool of adhesion associated 
scDEGs (Table S2). Taken together, we demonstrated similarities in 
DEGs between cancer cell models and biopsies taken from patients 
of 9 genetically diverse cancer types as well as a great overlap in 
adhesion associated gene profiles indicative of a fundamental in
volvement of these genes in the chosen cancer types.

3.4. Highly enriched biological processes and pathways are shared 
among different cancer types

The scDEGs found in the 9 cancers (Fig. 2B) were implemented in 
GO and KEGG pathway analyses. Hierarchical clustering revealed 
significant and highly enriched biological processes and pathways 
connected to cancer development and progression (Fig. 2C-D). This 
revealed that the 9 cancer types utilize overactivated cell adhesion, 
DNA repair, and cell cycle-dependent DNA replication on the one 
hand, and suppress hormonal, cell cycle signaling, localization, and 
general systemic processes on the other. To investigate the biological 
properties of DEGs without similar alterations in different cancer 
types (non-scDEGs), we performed an overrepresentation analysis 
using the KEGG, GO, and Reactome databases (Fig. S4). Our results 
showed that non-scDEGs exerted cancer-type-specific functions. For 
example, genes involved in determining the extracellular matrix 
were highly upregulated in HNSCC compared with the corre
sponding normal tissue and other cancer types. Similarly, lung and 
brain tumors exhibited different immune-related signatures relative 
with other cancers. Tissue-specific downregulated gene sets were 
also observed, such as decreased neuronal genes in brain tumors or 
decreased pancreatic secretion in PAAD. Overall, these enrichment 
analyses revealed similar functional changes between the nine 
cancer types studied and the corresponding normal tissues. Fur
thermore, we indicated the characteristic traits which differentiate 
the cancer types and enable functional subgrouping.

3.5. Adhesion associated pathways are dysregulated in nine cancer 
types

To deeper understand the shared processes and pathways of our 
selected adhesion associated scDEGs, we first reconstructed the 1st 
neighbor network between these 206 genes and total scDEGs 
(Table S2), which resulted ultimately in primary and secondary 

Fig. 2. Nine cancer types with highly heterogenous transcriptomes share similar expression changes of adhesion associated genes compared to the corresponding normal tissues. 
(A) Schematic of the study workflow with all gene comparisons and selection processes. (B) Similarly changed DEGs (scDEGs) in different cancer types (CTs) and cell models (CMs, 
total number of included CMs indicated below the heatmap). CMs were aligned with hierarchically clustered 9 CTs. Correlation analysis compared scDEGs of CTs and CMs. (C-D) 
Highly enriched GO biological processes (C) and KEGG pathways (D) shared among cancer types and ordered according to gene enrichment scores. The color coding indicates the 
significance level. The symbol size represents the gene number. (E) Adhesion associated scDEGs pathway activation chart (OncoBoxPD). Green lines show the top 10 activated 
pathways; red lines show the top 10 inhibited pathways ordered based on absolute value of pathway activation levels (PALs). PAL values and FDR-adjusted p-values are shown 
right to the pathway names. LUSC, Lung squamous cell carcinoma; LUAD, Lung adenocarcinoma; PRAD, Prostate adenocarcinoma; COAD, Colon adenocarcinoma; READ, Rectum 
adenocarcinoma; LGG, Lower grade glioma; GBM, Glioblastoma multiforme; HNSCC, Head and neck squamous cell carcinoma; PAAD, Pancreatic adenocarcinoma.
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connections with 64% of scDEGs. OncoBoxPD functional enrichment 
analysis of the genes in this network allowed us to equally assess 
multiple pathway databases (Fig. 2E, Table S4). This demonstrated 
that α6β1/α6β4 integrin signaling together with Arf associated 
pathways were found to be activated, whereas regulators of diverse 
cellular responses, including cell cycling, survival, and differentiation 
were suppressed in the 9 cancer types relative to their corre
sponding normal tissues.

3.6. Combined adhesion associated scDEGs and TCGA patient survival 
analysis identifies genes of interest

Next, we took the aforementioned identified 206 genes, termed 
adhesion associated scDEGs, to evaluate them in the 9 selected 
cancer types for their clinical significance by a TCGA patient survival 
analysis (Fig. 3A). The individual impact of high gene expression on 
patient overall survival (OS) was assessed by combining the Kaplan- 
Maier analysis with the specific OS impact directions (positive: 
prolonged OS; negative: shortened OS). Analyses were performed for 
all TCGA patient cohorts of the investigated cancer types (“All”) and 
the corresponding subcohort radio(chemo)therapy only (“RT”) to 
discover radiotherapy-specific survival responses. In the “All” sur
vival analyses (Fig. 3A, left heatmap), 194 out of the 206 target genes 
affected patient survival in the frame of our log-rank test sig
nificance cutoffs (p  <  0.1; p  <  0.05; p  <  0.01). The greatest reduction 
in OS was observed in patients suffering from LGG in clear contrast 
to, for example, HNSCC patients. Hierarchical clustering pointed out 
specific subgroups of genes, which impacted OS across the majority 
of cancer types. The top 5 identified genes affecting survival nega
tively (p  <  0.05) in at least 4/9 cancer types were LOXL2, ITGA3, 
ACTB, EFNB2 and ITGB1. In contrast, our analyses also revealed genes 
prolonging patient OS at high expression such as RXRB3, SMAD9, 
SATB1, CD24 and TBP. Regarding the “RT” patient subcohort (Fig. 3A, 
right heatmap), a total of 174 genes were affecting “RT” survival. 
High expression of CD151, EFNB2, COL5A1, ITGA3 or ANAX2 most 
significantly reduced OS, while high SOX4, CX3CR1, MYB, TCF7L2 and 
XBP1 expression levels correlated with prolonged “RT” OS in mul
tiple cancer types (TCGA survival analysis source data provided in 
Table S3).

To aid target gene selection of common and radiotherapy related 
regulators, we conducted integrated K-Mean / PCA analysis on TCGA 
patient OS from Fig. 3A with their corresponding fold change ex
pression of the respective cancer types to normal tissue. These 
analyses showed predominantly characteristic data clustering for 
both groups (Fig. 3B, Fig. S5A-B). Furthermore, most cancer types 
were found to be equally distributed between each identified cluster 
(Fig. 3B, top). The data relationship between the fold change ex
pression of adhesion associated scDEGs and patient OS were mapped 
back to the K-Mean clusters to identify the clusters including po
tential genes of interest (GOI; Fig. 3B, middle). Clusters 3–5 in group 
“All” and 2–4 in “RT” were exclusively allocating the data with up
regulated gene changes and negative impact on patients` OS for both 
subgroups. Genes found within these clusters are potential candi
dates for molecular targeted interventions.

We derived our adhesion associated genes of interest (aaGOIs) 
from overlapping “All” and “RT” clustering analyses (Fig. 3B, bottom) 
with the following criteria: (i) we included all genes which showed 
an overexpression compared to normal tissue in a particular cancer 
type paired with low patients` OS (i.e. negative impact); (ii) we ex
cluded all of the selected genes which mediated prolonged patient 
OS (p  <  0.05) in one or more cancer types. Subsequently, all patients 
of the 9 TCGA cancer type cohorts analyzed in the present study 
(n = 3237) were combined in a pancancer survival analysis; (iii) for 
the final, third filtering step, we kept only genes which showed a 
significant pancancer patients` OS shortening (i.e. negative impact; 
p  <  0.1). In total, we identified 41 aaGOIs (Fig. 3C). To unravel the 

potential clinical impact of our aaGOIs for radiotherapy, the pan
cancer subcohorts “RT” (n = 1079) and “No RT” (n = 2158) were ad
ditionally examined for patients` OS shortening under high aaGOI 
expression. This subcohort segmentation allowed us to group the 
aaGOIs into three categories: (i) 28 genes affected the OS in all pa
tients independent of therapy type; (ii) 8 aaGOIs genes primarily 
influenced “RT” patients; (iii) 5 genes mainly affected the “No RT” 
cohort (Fig. 3C). The impact of each aaGOI on patients` OS for each 
cancer type is shown in Fig. S6. Each of the three groups were 
hierarchically clustered based on the average fold change to normal 
tissue, highlighting the consistently overexpressed aaGOIs across all 
examined cancer types. The individual pancancer Kaplan-Maier 
survival analyses for the highest expressed aaGOIs are visualized in 
Fig. 4. The top candidates from each target gene group were Secreted 
Phosphoprotein 1 (SPP1, “All” group), Transforming Growth Factor 
Beta Induced (TGFBI, “RT” group) and Cadherin 3 (CDH3, “No RT” 
group) (Fig. 4 A). The top integrins were ITGB4 (“All” group), ITGA6 
(“RT” group) and ITGA11 (“No RT” group) (Fig. 4B). Taken together, 
these results pinpoint the importance of adhesion associated genes 
across a wide range of highly heterogenous cancer types. The iden
tified aaGOIs demonstrated similar upregulation and impact on pa
tients` OS.

3.7. Integrin signaling pathways negatively affect the efficacy of 
conventional radio(chemo)therapy in the studied cancer types

Next, we investigated the shared treatment-perturbing and OS- 
reducing impact potential of the selected 36 aaGOIs from the groups 
“All” and “RT” (aaGOIs-All/RT) in the 9 different cancer types. To 
acquire knowledge about the underlying processes in the identified 
aaGOIs-All/RT group, we performed a pathway enrichment analysis. 
Positive pairwise clustering correlation comparisons of significantly 
(p  <  0.05; FDR < 0.25) associated 1614 functional terms acquired 
from multiple databases revealed that aaGOIs-All/RT are involved in 
key cellular processes such as cell death mechanisms, regeneration, 
immune system and localization regulations (Fig. 5A, Table S4). 
Further hierarchical clustering of MSigDB hallmarks identified in the 
correlation matrix uncovered highly significant associations with the 
development of peripheral immune cells, transformation and en
hanced migration characteristics accompanied by epithelial me
senchymal transition, cell-cell interaction and IL2/STAT5 signaling in 
cancers (Fig. 5B). Intriguingly, independent functional network 
pathway analysis (ClueGO) based on shared functional enrichment 
commonalities revealed that 66% of aaGOIs-All/RT functioning in 
integrin related pathways and additional 34% are associated to cell 
adhesion, fiber organization and apoptotic processes (Fig. 5C). After 
reconstructing biological interactome networks based on the over
expression hierarchical gene order, we observed ITGB1 as the central 
node physically connecting 60% of genes with primary and sec
ondary protein-protein interactions (Fig. 5D). Overall, our findings 
highlight: (i) a strong association between our 36 aaGOIs-All/RT and 
general key cancer cell functions, and (ii) β1 integrin related path
ways are predicted to be central to these associations.

4. Discussion

Intra- and intertumoral heterogeneity are extensive with multi- 
layered disparities affecting numerous fundamental processes like 
survival, proliferation, and invasion [2]. Consequently, different 
cancers demonstrate varying efficacy to both conventional and novel 
molecular targeted approaches [4]. Therapeutic improvements with 
conventional radio(chemo)therapy have therefore plateaued across 
different cancer types in the last decades [44,45]. In addition to a 
myriad of intra- and extracellular factors of resistance [5], extensive 
work of the Cordes lab and others showed the fundamental role of 
the adhesome in cancer [7,14,46]. Here, we evaluated the 
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Fig. 3. Combined adhesion associated scDEGs and TCGA patient survival analyses identify genes of interest. (A) TCGA patient survival analysis of adhesion associated scDEGs (206 
genes) in 9 cancer types. For each gene, patients of the respective TCGA studies were divided in high and low expression cohorts (group cutoff: median expression) and subjected 
to Kaplan-Maier analysis. The heatmaps highlight the impact of the significantly overexpressed adhesion associated genes on overall survival (OS) of patients by log-rank test 
significance cutoffs (p  <  0.1; p  <  0.05; p  <  0.01). The left heatmap includes all patients (“All”) of the respective cancer-type cohorts. The right heatmap selects only for radio
therapy (“RT”)-treated patients. Genes with no effect across all cancer types were excluded. Cancer types COAD and READ were combined for the “RT” cohort analysis due to low 
patient numbers. (B) Combined K-mean / PCA data analysis of adhesion associated scDEGs and corresponding reciprocal p-values for TCGA patient survival. Data sets were 
grouped into positive and negative categories according to their impact on “All” (left column) and “RT” (right column) survival. Individual points of top row graphs indicate the 
respective cancer type. Localization of upregulated and downregulated genes with respective positive or negative impacts on survival (middle). Selected genes of interest (bottom; 
aaGOI within “All” and “RT”) include only overexpressed genes with a negative impact on OS in at least two cancer types. (C) Pancancer target gene analysis of aaGOIs (n = 41) 
impacting OS in 9 TCGA cancer cohorts. The OS in the “RT”- and “No RT”-subcohorts divides the GOIs into three groups, primarily affecting OS in either “All” (grey, 28 genes), “RT” 
(8 genes, black), or “No RT” (5 genes, white) cohorts. Each group was independently hierarchically clustered based on its expression change to normal tissue across the respective 
cancer types. aaGOI, adhesion associated gene of interest. LUSC, Lung squamous cell carcinoma; LUAD, Lung adenocarcinoma; PRAD, Prostate adenocarcinoma; COAD, Colon 
adenocarcinoma; READ, Rectum adenocarcinoma; LGG, Lower grade glioma; GBM, Glioblastoma multiforme; HNSCC, Head and neck squamous cell carcinoma; PAAD, Pancreatic 
adenocarcinoma.
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reasonability and relevance of the preclinical Cordes lab datasets in a 
pancancer context using large publicly available transcriptomic and 
patient survival databases. We found that a large set of genes is si
milarly changed across highly heterogenous cancer types compared 
to the corresponding normal tissue. Connecting these similarly 
changed DEGs (scDEGs) with the Cordes lab adhesion associated 
targets revealed groups of genes whose overexpression impacted 
generally or radio(chemo)therapy-specifically patient survival. 
Functional analyses classified these genes as being involved in key 
cancer pathways, which are connected through integrin related 
signaling.

In the past decades, multiple large patient cohort studies and 
advances in next-generation omics analytics revealed diverse pro
survival mechanisms within individual cancer types and cancer cell 
models [23,26,47]. These massive databases hold a great potential 
for investigating shared and conserved biochemical adhesion related 
cues. These cues are profoundly modified in cancer cells, in which 
cell-ECM interactions are not only altered by adverse mechan
obiology but also participate in mediating therapy resistance in 
cancer. In this study, we focused on non-small cell lung cancer 
(LUAD, LUSC) [20,48], colorectal cancer (COAD, READ) [49,50], brain 
cancers (GBM, LGG) [18,51], head and neck cancer (HNSCC) [52,53], 

Fig. 4. Pancancer survival analyses of highly overexpressed adhesion associated genes of interest. Candidate genes derived from each target gene group of Fig. 3 C were included in 
individual pancancer overall survival analyses of either “All” patients (n = 3227), “RT” (n = 1079) or “No RT” (n = 2158) subcohorts after initial diagnosis. Survival plots in (A) 
represent adhesion associated genes of interest (aaGOIs) with highest overall expression fold change relative to normal tissue of each group. (B) Top aaGOIs of the integrin family 
across the defined target gene groups. Median expression defined the cutoff between high (red) and low (blue) expression survival curves. (A-B) Log-rank test p-values and 
confidence intervals are indicated.
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pancreatic cancer (PAAD) [54,55], and prostate cancer (PRAD) [16], in 
which we and others reported therapy sensitization by targeting 
focal adhesion proteins.

To connect these promising preclinical observations with cancer 
patient transcriptomics, we took all adhesion related targets explored in 
the Cordes lab as starting point of our analysis. The bias of this one-lab 
gene set selection was addressed in a literature search on the 30 most 
thoroughly investigated targets, which confirmed radiosensitizing effects 
in terms of cell survival and DNA damage response. Combined bioin
formatic analyses across cancer types and their corresponding cell 
models allowed us to identify shared DEGs within at least eight cancer 
types. We found 2619 scDEGs associated with activation of DNA repair, 
DNA replication, and adhesion as well as suppression of cell cycle sig
naling, localization, and general systemic processes. Interestingly, with 
around 60% correlation, DEGs found in these tumor tissues are shared 
with the corresponding cancer cell models. Previous bioinformatic ap
proaches similar to the presented one were mainly conducted on either 
individual gene sets or in specific cancer types [56,57]. Furthermore, in 
these studies the impact on patient survival or the intermolecular in
teractions were often not taken into consideration. For the first time, as 
to our knowledge, similarly changed DEGs were described between the 
examined 9 cancer types and analyzed in the context of the cancer 
adhesome.

To focus on adhesion genes, we interconnected the Cordes lab 
gene sets with identified scDEGs, which resulted in 206 adhesion 
associated scDEGs. Their clinical relevance was assessed by com
prehensive TCGA survival and tumor overexpression analyses. We 
ultimately found 36 genes of interest (aaGOIs-All/RT), which im
pacted survival of either all patients across multiple cancer types or 
exclusively in the radio(chemo)therapy treated cohort. These genes 
were functionally involved in cell death mechanisms, regeneration, 
the immune system, and enhanced migration characteristics ac
companied by epithelial-mesenchymal transition (EMT) processes. 
In line, comparable and commonly dysregulated cancer functional
ities, like apoptosis or actin-cytoskeleton regulation, were also dis
covered in a recent pancancer multi-omics study [58]. Network 
analysis of the identified aaGOIs-All/RT revealed a large dependency 
on the integrin signaling axis. In fact, of the 36 genes, 60% were ei
ther integrins or their 1st neighbor’s physical interactors. Integrin β1 
emerged as the central node with a maximum of gene inter
connections to α integrins and numerous other focal adhesion and 
ECM related proteins. These findings validate the reasonability of the 
Cordes lab work on the cancer adhesion resistome. In fact, integrin 
β1 was the most investigated cancer target in the group over the 
years [15,48,59–61]. The importance of this integrin is emphasized 
by a large body of preclinical studies on its therapy sensitizing po
tential [17,20,62]. By linking preclinical results with pancancer da
tasets, integrin β1 and its interacting proteins revealed a negative 
impact on patient survival, clearly pinpointing the significance of 
this signaling hub for inherent and/or acquired resistance as well as 
precision medicine. In line with this, an integrin β1 targeting anti
body for the treatment of high-grade glioma patients just entered 
clinical trials accompanied by real time imaging to assess its phar
macokinetics (NCT04608812). This and other novel optimized in
tegrin related therapeutics reentered clinical trials after the failure of 
αV-integrin targeting peptidomimetics in GBM [63].

We identified β4 and α6 integrin as the most overexpressed in
tegrins in our study, adversely affecting survival of either all (β4) or 

primarily radio(chemo)therapy treated patients (α6). Previous in 
vitro experiments of our lab reflect this pattern, where general cy
totoxic and radiosensitizing effects were observed upon integrin β4 
[54] and integrin α6 inhibition [52,64]. Research on glioblastoma and 
breast cancer supports the suggested pancancer involvement of in
tegrin α6 in radioresistance [65,66]. Concerning integrin β4, a con
nection to EMT could be observed [67], which was also identified as 
a hallmark ontology in our final aaGOI-All/RT set. Likewise, both of 
these integrins and their heterodimeric α6β4 receptors were found 
to be intricately involved in cancer stem cell (CSC) properties [46]
and their deactivation demonstrated effective perturbation of CSC 
populations [68,69].

Beside integrins, our meta-analysis revealed promising adhesion 
associated genes highly deregulated across multiple cancer types. 
Especially the pancancer overexpression of Osteopontin (SPP1) and 
its impact on survival was remarkable and increasing evidence de
lineates SPP1 as a critical factor in tumorigenesis, metastasis, im
mune response and chemoresistance [70]. Importantly, SPP1 is a 
direct integrin interactor, which underpins the involvement of this 
signaling axis in adverse pancancer adhesome signaling and poten
tial targeting opportunities. Regarding our aaGOIs primarily im
pacting the survival of radiotherapy treated patients, transforming 
growth factor-beta-induced (TGFBI) stood out in particular. Its pri
mary role consists in connecting various integrins to the ECM. 
However, a growing body of research points towards its two-edged 
role in regulating tumor progression and resistance [71,72]. Central 
to radio(chemo)therapy was the discovery that TGFBI mediates a 
survival advantage by modifying DNA damage repair [73]. Further
more, it counteracts the radio(chemo)sensitizing potential of tar
geting the adhesion associated receptor DDR1 [74,75].

Intriguingly, at least half of our aaGOIs-All/RT were identified in 
tumor extracellular vesicles (EVs) from primary or metastatic sites in 
colorectal cancer [76]. This and other studies provide preliminary 
evidence of the utilization of EV associated integrins as potential 
biomarkers for detecting cancer, tumor stage or metastasis, where 
particularly integrin β1 and α6 were found to be of high importance 
[77]. However, such EVs contribute also to therapy resistance [78]
and were presumably a critical factor why previous clinical trials 
addressing integrin targeting displayed low efficacy [63]. This un
derscores the need for the clarification of three aspects: (i) which of 
the various adhesome targets (like integrins, SPP1, TGFBI, AXL, 
EPHA2, LOXL, ect.) are key determinants in a specific cancer type; (ii) 
what is the therapy sensitizing potential of targeting these key de
terminants; (iii) which multi-targeting approaches are required in a 
specific cancer type to hamper the numerous bypass opportunities 
leading to low treatment efficacy [7].

Overall, the multiple filtering steps in our adhesion associated 
meta-analysis retained key integrins and interaction partners sug
gesting a conserved role across heterogeneous cancer types. This 
implies that interconnecting the identified hallmark in cancer 
characteristics with adhesion associated inhibition approaches could 
reveal previously undetected preserved prosurvival mechanisms 
driving normal tissues into cancer. Connecting adhesome and 
matrisome [79,80], the application of in-silico methodologies on the 
individual protein level [81] combined with multi-omics 
pancancer analyses will provide further proofs needed in bringing 
promising adhesion associated anti-cancer therapies from bench to 
bedside.

Fig. 5. Overexpressed genes associated with integrin pathways negatively affect patient survival across 9 cancer types. (A) Pairwise clustering correlation evaluation of significant 
(p  <  0.05; FDR < 0.25) functional associations (1614 terms, acquired from Wikipathways, Reactome, KEGG, Gene Ontology (GO), Molecular Signatures Database (MSigDB) re
sources; proceeded with g:profiler, ShinyGO, GSEA) with “All” and “RT” target gene groups from Fig. 3C (aaGOI-All/RT, n = 36). The blue broken line indicates the largest clustered 
terms with a correlation coefficient of > 0.75. (B) Hierarchical clustering tree of the MSigDB hallmarks in cancer acquired from (A). (C) Hierarchical clustering of the assigned GO 
terms referring to functional commonality based on ClueGO network analysis for aaGOI-All/RT (D) Constructed interaction network via GeneMANIA with the closest interrelated 
genes for the aaGOI-All/RT groups. The color code of the nodes indicates the GO of molecular functions (processed with ShinyGO). The size of the nodes is proportional to the gene 
score assessed by GeneMANIA. The lines connect nodes (edges) with considered relationship. Radial structures indicate an increase of the interconnection enrichment from center 
to edge. aaGOI, adhesion associated genes of interest.
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5. Conclusion

In conclusion, our meta-analysis shows a clear involvement of in
tegrins, especially β1, β4 and α6, in adverse cancer therapy outcomes 
indicating a conserved role of integrin adhesome signaling across the 
heterogenous cancer types. A set of our identified genes (aaGOI-RT) 
specifically impacted the survival of radio(chemo)therapy-treated pa
tients, offering potential new approaches for research in molecular-tar
geted strategies. The relevance and reasonability of the Cordes lab 
investigations on the cancer adhesion resistome are confirmed by our 
meta-analysis since key preclinical candidates displayed aberrant ex
pression patterns and adverse impacts on patient survival in a pancancer 
context. Future in-silico and experimental research is warranted to un
cover the role of our identified gene candidates in the cancer adhesome 
and their therapeutic potential for molecular interventions. The in
volvement of highly expressed integrins and their interconnectors in the 
cancer resistome could contribute to pave the way towards personali
zation and precision oncology.
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