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the future CAP will be cooperatively designed in a regionally targeted way to

improve their attractiveness for farmers and widen their uptake.

KEYWORD S
agriculture, agri-environment schemes, biodiversity conservation, breeding habitat,
ecological focus areas, land use, multiscale, organic farming, scale of effect, species
distribution model

INTRODUCTION

With nearly half of the total European Union’s (EU) land
area covered by agroecosystems, a large share of
biodiversity in the old continent relies on farmland
(Bat�ary et al., 2015). Hence, maintaining agroecosystems
in good condition is of pivotal importance for biodiversity
conservation in Europe. However, land-use intensifica-
tion and the loss of traditional types of management in
agricultural landscapes led to a rapid and widespread
decline in farmland biodiversity across many taxa in
recent decades (Bat�ary et al., 2015).

Two main tools within the current EU common agri-
cultural policy (CAP) are specifically designed to better pro-
tect biodiversity, habitats, landscapes, and ecosystem
services and to contribute to climate change mitigation and
adaptation: ecological focus areas (EFAs) and agri-
environment schemes (AESs) (Pe’er et al., 2014). EFAs are
funded under Pillar I of the CAP as part of greening mea-
sures. To obtain EFA subsidies, farmholders with arable
areas exceeding 15 ha must dedicate 5% of their land to
ecologically beneficial elements, like terraces, hedges, or
ponds, but also fallow land, nitrogen-fixing crops, and
cover crops (Pe’er et al., 2017). AESs are funded under
Pillar II as voluntary contracts with farmers who receive a
payment for implementing measures aimed at preserving
biodiversity, cultural landscapes, and permanent grasslands
and reducing nutrient emissions from farmland to water
(Bat�ary et al., 2015). Organic farming, which is also
supported under Pillar II, has similar objectives and pro-
motes a more sustainable and more wildlife-friendly agri-
culture by not using mineral fertilizers and synthetic
pesticides (BMEL, 2021; Gabriel et al., 2010).

EFAs, AESs, and organic farming account for a con-
sistent share of the total CAP expenditure, but their effec-
tiveness is regularly questioned (Pe’er et al., 2014, 2020).
The greening measures have been described as largely
ineffective because some of the most widely implemented
EFA schemes, such as cover crops and nitrogen-fixing
crops, are also the least beneficial in ecological terms
(Pe’er et al., 2017). Similarly, although some studies
found AESs to be beneficial for farmland biodiversity
(Bat�ary et al., 2015; Zingg et al., 2019), many more have

shown only marginal effects (Gamero et al., 2017; Kleijn
et al., 2006) or no effect at all (Daskalova et al., 2019;
Zmihorski et al., 2016). The benefits of organic farming
for biodiversity are also often debated because the
responses and their effect sizes are highly variable across
taxonomic and functional groups and landscape context
(Gabriel et al., 2010; Tscharntke et al., 2021; Tuck
et al., 2014). In this study, we focus on EFAs, AESs, and
organic farming and refer to them as AEMs henceforth.

The effectiveness of AEMs depends on the landscape
structure and context, as biodiversity responses are often
stronger when the measures are applied in intensively
managed regions and simplified or homogenized land-
scapes (Marja et al., 2019). Spatial scale is another impor-
tant modulator of the effect of different land uses:
Although management at the field and farm level signifi-
cantly influences within-farm biodiversity (Stoeckli
et al., 2017), certain species and taxa seem to benefit from
AEMs only if they are widely implemented across the
agricultural landscape (Gabriel et al., 2010).

Despite the growing body of work on the relationship
between AEM effectiveness and landscape structure across
scales, the majority of studies so far have been conducted at
the farm level (Daskalova et al., 2019; Gabriel et al., 2010;
Stoeckli et al., 2017) or at the level of monitoring units or
plots (Concepci�on & Díaz, 2019; Zingg et al., 2019; but see
Walker et al., 2018). To capture the effect of gradients in
land-use intensity and landscape structure, research at the
broader regional scale is necessary (Bat�ary et al., 2015).
Hence, the spatial heterogeneity of AEM efficacy remains
largely unexplained, and relating spatial data on changes in
field-level management, grassland conversion rates, and
land-use intensity to biodiversity trends was recently
highlighted as a top research priority (Daskalova
et al., 2019; Kamp et al., 2021). Assessing the scale of effect
of AEMs at the local and landscape level is thus crucial to
determine the optimal scale of management and to estimate
the minimum area of an AEM to produce significant out-
comes (Gabriel et al., 2010; Spake et al., 2019).

Birds are often regarded as ecological indicators, as
their presence is strongly linked to such environmental
characteristics as landscape features, marginal vegetation,
insect abundance, and anthropogenic disturbance
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(Benítez-L�opez et al., 2010; Morelli et al., 2014).
Moreover, birds rank among the best-monitored taxo-
nomic groups in Europe, making them ideal candidates
for studying the impacts of different land-use management
practices across countries and environmental gradients
(Engler et al., 2017; Kamp et al., 2021). Here, we used
ensemble species distribution models (SDMs) (Araújo &
New, 2007) to link farmland bird occurrences to environ-
mental conditions and land-cover/land-use information.
We examined the association between 15 farmland bird
species and five groups of AEMs, namely, buffer areas,
cover crops, extensive grassland management, fallow land,
and organic farming, in the Mulde River Basin, a tradi-
tionally agricultural region in Saxony, Germany. We used
spatially explicit field-level information on land-use man-
agement derived from the Integrated Administration and
Control System (IACS) of Saxony (InVeKoS Sachsen;
SMEKUL, 2020), as well as geospatial information on
topography, anthropogenic disturbance, and land cover.
IACS is a yearly updated database supporting the adminis-
tration of direct payments for European farmers and holds
precise information on size and geometry of each agricul-
tural field, the type of crop grown, the farming practice
(organic vs. conventional), and the implemented AESs
and EFAs in each year (Santos et al., 2021). Moreover,
since drivers of species distributions act at varying spatial
scales (Fournier et al., 2017; Spake et al., 2019), we investi-
gated the scale of effect of the different measures and
land-cover types by applying a multiscale modeling frame-
work in which the optimal scale for each covariate is
selected empirically (McGarigal et al., 2016). Specifically,
we aimed to answer the following questions:

1. Which landscape and land-use factors are the stron-
gest drivers of farmland bird distribution in the Mulde
River Basin, Germany?

2. What is the effect of the selected AEMs (i.e., buffer
areas, cover crops, extensive grassland management,
fallow land, and organic farming) on habitat suitabil-
ity for farmland birds? At which spatial scale are they
most effective?

3. How would habitat suitability for the 15 farmland bird
species change if AEMs were absent and if their
implementation was increased to meet conservation-
informed targets?

METHODS

Study area

The Mulde River Basin (Figure 1) is located in the
western part of the federal state of Saxony, Germany, and

covers an area of 5814 km2, spanning from the
Pleistocene lowlands in the north to the Ore Mountains
in the south, with elevation ranging from 24 to 1214 m
above sea level (asl) (Staatsbetrieb Geobasisinformation
und Vermessung Sachsen, 2016). The climate is predomi-
nantly continental, with a total annual precipitation
between 570 and 1260 mm and mean annual tempera-
tures ranging between 7.4�C and 14.1�C (Deutscher
Wetterdienst, www.dwd.de). The Mulde River Basin is
partly characterized by fertile soils rich in loess deposits,
making them highly suitable for intensive arable farming.
Thirty-eight percent of the study area is covered by crop-
land, and another 13% of the area is dedicated to mowing
pastures and meadows. The study area is representative
of traditional agricultural regions in Central Europe.
Land-use changes, like soil sealing, and conflicts related
to increased bioenergy production and intensification are
regarded as the main threats to biodiversity and ecosys-
tem services in the region (Ziv et al., 2020).

Bird occurrence data

The data set provided by the Saxon State Agency for
Environment, Agriculture and Geology consists of
georeferenced bird observations collected from 2016 to 2019
with a spatial uncertainty ≤100 m, compiled in the Saxon
Central Species Database (Zentrale Artdatenbank, www.
natur.sachsen.de/zentrale-artdatenbank-zena-sachsen-6905.
html). This database comprises observations from standard-
ized monitoring projects (e.g., breeding bird monitoring,
Natura2000 monitoring; 55% of the data), monitoring activi-
ties of special interest groups and nongovernmental organi-
zations (NGOs) (36%), and opportunistic observations (9%);
the data entries are checked and harmonized by the state
agency staff before being uploaded in the Central Species
Database. The diverse source of the data entails biases in
the monitoring effort, which is higher in protected areas
and close to cities, and in the species ratio, with rare species
being monitored more intensively. We here focused on
farmland bird species and selected those breeding in (wet)
grassland, arable land, and fallow areas (Blischke, 2017;
Busch et al., 2019). We filtered the data set to retain only
observations for which the breeding status was categorized
as possible, probable or confirmed, and included in the
analysis only those farmland species with a minimum of
40 presence points. To avoid pseudo-replicates, observations
that fell in the same environmental raster cell (20-m resolu-
tion) were removed, even if they occurred in different years
(as some environmental variables, like elevation and slope,
were kept constant across the 4 years), in which case the
most recent observation was retained. Species selection and
data set filtering are described in detail in the Overview,
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Data, Model, Assessment and Prediction (ODMAP) protocol
(Zurell et al., 2020) in Appendix S1. The final list consisted
of 15 species (Table 1). As absence points, we used ran-
domly selected presence points of other (farmland and
nonfarmland) bird species in the data set, with a minimum
distance to all presence points of 500 m. This is a common
approach to control for unequal monitoring effort and
reduce the influence of spatially biased samples, for exam-
ple, toward more accessible or protected areas (Ranc

et al., 2017), as well as for ensuring an adequate
environmental distance between presence and absence
points (Iturbide et al., 2015). We set the number of
absence points at 10 times that of presence points for each
species, an average value among those recommended for
different algorithms (Barbet-Massin et al., 2012). For Lanius
collurio, the most abundant species in our data set, we used
all observations of other birds as absence points, resulting
in a presence/absence ratio of 0.4.

F I GURE 1 Study area and multiscale land-cover/land-use variable calculation design. (a) Location of the Mulde River Basin in

Germany. (b) Aerial image of the basin. (c) Inset showing Integrated Administration and Control System data, with field boundaries shown

in red and linear ecological focus areas in yellow. (d) Exemplary design of multiscale land-cover/land-use variable calculation using circular

windows of different radii around each bird presence/absence point.
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Variable selection and calculation

Explanatory variables were chosen to reflect environmen-
tal and habitat conditions likely to impact farmland birds’
distributions at the field and landscape levels (Table 2).
Climatic predictors, for example, multiannual total pre-
cipitation and minimum and maximum temperatures,
were initially included in the models, but, due to their
high correlation (jrj > 0.7) with elevation and their
coarser spatial resolution (1 km), we ultimately excluded
them, thereby using elevation in the models. Detailed
information on the preparation of the environmental layers
is provided in the ODMAP protocol (Appendix S1).

Elevation, slope, and distances from highways and for-
est edges were extracted directly from the corresponding
raster layers at the location of each presence/absence point.
We computed the proportion of different land-cover/
land-use types within a circular window around each
presence/absence point, using 200-, 500-, and 1000-m radii,
respectively (Figure 1d). The first two approximate territory
size and mean foraging movement distances of farmland
birds (Söderström & Pärt, 2000), whereas the largest buffer
captures landscape-scale effects (Martin et al., 2020).
Agricultural land-use diversity (ALU div.) was calculated
within each circular window using the Shannon’s diversity
index

SDI Σpi� ln pið Þ ð1Þ

where pi is the relative proportion of agricultural land-
use type i. Land-use types included different types of
crops, grassland uses (e.g., meadows, mowing pastures),
and AEM information. We matched the bird presence/
absence points of each year to the corresponding IACS infor-
mation for the calculation of the land-use and AEM-related
variables; whereas topography, distance metrics, and land-
cover layers remained constant across the 4 years. Informa-
tion on the AEM schemes that constitute the five groups is
given in Appendix S2. To select the best scale for each vari-
able and exclude highly correlated variables from the same
model, we fitted univariate linear models with binomial dis-
tribution for each explanatory variable and ranked them by
their Akaike information criterion corrected for small sample
size (AICc) score. For each species, we then selected the best
set of uncorrelated variables (i.e., with Spearman’s correla-
tion coefficient <0.7) with the lowest AICc score (Bellamy
et al., 2020; McGarigal et al., 2016). All calculations were car-
ried out in R version 4.0.2 (R Core Team, 2020), using the
packages sf (Pebesma, 2018), raster, and terra (Hijmans
et al., 2020, 2021), and the R codes are available in Zenodo
(Roilo, 2022).

Modeling approach

For each of the 15 species, we applied an ensemble
modeling approach to minimize the prediction

TAB L E 1 List of species included in the analyses and number of presence points used for modeling after filtering. Information on nest

type is from Storchov�a and Hoř�ak (2018): ground = on ground directly; ground-close = nest in tussock very close to ground but not directly

on ground, hidden in surrounding vegetation; open arboreal = cup in bush, tree, on cliff ledge.

Species Common name Presence points Nest type

Alauda arvensis Eurasian skylark 79 Ground

Anthus pratensis Meadow pipit 299 Ground-close

Carduelis cannabina Common linnet 55 Open arboreal

Charadrius dubius Little ringed plover 96 Ground

Coturnix coturnix Common quail 63 Ground

Crex crex Corncrake 84 Ground-close

Emberiza calandra Corn bunting 90 Ground-close

Emberiza citrinella Yellowhammer 164 Ground-close

Gallinago gallinago Common snipe 63 Ground-close

Lanius collurio Red-backed shrike 988 Open arboreal

Motacilla flava Blue-headed yellow wagtail 92 Ground-close

Saxicola rubetra Whinchat 411 Ground-close

Saxicola rubicola European stonechat 205 Ground-close

Sylvia communis Common whitethroat 106 Open arboreal

Vanellus vanellus Northern lapwing 41 Ground

ECOLOGICAL APPLICATIONS 5 of 15

 19395582, 2023, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2720 by Shsische Landesbibliothek, W

iley O
nline Library on [20/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



uncertainty arising from single algorithm models
(Araújo & New, 2007). We used five modeling algo-
rithms, namely, generalized linear models, generalized
additive models, random forest, generalized boosting
models, and maximum entropy, as implemented in the
biomod2 package version 3.4.6 (Thuiller et al., 2019).
Model settings for each algorithm are described in the
ODMAP protocol (Appendix S1). We fitted 10 repetitions
for each model by randomly subdividing the data set into

70% training data and 30% testing data. Each model run
was evaluated via cross-validation. We used the area
under the receiver operating characteristics curve (AUC),
the true skill statistic (TSS), specificity, and sensitivity as
evaluation metrics (Fletcher & Fortin, 2018). To obtain a
relevant combination of unbiased (i.e., with fair accu-
racy) models, only models with AUC ≥ 0.7 were retained,
and the ensemble model was constructed by computing
the weighted (by AUC scores) average of all remaining

TAB L E 2 Explanatory variables used in species distribution models, sources of original data, and ecological importance for farmland

birds.

Group Variable (units)
Data source (original

resolution) Ecological importance (references)

Topography Elevation (m) DGM20, Staatsbetrieb
Geobasisinformation und
Vermessung Sachsen (20 m)

Habitat and climatic differences, proxy for
temperature (Morelli et al., 2014; Stoeckli et al.,
2017)

Slope (�) DGM20, Staatsbetrieb
Geobasisinformation und
Vermessung Sachsen (20 m)

Nesting suitability for ground-breeding species
(Morelli et al., 2014)

Distance
metrics

Distance from forest
edge (m)

Copernicus High Resolution
Layer Forest type 2015 (20 m)

Edge avoidance from ground-breeding species
(Besnard et al., 2016)

Distance from
highways (m)

OpenStreetMap 2020 (shapefile) Avoidance of traffic noise (Benítez-L�opez et al., 2010)

Land
cover/
use

Agricultural land-use
diversity
(Shannon’s index)

IACS 2016–2019 (shapefile) Landscape heterogeneity and structural diversity
(Wilson et al., 2017; Zellweger-Fischer et al., 2018)

Arable land (%) IACS 2016–2019 (shapefile) Feeding and breeding habitat (Concepci�on & Díaz,
2019; Wilson et al., 2017)

Grassland cover (%) Copernicus High Resolution
Layer Grassland status map
2015 (20 m)

Feeding and breeding habitat for grassland species
(Morelli et al., 2014)

Small woody features
(SWF) cover (%)

Copernicus High Resolution
Layer Small Woody Features
2015 (5 m)

Nesting sites for open-arboreal breeders; avoidance by
open ground breeders; proxy for landscape
elements (Morelli et al., 2014; Wilson et al., 2017)

Urban cover (%) Adaptable pixel-based
compositing and classification
land cover map 2016 (Preidl
et al., 2020) (20 m)

Anthropogenic disturbance, soil sealing (Morelli et al.,
2014; Zingg et al., 2019)

AEM Buffer areas (%) IACS 2016–2019 (shapefile) Seminatural habitat, breeding and feeding habitat
(Perkins et al., 2002; Zellweger-Fischer et al., 2018)

Cover crops (%) IACS 2016–2019 (shapefile) Feeding opportunities due to higher invertebrate
abundance (Concepci�on & Díaz, 2019; Stoeckli
et al., 2017)

Extensive grassland
management (%)

IACS 2016–2019 (shapefile) Breeding habitat for grassland-breeding species;
feeding opportunities (Stoeckli et al., 2017;
Zellweger-Fischer et al., 2018)

Fallow land (%) IACS 2016–2019 (shapefile) Breeding habitat for ground-breeding species; feeding
opportunities (Concepci�on & Díaz, 2019)

Organic farming (%) IACS 2016–2019 (shapefile) Beneficial effects of lower pesticide use and higher
invertebrate abundance (Gabriel et al., 2010; Tuck
et al., 2014)

Abbreviations: AEM, agri-environment measure; IACS, Integrated Administration and Control System.
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models (Hao et al., 2019). Spatial autocorrelation in the
model residuals was assessed with spline correlograms
using the ncf package (Bjornstad, 2020). Variable impor-
tance scores, obtained using the get_variable_importance()
function in the biomod2 package, were normalized, so that
the sum of the importance scores of all variables in a model
equalled 100. The variable response plots were built with
the response.plot2() function of the same package, and the
SD was calculated across the 10 model runs.

Projection of models to simulated AEM
scenarios

We calculated the mean AUC for each algorithm across
the 10 model runs and fitted full models (trained on
the full data set) only for the algorithms with mean
AUC ≥ 0.7. The ensemble prediction map of breeding
habitat suitability was then calculated as weighted
(by AUC scores) average of the single algorithm model
predictions using the weighted.mean() function of the
raster package (Hijmans et al., 2020). We projected the
models into three simulated scenarios: (1) the current
scenario (CURR), based on the IACS data of 2019; (2) a
scenario without AEM (NOAE), in which the propor-
tions of buffer areas, cover crops, extensive grassland
management, fallow land, and organic farming were set
to zero across the entire study region; and (3) a
conservation-informed scenario (CONS), in which the
proportion of AEMs was increased to meet the average
values recommended by conservation experts in
Germany (Oppermann et al., 2020). In the CONS sce-
nario, the percentage of agricultural land under organic
farming was increased from 6.9% (in year 2019) to 20%,
according to the 20% organic farming target set by the
German Federal Government (BMEL, 2021). The pro-
portion of buffer areas on cropland was increased from
1.9% to 12.5% and that of fallow land from 1.1% on
total agricultural land (grassland and cropland) to
12.5%. Extensive grassland management, which covered
28.7% of all permanent grasslands in 2019, was
increased to 50%. The specific spatial allocation of addi-
tional AEMs on individual fields was carried out ran-
domly but respected the cropland and permanent
grassland distribution of 2019, that is, there was no
conversion between cropland and grassland or vice
versa. The proportion and distribution of cover crops
was left unchanged because they were not described as
a highly beneficial measure for farmland birds by
Oppermann et al. (2020). For each land-cover/land-use
variable, we calculated three raster layers at a 20-m
resolution (one for each of the three considered spatial
scales) in which each raster cell value corresponded to

the proportion of the given land-cover/land-use type
within circular windows with radii of 200, 500, and
1000 m. This process was repeated for all three scenar-
ios, and the resulting rasters served as inputs for the
model projections.

RESULTS

Main drivers of farmland bird distribution

All models performed well, with mean AUC ≥0.8 and
mean TSS ≥0.49 for all species, indicating a good predic-
tive performance of the models (Appendix S1: Table S1).
Sensitivity and specificity were ≥0.74, showing that the
models correctly classified both presences and absences.
For some species, spatial autocorrelation in the model
residuals was detected with relatively low magnitude
(maximum correlation <0.5 for all species) and at short
distances compared to the entire distance range of our
data set (Appendix S1: Figure S1). Overall, we deemed
this level of autocorrelation acceptable, as subsampling
the data set would likely have larger deleterious effects of
prediction accuracy (Thibaud et al., 2014). Only two pairs
of variables (grassland and extensive grassland manage-
ment, arable land and agricultural land-use diversity)
were highly correlated in certain species data sets, lead-
ing to a lower number of explanatory variables in their
models. Variable importance scores varied greatly across
species and variables, but in general topographic, dis-
tance metrics, and land-cover/land-use variables had
higher importance than the AEM-related variables
(Figure 2). In fact, none of the AEM variables was among
the two most important variables in any model
(Appendix S1: Table S1). Across all species and spatial
scales (200, 500, and 1000 m), extensive grassland man-
agement was the AEM variable with the highest average
importance (4.2), whereas cover crops had the lowest
(1.4). For ground breeders, the proportion of arable land
at the local scale (i.e., 200 m) was a consistently impor-
tant variable. For ground-close breeders, the proportion
of grassland and elevation were the main drivers of habi-
tat suitability. Finally, for open arboreal species, urban
cover and distance from highways had the highest vari-
able importance.

Effects of environmental variables and
AEM at different spatial scales

While distance from forest edges and slope had consistent
effects (positive and negative, respectively) on habitat suit-
ability for all birds, all other variables had heterogeneous
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effects across species (Figure 3). Focusing on the AEMs,
buffer areas and fallow land were beneficial for the major-
ity of modeled species, though their effects were often
nonlinear (Figure 3 and Appendix S3). Extensive grassland
management was always positively related to habitat suit-
ability, with the exception of C. crex (mild negative effect),
M. flava, and C. cannabina (nonlinear responses). Cover
crops and organic farming showed more diverging out-
comes across species, with positive, negative, or negligible
effects. Regarding the scale of effect of the land-cover/land-
use variables, arable land, grassland, extensive grassland
management, and urban cover were often better predictors
at the local scale (200 or 500 m). Small woody features
cover and agricultural land-use diversity were selected both
at the local (200 m) and the landscape scale (1000 m),
depending on the species. All AEMs, with the exception of
extensive grassland management, had the strongest effect
at the landscape scale for the majority of species (Figure 3).

Habitat suitability change in simulated
AEM scenarios

Compared to the current conditions (CURR scenario),
breeding habitat suitability remained stable or decreased

for most species when AEMs were stripped away (NOAE
scenario), although for some species (A. arvensis,
C. cannabina, C. dubius, C. crex, E. citrinella, S. communis)
we observed the opposite trend (Figure 4). These same
species showed a decrease in habitat suitability in the
CONS scenario with increased AEM implementation.
For A. arvensis, C. cannabina, C. crex, and E. citrinella
this was caused by an increase in organic farming,
which was negatively correlated with their occurrences
(Figure 3). Higher proportions of fallow land negatively
impacted the projected habitat suitability of
C. cannabina, C. dubius, and E. citrinella, and the
increase in buffer areas similarly affected C. cannabina,
C. crex, E. citrinella, and S. communis. A larger propor-
tion of extensive grassland was also partly responsible
for the decrease in habitat suitability of C. cannabina in
the CONS scenario. Altogether the increase of AEMs led
to a noticeable decrease in breeding habitat for four spe-
cies, namely, A. arvensis, C. cannabina, E. citrinella, and
S. communis, milder negative effects were detected for
C. dubius and C. crex. For all of the other nine species,
the CONS scenario led to an increase in habitat suitabil-
ity, which was especially evident for A. pratensis,
E. calandra, G. gallinago, L. collurio, S. rubicola, and
V. vanellus.

F I GURE 2 Mean (�SD) variable importance scores across the 10 ensemble model runs. Only variables with a mean importance score

>7.14 (=100/14, the average importance value in a model with 14 variables) are shown. The shape of the dot indicates the spatial scale at

which the variable was calculated. All variable importance scores are reported in Appendix S1: Table S1. ALU, agricultural land use;

D. forest, distance from forest edge; D. road, distance from highways; SWF, small woody features.
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F I GURE 3 Legend on next page.
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DISCUSSION

Effects of environmental variables and
AEM on farmland bird habitat across
spatial scales

Model performance was good for all modeled species,
indicating that unstructured biodiversity data sets from
multiple sources, if appropriately cleaned, could be used
to build informative models. We found that topography,
distance from forest edges and from highways, and land
cover/use are the main drivers of farmland bird distribu-
tion in our study area. These factors define the general
limits to farmland bird breeding habitat, whereas current
AEM adoption had overall beneficial but weak effects on
modeled habitat suitability. Here we focused on habitat
suitability rather than bird abundance, which may
respond more strongly to AEMs, but our findings were in
agreement with other studies in Europe, showing mild
positive effects of AEMs on farmland bird populations,
which are likely insufficient to stop their decline
(Concepci�on & Díaz, 2019; Daskalova et al., 2019;
Gamero et al., 2017). Indeed, habitat loss through agricul-
tural intensification and homogenization of the land-
scape are believed to be the main threats to farmland
birds’ subsistence (Kamp et al., 2021). Our study aimed at
assessing the contribution of AEMs to farmland birds’
habitat conservation over a large agricultural region:
Although the relationship between population size and
area and quality of habitat is complex and species-
specific, avian SDMs from presence/absence data were
shown to correlate positively and significantly with popu-
lation densities and abundances (Carrascal et al., 2015;
Oliver et al., 2012). Moreover, despite the constantly
growing availability of resources and methods for SDMs
(Peterson et al., 2022), modeling and predicting spatial
variation in abundances remains a challenging task, and
extrapolated abundance predictions under changing envi-
ronmental scenarios often have high uncertainty
(Waldock et al., 2022). New methodological frameworks
linking changes in area of habitat to species persistence
have recently been developed (Dur�an et al., 2020). Such
tools could be applied to our results to estimate the biodi-
versity impacts of future land-use changes.

Among the selected groups of measures, we expected
fallow land and buffer areas to be the most effective ones

for avian conservation (Concepci�on & Díaz, 2019; Pe’er
et al., 2017; Perkins et al., 2002). Our results suggest that
such extensively used areas constitute high-quality breed-
ing habitat, especially for ground and ground-close
breeders. Extensive grassland management was also posi-
tively related to habitat suitability, especially for open
grassland breeders like A. arvensis, G. gallinago,
S. rubetra, and S. rubicola, but also for species that breed
in bushes and use grasslands as foraging habitat
(e.g., L. collurio and S. communis). We expected cover
crops and organic farming to hold higher insect abun-
dance and, hence, to benefit invertebrate feeders
(Stoeckli et al., 2017; Tuck et al., 2014), but we found no
strong or consistent (across species) effect of these vari-
ables. Indeed, Oppermann et al. (2020) also did not iden-
tify cover crops as highly beneficial measures for
farmland birds, with few exceptions, such as the gray par-
tridge (Perdix perdix), which was not included in our ana-
lyses. This may depend on the temporal mismatch
between cover crop application (typically in winter) and
bird breeding season. The contrasting effects of organic
farming across different species could reflect the fact that
landscape characteristics (i.e., composition and configu-
ration, landscape elements) override the benefits deriving
from the organic management of the farms (Gabriel
et al., 2010; Tscharntke et al., 2021). Moreover, in this
study we modeled breeding habitat suitability, so that dif-
ferential habitat use for breeding and feeding may cam-
ouflage any potential beneficial effects of organic farming
and of other AEMs in our results. For example, some
open arboreal breeders (C. cannabina and S. communis)
showed negative associations with buffer areas, and habi-
tat suitability of C. cannabina was also negatively related
to extensive grassland and fallow land; these types of
habitats are likely important feeding grounds for the spe-
cies but are not selected as breeding territories.

Our multiscale modeling technique allowed us to
explore the differential scale of the effects of AEMs across
a large agricultural region. With the exception of exten-
sive grassland management, all AEM groups had the
strongest effect at the landscape scale, in accordance with
the notion that landscape-scale diversification, providing
access to multiple resources, is key to supporting farm-
land biodiversity (Tscharntke et al., 2021). These findings
have important management implications, as widespread
implementation of AEMs across the landscape can be

F I GURE 3 Effects of explanatory variables on breeding habitat suitability of 15 farmland bird species. The range of each variable is

shown on the y-axis, and the width of each violin plot corresponds to the habitat suitability for the given species (e.g., increasing proportions

of arable land correlate positively with habitat suitability for A. arvensis and negatively for C. dubius). The color code reflects the spatial

scale, that is, the radius (in meters) of the circular window used for variable calculation. Variable response plots for all variables and species

are available in Appendix S3. ALU, agricultural land use; D. forest, distance from forest edge; D. road, distance from highways; SWF, small

woody features.

10 of 15 ROILO ET AL.

 19395582, 2023, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2720 by Shsische Landesbibliothek, W

iley O
nline Library on [20/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



achieved only if their adoption by farmers is significantly
increased. The future CAP should therefore aim at
designing regionally targeted measures in collaboration
with local stakeholders to maximize their attractiveness
to farmers.

Change in habitat suitability across AEM
scenarios

The removal of AEMs from the landscape did not have
substantial effects on the modeled breeding habitat

F I GURE 4 Comparison of modeled breeding habitat suitability (each 20 � 20 m raster pixel corresponds to one value) across the three

scenarios (CONS, conservation-informed scenario with increased AEM; CURR, current conditions as of 2019; NOAE, no AEM scenario) in

the Mulde River Basin, for each species. AEM, agri-environment measure; SWF, small woody features.
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suitability of the 15 bird species considered here. Stronger
differences, provoked by larger changes in AEM distribu-
tion, are discernible between the current (CURR) and the
conservation-informed (CONS) scenario: Six species
showed a decrease in habitat suitability, whereas for nine
species it increased in the CONS scenario. The relatively
small differences in habitat suitability between the CURR
and the NOAE scenarios imply that the current level of
AEM application is too low to significantly increase the
suitable breeding area. However, the positive responses
of most species to the CONS scenario indicate that AEMs
can be valuable conservation tools if higher implementa-
tion goals are set (Concepci�on & Díaz, 2019; Gamero
et al., 2017; Pe’er et al., 2014).

To project the models in the CONS scenario, the rela-
tionships between habitat suitability and AEM variables
had to be extrapolated outside of the training data range.
Although it is impossible to assess the adequacy of our
predictions in this new scenario due to an obvious lack of
data, other studies hindcasting the impacts of land-use
changes on bird communities found SDM transferability
to be good especially for species tied to agricultural lands
(Regos et al., 2018). Nonetheless, we acknowledge that
species–environment relationships can change as the
availability of resource changes. For example, fallows and
buffer areas, which in current land-use conditions cover
a small percentage of our study area, may be selected for
more strongly if they become more widespread. The
assumption of constant relationships between species
and environmental factors remains a caveat in SDMs
(Jarnevich et al., 2015), and reliable projections of
(changes in) species distributions in new environmental
conditions can only derive from continued biodiversity
monitoring over time and across regions.

For the design of the CONS scenario, the additional
AEMs were randomly assigned across the study region,
as our main goal was to assess the potential habitat gain
deriving from increased AEM implementation across the
landscape. A more ecologically tailored positioning of
such measures using spatial optimization would surely
further improve conservation outcomes, but this was
beyond the scope of the study. Nonetheless, more realis-
tic scenarios of future AEM allocation would need to take
into account several other socioeconomic factors affecting
farmers’ decisions (Ziv et al., 2020).

CONCLUSIONS

We showed that AEMs are beneficial for farmland birds
but that their current adoption level is too low to deliver
significant improvements in breeding habitat suitability for
the modeled species. We found land cover, topography,

and distance to forest edges and highways to be the stron-
gest drivers of farmland bird distributions; this supports
our assertion that AEMs can be more effective if targeted
more carefully. Different measures act at different spatial
scales and have contrasting effects for different species;
land management actors should therefore aim at
implementing a diversified set of measures, thereby ensur-
ing a varied mix of habitat types and resources for biodiver-
sity, across the agricultural landscape. Altogether, our
results support the plea for a more widespread AEM appli-
cation through, for example, advanced environmental con-
ditionality and the collaborative design of more regionally
targeted, species-specific measures.

AUTHOR CONTRIBUTIONS
Stephanie Roilo and Anna F. Cord conceived the idea
and designed the methodology. Stephanie Roilo designed
the scenarios and implemented the models. Jan
O. Engler helped with species and variable selection.
Stephanie Roilo led the writing of the manuscript. All
authors contributed critically to the drafts and gave final
approval for publication.

ACKNOWLEDGMENTS
We wish to thank the Saxon State Agency for Environ-
ment, Agriculture and Geology (LfULG) for providing
the bird data set from the Zentrale Artdatenbank Sachsen
and the Saxon State Ministry for Energy, Climate Protec-
tion, Environment and Agriculture (SMEKUL) for pro-
viding the IACS data (InVeKoS Sachsen). We also thank
the Centre for Information Services and High Perfor-
mance Computing (ZIH) of the Technische Universität
Dresden for generous allocation of computing resources.
This work was supported by European Union’s Horizon
2020 research and innovation program, grant agreement
no. 817501 (BESTMAP), and by the “SustES – Adaptation
strategies for sustainable ecosystem services and food
security under adverse environmental conditions” project
(CZ.02.1.01/0.0/0.0/16_019/0000797). Open Access funding
enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
The bird data set used in this study is owned by the
Saxon State Agency for Environment, Agriculture and
Geology, and the IACS data are owned by the Saxon State
Ministry for Energy, Climate Protection, Environment
and Agriculture. Both data sets hold sensitive informa-
tion and thus cannot be made publicly available but can
be requested from those agencies for research purposes.
The novel R code (Roilo, 2022) used to run the species

12 of 15 ROILO ET AL.

 19395582, 2023, 1, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2720 by Shsische Landesbibliothek, W

iley O
nline Library on [20/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License





Oliver, T. H., S. Gillings, M. Girardello, G. Rapacciuolo, T. M.
Brereton, G. M. Siriwardena, D. B. Roy, R. Pywell, and R. J.
Fuller. 2012. “Population Density but Not Stability Can Be
Predicted from Species Distribution Models.” Journal of
Applied Ecology 49(3): 581–90.

Oppermann, R., S. C. Pfister, and A. Eirich. 2020. Sicherung der
Biodiversität in der Agrarlandschaft – Quantifizierung des
Maßnahmenbedarfs und Empfehlungen zur Umsetzung.
Mannheim: Institut für Agrarökologie und Biodiversität (IFAB).

Pebesma, E. 2018. “Simple Features for R: Standardized Support for
Spatial Vector Data.” The R Journal 10(1): 439–46.

Pe’er, G., A. Bonn, H. Bruelheide, P. Dieker, N. Eisenhauer, P. H. Feindt,
G. Hagedorn, B. Hansjürgens, I. Herzon, and Â. Lomba. 2020.
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