
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1993

Enhancements to the Animated Tutor for Air Combat Simulation Enhancements to the Animated Tutor for Air Combat Simulation

David A. Legge

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Legge, David A., "Enhancements to the Animated Tutor for Air Combat Simulation" (1993). Theses and
Dissertations. 7205.
https://scholar.afit.edu/etd/7205

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F7205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F7205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/7205?utm_source=scholar.afit.edu%2Fetd%2F7205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AD-A262 598(9

APR0 5 1993

Enhancements to the Animated Tutor forB

Air Combat Simulation

TDESTIS
David Allan Leggc

Capt, USAF

A TTT/CrOR /PN',/O'mxtj,
AP;T I STAR IFI' Ant1

! .fm• I Reproduced From
| wb•om Uawn"• Best Available Copy

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

oQQQQ 106 135

AFIT/GOR/ENS/93M-12

Enhancements to the Animated Tutor for

Air Combat Simulation

THESIS
David Allan Legge

Capt, USAF

AFIT/COR/ENS/93M-12

Approved for public release; distribution unlimited
93-07020

TilESIS APPIROVAL

STUI)ENT:,'Capt l)avid A. Legge CLASS: GOR-93M

THIESIS TIT'II: Enhancements to the Animated Tutor for Air Combat Simulation

DEFENSE DA'ITE: lel)riuarv 23. 1993

COM M Ii"'1.i": N AM E/I)EI.'AIRTM ENT SIGNATURE

Advisor Maj Edward NV. Negrelli /ENS -,. L_/

Reader ,aj Eric !. Christensen/EN(; f,

Acoesgson For

J E
JD•- " ,1

* tie s,

I 1

liL

AFIT/GOR/ENS/93M-12

Enhancements to the Animated Tutor for

Air Combat Simulation

THESIS

Presented to the Faculty of the School of Operational Sciences

of the Air Force Institute of Technology

Air University

* In Partial Fulfillment of the

Requirements for the Degree of

Masters of Science in Operations Research

David Allan Legge, B.S.

Capt, USAF

March, 1993

Approved for public release; distribution unlimited

- * _______ -_

Acknowledgements

First and foremost I would like to thank my wife Elizabeth. Her patience

these last eighteen months has been immeasurable. Not only has she been a great

help editing this thesis, but she endured countless hours of "shop talk" with my

classmates. For her patience and support I am eternally grateful. Secondly, I would

like to thank my classmates for theii support and camaraderie. They have made

my AFIT experience truly memorable. Lastly, I would like to thank my thesis

advisor Major Ed Negrelli and my reader Major Eric Christensen for their assistance.

Through them I have learned more about the "real" world of combat modeling than

any class could teach.

David Allan Legge

2

'I+

I./

Table of Contents

Page

Acknow~ledgements. i

List of Figures iv

List of Tables v

Abstract. vi

1. Introduction

1.1 Background....

1.2 Problem Statement 1-2

1.3 Thesis Objective 1-2

1.4 Scope and Limitations 1-2

1.5 Definitions. 1-3

Il. Literature Review. 2-1

2.1 Introduction. 2-1

2.2 War Games 2-1

2.3 History of Ada. 2-2

2.4 Ada Structures. 2-3

2.5 Ada in Combat Modeling, Wargaming and Simulations 2-5

2.6 Combat Modeling on Personal Computers. 2-5

2.7 Conclusion. 2-6

111. Method. 3-1

3.1 Introduction. 3-1

3.2 Model Design. 3-1

Page

3.3 Graphics Methodology 3-4

3.4 Combat Model Methodology 3-5

3.5 Preprocessor Methodology 3-6

3.6 Documentation Methodology 3-7

3.7 Conclusion 3-7

IV. Program Design 4-1

4.1 Introduction.... 4-1

4.2 Overall Design 4-1

4.3 Modeling Decisions 4-3

4.3.1 Combat Processes 4-4

4.3.2 Time Advance Mechanism........ 4-6

4.3.3 Ccordinate Systems 4-6

4.4 Randomness... 4-7

4.5 Model Assumptions 4-8

4.5.1 Weapon Assumptions 4-9

4.5.2 Engagement Assumptions 4-9

4.5.3 Attrition Assumptions 4-10

4.6 Model Flow 4-10

4.7 Graphics Decision- and Assumptions 4-12

4.8 Graphics Flow 4-13

V. Program Details 5-1

5.1 Introduction 5-1

5.2 Entities 5-1

5.3 ATACS+ Aircraft 5-1

5.4 Aircraft Parameters 5-5

5.5 Adding Aircraft 5-8

iv

Page

5.6 Aerodynamics 5-8

5.7 Aircraft Motion- 11

5.7.1. Maneuver Logic. 5-11

5.7.2 Maneuver Descriptions. 5-12

5.7.3 Motion Logic 5-18

5.8 Missile Motion. 5-18

5.9 Random Number Generation 5-22

5.10 Combat Processes 5-23

5.10.1 CCI Search.. 5-23

5.10.2 Target Assignment. 5-24

5.10.3 Aircraft Search 5-25

5.10.4 Aircraft Engagement. 5-27

5.10.5 Otiier Combat Processes. 5-27

VI. Conclusions and Recommendations 6-1

6.1 Introduction. 6-1

6.2 Conclusions 6-1

6.2.1 Combat Modeling on the PC 6-1

6.2.2 Meridian Ada 6-2

6.2.3 Ada for Combat Modeling 6-3

6.3 Enhancements 6-5

6.4. Recommendations. 6-6

6.5 Final Remarks 6-7

Appendix A. User's Guide to ATACS+. A-i

A. 1 Introduction. A-i

A.2 Computer Requirements.. A-2

A.3 Installing ATACS+.. A-2

v

Page

A.4 ATACS+ Components A-4

A.4.1 The Preprocessor A-4

A.4.2 The Combat Model A-4

A.4.3 The Graphics Routines A-4

A.5 Using the Preprocessor A-5

A.5.1 Input Methods A-5

A.5.2 The Main Menu A-6

A.5.3 The Scenario Editor A-1I

A.5.4 The Aircraft Editor A-10

A.6 Using the Simulation A-16

A.6.1 The Run-time Menu. A-17

A.6.2 2D Icons. A-20

SA.6.3 3D Icons.. A-21

A.7 Example ATACS+ Session A-21

A.8 Troubleshooting... A-27

A.9 Review Questions A-28

A.10 Command Summary A-31

Appendix B. ATACS+ SIMTAX Classification B-1

Appendix C. XSharp in Ada C-1

C.1 Introduction C-1

C.2 BackgroundC-1

C.3 The 320x240 Mode C-2

C.4 Page Flipping C-3

C.5 Assembly Language Routines C-5

C.6 Graphics Primitives C-7

C.7 Future Enhancements C-20

C.8 Conclusions C-20

vi

Page

Bibliography BIB-i

Vita ... VITA-1

vii

List of Figures
Figure Page

3.1. Development Flow 3-2

4.1. ATACS+ System Structure. 4-3

4.2. Earth Coordinate System 4-7

4.3. Aircraft Coordinate System. 4-8

4.4. Combat Model Logic Flow. 4-11

4.5. Graphics Logic Flow.. 4-14

5.1. Velocity-Load Factor Diagram 5-.7

5.2. Maneuver Selection Logic 5-13

5.3. Initial Missile Defense Ge-ometry. 5-14

5.4. Close-in Missile Defense Geometry 5-14

5.5. Intercept Maneuver Geometry. 5-16

5.6. Pursuit Maneuver Geometry 5-17

5.7. Attack Maneuver Geometry. 5-17

5.8. Aircraft Motion Logic. 5-19

5.9. Missile Motion Logic 5-20

5.10. Missile Closest Approach. 5-21

5.11. Random Number Generation 5-22

5.12. Aircraft Search Geometry 5-25

A.1. Preprocessor Main Menu. A-6

A.2. Preprocessor Scenario Editor A-8

A.3. Preprocessor Name Form A-10

A.4. Preprocessor Aircraft Editor A-li

A.5. Preprocessor Aircraft Menu. A-12

viii

Figure Page

A.6. Preprocessor Mission Menu A-13

A.7. Preprocessor Rules of Engagement Menu A-14

A.8. Simulation 2D Screen A-17

A.9. Simulation 2D Runtime Menu A-18

A.10.Simulation 3D Runtime Menu A-19

A.11.Simulation 2D Icons A-21

A.12.Simulation 3D Icon A-22

C.1. Display Memory Organization C-4

C.2. Page Flipping Methodology C-5

ix

List of Tables
Table Page

5.1. Aircraft Entity Attributes 5-2

5.2. Aircraft Entity Attributes (cont'd) 5-3

5.3. Missile Entity Attributes 5-4

5.4. Airbase Entity Attributes 5-4

5.5. Aircraft Performance Parameters 5-6

A.1. ATACS+ Files A-3

x

•\ -

AFIT/GOR/ENS/93M- 12

Abstract

This study investigates the use of the Ada programming language ;n combat

modeling. It takes an existing combat model, the Animated Tutor for Air Combat

Simulation (ATACS), and re-writes it into Ada. The new model also includes en-

hancements to the original model. ATACS-, as it is now called, is used as a learning

tool in combat modeling classes at the Air Force Institute of Technology. ATACS+

consists of a preprocessor and a model, complete with two and three-dimensional

graphics and engagement status reports. Conclusion are made about Ada's suit-

ability for combat modeling, some of the features of Ada which can assist combat

modelers and the feasibility of combat modeling on personal computers.

xi

I/

Enhancements to the Animated Thtor for

Air Combat Simulation

L. Introduction

1.1 Background

"If one grants that modeling is and, for greatest effectiveness, probably
ought to be, an intuitive process for the experienced, then the interest-
ing question becomes the pedagogical problem of how to develop this
intuition, What can be done for the inexperienced person who wishes to
progress as quickly as he can toward a high level of intuitive effectiveness
in management science?" (20: B- 707)

The Air Force Institute of Technology (AFIT) is the Air Force center for teach-

ing the art of combat modeling at the. graduate level. AFIT also, teaches combat

modeling to a significant number of Army officers. As William T. Morris points

out in the above quotation, the problem in teaching modeling is how to develop an

intuitive feeling for modeling without actual experience. AFIT solves this problem

by exposing students to the basic processes inherent in man y combat models. The

students are required to investigate combat models which are currently in use, and

report on the structures, processes, assumptions, limitations, and algorithms. Un-

fortunately, most combat models are extremely large and complicated. Also, few

are available at AFIT for the student's experimentation. What is needed is a com-

bat model which demonstrates the essential components of combat m odels but is

small enough to allow students to change input parameters and observe their ef-

fects. Recognizing this need, Captain Richard Moore, AFIT 1992, developed the

Animated Tutor for Air Combat Simulation (ATACS) as a thesis project. It was a

first step toward developing an educational aid that could be used in combat mod-

eling classes. But a second problem, now impacting the combat modeling field, was

not addressed; the use of the Ada programming language. Since, April 1987 the De-

partment of Defense (DoD) has mandated that all software development be done in

the Ada programming language. This includes combat models. So now in addition

to teaching the techniques of combat modeling, AFIT would also like to expose stu-

dents to Ada-based combat modeling. This thesis solves this problem by rewriting

the original ATACS into Ada, and at the same time adding several enhancements.

1.2 Problem Statement

Even though Ada is the mandated Department of Defense computer program-

ming language, all of the military services, and the Air Force in particular, !ack

analysts who are skilled and experienced in Ada-based combat modeling. Also,

there are no Ada-based tools for teaching analysts combat modeling techniques.

1.3 Thesis Objective

The objective of this thesis was to develop a combat model, written in Ada,

that could be used as a learning tool at the Air Force Institute of Technology.

1.4 Scope and Limitations

This thesis describes the conceptualization, design and implementation of a /
simple high-resolution combat model which will be used as a learning tool. This

thesis is only a proof-of-concept not a full-scale combat model used for analysis. It

does not attempt to recreate any portion of actual air-to-air combat. Instead, it is

intended to illustrate some of the major processes common to most high-resolution

combat models.

This model builds upon the existing ATACS combat model, adding the follow-

ing enhancements:

1-2

1. Rewriting of the ATACS model into Ada. This thesis will re-build the existing

ATACS model into an Ada-based learning tool. It will be a proof-of-concept

model demonstrating combat modeling techniques.

2. Addition of three-dimensional aircraft maneuvering. This thesis will convert

the two-dimensional maneuvering aircraft currently in ATACS to three-dimensional

maneuvering aircraft having five degrees of freedom motion.

3. Addition of reactive "Red" forces. The current non-maneuvering attacking

aircraft will be replaced with full motion aircraft.

4. Create three-dimensional graphics displays. The current QuickBASIC graphics

routines will be replaced by routines written in Ada and Assembly Language.

The completed model is designed to run on an IBM compatible personal com-

puter which has a Video Graphics Array (VGA) graphics card installed. Also, a

math co-processor is required. Finally, the program is written to allow further en-

hancements and expansions. It is intended to be a starting point from which future

students can add processes and enhance the existing routines.

1.5 Definitions

Before beginning a review of the curren* literature on Ada and its use in combat

models, several common terms need to be defined. These definitions are provided to

clarify subtle differences and to provide a common vocabulary between the author

and the reader.

War Game. A simulation, by whatever means, of a military operation
involving two or more opposing forces, using rules, data, and procedures
designed to depict an actual or assumed real life situation. (16:227)

Ada is a programming language designed in accordance with require-
ments defined by the United States Department of Defense.the lan-
guage is a modern algorithmic language withe the usual control struc-
tures, and with the ability to define types and subprograms. It also serves
the need for modularity... (8:1-1)

1-3

° , , "

High Resolution Combat Model. A model which includes detailed inter-
action of individual combatants or weapon systems. Eachý combatant in
a high resolution model has its own vector of state variables which de-
scribe its unique situation and it 's unique perception of the battlefield as
the battle progresses. Interactions among combatants are resolved at the
one-on-one engagement level - often computing separately the results of
each individual shot fired in the battle. The engagement models include
terrain and environmental effects as well as the states of firer and target.
(13:Sec 1-6)

1-4

HI. Literature Review

2.1 Introduction

This chapter reviews the pertinent literature used in researching this thesis. It

does not cover material already reviewed in Captain Richard Moore's thesis, such as

computer aided instruction, computer graphics for instructional purposes, classifica-

tion of models and a detailed description of combat processes. Instead this review

covers the information required to meet the objectives listed in Chapter 1.

This chapter covers five major areas. First a brief overview of wargames and

the difficulties they create is presented. This is to give the reader an appreciation

for the intent of this thesis. The second section presents the history of the Ada

programming language. It covers the reasons behind its creation and how it came to

be the mandated language of the DoD. The third section reviews the major features of

the Ada language. It also describes how these features speed development, increase

reliability and enhance large projects. The fourth section discuisses Ada's use in

combat modeling, wargaming and simulation. It shows Ada's limited use for these

purposes. The fifth section examines the possibility of combat modeling on a personal

computer. It is only now becoming practical.

2.2 War Games

War games, simulations and combat models are used extensively in the DoD.

The Catalog of Wargaming and Military Simulation Models has entries on over 500

different war gamnes and simulations (15). A war game normally has one or more

humans who participate, or interact, with the model. Conversely, many simulations

run without the need of human inputs beyond the creation of the input database

(14:42). Both simulations and war games are an abstraction of the real world where

a likeness of some portion of reality is created for either an investigation or resource

management. Simply put, models are sinmplifications of reality used to assist in

2-1

making decisions (14:3). These models can encompass a vast. scenario such as a

nuclear exchange or minute details such as the inner working of individual atoms.

Military combat models range in scope from a one-on-one engagement to global force

interactions (3:18). As the scale of combat increases, the level of engineering detail

decreases. A one-on-one model requires a great deal of engineering detail. At this

lowest level, the dynamics of individual 'entities is the modeling goal. Tactics and

force interactions begin to play an increasingly important role as the scale of combat

increases. This increascd complexity and size has caused some models to outgrow

their usefulness. They can no longer be maintained and their results have become

suspect. Many war games and military simulations are written in FORTRAN or

Assembly language, two programming languages which have inferior maintainability,

st ructure and performance than Ada.

2.3 History of Ada

Ada is a programming language designed specifically to be strongly standard-

ized and should result in more reliable and portable software (10:26). It was orig-

inally intended for use in embedded systems, computers which are part of a larger

system such as missile guidance computers. But the resulting language solves an

even wider range of software development problems (29:45). In 1973, the DoD was

spending over $3 billion cýollars on software development and Imaintenance. This

amount was projected to prow to over $30 billion dollars by 1990. Over half of

all software developed and ~maintained by the DoD was for embedded systems. In

addition to the escalating c sts, lack of a standard language had become a serious

problem. Embedded comput rs employed over 450 different programming languages

(29:43).

To halt the rise in costs and to promote a standard language, a joint-service

High-Order Language Working Group was formed in January 1975. This group's

purpose was three-fold: identify requirements for DoD high-order languages (Ian-/

2-2

: .* ,,. .

,- , .• ; / . ,

guages where the code resembles written English, not computer.machine language),

evaluate existing languages against the requirements, and recommend a minimal set

of languages for DoD use. After establishing the requirements, the working group

found that no existing language could meet them. So in April, 1977 the DoD spon-

sored an international competition to design a new programming L~nguage. This

new language was named "Ada" upon completion of the competition in May 1979

(30:11). Ada is named in honor of Augusta Ada Byron, Countess of Lovelace, who

is reported to have been the first programmer (29:44).

The first Ada language reference manual was published in August 1980. By

February 1983 this manual had been accepted as an ANSI (American National Stan-

dards Institute) standard and became ANSI/MIL-STD-1815A (30:11-12). Unlike

other language standards which are voluntary and define a basic set of language

functions, the Ada standard forces programs to bewritten in a single common lan-

guage. This language must be the same without regard to the kind of computer

or the manufacturer of the compiler (10:27). As of 30 March 1987, DoD Directive

3405.1 requires that all future software development for embedded systems be done

in Ada (18:7).

2.4 Ada Structures

The Ada standard -ovides many of the constructs common to high-order lan-

guages. Including such things as if-then-else structures, loops, Boolean (True-False)

operators, functions and subprograms. Ada also has constructs which distinguish it

from other high-order languages such as C, Pascal, FORTRAN, and BASIC. Some

of these constructs are described below.

Strongly typed design. Strong typing means that the range of values a variable

can have must be defined. This increases Ada's ability to detect errors at compile

time (18:7-8).

2-3

.- -. * *.

Packages. A collection of related functions, variables, subprograms etc. is

called a package. Using packages, a large program can be broken down into smaller

units. A package normally consists of a package specification and a package body.

The specification defines the interface to the package and is visible to the user. On

the other hand, the package body is normally hidden from the user and contains the

implementing code. This is one'of Ada's most important features (18:8).

Data abstraction and information hiding, Ada is very good at compartmen-

talizing data. Each function, procedure or package can have data or routines which.

only it has access to. This allows complex code to be presented to the user in a

simplified manner. The user does not see the complex portion only the simplified

interface (18:9).

Separate compilation. Modularity of a large program can only be achieved if

the modules can be compiled separately. Thus a simple change docs not require re-

compiling of the entire program. Ada takes this concept one step further by allowing

package specifications to be compi led before package bodies are written. This ability 1

is extremely important in large projects where multiple programmers are working

together (29:9).

Excellent environment for development of reusable code. Because of Ada's

modularity and separate compilation abilities, most code can- be reused in other

programs. The development of libr~aries of commonly used routines speeds software

development (29:9).

Built-in exception handling. When unexpected situations occur, like dividing

by zero, an exception is raised in Ada. The programmer is allowed to "catch" these

exceptions and resolve the situation rather than having the program terminate (18:9-

10).

Run-time error checking. Very few programs allow the checking of data at

run-time. This feature allows Ada to handle instances where inpu~tted values are of

2-4

the wrong type or computed values are out of range. This greatly improves program

reliability (18:10).

Support for parallel processing. Ada has built-in support for parallel process-

ing. Programs can be broken up into individual tasks and each of these tasks can

then be executed in parallel or, a separate processor. Parallel processing holds the

key to vastly improved computational speeds (18:10).

2.5 Ada in Combat Modeling, W~argaming and Simulations

Ada's impact on war gaming and simulation is just beginning to be felt. Of

the 53T war games and simulations listed in The Catalog of Wargames and Military

Simulation Models, only thirteen of them are written, either all or in part, in Ada.

Only one is designed to run on an IBM-compatible personal computer (PC). Most

of the Ada-based models are written to support Strategic Defense Initiative Office

(SDIO) requirements or are produced by the United States Army. The Air Force

lacks experience and expertise in using Ada for combat modeling and simulation

2.6 Combat Modeling on Personal Computers.

Until recently combat modeling was done on mainframe and mini-computers.

The data storage, program size and computational requirements were beyond the

abilities of a PC. All of that has now changed. PC's are fast, cheap, have large

memories, expanded graphics and are available to nearly every combat modeling

analyst.

When the original IBM-PC was introduced in August 1981 it boasted 16 kilo-

bytes (16,384 characters) of user memory. Ten years later, IBM's top-of-the-lire

desktop system, the PS/2 model 90, has a standard 8 megabytes of user memory

(26:336). Other manufacturers allow memory configurations up to 32 megabytes.,

Obviously, program size is not the problem it once was.

2-5

Speed has also increased. The IBM-PC used an Intel 8088 microprocessor chip

and ran at an operating speed of 4.77 MHz. Today Intel has produced a 80486 chip

which runs at 100 MHz (26:336). The personal computer now has the computing

power to handle many tasks formerly performed on mini-computers and mainframes.

The hallmark of many mini-computer-based combat models has been the graph-

ical displays accompanying. them. The personal computer is no match for today's

graphics workstations, but with 256 colors and resolutions reaching 1280x1024 pix-

els (a pixel is the smallest 'dot" which can be drawn on a screen) it is possible to

create animated three dimensional displays to accompany PC-based combat models

(26:336).

Maybe the most amazing aspect of todays PC is the price. In 1981 an IBM-PC

had a suggested price of $1565. This included a monochrome monitor, no hard disk

storage device and the 16 kilobyte memory mentioned earlier. That same $1565

today would buy an 80386-based computer running at 20MHz with a hard drive and
N

VGA color graphics. Today's high-end PCs rival workstations in speed, and cost

considerably less.

But the single factor which makes combat modeling on a personal computer

possible is their availability. Gone are the days when organizations have to pay for

each minute of computer usage. With the exception of very large programs, most

programs can be run right on an analyst's desk. The accessibility of the PC makes

it a clheap convenient way to do combat modeling.

2.7 Conclusion

The United States Air Force needs to focus its combat modeling and wargaming

efforts on the Ada language, not only because of the DoD directive, but because

of the unique features of the language. Ada forces programmers to use efficient,

easily modified, modular programming methods. This will pay dividends later when

decision-makers ask for more complex analysis. The models will be ready to go,

2-6

"1- 2

at minimal cost, in minimal time and with some assurance that thle results are

defendable.

2-7

III. Mlethod

3.1 Introduction

This chapter describes the methodology wied to develop the ATACS+ system.

Th--t flow chart in Figure 3.1 shows the general sequence of the development pro-

cess. However, this process was not as straight forward as Figure 3.1 might suggest.

At each stage, restructuring of previous work was done as additional requirements

or restrictions became apparent. The flow depicted in Figure 3.1 does, however,

provide a means to discuss how ATACS+ was developed. As the chart shows, the

development process progressed through five stages: model design, development of

the animation graphics, development of the combat model, development of the pre-

processor, and the on-going task of documentation. Each of these stages is described

in the following sections.

3.2 Model Design

The first task undertaken in this thesis was to quantify the real nature of the

problem and to determine how the combat model should be designed to sol~re it.

The objective is stated in Chapter 1 as:

..to develop a combat model, written in Ada, that could be used as a
learning tool at the Air Force Institute. of Technology.

This objective mandates the use of a combat model as the best solution and stipu-

lates that this model should be created using the Ada programming language. This

objective provides a solid starting point but since this thesis is also a proof-of- concept

in using Ada as a combat modeling language on a personal computer, several other

objectives needed to be defined. These objectives and the design considerations

stemming from them are:

*ATACS+ must be able to run on an IBM-compatible personal computer in

order to allow as many students as possible to use it.

3-1

Modcl Design

Documentation Combat Model Grajphcs---

literature LanOiia
Review ' ATACS Concepts R= P

Doumn Aicrf Moio Animation
Source Cod

Deeo odlVrf
Animtio

IL.

Inegat

--- SourcecCodc

Prpocso Inerac

Prpr IlsPercssrRuie

PVepife Pre
- - - - - - - - - -

-------- G --d ---

Fiur 3..DveomntFo

I3-

e The program should be "user friendly."

- This program should be simple enough to use that a sttudent witl no prior

computer experience can use it.

- This program must also not hinder the learning of an experienced corm-

puter user by not being flexible or by requiring excessive user input.

* The combat model should demonstrate many of the combat modeling tech-

niques and processes inherent in many high-resolution combat models.

- This program should reflect the high-resolution combat modeling course

objectives.

"* The program should use animated graphics to illustrate the air-to-air engag, -

ment.

"* The program should allow the user to pause the simulation and check the sta; as

of the combatants.

"* The simulation should run at least as fast as real-time.

- Real-time meaning that a simulated engagement lasting ten minutes would

take ten actual minutes to execute.
/

- The intent of the program is to be a learning tool for students. If the pro-

gram were to run too slow, the student will lose interest and the program

will not fulfill its purpose.

"* The simulation and the animation should be one program.

- The animation should run concurrent to the simulation. If the two were

separate, the delay would make the system less enlightening to the stu-

dent.

"* The model, the preprocessor, and the animation should all be written in the

Ada programming language.

3-3

__________.____/ \ i

- The program should be in the DoD mandated language.

- The Operational Sciences Department has little or no experience in Ada-

based combat modeling.

o The model should be accompanied by a preprocessor.

-A preprocessor will allow students easy access to the model inputs.

-A preprocessor will let the student change inputs and quickly see the

effects.

These objectives require that some basic assumptions be made in order to meet the

objectives and still remain within the scope of the project. The assumptions about

the objectives are:

* This is a model intended for educational purposes, not as an analytical tool.

e This project must be completed during a five-monthi period.

*Because of the relatively slow speed of the personal computer, the air-to-air

engagement must be simplified but must still retain some "look" of a real

engagement.

By laying out these design objectives at the outset, the other four stages of develop-

ment progressed much smoother; especially the graphics routines.

3.3 Graphics Methodology

A major, and certainly the most visible, component of this project was the

development of an Ada-based animation. The method for achieving this was bro-

ken down into three steps: researching PC animations, developing an Ada-based

animation, and verifying the animation.

The first step was to research existing materials on PC-based animations.

The research searched for animation techniques and methodologies and, specifically,

whether an Ada-based animation exists.

3-4

Once the state-of-the-art was investigated, the next task was to use an existing

Ada-based animation to create the displays needed for ATACS+ or, if none existed,

to create a new animation.

Finally, the working animation would have to be verified to ensure its reliability.

This verification would be done by "exercising" the animation' - giving it various

contrived flight paths to animate. Errors would then be corrected and the process

would be repeated until the animation's performance was satisfactory.

3.4 Combat Model Methodology

Since this project is an extension to an existing combat model, a starting basis

existed from which to work. The method for adding enhancements to the original

ATACS combat model was broken down into five steps: learning the original ATACS

concepts, researching the mathematical model of an aircraft maneuvering in 3-D

space, combining the two pieces together and developing an improved combat model,

then integrating the animation with the model, and finally, verifying the model.

First, the original ATACS model had to be understood. Doing so consisted of

studying Captain Richard Moore's thesis (19), reading the ATAdS source code, and

deciding which parts were reusable and which parts needed to be replaced. -.

Since the two-dimensional maneuvers of the original ATACS were to be re-

placed with three-dimensional maneuvering, research was necessary in this area.

Some of the objectives would be: to devise a simple system for computing the mo-

tion of the aircraft, to determine a way to execute predefined maneuvers, and to ,,

determine a strategy for the engagement logic. Once these pieces were assembled,

the next step could be taken.

Developing the model involved taking the reusable parts of the original ATACS,

translating them into Ada, and combining them with the new three-dimensional

equa'tions of motion and engagement logic. This new combat model would then

meet the objectives outlined at the start of this chapter.

3-5

i

/ , ,- .. ,

ýOnce the combat model was built, it had to be integrated with the animation.

The two programs had to be combined into one program in order to satisfy the

objective of having concurrent simulation and animation. Once the unified program

was created and debugged, it had to be verified.

Initial verification of the mnodel was done by running multiple scenarios and

then correcting obvious errors in the animation, unrealistic aircraft motion and deci-

sion logic. Class members with operational experience were vital at this point. Once

the completed combat model was verified the next major stage. of the project began.

3.5 Preprocessor Methodology

The method used to create the preprocessor consisted of three stages. First, the

preprocessor requirements were established. Second, the preprocessor was written

and debugged. Finally, the preprocessor was verified.

The first, and probably the most important, step was determining what pieces

of data would be input to the simulation and how much of this data the user would

be allowed to manipulate. Keeping the objectives in mind was critical at this point

since too much data would intimidate the novice user, and too little control would

deter the more experienced user from reaching the program's goals. Once a list of

input data had been formulated, the actual programming began.

The actual preprocessor code had to be written in Ada and had to provide a

simple way for the user to change the inputs. As a method of input, it was decided

that the ubiquitous "Window" style would make the preprocessor easy to use. Menus

and input forms would provide the needed user interface. Once these interfaces were

created and the preprocessor was assembled, it had to be verified.

Verification was 'a simple process for the preprocessor. It consisted of answer-

ing three questions: "Does the method of input make logical sense?" "Does the

preprocessor generate outputs acceptable to the combat model?" and, "Does the

3-6 ...

preprocessor have enough safeguards so that a novice user can use it successfully?"

Multiple trial runs were used to answer these questions.

3.6 Documentation Methodology

Since this is a thesis effort, the documentation methodology was rather straight

forward. While the research was being conducted, the literature review was being

prepared. While the code for the graphics, the combat model, and the preprocessor

were being written, necessary comments were included. The' code was written to

conform to the Ada Style Guide (28). Once the complete ATACS+ system was

assembled, a user's guide was written for use in field trials. Finally, the thesis

documentation was prepared as a record of the entlire process. Although Figure 3.1

shows the documentation to be a separate process it was actually integral to, and

was performed concurrcnt with, the other processes.

3.7 Conclusion

The methodology for meeting the objectives set out in Section 1 of this chapter

was, for ease of understanding and time management, broken down into four general

tasks. Once each of these tasks had been methodically performed, a series of field

trials were conducted. These trials consisted of providing copies of the program and

the user's guide to combat modeling students and instructors. Their comments led

to numerous changes to the programs and some suggested enhancements which are

included in Chapter VI.

3-7

V '

IV. Program Design

4.1 Introduction

This chapter reviews the design decisions and the assumptions that were made

in setting up the ATACS+ model. These decisions and assumptions were made in

order to meet the objectives set out in Chapter 111. The most critical of these was

the need to complete this entire project in a very short period of time. This time

restriction drove the need for simplifications in all aspects of the program. This

chapter details these simplifications and how the model was set up because of them..

4-2 Overall Design

Since this is a follow on, the basic idea of this thesis was to add to the work

already done by Captain Richard Moore (19). Captain Moore's version of ATACS

was written entirely in QuickBASIC, and would not meet the requirement that this

thesis be done in the Ada programming language. However, the concept of an

educational tool and the basic structure and scenario were reusable. Captain Moore's

basic idea was implemented in Ada, using the existing algorithms whenever possible.

Not all of the original ATACS was recreated in ATACS+. Only some parts

dealing directly with the combat model were kept. The demonstrations of Circular

Error Probable (CEP) and random number generation were discarded because they

did not enhance the objectives of this thesis and did not serve to demonstrate the

combat processes examined in AFIT's combat modeling classes.

Some of the best features of the original ATACS were retained, such as having

a preprocessor which lets the user access the entire data base. The original graphics

provided a two-dimensional overhead view of the animated air-to-air engagement.

This was also retained and enhancements were added.

4-1

In order to meet the fourth objective set out in Chapter I, the two-dimensional,

view of the original ATACS was re-written in Ada and a three dimensional anima-

tion was added. These animation modes are interchangeable. Once the animation

was designed, the next design decision concerned connecting the animation and the

combat model.

There were two ways of approaching the model / animation interface; separate

the combat model and the animation into two executable programs, or combine

the two into a single larger executable program. Separating the programs has the

advantages of running the animation faster and "rewinding" to watch a specific

portion over again. But the user would have to wait a period of time while the

simulation executes. Also, the simulation.would have to create a data file almost

one megabyte in size for each ten minutes of simulated time. This file would have

to contain all of the information required by the animation. A file that large could

not be stored in system memory (RAM) unless extended memory was used. Many

computers do not have extended memory and those that do, use a variety of memory

managers. Since one of the design objectives was too make ATACS+ available to as

many students as possible, using extended memory was not a viable alternative. A

different alternative would be to have the animation read the information from a file

a little at a time. But this would slow the animation because of the slow disk access

times. Instead, the model and the animation were combined into a single program.

This approach rcsolved the storage problem but took away some of the flexibility of

the animation. It also created potential program size problems.

In the original ATACS, the preprocessor, the combat model, and the animation

were one program. In order to remain below an executable program size of 640k

(640,000 bytes), the largest program size allowed without using extended memory,

the preprocessor was broken out into a separate program. The combat model an d

the animation remained as a unified program whose size is below the 640k limit.

4-2

ATACS+

title~xe t-tue.win

*.scn
b. pepro~exe default.scn

I f ! Exit to system
scenario.run

raphics I model

events.dat

Figure .1. ATACS+ System Structure

What finally emerged from the design process, was a system of three programs.

Figure 4.1 shows the overall structure of the ATACS+ system. The three executable

programs are shown in the b ~xes. Their order, from top to bottom, is the same

in which they are executed. 3n the right are the names of the files used by the

programs. Their contents and how each program uses them is covered in Chapter

V and in Appendix A. Figure ý4.1 shows that upon exiting the simulation program,

sim.exe, control is returned to the preprocessor. Only the preprocessor can return

control to the operating system.

4.3 Modeling Decisions

The basis for the combat model was the original ATACS program. The overall 9

scenario is that of an airbase, defended by "Blue" aircraft, being attacked by "Red"

aircraft. Three entities have been defined: the airbase, the aircraft and the missiles.

The number of aircraft and missiles are defined in the scenario file. These are each

defined by a record structure which contains the attributes of the entities. These

entities are discussed in more detail in Chapter V. The task of the "Blue" forces.is

4-3

V and in Appendix A~~~......Fgr .1. sow.t...po.eitng.hesi...io.pog.m

- /

to destroy the attackers as the "Red" aircraft attempt to reach the airbase. Both

sides have fully reactive aircraft, unlike the original ATACS where the "Red" forces

were non-reactive. In order to enhance the scenario, the "Red" forces can be divided

into Strike and Counter-Air missions. Strike aircraft try to avoid engagements while

proceeding toward the airbase while the aircraft with the Counter-Air mission en-

gage the "Blue" forces whenever possible. Aircraft, and the missiles they carry, are

the only movingentities. No surface-to-air missiles (SAMs), early warning aircraft

(AWACS) or electronic warfare were simulated.

4.3.1 Combat Processes. Since the purpose of ATACS+ is to demonstrate

combat processes, five of the most important piocesses were chosen to be modeled.

They are: search, target assignment, maneuver, engagement and attrition.

4.3.1.1 Search. In ATACS+, the search process actually combines

searching, target acquisition and target identification into one process. The chosen

method of searching is the Definite Range Device or "cookie cutter" method (13:5-

6). If an opposing entity is within the search area of another aircraft it will be

detected, identified and potentially engaged. This same methodology is used by the

GCI radar. Any "Red" aircraft detected by the GCI is added to the GCI's target

. . st. This search method was chosen for its simplicity and its transparency to the

student user. A stochastic search method would have been confusing to a student

watching the animation-and trying to understand the search process. A potential \

target which was obviously within the search area might not be detected. Once the

GCI has identified potential threats, it assigns defenders to them.

4.3.1.2 Target Assignment. The target assignment process was de-

signed differently for the "Blue" and the "Red" sides. The "Blue" aircraft have

their targets assigned centrally by the GCI. This methodology is a hold-over from

the original ATACS. The GCI evaluates the threat of each detected "Red" aircraft

4-4

• " • . , "N:/ . " .

and assigns the closest "Blue" aircraft to it. This pairing continues until the target

.list is exhausted or all "Blue" aircraft have been assigned. As a simplified means of

determining threat, the time to reach the airbase is used. This measure was used for

its simplicity and because a more complex algorithm would have been unbalanced

with the rest of the combat processes.

4.3.1.3 Maneuver. Since one of the objectives of this thesis was to

provide the aircraft entities with the ability to maneuver in all three dimensions,

the equations of motion for three dimensional flight had to be developed. These

equations give the aircraft five degrees of frcedom: X, Y and Z translation, roll

and pitch rotations. The sixth degree of freedom, sideslip or rotation around the Z

axis, was omitted because sideslip is rarely more than a few degrees and makes little

difference in the performance of the aircraft. The missiles are modeled as four degree

of freedom bodies. Their roll was eliminated because of the symmetry. of missiles.

Once the equations of motion were determined, a set of predefined maneuvers was

created. The aircraft decision logic chooses one of these maneuvers. Each maneuver

is composed of a desired pitch rate, heading change and speed change. This system

was derived from the Air-to-Air System Performance Evaluation Model (AASPEM)

(23).

4.3.1.4 Engagement. In the real world, rules of engagement and

weapon employment strategies are extremely complex. For ATACS+, a simplified

way of modeling the engagement process was needed. But the process still needed

to demonstrate how engagement is perfoimed. The result is a process where aircraft

entities will fire a missile at a target if that target is within the missile's range, if the

target is within the aircraft's search area, and if the target is the aircraft's assigned

target. All engagements are performed beyond visual range (BVR). It was decided

not to model close-in-combat (CIC) because of the complexity of the maneuvers and

4 -
4-5 ~~f.\.,'

"-;- ' - '- I-'" . -:57 ,

the fidelity of the animation would not permit the dynamics of GIG to be clearly

seen.

4.3.2 Time Advance Mfechanismn. When creating a combat model, a time

advance mechanism must be chosen. Hartman points out that there are four different

methods for advancing the simulation clock (13:2-6). They are:

1. Fixed Time. Step

2. Event Scheduling

3. Process Oriented

4. Synchronized to Real Time

The event scheduling and the process orient'ed approaches require more com-

plex algorithms than the fixed time step method. The synchronized method would

be too slow to meet the objectives of this thesis. The method selected for ATACS±

is the same as was used in the original ATACS; the 4ixed time step. This method

is the simplest to implement and it lends itself very well to the air model. At each

.time-step, the state of every entity is updated. Normally this is the fixed time step's

major draw back, but in simulating aircraft flight, the aircraft's state is constantly

changing. This makes the fixed time step method the best choice.

4.3.3 Coordinate Systems. The combat model has two coordinate systems.

The first is anchored to the earth at an arbitrary origin. The earth is modeled as a

flat surface extending to infinity in all directions. The flat earth representation was

chosen because of the relatively short distances over which the air-to-air engagements A
take place. Also, the GCI was modeled so simply that over- the- horizon capabilities ~

were not realistically needed. The earth coordinate system is oriented as shown

in Figure 4.2. The earth's positive Y axis points North and the positive X axis

points to the East. The positive Z axis, representing altitude, projects upward from

the earth's surface making this a right-hand coordinate system. Heading angles are

4-6

measured from the positive Y axis in a clockwise direction. Pitch angle is measured

from the X-Y plane to the velocity vector of the aircraft. This angle is positive when

the aircraft is climbing.

Up
• . +Z

Figure 4.2. Earth Coordinate System

The second coordinate system defined in this model is attached to the aircraft

or the missile entity. This coordinate system is shown in Figure 4.3. The aircraft or

missile's angle of attack (AOA) is the angle between the entity s velocity vect-r and

its center line. This angle is positive when the entity's nose is above the velocity

vector. This angle is used only to compute the aerodynamic performance of the

entity. The other aagle shown in Figure 4.3 is the aircraft's bani angle. This angle

is positive when the aircraft is banked to the right. V

4.4 Randomness

One of the major design decisions involved whether to use stochastic processes

in the model. Since probabilities are commonly used in many combat processes it

4-7

_J /i

+A A-

S[~+Roll

Figure 4.3. Aircraft Coordinate System

was important to include some element of randomness in ATACS+. As was discussed -

in the previous section on the search process, randomness can make watching the

simulation confusing. A student user might not be able to understand why a process

did not perform as expected. Since the student's primary source of information is the

animation, too many random processes would detract from the learning objectives.

On the other hand, it was also important to have at least one random process so

the student user could see how cianging the probability's critical value affects the

engagement outcome. It was decided that randomness wvu'ud be injected into the

simulation in the missile's probability of kill (Pk). For simplicity, the Pk was assumed

to be distributed Uniform(0,1).

4.5 Model Assumptions

Once the basic design had been decided upon, several simplifying assumptions

were made. Most of these were trade-offs between program complexity and program -

objectives. Assumptions were made about the weapons, the engagement tactics, and

the method of attrition.

4-8

'- Q* h .. • - \ . r.- " -A" ., -' -.-.. :.... a =

4.5.1 Weapon Assumptions. The major assumption concerning weapons

was that aircraft will carry a single kind of missile. In the real world, aircraft may

carry two or more kinds of missiles, each possibly having variants in seeker type, range

etc. Since ATACS+ is a simple model, there was no need to model the missiles to

a high degree. ATACS+ missiles are modeled as semi-active radar homing missiles.

These missiles will track the target as long as the target remains in the launching

aircraft's radar search area. If the launching aircraft is destroyed before tile missile

reaches its target, the missile is destroyed. All missiles were assumed to fly at a

consf-rnt speed of 4500 feet per second. Actual air-to-air missiles do not travel at

constant speeds but since the time-step is a relatively large one second, and since the

missile is being viewed on an animation wiih a slow update rate, this assumption was

reasonable. Another assumption was that all missileshave the ability to withstand

10OGs in a turn. Missiles will also always track their target successfully. The only

way a missile can fail to destroy its target is if the random draw is greater than the

missile's Pk or if the missile cannot, for performance reasons, get within its lethal

radius which is currently set at 100 feet.

4.5.2 Engagement Assumptions. In reality, engagement tactics are very

complex and modeling them fully was well beyond the scope of this thesis. Several' /
simplifying assumptions were made to make the simulation possible and still effec-

tively demonstrate the engagementprocess. First, aircraft on both sides only engage

a single target at a time. This was done so that the user can watch the simulation

as a series of one-versus-one duals. For the same reason, aircraft do not operate in

a mutually supportive way. Wingmen do not cover for flight leaders and aircraft

will not be attacked by more than one aircraft. In the case of the "Blue" aircraft,

who are defending the airbase, their targets are assigned by the CCI and they will

only attack the assigned aircraft. No targets of opportunity are engaged. This was x

assumed so that the combat process of target assignment could be clearly shown.

The last engagement assumption ties in with the previous discussion on weapons;

4-9

S.- "- .. : -//

an aircraft which has launched a missile will not break the engagement if a missile

is shot at it. This was a simplifying assumption. Decision logic to add break-off

capabilities could be added as a later enhancement.

4.5.3 Attrition Assumptions. Since ATACS+ is a high resolution combat

model, attrition is performed on an individual aircraft basis. The only assumption

was that if a missile passes within lethal range of its target and a random number

drawn from a Uniform(0,1) distribution is less than the missile's Pk, the aircraft

will be destroyed. No partial kills are allowed. Aircraft can not be damaged and

continue to fight. This assumption was made so that the attrition process could be

shown more clearly with the animation. If damaged aircraft were allowed to exist,

the student using ATACS+ might be left wondering why a missile which apparently

hit its target did not destroy it. "Was it a miss due to the random draw or is the

aircraft damaged?". Leaving questions like this unanswered detracts from the intent

of the model.

4.6 Model Flow

Once the design decisions and assumptions had been made, the basic logic

flow of the model was laid out. Figure 4.4 shows this model structure. The model

is structured is three parts: an initialization phase, the simulation loop, and the

graphics shutdown. The first four blodks in Figure 4.4 show the initialization of

the model. The scenario file created by the preprocessor is read, the aircraft data

is loaded into an array, the size of the missile array is set and the graphics are

initialized. These four steps are performed before the simulation loop is entered and

so are only performed once.

The simulation loop begins with the resetting of the aircraft's target assignment

attributes. This is done to prepare for the next two steps, CCI Search, and Target

Assignment. Once the CCI has assigned the "Blue" aircraft to the detected attackers,

4-10

/\

_ _ _. , . .- "<. ,. . - 7.._2 7 , " , • .

• , / *.

Simulation Flow 'I

Read Setup File

R~ead Aircraft Data]

Initialize Missiles

Initialize Graphics

Reset Aircraft Attributes

GCI Search

Target Assignment

Aircraft Search

Aircraft Engage

Aircraft Maneuver

Aircraft Motion 7
I : /

Missile Pursuit 1/

Missile Motion

Update Graphics

Shutdown Graphics

Figure 4.4. Combat Model Logic Flow
4-11

J.- ,..

four aircraft processes are run. First, all aircraft search for targets, if any are found

the aircraft engage. Once the engagement process is complete, the aircraft select

a new maneuver and the motion process moves the aircraft to their new positions.

After tl, aircraft tho rnmsqile pursuit motion is calculated. Each of these

processes and the algorithms used to perform then are discissed in Chapter V.

After each of the entities has been updated the graphics display is then up-

dated. The logic used to do this is described below. Once the graphics have been

updated, the simulation returns to resetting the aircraft attributes. This loop con-

tinues until one of the following three stopping criteria is met:

1. Simulation time reaches the specified run length.

2. A "Red" aircraft with a "Strike" mission reaches the airbase.

3. The user selects the Quit option from the run-time menu

If any of these three criteria are met, the loop is exited and the graphics are shutdown.

This returns the graphics card to the eighty column by twenty-five row text mode

used by the preprocessor.

• //

4.7 Graphics Decisions and Assumptions

The biggest decision to be made about the graphical half of the ATACS+

simulation was choosing an Ada-based animation. As discussed in Chapter III, an

Ada-based animation was desired because this entire project was a proof-of-concept

of Ada-based combat modeling. This decision created considerable difficulties. The

only graphics routines written in Ada that were available at AFIT, were the Ada

Graphics Library and the Ada Graphics Utility Library, both provided by Meridian

Software Systems Inc. Unfortunately, neither was suitable for the high-speed anima-

tion required for ATACS+. What was ultimately used was a translation of a C-based

animation system developed by Michael Abrash (1). These animation routines create

a medium resolution, high-speed animation capable of depicting three dimensional

4-12 /

.... ...

objects from arbitrary viewpoints. More information on this animation system in

contained in Appendix C. These routines were integrated into the ATACS+ model

and now provide -both two dimensional (2D)) and three dimensional (3D)) views of

the air-to-air engagements.

The 2D display is a re-creation of the display used in the original ATACS

retaining the original's zoom and pan features. A decision was made not to use

perspective in the 2D mode. Therefore, aircraft moving straight up or down in

altitude looks no different than an aircraft traveling at a constant altitude. This

decision was made because the 2D display is meant to show the relative positions of

the aircraft not their actual maneuvers. To see the dynamic engagement, the user

should use the 3D display mode.

Three assumptions were made concerning the 3D display. First, all of the

aircraft look the same except for their color. A generic aircraft shape was used.

Secondly, the aircraft are not scaled to actual size. If they were, the aircraft would

be a single pixel in size. For the same reason the third assumption was made; altitude

is scaled by an order of magnitude. With altitudes ranging up to 40-50,000 feet and .

X and Y distances being as large as a few hundred miles, it made sense to scale the

vertical dimension to enhance the aircraft's motion in the vertical plane.

4.8 Graphics Flow

In Figure 4.4 the last step in the simulation loop was shown as updating the

graphics. This step is actually a series of steps. These are shown in Figure 4.5.

The first step, whether the display is in the 2D or 3D mode, is to establish the

viewpoint. This viewpoint is used to create the transformations required to project

the aircraft and missile's images onto the screen. Next the users' inputs are checked.

The user may change the viewpoint, the display mode or the level of detail in the

display. Once the user's inputs have been processed, either the 2D or the 3D path

is followed.

4-13

Graphics Flow

Establish the Viewpoint \

Check User Input

Restore Background Clear Display Area

Draw all Airrf Draw the Ground

Draw any Missiles [Draw the Grid

Draw the Airbase

Draw the Aircraft

Draw any Missiles

L Update Clock

Figure 4.5. Graphics Logic Flow

4-14

'-- €'I ' 4.-"
/ -•

i / .,.. ÷ 7 -. '-

The three steps performed when in the 2D mode restore the fixed part of the

background (the green background, the airbase, and the radar coverage circle), draws

each aircraft and its search sector and any missiles which may be in flight. If the 3D

mode is begin used, six steps are taken. The first fills the display area with the blue

sky color. Then the brown ground is draw and the yellow grid lines are added to the

ground. Next, the airbase is drawn, all aircraft are drawn and finially any in-flight

missiles are drawn.

The graphics update always concludes with an update of the clock display.

The details of some of these steps are covered in the next chapter.

4-15

V. Program Details

5.1 Introduction

This chapter provides details to accompany the concepts discussed in Chapter

IV. It details the combat processes and also discusses how ATACS+ handles aircraft

aerodynamics and motion. A similar section is provided for the missiles and a sep-

arate section covers ATACS+'s method of generating random numbers. To begin,

the three kinds of entities are described.

5.2 Entities

In the ATACS+ model three kinds of entities exist: aircraft, missiles and the

airbase. There is only one airbase entity but the user can define up to fourteen

aircraft and a virtually unlimited number of missiles. The number of missiles is only

limited by the amount of available computer memory. These entities are composed V

of a set of attributes which are contained in a composite data type defined in the

AtacsTypes specification. Each entity's attributes are listed in Tables 5.1, 5.2, 5.3,

and 5.4. It is these attributes which change and are updated as the simulation

runs. No other objects help define entities. The state of the attributes is what

differentiates one entity from another, especially the aircraft. Each aircraft and

missile has a composite data type, called Objectstate, within its attributes. This

Objectstate consists of the six pieces of information needed by the graphics routines

to place an entity in 3D space. The X, Y, and Z locations and the roll, pitch, and

heading angles were grouped together to make passing parameters between graphics

routines easier.

5.3 ATACS+ Aircraft

Six kinds of aircraft are currently defined in ATACS+. These particular aircraft

were chosen because they fall into three categories: interceptors, strike aircraft, and

5-1

- II -I

Table 5.1. Aircraft Entity Attributes
Attribute Description
Objectstate.X East-West location in feet (+East) -: .

Objectstate.Y North-South location in feet (+North)
Objectstate.Alt Altitude, height above the ground (feet)
Objectstate.Roll Bank angle in radians (+right)
Objectstate.Pit Pitch angle in radians (+nose up)
Objectstate.Hdg Heading in radians (+clockwise from North)
Speed Aircraft speed in feet per second
Visual-Range Maximum range, in miles, at which visual

identification of another aircraft can be made
Radar-Range Maximum range, in miles, of aircraft's radar.
RadarSweepAngle In radians, measured ± from aircraft centerline.
Acquire.Status Either None, Radar or Visual
Alert-Status Either Detected or Undetected
Assign-Status Either Assigned, Unassigned or KIA. -" '
Mission Either AbDef, Strike or Counter-Air.
Roe Rules of Engagement, Fire-First or FireSert::,d.
Objective 3D point that the aircraft attempts to reach.
Objective-Index Index of aircraft to intercept
Defensive-Level The -threat level of the aircraft
Target-Index Index of the aircraft to engage
TargetedBylndex Index of aircraft engaging this aircraft
AngToTarget Angle off the nose to the target
DistToTarget Distance to the target
Depress-Angle The angle below the nose to the target
NumOLMsls The current number of missiles on board.
MslnIn_Flt True if aircraft currently has a missile if flight.
Missile-Limits.Speed Aircraft's missiles speed, in feet per second.
MissileLimits.Max.FltTime The number of seconds of flight time.
MissileLimits.Maxgs Maximum turning acceleration, expressed in Gs.
Missile.Limits.Pk The probability of kill given a hit.
Maneuver-Name Either CAP, Pursuit, Intercept, MissileDef,

Attack or Retreat
Aircraft-Kind Either F15, F16, Fill, Mig25, Mig29, Su24.
TimeOfManu Time the last maneuver was begun
Maneuver.Hdgrate The desired rate of change of the aircraft

heading, in radians per second.
Maneuver.Pitrate The desired rate of change of the aircraft

pitch in radians per second

5-2

Table 5.2. Aircraft Entity Attributes (cont'd)
Attribute Description
Maneuver.Vdot The desired rate of change of the aircraft

speed in feet per second per second.
Throttle Enumerated Corner, Cruise, Military, or Afterburner
CornerVel The airspeed, in feet per second, at which best

instantaneous turn rate is created.
Maxgs The maximum allowable load factor
Wingarea The area, in square feet of the aircrafts wing
Wgt The aircraft's weight in pounds
MaxRollRate Max allowable roll rate in radians per second.
Afterburner-Thrust The pounds of thrust produced by a

single engine in maximum afterburner.
Mil.PwrThrust The pounds of thrust produced by a

single engine in full military power.
NumOfEng The number of engines on the aircraft
Drag-Multiplier Limits aircraft performance. Between 0.5 and 1.5.
Color The designator for the side on which the aircraft

fights, either 1 (Blue) or 12 (Red).
Call-Sign A unique name for this aircraft.

5-3

"Ii; : . 'N . : .. ' •

\ \'

A'

/ '

Table 5.3. Missile Entity Attributes
Attribute Description
Objectstate.X East-West location in feet (+East)
Objectstate.Y North-South location in feet (+North)
Objectstate.Alt Altitude, height above the ground (feet)
Objectstate.Roll The missile's bank angle in radians (+right)
Objectstate.Pit The missile's pitch angle in radians (+nose up)
Objectstate.Hdg Heading in radians (+clockwise from North)
Maneuver.Hdgrate The desired rate of change of the missile heading,

in radians per second.
Maneuver.Pitrate The desired rate'of change of the missile pitch

in radians per second
Maneuver.Vdot The desired rate of change of the missile speed,

current set to zero
Status Either Ready, Launched, Detonated, or Missed
Target-Index The index of the aircraft to target
LnchAcIndex The index of the launching aircraft
TimeOfLaunch The time launch was initiated
Limits.Speed The speed, in feet per second, of the missile.
Limits.MaxFt_.Time The number of seconds of flight time.
Limits.Maxgs Maximum turning acceleration, expressed in Gs.

/

Table 5.4. Airbase Entity Attributes
Attribute Description
X The East-West location of the airbase in miles
Y The North-South location of the airbase in miles / '

Radar-Range The range of the GCI's radar. /
NumOf-Threats The number of detected er.erny aircraft /"

5-4
/

multi-role aircraft. Interceptors specialize in air-to- Iir combat and are sometimes

referred to as "dog-fighters." Strike aircraft carry bombs and attack ground targets.

Multi-role aircraft are capable of performing either the interceptor or the strike role.

The six aircraft in ATACS+ are: the F-15A interceptor build in the United States

(US) by McDonnell Douglas, the F-16C multi-role fighter built in the US by General. "

Dynamics, the F-111F strike aircraft built in the US by General Dynamics, the Mig-

25 interceptor built in the Soviet Union by the Mikoyan/Gurevich Design Bureau,

the Mig-29 multi-role fighter built in the Soviet Union by the Mikoyan/Gurevich

Design Bureau, and the Su-24 strike aircraft built in the Soviet Union by the Sukhoi

Design Bureau. Of the many aerodynamic parameters which might distinguish these

six aircraft from one another, only a limited number were used in ATACS+.

\N " , -'
5.4 Aircraft Parameters

Nine parameters define each aircraft. For the six current ATACS+ aircraft,

Table 5.4 lists the values of these nine parameters.

The first parameter listed is corner velocity. This is the airspeed, here mea-

sured in feet per second, where the aircraft generates maximum lift at the maximum

allowable load factor. The velocity-load factor (V-n) diagram in Figure 5.1, shows

how the corner velocity is derived (25:389). The curved line marked "lift limit"

shows the amount of Gs (or load factor) an aircraft can generate at a given speed.

The airspeed at which this line meets the structural limit line is called the corner

speed or corner velocity. Corner speed is important because at this speed the aircraft

attains maximum instantaneous turn performance (25:398). The boundaries of the

V-n diagram vary with aircraft weight, configuration, throttle setting and altitude.

For ATACS+, an average altitude of 10,000 feet, military power, and the weight

shown in Table 5.4 were used. For most aircraft, the corner speed is approximately

0.8 Mach or 80 percent of the speed of sound. Since no values are readily available for

5-5

S,](.. ..-

• 1..•, \ / •

Table 5.5. Aircraft Performance Parameters

_____________ IF- 15 1F-!6 [F-ill [Mig-25] Mig-29 [Su-24
Corner Velocity (ft/sec) 861' 808 861' 900* 1800* 861
Maximum Gs 90 90 5* 5a .. 5.0*
Wing Area (ft2) 608a0 300a 5 2 5 ' 612a 379a 452a

Weight (Ibs) 37903a 23765a 90000* 64365a 30700a 68376a
Max Roll Rate (rad/sec) 2* 3* V' 2* 3* 1*
Afterburner Thrust (lbs) 237700 2-- 3-8 -30 b '2-51006- 24700a 18300a 24700a

Miltay hrut ib) 4670' 470 15000* 1.6775 11240a 17635

Number of Engines 2a 10 24 2a 2a 2a
Drag Multiplier 1.0* 11.0* 11.2* 11.0* 1.0* 1.4-
Sources:
a = Jane's All the Worlds Aircraft 1991-1992 (17)
b = Modern Air Combat (11) 1

C = T.O. IF-iSA-i (5:139-35)
d = T.O. iF-16C-1-1 (6:A1-19)
e = T.O. IF-11iF-1-1 (7:A11-9)
* = estimated

the Soviet aircraft, the same values as their U.S. counterparts are used as estimates.

In ATACS+, corner speed is needed for the missile defense maneuver.

The next parameter in Table 5.4 is maximum Gs or maximum load factor. Gs

are a measure of acceleration and are expressed in multiples of the acceleration due

to gravity. For example, straight and level, unaccelerated flight would be at 1G. The

aircraft's maximum load limit is established either because of structural limits on

the aircraft or physiological limits on the pilot. In the case of the F-ill and the

Su-24, the maximum allowable load factor is set to 5.0 because the aircraft would

be carrying external weapons for the strike mission in ATACS+. The extra load

reduces the maximum allowable load factor. The maximum load factor is later used

to limit the turn performance of the aircraft.

The wing area of each aircraft is the planform area measured in square feet.

It includes the area in the fuselage between the wings (4:81). The aircraft weight

was drawn from various references (see Table 5.4) and were corrected to a weight

5-6

- . . "~I.

II A

.. Sbuctral Limit

,•............ $ J n ii

4

0 S:

-2

V. V VV

Aisp*W ~knm)

Figure 5.1. Velocity-Load Factor Diagram

reflecting 50 percent internal fuel. These values are approximations and do not

change as the air-to-air engagement progresses. The weight is not reduced as fuel is

burned or as ordnance is expended.

The maximum roll rate is measured in radians per second. All of these values

were estimated since no actual values were available. The values used were drawn -

from the experience of this thesis' author. His experience with the T-38 aircraft,

reputed to be the fastest rolling aircraft in the Air Force inventory, has shown that

one revolution per second is a reasonable upper lirirt, although half thi3 value is a

more realistic value in actual usage. The F-16 and the Mig-29, being the smallest

of the six aircraft were given a value of 3.0 radians per second. The F-15 and the

Mig-25, being larger aircraft, were assigned the value of 2.0, and the strike aircraft

were given a slow 1.0 radians per second roll rate. ATACS+ uses these values to

limit the aircraft's change in roll angle in each time interval.

The afterburner and military thrust values were taken directly from reference

material (see Table 5.4 for references). These values represent the pounds of thrust

produced when a single engine is in full afterburner or set to full military power

(usually 100 percent rpm).

5-7

The number of engines on each aircraft is self-explanatory. These numbers

were taken from the references as noted in Table 5.4.

The drag multiplier is not an actual aerodynamic parameter, but rather it

was created specifically for ATACS+. Because of the way drag is computed in this / /

program, an adjustment factor was needed for aircraft carrying external stores. Ex-

ternal weapons create a sizable amount of drag and limit the aircraft's performance.

To account for this effect, the drag multiplier is used.

5.5 Adding Aircraft

In order to add another type of aircraft to ATACS+, the nine parameters

listed in Table 5.4 need to be defined for that particular aircraft type. These nine

values are then stored in an appropriately named data file with a .ACF extension.

For example, the F-15 data is stored in the file F15.ACF. Then the designation

of the aircraft should be added to the enumerated values in 'the AtacsTypes and

Preprocessor-Types specifications. The preprocessor automatically includes the new

aircraft name in the aircraft selection menu after the program has been re-compiled.

The simulation program also needs to be re-compiled, but once this is accomplished,

the new aircraft will be available for use in ATACS+: The data stored in the .ACF

files is used to compute the aerodynamic properties of each aircraft. These properties

---are derived from a generic aircraft. This derivation process is described in the next

section.

5.6 Aerodynamics

In order for the aircraft to fly in a realistic manner, certain aerodynamic rela-

tionships have to be known about each aircraft. These relationships could be very

complex, involving an extensive number of parameters. However, there are some ba-

sic aerodynamic relationship which all aircraft share without considering such things

as maneuvering flaps, vectored thrust or high drag devices. What was required for

5-8

. - -. /....< , x..... .1 ,\ \ ,

,___ -_ , 7\• , ./ . -.... ',.

i '

ATACS+ was a set of simple relationships which captures the trends seen in actual

aircraft. These relationships are:

Angle of Attack(AOA) = f(Mach Number, Lift Coefficient)

Drag Coefficient(Cd) = f(Mach Number, Altitude, Lift Coefficient)

Maximum Lift Coefficient(Cio..) = f(Mach Number)

Military Thrust = f(Static Military Thrust, Mach Number, Altitude, Number

of Engines)

Afterburner Thrust = f(Static Afterburner Thrust, Mach Number, Altitude,

Number of Engines)

Collecting and distilling each of these relationships for each aircraft was well be-

yond the scope of this thesis. Also, for the purpose of!ATACS+, it was not required.

Instead, general relationships were established for each parameter. All ATACS+ air- -

craft use the same relationships with the exception of Cd, where the drag multiplier

is used to adjust the computed value of Cd. The thrust equations take the static

sea-level rating of the aircraft's engines and adjust iý for changes in Mach Number

and Altitude. These relationships may not be exact or any of the aircraft, but the

trends are based on a real aircraft, the T-38 Talon. Data was available for the com-

plete aerodynamics of the T-38 from Captain Shawr Smellie of the Aerodynamics

and Flight Manuals Branch, San Antonio Air Logistics Center, Kelly AFB, Texas.

The information was converted from data tables into polynomials using least squares

regression. Each of the resulting equations has a coefficient of determination, R2, of

at least 0.85. These equations were then added to the routii.es in the AcPkg pack-

age. Using the aerodynamics of an actual aircraft keeps the ATACS+ aircraft from

reaching unrealistic speeds, performing unrealistic turns or climbing to unrealistic

heights. All ATACS+ aircraft use the same set of relationships. These relationships

are summarized below:

5/

5-9 1;.

,5/

Ir

I.

Afterburner..T rust StaticAfterburnerThrust • (1.0 + 0.342 * Mach

- 2.227 * 10-5 ,Altitude) (5.1)

• NumberOfEngines (5.2)

Military-Thrust = StaticefilitaryThrust * (1.0 + 0.073 * Mach,'

- 2.026 • 10-5 * Altitude) • NumberOfEngines (5.3)
-4,

//
,//

0.996 + 0.421 * Mach - 2.538 * Mach2

+2.315 *Mach' if Mach < 1.1 (5.4

6.233 - 6.579 * Mach + 1.92 * Mach2 otherwise
/

0.017 - 0.009 * Mach + 6.861 * 10-8 * Altitude

+0.009 * Mach2 + 1.108 * 10-12 * Altitude2

-7.842 * 10-s * Mach * Altitude if Mach < 1.0
Cd, = (5.5)

-0.24 + 0.085 * Mach + 1.039 * 10- * Altitude

-0.026 * Mach2 - 3.237 * 10-8 * Mach * Altitude otherwise

Cd2 = -0.143 * Mach + 0.231 * C1 + 0.105 * Mach2 +

5-10

} - ,./ .• " .,. . : , . . .)

//

0.057 * Mach * C, (5.6)

,/

Cd = Cd, + Cd, (5.7)

5.7 Aircraft Motion

The process of creating motion in the ATACS+ aircraft consists of three steps.

First, decision logic is used to choose a maneuver. Second, a maneuver routine

corresponding to the chosen maneuver is executed. This step determines the three

parameters which define a maneuver: desired pitch rate, desired turn rate, and

desired change in speed. The final step is to take this desired maneuver and move

the aircraft accordingly. This movement is limited by the performance characteristics.

of the aircraft. Each of these steps is discussed in the following sections.

5.7.1 Maneuver Logic. Once during each time step every aircraft executes

the ManeuverPkg.AircraftManeuver procedure. This procedure decides which of

the six defined maneuvers the aircraft will execute during the next time interval.

This decision logic is diagramed in Figurc 5.2. The larger font signifies a conclusion

in the decision logic. The top portion of Figure 5.2 shows the determination whether

a missile has been launched at the current aircraft. This determination is made only

if the aircraft does not have a missile in flight. If the aircraft is in danger of being

hit by a missile and does not have a missile in flight, then the decision is made to

perform the Missile Defense maneuver. If this is not the case, then the decision logic

proceeds according to the aircraft's mission. Aircraft performing the airbase defense

mission will retreat if they are out of missiles, or will choose between the Combat

Air Patrol (CAP), Intercept, or Pursuit missions depending on its assignment and

acquisition status. Strike aircraft can perform only the Attack mission. Aircraft

flying the Counter-Air (CntrAir) mission are similar to the airbase defense aircraft;

they will retreat when out of missiles or choose between Attack or Pursuit when

5-11

___________________________________ . l7

missiles remain. Although this decision logic is very simplistic, it is effective enough

for the intended purpose of ATACS+.

5.7.2 Maneuver Descriptions. In each of the following maneuvers, the

desired turn and pitch rate are set equal to the angle through which the aircraft

wishes to turn.. No consideration of aircraft performance is made at this time and it

is assumed that the aircraft would like to move through this angle in a single time

period. These rates will later be limited by the aircraft's performance.

5.7.2.1 Missile Defense. The first maneuver choice deals with de-

fending against a missile attack. In reality, evading a missile requires tactics far

beyond the scope of this project. Still, it was important that aircraft react to being

fired upon. Major Randy Nelson suggested a' simple abstraction of real world tac-

tics which suits ATACS+'s purpose (21). His suggested defense consists of the two

phases shown in Figures 5.3 and 5.4. The initial maneuver, Figure 5.3, has the air-

craft diving towards the ground at a sixty degree angle until the aircraft is less than

one thousand feet above the ground. At the same time it turns to put the missile*

"on the beam." This results in a continuous turn by the aircraft which makes the

missile constantly decrease its turn radius as it nears its target. This tactic continues

until the missile is seven seconds from impact. At this time, the tactic is switched

to the one shown in Figure 5.4. This maneuver turns the aircraft into the missile.

The aircraft turns, trying to reduce the angle to the missile while at the same time,

trying to raise or lower the aircraft's nose to the same angle at which the missile is'

diving. This sudden hard turn is an attempt to create as much separation as possible

as the missile passes the aircraft. The key to this tactic is the fact that the missile's

speed is several times greater than the aircraft's speed so will have a much greater

radius of turn., The whole tactic behind the missile defense maneuver is to use the

aircraft's superior turning ability to evade the missile.

5-12

I fs

/ / I -

A'i,

fj/
e-~ .~/

o 0.

SS, " ,• •

'4-l

• .. 4:

A ungle0
0

Anhmto ~

Figure 5.3. Initial Missile Defense Geometry

Figure 5.4. Close-in Missile Defense Geometry

5-14

:Y" /

5.7.2.2 Intercept. The geometry for the intercept maneuver is shown

in Figure 5.5. The basic objective of the intercept maneuver is for the intercepting

aircraft to arrive at the same point in space as the target aircraft at a given time.

The computation of the lead angle is the critical component of the intercept. The

lead angle is derived as follows:

Using the Law of Sines:

d2 d,

Lead-Angle AngleOff._Nose

where:

d, = the distance from the ;nterceptor to the intercept point

d2 = the distance from the target to the intercept point

Line Of Sight = the line connecting the centers of the two aircraft

Angle Off Nose = the angle the Line Of Sight makes with the target's flightpath

Lead Angle = the angle between the Line of Sight and the intercept vector

Turn Angle = the angle the aircraft needs to turn to align its flightpath with the

intercept vector

so:

Lead-Angle = Angle-OffNose * = Angle-OffNose V2 * t2

but at intercept t, = t2, resulting in the final equation:

V2

Lead-Angle = Angle-OffNose * (5.8)
V1

The intercepting aircraft turns until its flight path is aligned with the intercept

vector. At the same time, the interceptor adjusts its pitch angle so that it arrives at .7

5-15

-... d , Interupt Point

7Off N.-

Afrcmft 01 (int~er wn)

Figure 5.5. Intercept Maneuver Geometry

the target's altitude at the intercept point. This maneuver is a 'simplification of the

intercept tactics discussed in Fighter Combat by Robert L. Shaw (25).

5.7.2.3 Pursuit. The pursuit maneuver s geometry is shown in Fig-

ure 5.6. The pursuit maneuver is very simple. The pursuing aircraft rotates its

heading and pitch angles until its flight path is aligned with the LOS. This is re- .-.

ferred to as "pure pursuit" (25:36).

5.7.2.4 Attack. The attack maneuver shown in Figure 5.7 is very

similar to the pursuit maneuver. The aircraft attempts to turn its heading so that

the angle to the target (the airbase) is reduced to zero. The angle to the target is the

difference between the LOS vector's heading and the aircraft's heading. The desired

pitch rate is set to the negative of the current aircraft pitch angle. This keeps the

aircraft at a constant altitude during the attack maneuver.

5-16

°r 4

Aimt Pic

Taqer

Figure 5.6. Pursuit Maneuver Geometry

Figure 5.7. Attack Maneuver Geometry

5-17

¾--.

/,

5.7.3 Motion Logic. Once the maneuver has been decided, the aircraft

entity performs the Aircraft-Motion procedure found in the AcPkg package. This

procedure uses the aerodynamics of the particular kind of aircraft to limit the ma-

neuver. The actions in this procedure are shown in Figure 5.8. This procedure's

methodology is to take the turn and pitch rates defined in the maneuver, and com-

bine them into a desired load factor. This load factor is then limited by aerodynamic

and structural G-limits. This restricted load factor is then broken into the vertical

and lateral components used to compute new turn and pitch rates. These rates and

the computed engine thrust are then used to compute incremental pitch, roll, and

heading angles which are added to the current angles. This methodology was taken

from the AASPEM combat model (23:1-6).

This entire process, maneuver decision, maneuver execution, and aircraft mo-

tion is repeated for each aircraft during each simulation loop: A similar process is

used for simulating the missiles. \ /

5.8 Missile Motion

The missiles are aerodynamic vehicles with properties similar to the ATACS+

aircraft. Only one maneuver is used: the pursuit. The missile will always try

to point its nose at the target. The logic of the MissileMotion procedure of the

MslPkg package is shown in Figure 5.9. The first hing this procedure does is check

to see if the missile has been in flight longer than he maximum flight time. If this

is true, the missile is destroyed and is considered a miss. If the missile still has

flight time remaining then, just like the aircraft, t e desired turn and pitch rates

are converted to a desired load factor. This load fac or is limited by the maximum

allowable Gs. Then the restricted load factor is con erted into vertical and lateral

accelerations. These are used to compute actual turn and pitch rates. The next part

of the Missile-Motion procedure is very different than the AircraftLMotion procedure

discussed earlier.

5-18

-- - - --

Compute Mach Number

Computu Dynamic Pressure

Compute Vertical and l.ii.ral Acwelerations for Desired Mareuver

• Check fr Pitch-over Conditions

Compute OsDesired

Compute GsAvailable

Limit GsDesired to GsAvailable

limit Gs_Desired to Max Allowable Gs

Compute the Angle of Attack (AOA) for Gs_Desired

Compute Desired Bank Angle

Limit Change in Bank Angle to Max Allowable Rollrate

Update Bank Angle

Was Gs_Desirerd Limited?

n y

Recompute Vertical and Lateral Accelerations

Compute Engine Thrust and Change of Speed

Compute Resulting Turn Rate

Compute resulting Pitch Rate

Update Heading Angle

Update Pitch Angle

Update Aircraft Position

Update Speed

Figure 5.8. Aircraft Motion Logic

5-19

N -.

' \ " "" "..

Is Time of Flight > ax- Right.Time?

Missile Misses

VerticalQuit

Compute Vetcland L.Ateral Accelerations f or Desired Maneuver

Compute Gs...Desired

Limit Gs~psired to Max Al~owable Os

Compute Desired Bank Angle

Update Bank Angle

Was GsDesired Liinited'

Recompute Vertical and Lateral Accelerations

Compute Distance to Target

Compute Resulting Turn Rawc

Compute resulting Ditch Rate

Will the Missile pass the Target in the next Time Interval?

Can the Missile make the desired turn? Update Heading Angle
(was GsDesired limited?)

*Update Pitch Angle

Missile will strike aircraft Can the Missile get withinI

cheek Pk its l'slsa adius? Update Aircraft Position

y nI
Update Speed

Is a Ran Draw <k MIssile Misses
y

Aircraft is Killed Missile Misses

Figure 5.9. Missile Motion Logic

5-20

If the missile will p.-ss the target during tne upcoming time interval, then the

situation depicted in Figure 5.10 will take place. One of two things can happen:

either the missile will be able to turn the desired amount in which case the missile

will impact the target, or because of the G-limitation, the missile will not be able

to turn into the target. In this case, the distance of closest approach is computed.

If this distance is less than the lethal radius of the missile, the missile is treated as

if it hit the target. If not, the missile is destroyed and is counted as a miss. If the

missile either strikes the target or passes within its lethal radius, a random number

is drawn from a Uniform(0,1) distribution. If this random number is less than the

missile's Probability of Kill (Pk) then the aircraft is destroyed, otherwise the missile

is counted as a miss.

The other case is when the missile has not yet reached its target. Then the

heading and the pitch angles are updated and the missile's location is moved. This

entire process repeats once per simulation loop until either the missile misses or the

aircraft is destroyed.

Figure 5.10. Missile Closest Approach

5-21

59Random Number Generation.

The random draw used with the missile's Pk is the only random feature in

"ATACS+. Since Meridian's version of Ada does not supply a random number gen-

erator, one had to be written. ATACS+ uses an algorithm presented by William

H. Press, et. al. in Numerical Recipes in Pascal (24). This random number gen-

erator was translated from Pascal into Ada and instantiated as a generic function.

This function uses a single linear congruential generator and shuffling (24:220). This

process is diagramed in Figure 5.11.

wIed wpick a

-w Mex. k

ir

Return

r

/

Figure 5.11. Random Number Generation

The first call to the random number generator initializes each of the ninety-

seven elements of the it drray. These elements are initialized using the formulas:

I " J

Seed =(150889 - Seed) Mod 714025

ir(j) (1366 Seed + 150889)Mod 714025 j u... 97

5-22

.4' ' '

irIN
.h i..

The seed value is supplied by the user before the simulation begins. Once the

ninety-seven elements are initialized, one more random number is created and is

stored in the variable y shown in Figure 5.11. This variable is used to pick a random

number from the array each time the function is called.

When a call is made, the value stored in y is converted to an array index using

the equation:

97 * y
k Integer(l + T -14)2-'

The ir(k) element of the array becomes the new value of y and is the returned value

of the function after is is divided by 714025. A new random number is generated to

replace the ir(k) element.

This function has an effectively infinite period. Its main limitation is that it

returns one of only 714,025 possible values. The values are equally spaced in tne

interval [0,1) (24:220). This is certainly not a problem in ATACS+ since only a

limited number of calls will be made to this function.

5.1.0 Combat Processes

The general philosophy and assumptions for the combat processes were laid

out in Chapter IV. The following sections will add more detail and depth

5.10.1 GCI Search. As mentioned in Chapter IV, the GCI's search radar

uses the "cookie-cutter" method. The GCISearch procedure loops through the air-

craft array, computing the distance from the airbase to each of the "Red" attackers,

or bogeys. If this distance is less than the GCI radar's range then the bogey is added

to the target list. After searching the entire aircraft array, the target list, which is .

5-23

'./. . • --.--------- A

, " .. > / '.

actually an array, is sorted using a bubble sort. The aircraft .posing the greatest

threat to the airbase is placed at the top of the threat list. Threat is analogous to

the time it will take the bogey to reach the airbase at its current speed. The search

procedure is summarized by the following algorithm:

for I in Aircraft-Array loop

if Aircraft.Array(I) is Red and not already killed then

if Bogey-Range < GCIRadarRange then

Threat = Bogey-Range / Speed

Add I and Threat to Threat-List • 4

end if

end if

bubble sort by threat, smallest value first I

end loop /./

/
5.10.2 Target Assignment. The concept behind the target assignment

process was described in Chapter IV so this section will be used to describe how

those concepts were transferred into Ada code. The Target-Assignment procedure

begins by looping through the aircraft array looking for "Blue" aircraft which do

not have an Assign-Status of "Kia." The procedure then takes the number of living

"Blue" aircraft, and the number of "Red" aircraft on the threat list, selects the

smallest of the two, and assigns this as the number of Red-Blue pairings.

The procedure then loops through the threat list until the number of pairings

is reached. During each loop the "Red" aircraft from the threat list is compared

to the available "Blue" aircraft. The closest "Blue" aircraft, not already assigned

to another "Red" aircraft, is paired with the "Red" aircraft from the threat list.

"Blue" aircraft which are selected have their assignment status updated and the

5-24

/ --- ._-- -.---- .. . ,- • 7

• ,.

"Red" aircraft is assigned as its objective. The procedure is outlined in the following

algorithm:

for I in Aircraft-Array loop

count available Blue aircraft

end loop /

NumOLPairings = min(NumAvailableiBlue, NumOLThreats)

for I in 1..NumOf-Pairings loop

search through the available Blue aircraft for the closest to Threat(I)

assign Threat(I) as the objective of closest Blue aircraft

end loop

Pm,

Figure 5.12. Aircraft Search Geometry

5.10.3 Aircraft Search. The Aircraft-Search procedure is almost identi-

cal to the GCISearch procedure except that the aircraft uses a three-dimensional

"cooki -cutter." The aircraft's search area is a conical shape extending from the

nose of the aircraft as shown in Figure 5.12. The Aircraft-Search procedure loops

through the aircraft array looking for aircraft from the opposing side. Each time

it finds an opposing aircraft it computes the distance to it. If the distance to the

potential target is less than the aircraft's radar range then the angle between the line

5-25

I X

of sight (LOS) and the searching aircraft's heading if found by using the dot product

of the flight path vector ad the LOS vector. If this angle is less than the aircraft's

radar sweep angle then the opposing aircraft has its Alert-Status set to "Detected."

If the searching aircraft is "Red" it will determine which of the detected aircraft is

closest and will target it. "Blue" aircraft will only target the aircraft assigned to it

by the GCI. This logic is outlined in the following algorithm:

for I in AircraftArray' loop

if Aircraft(I) is not the same color as searching aircraft then

compute the distance between them

if distance < radar-range then
iHdgI'LOScompute angle to target = cos-1 IHd2.lIILOSl"

if angle to target < radar-sweep-angle then

AircraftArray(I) is detected

if searching aircraft is Blue then

if Aircraft(I) is assign target then

set Acquire-Status = Radar

else

ignore this aircraft

end if

else - must be a Red aircraft

if this is the closest target

make Aircraft(I) the target

set Acquire-Status = Radar

else

bypass this target

end if

end if

else

5-26

out of search area, ignore

end if

else

out of range, ignore

end if

else

Aircraft(I) is the same color, ignore

end if

end loop

5.10.4 Aircraft Engagement. The Aircraft-Engage procedure found in the

Ac-Pkg package is quite simple. Only four criteria are used when deciding whether

to engage or not. They are:

1. Does the aircraft have any missiles left?

2. Does the aircraft not have another missile already in flight?

3. Is the target within the missile's range?

4. Do the rules of engagement allow the aircraft to fire at this time?

If all of these questions can be answered affirmatively, then the next avail able missile

in the missile array is launched with the aircraft's current Objectstate and missile

limitations. This method had to be used because Meridian's Ada compiler does

not allow unconstrained arrays to be attached to record structures. Otherwise each

aircraft would have been given its own array of weapons instead of drawing from a

central array of missiles.

5.10.5 Other Combat Processes. The remaining combat processes, aircraft

maneuver, aircraft motion, missile pursuit and missile motion were each covered in

earlier parts of this chapter.

5-27

This chapter has detailed the most important procedures and functions of

the combat model portion of ATACS+. The graphics routines were purposely not

discusses because an Appendix has been prepared which covers the implimentation

of the animation graphics.

5-28

VL. Conclusions and Recommendations

6.1 Introduction

This final chapter brings together the experiences drawn from this thesis. Sev-

eral conclusions are made about combat modeling on the PC, the Ada language and

Meridian Software Systems' version of Ada. Other conclusions are made about Ada's

use as a combat modeling language, and several future enhancements are discussed.

Finally, recommendations are made.

6.2 Conclusions

This section reviews the conclusions drawn from the experience of this thesis.

Since this thesis was clone as a proof of concept, .hese conclusions are limited to the

area of combat modeling in Ada. Specifically, conclusions concerning combat mod-

eling on a personal computer and using Meridian Software Systems' implementation

of Ada on a personal co.-iputer are covered. Then general conclusions about combat

modeling in Ada are given.

6.2.1 Combat Modeling on the PC. One of the stipulations laid out at the

-- beginning of this thesis effort was that ATACS+ should be created on a personal

computer. In retrospect, this was not the best choice. Although today's PCs are

computationally faster than ever before and they possess significant graphics capa-

bility, the PC is still no match for the performance of the workstation. AFRT has

invested heavily in workstations so that now, students use workstations more fre-

quently than they use the school's personal computers. Combat modeling requires

significant computing resources t~o create a model which captures even a limited

amount of the reality of combat. The workstation is a better platform for doing this.

Some of the problems encountered during this thesis effort would have been avoided

if a workstation had been used. Ada is much more prevalent in the workstation

6-1

environment so some of the problems experienced with the PC version of Ada might

have been avoided if a workstation had been used instead of a PC.

6.2.2 Meridian Ada. After using Meridian's version of -Ada for approxi-

mately six months of intensive programming, the conclusion is that Meridian Ada

is an "immature" implementation. While programing the graphics portion of the

model, considerable time was spent overcoming poor documentation. The critical

technique used in the graphics was the Ada to assembly language interface. This

technique's documentation is almost non-existent. Meridian provides no examples

and does not list which assemblers are compatible and which are not. Also, when

using assembly language routines, certain assembler-generated object files are not

compatible with the Meridian Linker; therefore another linker must be used. Which

linker to use is not covered in the documentation either. After several hours of exper-

imentation and numerous telephone conversation with Meridian's Technical Support

staff, an acceptable interface was established. However, this could only be done for

the 16-bit, 80286 mode. This means that the superior speed and computational

power of the 80386 processor was not, used. This makes the finished program much

slower than it should be.

Another problem supporting the conclusion that Meridian Ada is an "imma-'

ture" implementation was found while writing the preprocessor. Two major errors in

the compiler were identified. Meridian's Technical Support staff was aware of one of

the errors but not the other. The first error causes Meridian's User Interface library

to use up the computer's heap space (part of the computer's memory). This causes

the computer to "lock-up", requiring a re-boot. The second error was an incom-

patibility with the personal computer's VGA card. Only a single model computer

was found to have the compatibility. Unfortunately, this model is the standard 386

computer purchased by the Air Force. These problems caused the rewrite of over

2000 lines of code and the addition of over 3000 extra lines.

6-2

Due to Ada's limited use outside of the military, there ex~ists very little third

party software or literature. A more widely used language such as C or C++ has a

variety of reference material from which to draw. When creating the graphics and

the preprocessor, no reference material could be found on the appropriate subjects.

Instead, books on C-based graphics were used and the example code was. translated

to Ada. This translation does not always result in code which takes advantage of

the unique qualities of Ada.

6.2.3 Ada for Combat Modeling. One of the main objectives of this thesis

was to provide the Department of Operational Sciences with experience in Ada-

based combat modeling. Achieving this objective requires some personal observa-

tions about this thesis experience. First, Ada's package structure creates much more

organized models than seen in traditional FORTRAN-based models. While taking

the Combat Modeling course sequence at AFIT, students are asked to investigate

existing models, most of these wvere created before the advent of Ada and are written

in other languages, predominantly FORTRAN. These models may contain hundreds

of subroutines, nearly all of which are buried in the co&e. Ada allows like-routines

to be grouped together into packages that can then be reused in other programs

without having to tear apart the, existing model. The reusability of Ada code is one

of its greatest strengths. By grouping routines into logical packages, the -finished

model is much more organized and should be easier to maintain.

From a programmer's point of view, Ada makes for better modeling. This

writer lias written software in BASIC, FORTRAN, C and now Ada, and is of the

opinion that models written in Ada are more robust than models written in FOR-

TRAN and are easier to debug than models written in C. Ada's strong typing feature,

(not being able to mix data types in mathematical expressions) reduces mathemat-

ical errors. In FORTRAN, mixing Real and Integer data types in a mathematical

expression is allowed. But the iesults can be uncertain when operations such as di-

vision are involved. Ada prevents this from happening by requiring the programmer

6-3

to explicitly type all variables and by not allowing mixed-type mnath. Compared to

programming in C, Ada is much more syntactically rigid. Ada's use of descriptive

variable names and the absence of cryptic operators found in C programs makes Ada

much easier to debug and to analyze.

Another Ada feature which makes for superior modeling is the composite data

,structure. There is no equivalent structure in FORTRAN. By using composite data

structures, entities can be created which have their attributes attached. Then the

entity can be passed from one procedure to another instead of having to pass each

individual attribute. From a programmer's point of view, this makes for a much

more organized program.

One further comment concerns the Ada package specification. By using pack-

age specifications with "stubs" for bodies ("stubs" are programs that do not do

anything), the entire program structure can be laid-out ahead of time. This is even

more important when more than one programmer is working on a project. This

method creates a much more organized finished product than the old FORTRAN

method of "growing" a program one piece at a time. Also, when making changes to

a package body, only the body needs to be re-compiled. This feature becomes very

important when programs become large and complex. Instead of re-compiling the

entire program every time a small change is made, only smaller package bodies need

to be.

Package bodies also allow "data hiding." Data hiding is a programming concept 7

where certain routines and data elements exist in a package body but do not appear

in the package specification. This "hides" these routines and data from anyone

who does not have the package body source code. When working on a large project,

involving many programmers, this is very beneficial. Other programmers have access

to the package specification and so they can see the interfaces to certain procedures

but the details of those procedures are hidden from them.

6-4

//

Ada also reduces system integration time because programs written in one

implementation of Ada can be transfered to another computer, re-compiled, and it

should run. This is because the Ada language has been standardize by a military

standard (MIL-STD) (8). This ensures that all versions of Ada are compatible. Com- I 7

panies which create Ada compilers may add features but all must meet a common

baseline in order for the compiler to be certified by the Ada Joint Program Office.

6.3 Enhancements

Although all of the objectives of this thesis were met, many more features could

be added to ATACS+. The current beyond visual range (BVR) interception logic

could be enhanced to better reflect real world tactics. As an extension to the BVR

logic and maneuvers, close-in combat could be added. This would require a more

detailed maneuver selection methodology and added engagement logic. Another

extension could be the addition of few-on-few logic. The current program only fights

multiple one-versus-one engagements. Since Command and Control is an important

part of most combat models, a more extensive model of it should be added.

Two major areas of simplification which should be re-evaluated in any future

version are the weapons and weapons employment. More types of weapons could be

added and aircraft could be allowed to carry a mixture of weapons including guns

for close-in combat. Currently, the missile employment envelope and the search area

are the same; these should be decoupled. If this is done, much more detail will have

to be added to the weapons employment logic.

Finally, more randomness could be added to the model. Although for this

thesis, randomness was kept to a minimum to maintain visibility to the combat

processes, an expanded model might incorporate more stochastic processes. The

search process might be broken in sepdrate search, acquisition and identification

processes, each having some element of probability. These enhancements would be

6-5

__ _ _ _ _ __ _ _ _ _ __ _ _ _ _ NT. ,

more achievable if the model were ported to a Sun Workstation. This is one of the

major recommendations covered in the next section.

6.4 Recommendations

After having studied Ada, written the ATACS+ model, preprocessor and

graphics, and having taken the combat modeling courses at AFIT, three recom-

mendations are: The ATACS+ system, should be set up on the Sun Workstations,

learning Ada should be a requirement for all AFIT students, and a closer working re-

lationship should be established between the Operational Sciences and the Computer

Science Departments at AFIT.

The original intent of the ATACS system was to make a simple combat model

available to as many students as possible. At the time the original ATACS was

developed, personal computers (PCs) were more prevalent at AFIT than were work-

stations. Today that situation is reversed. Most students use the Sun workstations

instead of the school's PCs. Putting the ATACS system on the Sun workstations

w, uld make it easier for students to use it. As an added benefit, the Sun workstations

have a much more powerful processor which would greatly improve the speed of the

model. Also, the software development tools available on the Sun workstations are

far superior to the PC tools used in this thesis. Better graphics could be built using

the Sun's superior graphics capabilities and memory, restrictions would not be as

critical as they are on the PC. Overall, the Sun workstation would provide a better

platform for the ATACS system because it would eliminate most of the problems

encountered in this thesis.

One of the purposes of this thesis was to gain experience in using Ada for

combat modeling. Unfortunately, Ada seems to have a dubious reputation in many

parts of the military community. The experience of this thesis showed that reputation

to be largely unfounded. Ada is a computer language rich with features.which make

for better programs and programmers. The way to push the acceptance of Ada is

6-6

to have more people exposed to it. The-refore, all students in the AFIT School of

Engineering should be required to take an Ada programming class. By exposing as

many students as possible to the DoD standard computer language, Ada will come

to be accepted. AFIT is the obvious place for this to happen.

Finally, there needs to be a closer relationship between the Operational Sci-

ences and the Computer Science (CS) Departments. A follow-on to this thesis could

be done as a joint Operations Research (OR)-CS project. The CS student could be

responsible for establishing the basic ATAC~ code on the Sun workstation and the

* OR student could enhance the model. The t wo students would gain from their inter-

actions. The OR student would gain a better understanding of how the theoretical

* algorithms studied in the OR curriculum are used in a larger computer program and

the CS student would gain the experience of working with a "user" in stead of making

a program just for the experience. The need for a closer relationship is not just a

problem inherent to AFIT, as Carl M. Harri's of George Mason University wrote in

Operations Research:

I believe that the world of the future holds great promise and challenge for
OR, and much of its success will depend 'i.. our ability to usfe computers
and. in~formation creatively, and, simultaneously, to convince the public
at large that we can solve important real problems effectively. But we
need to understand better the challenges we currently face before we can
move comfortably into the future. (12:103 1)

6.5 Final Remarks

Over the course of the last six months, this thesis has taught the writer a

great deal about bot~h Ada programming and combat modeling. As future students

progress through the Combat Modeling sequence of courses, ATACS+ should help

illustrate the basic processes used in most high-resolution combat models. But this

thesis is only a step in what should be an on-going effort. Hopefully ATACS+ will

continue to improve and will become an even better learning tool.

6-7

Ap x A. U r G

A. Introduction

• ., t f"1/ -1K

Appendix A User's Guide o A TA CS+,

A.)1 Introduction/ /
This user's guide is a stand-alone instruction manual to users of the Arnimated .•... ...-

Tutor for Air Combat Simulation (ATACs+). It provides the first time user with ,-<

an understanding of both the functionality of thle program and the deeper concepts "'

behind ATACS+.. .

ATACS+ is the second generation of an air-to-air combat model which demon- -

strates the combat processes inherent in most high-resolution combat models. It is \, ,.

not intended to be an analytical tool, but rather an instructional aid. Because of

limitations in the personal computer and the intent of the program, the simulated

air-to-air engagements are strictly hypothetical and are not intended to be indicative
of actual tactical doctrine. Instead, the user should change the input parameters to

the simulation and attempt to identify the effects these changes have on the outcome i
of the engagement. By investigating the sensitivity of various parameters, the user

gains an increased understanding of the inner workings of combat models. I

ATACS+ provides the user with the ability to create scenarios consisting of

multiple aircraft in few-on-few engagements. The underlying mission is the defense P

-of an airbase which is under attack by enemy aircraft. The user selects the type and

number of aircraft for each of the two sides. There are six types of aircraft and a

combined total of fourteen can be used. Also, the user sets the starting conditions,

weapons load and defines the rules of engagement for each aircraft. i

This user's guide is divided into nine sections. The first section presents the 4

computer requirements needed to run ATACS+. The second presents installation t V

instructions. The third section describes the components of ATACS+ and how they , '

interrelate. In the fourth section, a more detailed description of the preprocessor

is given. In the fifth section, the simulation is covered in detail. The sixth section 1
provides a step-by-step walk-through of a typical ATACS+ session. Section seven

A-i

,•- , -- A

. -

provides some troubleshooting hints and section eight poses several questions which

a student user may wish to investigate while using ATACS+. Finally section nine

summarizes the commands used to operate the simulation.

A.2 Computer Requirements

In order to run ATACS+ it must be loaded on a 80286 (286) compatible ma-

chine (80286, 80386, 80486). The computer must have a Video Graphics Array

(VGA) graphics board installed and must have a math co-processor. A mouse is

preferable but is not essential. The ATACS+ system has been separated into two

parts, so that it does not require extended memory. These parts are discussed in a

later section.

A.3 Installing ATACS+

Installation of the ATACS+ software is simply a matter of copying the files from

the distribution floppy disk to a directory on a computer's hard disk drive. A simple

installation batch file has been included to make this a simple operation. Begin by

placing the floppy disk containing the ATACS+ software into the appropriate floppy

disk drive. Move control to the drive containing the disk by typing:

a: (return) or b: (return)

whichever is appropriate. To brg:i the installation type:

insts11 kreturn)

The batch file creates a new directory called C:\ATACS. If this directory already

exists, files in the directory could be overwritten. The installation program pauses

before copying the files so that the batch file can be interrupted by pressing

(Cntrl) C. Do this if you are not sure about your file status. Once the instal-

lation is finished switch back to the C drive by typing:

A-2

S,, •.

/ -[------ -.---- I== m. ' - 7 - . .I •r

Table A.1. ATACS+ Files

preproc.exe the preprocessor program
title.exe the title screen program
sim.exe the combat model program
default.exe a utility program to rebuild the default scenario file
buildacf.exe a utility program to rebuild all six aircraft files
title.win the title screen image ^ile
install.bat the installation batch file
f15.acf the F-15 aircraft parameter file
f16.acf the F-16 aircraft parameter file
flll.acf the F-1HI aircraft parameter file
mig25.acf the Mig-25 aircraft parameter file
mig29.acf the Mig-29 aircraft parameter file
su24.acf the Su-24 aircraft parameter file
default.scn the default scenario file
atacs.bat the batch file which runs ATACS+
scenario.run the scenario file which connects the preprocessor and the simulation
sc7.fnt the font file used by the sim.exe program

C: (return).

Chitinge to the newly created ATACS+ directory by typing:

cd\atacs (return).

The directory should now contain the seventeen files listed in Table AI: A directory

listing of these files can be seen by typing:

dir(return)

Once you have confirmed that ATACS+ has been successfully installed, you are

ready to use it. Continue reading this User's Guide and try the example ATACS+

session described in section six.

A-3

S"' -J.----_ _._"/ , ,

A.4 ATACS+ Components

ATACS+ is made up of three major components: a preprocessor, a combat

model, and a graphics 3ystem. Each component was developed separately and then

interlinked to form the ATACS+ system.

A.4.1 The Preprocessor. The ATACS+ preprocessor is a stand-alone pro-

gram developed to give the user the ability to easily change the simulation program's

input parameters. It consists of a series of menus and data input forms which prompt

the user for the required data needed to run the combat simulation. A detailed de-

scription of these menus and input forms is given below. When the RUN option is

selected in the preprocessor, a file, SCENARIO.RUN is created. After the prepro-

cessor is closed, this file is read by the simulation.

A.4.2 The Combat Model. One half of the simulation program is the com-

bat model. This includes the routines which read the SCENARIO.RUN file and

compute the motion of each aircraft and missile. Other routines provide decision

logic and output reports. The simulation is a time-step algorithm in which each

aircraft and missile is an entity defined by a set of attributes. For aircraft, these

attributes include the current position, speed, attitude, weapons load, current ma-

neuver, acquisition parameters, aircraft performance factors and engagem nt rules.

The modeling of the aircraft and missiles is covered in detail in the bod of this

thesis. The graphics routines use the results computed at each step of th simula-

tion to project either a two-dimensional or three-dimensional representatio of the

engagement.

A.4.3 The Graphics Routines. The graphics routines unveil th inner0

workings of the combat model and allow the student user to see how a change in

input parameters affects the air-to-air engagement. The graphics contain an option to

switch from a two-dimensional overhead view to a three-dirnens, nial view anchored

A-,

to a fixed point or anchored to one of the combatant aircraft. The graphics routines

also provide a status screen which pauses the simulation and allows the user to check

the status of the aircraft.

A.5 Using the Preprocessor

A.5.1 In put Mfethods. The preprocessor has three methods of retrieving

inputs from the user: menus, function keys and data input fields. Each is placed on

an input form which is a boxed rectangular area on the computer screen. From a

menu,Ia selection can be made by using the T and I1 keys to move the hi-light box

to a d~sired selection. Pressing Return activates that selection. Additionally, on

some menus, a selection can be made by pressing a "Hot Key". These are the keys

corresponding to the first letter of the option name and are shown in red o .n the

menu. Only the Main Menu has active "Hot Keys".

the second input method uses function keys. These are the keys labeled F1

through F10 (F1 through F12 on some keyboards). If a function key has an active

function, its label and function will be listed on the input form. Not all function

keys h~ive the same purpose at every stage of the preproce-.sor.

4 'he third and most common input method is the input data field. These fields

show the current value and accept new values typed from the keyboard. To activate/

an input field, simply move the cursor to it using the T and I~ keys. Once a field

is activated, the current value is shown in reverse video (black lettering on a white

background). A new value can be typed over the old value at this time. The Space

bar and the Backspace key are active to erase the old value or to correct entries.

Once a new value has been entered, it is locked in by exiting the input field. This

can be done by either moving to a new field or by pressing Return. The width of

the field limits the range of values that can be entered. Improper values are avoided

by not letting the user exit a field until a proper value is entered. Although a blank

A-5

field is considered a proper value, care should be taken to ensure that a value is

eventually input. Errors in the simulation will result otherwise.

Some input data fields are attached to menus which give a list of the available

input options. The menu is usually accessed by pressing Fl. Once a selection has

been made from the menu, the new value appears in the input data field. As an

alternative to using the menu, an acceptable value can be typed directly into the

input field.

A.5.2 The Main Menu. The preprocessor begins by displaying the Main

Menu depicted in Figure A.1. The five menu options and their effects are discussed

below:

143 W4~~.6...................

u," "

> >

Figure A.1. Preprocessor Main Menu

* Load a Scenario. This option brings up a list of available scenarios. This list

appears in a scrolling window in the upper left part of the screen. If more

A-6

than eight scenarios are available, scroll arrows will appear at bottom of the

window to designate the available. scroll direction. A scenario file is selected

by using T or I1 to place the hi-light box over 'a scenario file name. Return

activates the selection and makes the program load that name as the active file.

After making a selection, the file list is removed from the screen and control is

returned to the Main Menu.

"* Create a Scenario. This scenario allows the user to create an entirely new

scenario file. When this menu option is selected, a default scenario file is

loaded as the active file and the main menu is replaced by the Scenario Editor.

The Scenario Editor is described in the next section.

"* Edit a Scenario. This option is similar to Create a Scenario except that a

file loaded using Load a Scenario is sent to the Scenario Editor instead of the

default file. This option is only valid if a scenario has been loaded, otherwise,

an error message will appear reminding the user to load a file before editing.

"* Run. This selection stops the preprocessor and begins the execution of the

simulation. When selected, another form requires the input of the random

number seed, the length of the simulation run, (in seconds), and a YES or NO

flag for the creation of an event listing. Once these values have been entered,

Escape initiates the creation of the SCENARIO.RUN file and begins the

simulation.

9 Quit. The Quit selection shuts down the ATACS+ systemn by exiting the

preprocessor without executing the simulation. Control is returned to the

computer's operating system.

A.5.3 The Scenario Editor. If the Create a Scenario or the Edit a Scenario

option is chosen from the Main Menu, the Scenario Editor is displayed on the screcn.

The Scenario Editor is show in Figure A.2. It is an input form consisting of three

parts. The top part of the form contains data input fields for the airbase location and

A-7

Ground Controlled Intercept (CCI) radar range. In the middle of the form appears

a list of the aircraft which are currently available in the scenario. The bottom part

shows the active function keys and their assigned functions. Each of these sections,

their purposes, and their functions are described below.

FigureQ AJ4 A .2. ~Y% Prpo o S

A .10i tio R4 t

'N;~~~2<. .~it~

th ag ofti 9eGI aa a h aras.Tes r discussed inŽ~ dtai below.

$ A-8

g'' 'g t

gk~;.xt2~§, iC.. C'V",'t#.~~~ "M99%1,,. WA t'V`%

Figure~ ~ i: A.2 Prpocso Sc.ar Edto

A-Sm

value of zero. These positions are relative to an arbitrary origin established

by the simulation. Normally the location can be left at (0,0). This makes it

easier to place the aircraft. The altitude of the airbase and the entire world is

assumed to be zero throughout the simulation.

* CI Radar Range. The detection area around the airbase is defined by the

range of the airbase's Ground Control Intercept (GU) radar. The input data

field will accept positive values up to 999 miles and has a default value of

150 miles. The size of the radar coverage determines the reaction time of the
airbase defenders. The shorter the radar range, the shorter the reaction time.

Defending aircraft will not engage aircraft outside the radar coverage.

A.5.3.2 Available Aircraft. The center part of the form lists the

aircraft which have been added to the scenario and will be active when the simulation

is run. The list shows the Call Sign, the type of aircraft and the mission assigned

to it. The user can create and list up to fourteen aircraft. This listing is also used

to designate a particular aircraft when editing or deleting aircraft. Both of these

actions are described in the next section.

A.5.3.3 Function Keys. Five function keys are active in the scenario

editor. They are:

"* F6 Return. This function key quit the Scenario Eaitor and returns control to*

the Main Menu. Any changes made to the scenario since entering the Scenario

Editor are NOT saved.

"* F5 Save & Return. This function k y saves the changes to the scenario and

then returns control to the Main enu. Pressing this key cle-.rs the screen

and a form requesting the namne of the scenario appears. This form is depicted

in Figure A.3. The input field will accept names up to eight characters in

A-9

length. There is no need to add an extension to the scenario name because the

preprocessor automatically adds the extension .SCN.

Figure A.3. Preprocessor Name Form

Delete an Aircraft. When this function key is pressed the hi-light box jumps

to the Call Sign of the first availablc aircraft. The hi-light box acts just like

it does in a menu. Move the hi-light box with the arrow keys to the aircraft

to be deleted. The hi-light box will jump only between the Call Signs of the

aircraft. Once the hi-light bar is positioned over the desired aircraft, pressing

Return deletes the aircraft from the list. The hi-light box then moves back

to the first airbase location field.

" Edit an Aircraft. This function acts in much the same way as the delete

function. Place the hi-light box over the Call Sign of the aircraft to edit and

press Return. The Scenario Editor is replaced by the Aircraft Editor which

is described in detail in the next section. After exiting the Aircraft Editor, the

hi-light box appears at the first airbase location field.

" Add an Aircraft. This function loads a default aircraft into the Aircraft Editor.

After exiting the Aircraft Editor the list of available aircraft is automatically

updated with the additional aircraft. As with the other functions, control is

returned to the first airbase location field.

A.5.4 The Aircraft Editor. Whenever an aircraft is to be edited or deleted

the Aircraft Editor replaces the Scenario Editor. The Aircraft Editor, as seen in

Figure A.4, consists of fourteen data input fields arranged into five groupings.

A-10

Figure A.4. Preprocessor Aircraft Editor

The top-most group defines the aircraft. The next group defines the initial

location of the aircraft. After those fields, the initial speed of the aircraft is dis-

played. The ne-xt group defines the search parameters for the aircraft, and finally, W

the aircraft's engagement parameters are grouped. Each input field is described

below.

9 Aircraft Type. This input data field accepts a character string for the type

of aircraft. Optionally, by pressing F1, a menu of available aircraft types is

,displayed. See Figure A.5. When an aircraft is selected from the menu it is

automatically placed in the data field..

At present, there are six types of aircraft available:

A-li

//

Figure A.5. Preprocessor Aircraft Menu

- F15. A U.S.-built air superiority fighter. Used strictly in the airbase

defense (AlxDef) or counter-air (Cntr_.Air) missions.\

- Fl6. A U.S.-built multi-role fighter capable of performing the same\

missions as the F15 as well as the Strike mission.

- Fill. A U.S.-built long-range strike and interdiction aircraft. Normally

used for Strike missions.

- M1G29. A Soviet-built multi-role fighter. It can perform any of the three

ATIACS+ defined missions.

- M1G25. A Soviet-built interceptor. In ATrACS+ it is normally used for

AbDef or CntrAir missions.

- SU24. A Soviet-built aircraft very similar to the Fill. Normally used

in the Strike role.

Although these aircraft were selected for their ability to perform specific mis-

sions, they can be assigned to any of the three ATACS+ missions.

A-12

/
/

0 Call Sign This input field accepts tip to six characters as the Call Sign for the

aircraft. The Call Sign is used as a way to reference the aircraft in printouts

and status reports. The standard convention is to use the names 1B!ucl, Blue2,

.... Redl, Red2" etc. As aircraft ar- added and when the scenario is read in

the aircraft are arranged al,haht,",i.;iv Y, their (a, Sii•:s.

* Mission This inptit fieM W rk11 . ," ,', :., feld. 1B pressing F1

the menu displayed i:F ri;Z:, \ .u.,:.-.- , .-- . dete'd missions

exist; Thevy are:

S"~~~~~~~..•....". ..;7,• • ;'i,

Figure A.6. Preprocessor•Mission Menu. '

- Ab_.Def. Aircraft tasked with the airbase defense mission will circle at

their initial altitude until assigned a target by the GCI system. Their'

only task is to destroy attacking aircraft.

- Strike. The aircraft assigned the Strike mission attempt" to reach the"

airbase and destroy it. They have no offensive air-to-air capabilities. They

fly a straight line toward the airbase unless they are attacked. If they can•

evade a missile attack, they resume their flight toward the airbase.

A-13

iNi

Figure~~~~~~: A..PercsorMsinMn

- CntrAir. Aircraft assigned the counter-air mission initially act like strike

aircraft - they fly directly toward the airbase. Unlike the strike aircraft,

when a counter-air aircraft detects a defeader it will engage it. Once the

engagement has been decided and if no other defenders are detected, it

resumes flying toward the airbase. Once all of its missiles are expended,

the aircraft turns and heads away from the airbase.

* Rules of Engagement. At the present time, only two Rules of Engagement

(ROE) are defined. They can be accessed by pressing F1, which shows the

menu in Figure A.7.

Figure A.7. Preprocessor Rules of Engagement Menu

The two options are:

- Fire-First. An aircraft with this ROE will fire on another aircraft at the

first opportunity.

- FircSecond. An aircraft with this ROE will not fire a missile until another

aircraft fires. That aircraft does not have to be the aircraft with which this

aircraft is currently engaged. Any aircraft firing a missile at any other

aircraft is sufficient. (Note: do not give every aircraft the FireSecond

ROE or no one will ever fire!)

* Initial Position. The aircraft must be given a starting point in three-dimensional

space. The following three fields hold this information:

A-14

- East-West. The East-West location of the aircraft is in units of miles

measured from the simulation's origin. If the airbase is placed at the ori-

gin, it becomes easier to envision the aircraft's location. On the graphics

display, East is to the right.

- North-South. The North-South location is also measured in miles with

North displayed toward the top of the graphics display.

- Altitude. The aircraft's altitude is measured in feet, as the geometric

height above the flat earth. This must be a positive number less than

100,000.

* Initial Speed. The user must provide each aircraft with an initial speed. The

units are knots, or nautical miles per. hour. Remember that the aircraft have

simulated flight performance, initializing an aircraft with too low an airspeed

will make it stall and begin falling. Reasonable initial values would be 250-400

knots for loitering defenders, and 400-700 knots for attacking aircraft. There

is no defined upper limit to the initial value but aircraft will not be able to

maintain an initial value which is set too high due to the increase in drag at

high speeds.

* Search Parameters. There are three parameters which define the search area

for an aircraft. They are:

- Visual Acquisition Range. This is the range, in miles, at which this aircraft

can visually acquire another aircraft.

- Radar Acquisition Range. This is the range, in rr;les, at which the air-

craft's radar can detect another aircraft.

- Radar Sweep Angle. The aircraft's radar sweep angle defines the detection

zone. The input value is an integer representing the number of degrees

the radar sweeps left and right of the aircraft center line.

A-15

* Engagement Parameters. Three parameters define the aircraft's ability to en-

gage other aircraft. Since all engagements are missile engagements these pa-

rameters define the missile performance. They are:

Number of Missiles This is an integer value which is limited by the size

of the field to values between zero and nine. Aircraft assigned the Strike

mission should be assigned no missiles since they do not engage other

aircraft.

Missile range This is a nominal value used to compute the missile's flight

time. Its units are in miles. By changing the missile range, significant

differences in the outcomes of engagements can be observed.

Missile Pk The probability of kill for the missile is entered as an integer

between zero and one hundred. This value is later divided by one hundred

and compared to a rardom draw from a Uniform(0,1) distribution. If

the random draw is less than Pk, the target is destroyed. For example,

entering 50 represents a Pk of 0.50 or a 50% chance of destroying a target.

A.6 Using the Simulation

Once the Run option is chosen in the preprocessor, it closes and the simulation

program begins. The user is presented with the screen shown in Figure A.8. The

screen is presented as a raised panel with three cut-outs. The cut-out in the lower

left displays the clock. Running time is presented in the form minutes:seconds. This

is the simulated time, and does not directly correspond to real time.

Along the bottom of the screen is an elongated cut-out in which messages

about events will appear. Figure A.8 shows the example "Bluel : Fox One!".

The majority of the screen is occupied by the display windcw. This area

displays either a two-dimensional or three-dimensional view of the engagement.

A-16

Control of the display is handled through the mouse, the function keys and a

pop-up menu. The mouse is used to move the view and to select menu items. The.

function keys and the pop-up menu are redundant controls - one can be used ;n lieu

of the other.

Figure A.8. Simulation 2D Screen

A.6.1 The Run-time Menu. When the simulation is running, pressing

Escape or the right mouse button pauses the simulation and displays one of the

pop-up menus shown in Figures A.9 and A.10. There are eight options on the run-

time menus. Figure A.9 shows the menu as it appears in the 2D mode. Figure A.10

shows the 3D mode version. The menu options are:

A-17

ZoomOut F3
Recenter F4
Reset F5
Status F6
3D F7
Pause F8
Quit

Figure A.9. Simulation 2D Runtime Menu

e Zoom -In. This option lets the user zoom in on the engagement. In the 2D mode

the user places the cursor over the point where the zoom will be centered. In

3D mode the zoom takes place along the current viewing direction - no cursor

is involved. Zoom-In increases the view magnification by a factor of two each

time it is used. There is no limit to the number of times this may be used.

*Zoom.-.Out. This option reverses the effect of the last Zoom-In. The view

magnification is cut in half. The direction of view is not altered.

A- 18

Run Menu.

Zoom Out F3
Move Viewpoint F4
Reset F5

Status F6
2D .F7
Pause F8

--- - -Quit

Figure A.10. Simulation 3D Runtime Menu

e Reset. This option returns the 2D screen to its original zoom level and resets

the center of the screen. In 3D this option only resets the zoom level.

* Recenter. This option is only available in the 2D mode. When selected the

user is asked to move the cursor to the new center point. The user should move

the cursor, then press the left mouse button or Return. This point becomes

S..the new center of the display area.

. Move Viewpoint. This option replaces the Recenter option in the 3D mode.

When this option is selected a list of possible viewpoints is presented. A choice

is made the same way as on any menu, with the hi-light box. The top choice

"is Fixed which places the viewpoint at a fixed location 20,000 feet above the

ground. When the Fixed option is selected, the viewing area switches to the

A-19

2D display and the user is asked to place the cursor over the desired viewpoint.

Once the cursor is positioned and Return or the left mouse button is pressed,

the display returns to the 3D mode and the new viewpoint is established. The

other options list the Call Signs of each aircraft. By selecting one of these

options, the view can be anchored to a flying aircraft. The view will turn,

pitch and roll with the aircraft.

* Status. When this option is selected, the simulation pauses and the display area

is replaced by a status scr-ýen. This screen lists the aircraft, by Call Sign, and

shows their current location, altitude, speed, assignment status, acquisition

status and the number of missiles they are carrying. Pressing any key returns

the display area to the previous mode. This option is available in both the 2D

and the 3D modes.

* 2D/SD. This option toggles the display between the 2D and the 3D mode.

When returning to a previously displayed mode, the ceaiter, zoom and view'-

point are the same as when the mode was exited.

e Pause. This option halts the simulation temporarily. All graphical functions,

such as Change Viewpoint, Zoom and Status continue to operate normally but

the simulation does not progress. To resume, just select Pause a second time.

e Quit. This option lets the user halt the simulation and return to the prepro-

cessor. A confirmation menu will pop up to confirm. this selection.

A.6.2 21D Icons. In the 2D mode, aircraft are represented by the icon

depicted on the left in Figure A.11. The icon is composed of a triangular aircraft

and a sector representing the radar search area. When many aircraft are displayed

on the screen the overlapping radar sectors can make the screen very cluttered. By

pressing F1, the radar sectors can be turned off and only the aircraft icons are

drawn. Pressing F1 again restores the radar sectors. The radar sectors are drawn

in the same color as the aircraft when the aircraft is searching. When a radar lock

A-20

is established the sector outline becomes yellow. A visual lock results in a white

outline.

Aircraft Airbase
Figure A.11. Simulation 2D Icons

The airbase and the extent of the GCI coverage are represented by the icon on

the right in Figure A.11.

A.6.3 3D Icons. In the 3D mode the aircraft have a eifferent icon than the

2D version. This three dimensional representation is depicted in Figure A.12. The

- -- icon is the same for all aircraft regardless of the type of aircraft chosen. This icon

will translate and rotate in three-dimensional space as the simulation progresses.

The ground is represented by the brown portion of the screen and is overlaid by a

grid.

A.7 Example ATACS+ Session

This section provides a step-by-step example of a typical ATACS+ session. By

following it, the user can understand how the areas previously discussed fit together

and operate.

A-21

• . ". /- . -.I . .. : . -.. . -...

S• ,, .,/. . .

1M

Figure A.12. Simulation 3D Icon

e Step 1. Set the Directory. Before beginning, make sure the computer is set

to the ATACS directory. If the current directory is not the ATACS directory,

change it by typing:

cd \atacs (return)

e Step 2. Start ATACS+. Start the ATACS+ system by typing "atacs" at the

DOS prompt.

C:\ATACS) atacs (return)

After a few seconds the title screen should appear. This screen will remain for

several seconds unless a key is pressed in which case it immediately disappears

and is replaced by the preprocessor main menu.

A-22

• .,- • .. '•, : . .• ' -,/

* Step 3. Create a Scenario. Select the Create a Scenario option from the Main

Menu. Use the T and j to place the hi-light box over the proper choice and

press the Return.

0 Step 4. Set Airbase Data. The Scenario Editor (Figure A.2) has replaced the

Main Menu. Now move the hi-light box down to the third input field, the GCI

radar range. Change the default value of 150 to 140 by typing over the old

value. When done, press Return.

o Step 5. Add an Aircraft. Now add an aircraft to the scenario. Press F2.

The Aircraft Editor (shown in Figure A.4) will replace the Scenario Editor.

The hi-light box is positioned over the Aircraft Type field. Press F1 to see

. the options. Once the menu of aircraft choices appears, move the hi-light box

down to the F16 option and press Return. The Aircraft Editor reappears

with the Aircraft Type field now reading F16. Move the cursor down to the

Call Sign field and type:

BLUE2

The input field defaults to all upper case letters, so the case when typing does

not matter. Continue moving down the form, filling in each field with the

following data.

Mission = ABDEF

Rules of Engagement FIRE-SECOND

East-West = 40

North-South = -40

Initial Speed = 300

Altitude = 10000

Visual Acquisition range = 4

Radar Acquisition range = 40

"Radar Sweep angle = 60

Number of Mis3iles = 2

A-23

Missile Range = 20

Missile Pk = 80

When finished entering all of the data, press Escape. The Aircraft Editor

disappears and the Scenario Editor reappears with the new a£rcraft added to

the list of available aircraft.

* Step 6. Edit an Aircraft. Now press F3. The hi-light box jumps to the Call

Sign of "BLUEl". Move the hi-light box down to "RED2" and press Return.

The Aircraft Editor appears with "RED2s" data. Change the Initial Speed to

550 knots. Press Escape when done.

e Step 7. Save &3 Return. Press F5 to save this scenario and to run the simu-

lation. The scenario file name form seen in Figure A.3 will appear. Enter the

following:

DEMO (return)

Control will return to the Main Menu.

* Step 8. Run. It is now time to run the simulation for this new scenario. Press

R which is the "Hot Key" for the Run option. The Run Information form will

appear.

e Step 9. Run Information. Fill in a random number seed in the first input field.

Any integer value up to eight digits in length is acceptable. Press Return

and fill in the "Run Length" field. Use 600 seconds. Ignore the event printout,

leave it set to "N". Then press Escape and the screen will clear itself. The

user can reproduce this run exactly by using the same scenario and the same

random number seed.

* Step 10. Viewing the 2D display. The simulation display shown in Figure A.8

should now be visible. The four aircraft should be moving on the display. Note

th radar sectors, the CCI zone and the maneuvers each aircraft is making. The

A-24

blue aircraft is circling awaiting instructions from the GC. The red aircraft

will all turn towards the airbase and begin flying toward it.

*Step 11. Radar Sectors off. On a display with many aircraft the radar search

sectors can overlap and confuse the display. By pressing F1 the radar sectors

can be toggled on and off.

9 Step 12. Zoom In. Press Escape. The run-time'menu sh(,wn in Figure A.9

will appear. The hi-light box is already on the Zoom-In option so just press

Return. A box prompts the user to select a zoom in point appears. Move

the t..ursor with either the mouse or with the cursor keys. The menu and the

prompt disappear with the first cursor movement. Place the cursor over the

three red aircraft. Press either Return or the left mouse button. The display

will change showing the magnified view of the aircraft.

*Step 13. Switching to 3D. Bring up the run-time menu again by pressing

Escape or the right mouse button. Select the "3D)" option. The display will

switch to the three-dimensional mode.

* Step 14. Viewing the 3D display. Move the cursor to the right slightly and the

display will pan to the right along with the cursor movement. Note that the

cursor is not visible but the action is still the same. The heading readout in

the lower left corner displays the viewing direction. Keep rotating the view to

the right until the red aircraft become visible; this should be at a heading of

approximately ninety degrees.

e Step 15. Zoom In. The zoom feature acts slightly differently in the 3D mode.

Either bring up the run-time menu using Escape or the right mouse button

or use F2. The function key is a short cut. The display can bc, zoomed to see

the attacking aircraft close up. Return the zoom to normal using the Zoom-Out

or Reset menu options.

A-25

" Step 16. Move Viewpoint. Select the "Move Viewpoint" option from the run-

time menu. A list of available viewpoints will appear. Select the BLUED

option. The display will change to show the view from the "BLUEl" aircraft.

The user may want to watch while the engagement plays out.

" Step 17. Checking the Status. By selecting the Status option from the run-time

menu or by pressing F5, the status screen replaces the 3D display. The status

screen displays the current location, speed, mission, weapon status, acquisition

and assignment status of epch aircraft. Pressing any key resumes the simulation

and the 3D display.

" Step 18. Quit. The simulation will automatically halt when the run length

time set in Step 9 is reached. Alternately, the simulation can be halted by

selecting the Quit option from the run-time menu. There is no function key

equivalent to this option. When selecting Quit the simulation stop, the screen

is cleared and the preprocessor is restarted. When the "Red" strike aircraft

reach the airbase or when the run length is reached, the program freezes the

screen and waits for a key to be pressed.

" Step 19. Quit ATACS+. Once the Main Menu reappears, select the Quit

option either with the hi-light box or by pressing the Q hot key. The screen

clears and control is returned to the computer operating system.

These nineteen steps demonstrate the essential functions of ATACS+. The

user will want to experiment with the other functions, trying other views and

scenarios. To aid in the learning from ATACS+, a list of review questions

is provided at the back of this User's Guide. These questions should help

draw th,ý user towards an understanding of the combat processes modeled in

ATACS+.

A-26

A.8 Troubleshooting

As with any software project, occasionally problems will arise in the execution

of the program. Attempts have been made to catch errors before they "crash"

the program. Since ATACS+ is written in the Ada programming language, much

use has been made of the exception handler. These exception handlers allow the

program to catch errors and take actions ba,-sed on the type of error that has occurred.

Still, not all errors can be corrected internally so the program may occasionally halt

at an une),pected place. When a catchable or Correctable error occurs, an error

message appears on the screen. But when a catastrophic error occurs in either the

preprocessor or the simulation an error message is sent to an error file. These error

files have the names, PREPROC.ERR and SIM ERR. These error messages will say

what the error was and, in some cases, where the error occurred.

The simulation program is most likely to "crassh" because of a missing or cor-

rupted files or a numeric error. Missing or corrupted files are detected by the sim-

Sulation program and a warning message is sent to the screen. Two types of files

are read by the simulation. The first is the SCENARIO.RUN file created by the

preprocessor. This file is created each time the preprocessor is run and should not

become corrupted The other type of file is the aircraft configuration files. Each kind

of aircraft has an 'ssociated file with a .ACF extension. If the sinulation displays

an error message t iat one of the .ACF files has been corrupted, or is missing, exit

the ATACS+ syst~ and run the utility program BUILDACF.EXE This program

rebuilds all six of t e .ACF files.

* Numeric errors in the simulation program usually are catastrophic and will halt

the program. The b1 st way to correct errors is to change the scenario slightly and

re-run the simulation. If the problem persists, try to run a scenario which is known

to work. If the problem disappears, there was something wrong witlh the scenario, if

not, then the program has a more serious error and the assistance of an experienced

Ada programmer should be sought.

A-27

,-- 7- 7-71

The preprocessor has few numeric processes so is less prone to catastrophic

errors. However, the preprocessor must read from and write to files. If a scenario file

has been corrupted an error message will appear on the screen. The only scenario

file that must not be corrupted is the DEFAULT.SCN file. If t!his file gets deleted or

somehow corrupted, it will not be possible to create new scenarios. If this happens,

exit the ATACS-t- system and run the utility program DEFAULT.EXE. This program

rewrites the file, restoring the original values.

There is one additional problem which may be experienced when using AT-

ACS+. The Ada compiler used to build ATACS-: has an incompatibility with some

VGA cards. This incompatibility causes the preprocessor to be unable to draw

anything except the Main Menu. If this happens there is, unfortunately, only one

solution; move to another computer with a different graphics card. Meridian Soft-

ware Systems is unable to explain the error or to offer a solution. At present, this

error has only occurred on a Unisys 3256DX computer.

Every attempt has been made to create a trouble free learning tool. Where

errors may occur attempts have been made to provide corrective utilities and mean-

ingful warning messages. The user will find ATACS+ to be a useful learning tool. By

putting the following questions to use with the simulation, the student will maximize

that learning.

A.9 Review Questions

* MODEL CLASSIFICATION

Was the purpose of the combat demonstration--education and training or anal-

ysis ?

- CLASSIFICATION BY QUALITIES

What was the model's domain; was land in the domain?

What was the model's span?

What was the model's environment?

A-28

Was darkness modeled, and if not, would it make a difference in the out-

come?

Was weather modeled, and if not, would it make a difference in the out-

come?

What was the model's force composition?

What was the model's scope of conflict?

What was the model's mission area?

What was the model's level of detail of processes and e~ntities?

-CLASSIFICATION BY CONSTRUCTION

Was your involvement required during the combat demonstration?

What time advanced mechanism (fixed step or event step) was used in

the combat demonstration?

If fixed step, what was the size of the step, and was there more than one

size?

If event step, which events advanced the simulation time?

What time advance mechanism is best for this type of simulation and

why?

Is the combat demonstration a deterministic or stochastic model?

Is the combat demonstration a Monte-Carlo Simulation?

How many sides were represented in the demonstration?

Was treatment of the sides symmetric or asymmetric?

If asymmetric, was only one or both sides reactive?

*AIRCRAFT

Was altitude a factor in the simulation of the aircraft performance?

Was the aircraft velocity a factor in the simulation?

What aircraft performance measures were used to simulate the aircraft's flight

and maneuverability?

What sensors did the aircraft posses?

A-29

__. = 1. =71-11

Were these sensors active?

What aircraft resources were represented?

Were these resources consumed?

What was the outcome if these resources were expended?

MISSILES

What missile performance measures were used in the simulation?

Did missiles share the same time mechanism as the aircraft?

If so, did the missile share the same time step?

Did missiles actively track their targets?

How was the missile effectiveness (killing ability) modeled?

Could a missile miss a target?

* SEARCH

What methods were used to simulate the process of search?

Was the process of search explicit or implied?

Which simulated sensors, either explicitly or implicitly simulated, were actively

searching for intruders?

Were sensors modeled as entities or attributes of a higher entity?

* DETECTION

What method was used to simulate the process of detection?

Was the method deterministic or stochastic?

Could the method be classified as Monte-Carlo?

* TARGET ASSIGNMENT

Was the target assignment random or was there an underlying rule?

Would the simulation permit the same target to be assigned to more than one

shooter?

flow many simultaneous targets could be assigned to one shooter?

* COMMUNICATION, COMMAND, AND CONTROL

Was C3 present?

A-30

If so, who was in command; what did they command; and was C3 actively

used to control entity activities?

Could shooters coordinate or concentrate fire (more than one shooter shooting

at a target)?

.ADVANCE

Did the entity advance mechanism for aircraft and missiles use a fixed rate

throughout the simulation or was the rate altered by changes in the entity's

status?

9 TARGET DESTRUCTION

To destroy a target, was the missile required to impact 'the target (Hint: think

of the time advance and entity advance mechanism)?

A.10 Command Summary

Menu Option Function Key 2D 3D Description
Fl Search Sector Toggle

Zoom In F2 ~ * /Zooms In to a point(2D) or along view line
Zoom Out F3 / Zooms Out from the current view point
Recenter F4 VLets user move the center of the display

Move Viewpoint F4 V Changes the anchor point in 3D
Reset F5 v/ / Sets the display to original condition
Status F6 V V Displays the Status Screen--

3D F7 VSwitches the display to 3D
2D F7 Switches the display to 2D

Pause F8 ~ , /Temporarily halts the simulation
Quit / Halts the simulation

A-31

Appendix B. ATACS+ SIMTAX Classification

TITLE: Animated Tutor for Air Combat Simulation

MODEL TYPE: Education and Training

PROPONENT: Air Force Institute of Technology Department of Operational

Sciences

PURPOSE: To provide a demonstration of basic fundamentals of air-to-air

combat modeling to support student learning of modeling combat

DESCRIPTION:

e Domain: Air

9 Span: Local

* Force Composition: Blue and Red

* Scope of Conflict: Air-to-Air Conventional

o Mission Area: Airbase Defense

* Level of Detail of Processcs and Entities: Processes are of sufficient detail to

demonstrate the phenomena. Blue force entities maneuver and attack Red air

t~rgets. Red force entities maneuver and attack either Blue air targets or a

Z p'edefined ground target.

CONSTRUCTION:

", Human participation: Animated examples require student participation. Sce-

nar o creation may require student participation. No student participation

required once the combat demonstration begin.

* Treatment of Randomness: Monte-Carlo

e Sidedness: Two sided

B-1

.• - .I -.-- - -.: - -.-. .. i • -

.At

LIMITATIONS: Purpose of the model is to provide demonstration only. Some

activities and processes are treated simplistically.

INPUT: Optional

OUTPUT: Event report and graphical animation

"HARDWARE AND SOFTWARE:

* Computer: IBM AT compatible

- Peripherals: VGA card and color monitor, mouse optional

- Language: Meridian Ada v4.1.1

e Documentation: User's Manual

SECURITY CLASSIFICATION: Unclassified

GENERAL DATA:

// . .:° Date Implemented: March 1993

_-- -- Data Base: Provided

CPU time per Cycle' Based on the default scenario file, actual demonstration

of air-to-air combat requires 1.5 minutes using a personal computer with a

80386SX processor, 80387 co-processor and operating at 16 MHz.

a Data Output Analysis: N/A

. Frequency of Use: Instructor Dependent

SUsers: AFIT

B-2

=- - - - .- - " ' r •.' -' . --- " ;- _-.-

Appendix C. XSharp in Ada

C. I Introduction

This appendix has been added to this thesis to detail the animated graphics

system used in ATACS+. This system is known as XSharp and it produces medium

resolution, high-speed animations. Although not spelled out as an objective in this

thesis, considerable effort was expended to create these routines because a suitable

substitute was not available. This appendix only describes the origins of XSharp

and how it was implemented in ATACS+. It does not try to provide the reader with

in-depth knowledge of the theory of three-dimensional graphics.

C.2 Background

The XSharp animation routines were created in an on-going series of articles

written by Michael Abrash in Dr. Dobb's Journal (1). Over the course of several

months beginning in July 1991, he developed a series of graphics routines which

were specifically designed to be used for three dimensional animation. The name of

this animation project was dubbed XSharp by Michael Abrash because the graphics

mode it uses is totally undocumented by IBM, thus the X. He calls it XSharp in the

spirit of another on-going project in the same publication called "Dflat" and as he

says "who wants a flat animation package?"

The XSharp routines, as presented in the articles, were written in a mixture of

assembly language and the C programming language. To use them with the ATACS+

model, the C routines were translated into Ada. The assembly code was only altered

so that it would interface with Meridian's version of Ada. These routines became

the basis for all of the animated graphics used in ATACS+. The remainder of this

appendix details the concepts behind XSharp and some of the graphics procedures

used in ATACS+.

C-1

•'; . ' " 7 • ::---_ 7 3 _:-

C.3 The 320x240 Mode

XSharp uses a video mode (a mode is a particular setting of the screen reso-

lution, color choices, and video memory) which has a resolution of 320 pixels across

the screen by 240 pixels from top to bottom. A pixel is the smallest "dot" which

can be drawn on the screen. This mode also allows 256 different colors to be used at

any one time. As mentioned earlier, this video mode is undocumented by IBM but

can be programmed on any VGA graphics card (1:July,133). Of course the obvious

question is "Why bother using an undocumented video mode?" The answer lies in

five areas were the 320x240 mode is superior to other possible VGA graphics modes.

First, the 320x240 resolution has a 1:1 aspect ratio, resulting in equal horizontal

and vertical pixel spacing. This creates square pixels. Square pixels are important

because they avoid complicated programming problems (l:July,133). For example,

an earlier attempt at graphics for ATACS+ used Meridian's Ada Graphics Library.

These library routines used graphics modes which did not have square pixels. In

fact, the pixels were taller than they were wide. This caused circles drawn with a

* :library routine to look like ellipses having a major vertical axis. This effect can be

overcome by drawing circles as ellipses corrected for the aspect ratio. Unfortunately,

Meridian's graphics libraries do not have such a routine. Using square pixels, circles

S..look like circles without the need of complicated corrections.

Second, the video memory can be arranged so that page flipping can be used.

Page flipping is an animation technique which is described in the next section. The

VGA's documented 256 color mode does not allow page flipping, nor does the high

resolution, 640x480, mode (1:July,133).

* Third, the 320x240 mode can make use of the VGA's hardware to draw. This

can result in a four-fold increase in drawing speed over the 320x200 256 color mode

" .(1:July,133).

C-2

- -.1' % " -• , , . - " -- . . "" z " . - ,•

S.. . . • " ' " " : " -r" ' '• -- £ :: -.. ." * :.' ' ' : :- -- • :" 7 '. :- , * 1I * J ./ * : ., - ' - . • . , : - ' :. . . - . • : = . - 1- - "/ :-- - .. .' ..

Fourth, the 320x240 mode uses one byte to represent a single pixel. Only

the 320x200 mode has this feature. This is important because this cuts in half the

number of memory access needed to draw a pixel, compared to other VGA modes

(1:July,133).

Finally, there is plenty of offscreen memory. The 320x240 mode configures

memory in such a way that extra images can be stored, eliminating the need to

recreate them when they are needed (1:July,133).

Not all of the features of the 320x240 mode make it a superior choice over other

VGA modes. In Michael Abrash's opinion, this mode is more difficult to program

(1:Jily,133). Part of this difficultly lies in the fact that this mode is not widely used

and is not even recognized in IBM's documentation.

C.4 Page Flipping

The foundation of high-speed simulation is in being able to create a new image

to replace an old image without making the screen flicker during the update. Flicker

is very disturbing to the viewer because it distorts the image during the update time.

One method for performing flicker-free animation is to use a page flipping technique

which is also known as double-buffering.

- 'Page flipping is made possible by dividing the display memory up into two

or more pages. Display memory is that memory which is dedicated to holding the

image seen on the computer's monitor. On most PCs with VGA graphics cards the

display memory size is either 256k (256,000 bytes) or 512k (512,000 bytes). A page is

a segment of display memory large enough to hold a single complete display image.

If sufficient memory is available, then multiple pages can be defined and the display

can be flipped from one page to another. This flip occurs at the screen refresh rate,

usually 50-70Hz. This flip happens faster than the human eye can perceive it, so

the image appears to change without a flicker. In XSharp, there are three complete

N .display pages. Figure C.1 shows how these pages are arranged in display memory.
/C./

I C-3

The first two pages are used for page flipping. Each of these pages contains 76,800

Display memory

starting at AOOO:0000
Offset 0

Page 0

Displayed on every
other page flip

Offset 19200

Page I

Displayed on every

other page flip
Offset 38400{ Background page

Stores complete
static background;

used to redraw
Offst 5600 othe paes

Offst 5600 Storage for images

icons and buffers

Tempory pattern
buffer

Offset 65532

* ~Figure C.1. Display Memory Organizatiol

pixels which take up 19,200 addresses in display memory (:u st18.The next

full page is used as a background page. This page maintains a copy of the static

* ~background usred in the animation. This background page is used to restore the other

two pages before drawing begins. The remainder of display memory can be used to

store icons, images, or temporary patterns. In some instances it is easier to draw

something once, store it, then copy it to the display page when it is needed rather

than drawing it a second time.

*The basic methodology of page flipping is shown in Figure C.2. As display

page 0 is being shown on the monitor's screen, a new image is drawn on the unseen

page. When the unseen page is complete, the display pages are "flipped." The new

image is shown on the screen while the formally displayed page, page 0, gets updated.

C-4

This page flip does not require the display page to be moved in memory, rather, the

Before Page Flip

CPU Display

After Page Flip

Figure C.2. Page Flipping Methodology

starting point for the nexL screen update is moved to the memory location of the

first pixel of the new display page. This is an extremely fast method of performing

animation, but animations using page flipping are slowed by the time needcd to draw

the new image to the unseen page. The drawing routines must perform the necessary

drawing actions as fast as possible.

C.5 Assembly Language Routines

The graphics primitives which form the foundation of XSharp are written in

assembly language. This one small excursion away from the "all Ada" philosophy of

this thesis was necessary for one reason: speed. Michael Abrash's opinion is that all

critical code for graphics primitives should be written in assembly language (2.21).

C-5

XSharp uses assembly language routines to draw a single pixel, draw filled rectangles,

draw convex polygons, draw lines, flip display pages and to copy images from one

page to another. These routines are the building blocks upon which more complex

graphics primitives, such as circles, are built.

In creating the gra.phics for ATACS+ the first challenge was to make the assem-

bly language routines, originally intended to be used with C programs, compatible

with Meridian's Ada. A subroutine written in another language can be called from

an Ada program using pragma INTERFACE (8:13-15). However, which languages

this interface works with is left up to the individual Ada implementor. Fortunately,

Meridian does provide an interface to assembly language routines. The biggest dif-

ference between the original assembly language routines and the versions modified

to work with Merigan Ada, deals with how arguments are passed to the routines.

When C passes the address of an argument to the assembly routines it oDly passes

the offset of the location. This is because all data elements reside in the same seg-

ment of memory. Only the offset in that segment is needed to find a specific piece

of data. On the other hand, arguments passed from a Meridian Ada program are
-- passed as both a segment and an offset. So, in order to access the value of the

argument, both the segment and the offset had to be loaded into registers (assembly

language "variables"). This was a simple fix which then allowed procedures written

in Ada to call assembly language routines.

The only remaining hurdle was how to link the assembly routines with the

Ada code. Unfortunately, the assembled code in not compatible with Meridian's

linker. Meridian's recommended solution is to use their linker to create a re-linkable

object code file out of the Ada code, then assemble the assembly language routines

using Microsoft Assembler. Finally, link the two together using Microsoft Link. As

mentioned in Chapter VI, this method only works for Ada code compiled in the

16-bit mode. The higher-performance 32-bit mode was tried but Meridian was not
able to recommend a workable Ada-Assembler-Linker combination.

C-6

Once the basic primitives were established, the rest of the XSharp routines

could be built. Not all of these procedures were taken from Michael Abrash's work,

Some are original code, while othcrs are adaptations of Meridian's Ada Graphics

Library routines.

C.6 Graphics Primitives

All of the XSharp graphics routines are contained in two packages; Xsharp

and Screen. The Xsharp package contains all of the functions and procedures for

the graphicp nrimnitives. The Screen package contains the procedures for manipu-

lating the display memory. The specification of each of these packages contains a

description oi each visible routine. The package specifications are:

-- Package: Xsharp

-- Purpose: This is the specification for the 320x240 graphics mode
-- graphics primatives. This undocumented VGA mode was
-- presented in a series of articles by Michael Abrash in
-- "Doctor Dobbs Journal" beginning in July 1991. Some of
-- these routines are modified versions of the code presented
-- in those articles. Others are modified versions of Meridian's
S-- Ada Graphics Utility Library and Ada Graphics Library routines.

S-- Still others are original code. These routines are intended
-- for use with the 320x240 graphics mode and may not work in
-- other VGA modes.

-- Author: David Legge
-- Implementation Date: 23 Nov 92
-- Modification Date:
-- Reason for Modification:

package Xsharp is

-- define dimensions of the Mode X graphics screen
Screen-Width : constant Integer : 320;
Screen-Height : constant Integer := 240;
subtype Screenx.Type is Integer range 0 .. Screen-Width -;

subtype ScreenyType is Integer range 0 .. Screen-Height - 1;

C-7

-- define the offset in display memory of each video page
Pa~geO..Staxt..Offset constant Integer := 0;
Paget -Start..Of fset constant Integer :w Integer (Long- Integer(Screen-.Width*

Screen..Height/4));
Bg..Start-.0ffset constant Integer :a Integer (Long- Integer (Screen-Width*

Screen..Height*2/4));

type Page..Otfset..Type is array(O . 1) of Integer;

Page-.Offset :Page.3f f set -Type := CPageO.Start-Offset, Paget-Start-Offset);

--define the types for use in 2 dimensional graphics

type Point is
record
X Integer;
Y :Integer;

end record;

type Long-.Point is
record
X Long-.Integer;
Y :Long-Integer;

end record;

type Points is array(Natural range <>) of Point;
!,Ztype Long..Points is arrayCNatural range <>) of Long-.Point;

type Rectangle is
record

Ul : Point;
Lr : Point;

end record;

-- define the types for use in 3 dimensional graphics

* type Point3l is
record
X Float;
Y :Float;

A Z : Float;
W : Float;

end record;

type Points3d is array(Natural range <>) of Point3d;

type Xform.MatrixType is array(I 4, 1 .. 4) of Float;
type Xform.VectnrType is array(1 4) of Float;

-- graphical objects have six characteristics, these are grouped
-- together into a single record structure

type ObjectstateType is
record

Objx Float;
Objy Float;
Alt Float;
Roll Float;
Pit Float;
Hdg Float;

end record;

-- graphics can be displayed in either 2 dimensions or 3

type Display-Type is (Twod, Threed);
Show.2dOr_3d : Display-Type;

7

-- when clipping lines there are three types of clipping
type Clip-Type is (Top-Clip, SideClip,.BottomClip, BackCl1p, Off-Screen)

-- define the 16 basic colors

subtype Colors is Intuger range 0 .. 255;

Black : constant Colors 0;
Blue : constant Colors 1;
Green : constant Colors 2;
Cyan : constant Colors 3;
Red : constant Colors 12;
Magenta : constant Colors 5;
Brown : constant Colors 6;
White : constant Colors 7;
Gray : constant Colors 8;
Light.Blue : constant Colors 9;
Light.Green : constant Colors 10;
Light-.Cyan : constant Colors 11;
Light-Red : constant Colors 4;

C-9

/.. / 6",
/ . / ',.

V

Light-Magenta : constant Colors : 13;
Yellow : constant Colors 14;
Intense-White : constant Colors : 15;

A.. Function Are.Equal

-- Purpose: This function is the equality tester for Clip-Type
'-- objects.

-- Author: David Legge
-- Implementation Date: 7 Dec 92
-- Modification Date:
-- Reason for Modification:

--. Inputs*: Argi, Arg2 : objects of Clip-Type which are to be compared
-. Outputs : Boolean : true if the arguments are equal

Y ,function AreEqual(Argl, Arg2 : in Clip-Type) return Boolean;

--/.-" -----

-- Procedure: SetGraphics.Mode.X

-- Purpose: This procedure sets the VGA graphics card to the
-.- 320x240 graphics mode known as mode X.

-- Author: David Legge
-- Implementation Date: 21 Sep 92
-- Modification Date:
.. Reason for Modification:

S/: -- Inputs : None
S • -- Outputs : None

I .procedure SetGraphicsMode.X;
pragma Interface(Assembly. SetGraphicsModeX, "SetGraphicsMode");

-- Function: ShutdownX

C-10
I .,>

ii.

-- Purpose: This function returns the graphics card to the
-- standard 24x80 text mode.

-- Author: David Legge

-- Implementation Date: 21 Sep 92
-- Modification Date:

-- Reason for Modification:

-- Inputs : None

-- Outputs : None

procedure ShutdownX;

-- Procedure: WritePixelX

-- Purpose: This procedure draws a single pixel to the screen
-- at the location and color specified.

"-- Author: David Legge
-' 7 -- Implementation Date: 21 Sep 92

-- Modification Date:
-- Reason for Modification:

-- Inputs : X,Y : the screen location of the pixel
-- Pagebase : the offset in video memory or the start of the page
-- Color : the color of the pixel to be drawn
-- Outputs : None

procedure WritePixelX(X : in Integer;
Y : in Integer;
Pagebase : in Integer;
Color : in Integer);

pragma Interface(Assembly, WritePixelX, "WritePixelX");

-- Function : FillConvexPolygonX

-- Purpose: This function draws a filled convex polygon

-- Author: David Legge

C-11

-- Implementation Date: 21 Sep 92

-- Modification Date:
.. Reason for Modification:

"-- Inputs Poly : an array of 2D points
"-- Clip : a rectangle boundry to which the polygon is clipped
-- Pagebase : the offset in video memory of the page to draw to
-- Color : the color to fill the polygon with
S-- Xoffset : optional translation of the polygon in X direction
S-- Yoffset: optional translation of the polygon in Y direction
-- Output : Boolean : true if polygon is successfully drawn

function Fill-Convex.PolygonX(Poly : in Points;
Clip : in Rectangle;
Pagebase : in Integer;
Color : in Colors;
Xoffset : in Integer;
Yoffset : in Integer) return Boolean;

-- Procedure : FillRectangleX

-- Purpose: This procedure calls the assembler interface to draw
.-- a filled rectangle.

"-- Author: David Legge
-- Implementation Date: 21 Sep 92
-- Modification Date:

.. Reason forModification:

"-- Inputs :Rect : the boundries of the rectangle to be filled
S-- Clip : the boundries to clip the rectangle to
-- Pagebase : the offset in video memory of the page to draw to
--- Color : the color to fill the rectangle with
-- Outputs : None

procedure Fill.Rectangle.X(Rect : in Rectangle;
Clip : in Rectangle;

Pagebase : in Integer;
Color : in Integer);

C-12

• ._____----A

' ____-- .,;'<.I<-J~~

-- Procedure LineX

-- Purpose: This procedure is the interface to the assembler
-- routine Line.asm. These routines draw a line between
-- two points.

-- Author: David Legge

-- Implementation Date: 15 Oct 92

-- Modification Date:

-- Reason for Modification:

-- Inputs : P1 : a two-dimensional point

-- P2 : a two-dimensional point

-- Clip : the boundries to clip the line to

-- Pagebase : the offset in video memory that the line is drawn to
-- Color : the color of the line

"-- Outputs : None

procedure LineX(PI : in Point;
P2 : in Point;
Clip : in Rectangle;
Pagebase : in Integer;
Color : in Colors);

-- Procedure Polygon.X

-- Purpose: This procedure draws an unfilled, closed polygon.

-- Author: David Legge

-- Implementation Date: 16 Oct 92

-- Modification Date:
-- Reason for Modification:

-- Inputs : Poly : an array of two-dimensional points
-- Clip : the boundries to clip the polygon to

-- Pagebase : the offset in video memory of the page to dra to
-- Color : the color of the polygon

-- Outputs : None

procedure PolygonX(Poly : in Points;

C-13

c-

Clip : in Rectangle;
"Pagebase : in Integer;
Color : in Colors);

- . Procedure Arc.X

-- Purpose: This procedure draws an arc having a given radius
S....between to angles. The Arc-Step parameter defines
L..-- the length of the line segments which will be used
,-- to draw the arc

-- Author: David Legge
-- Implementation Date: 21 Sep 92
-- Modification Date:
-- Reason for Modification:

-- Inputs : Cp : the center point of the arc
--- Radius : the distance from the C1 to the edge of the arc
:. ,-- Arc-Step : the length of the line segment making up the Arc
"•-- AO, Al : the starting and ending angles
-- Clip : the boundries to clip the Arc to
-- Pagebase : the offset in video memory of the page to draw to
• -- .Color : the color of the arc
-- Outputs : None

procedure ArcX(Cp : in Xsharp.Point;
Radius : in Natural;
Arc-Step : in Float;
AO, Al : in Float;
Clip : in Rectangle;
Pagebase : in Integer;
Color : in Colors);

-- Procedure : SectorX

-- Purpose: This procedure draws an arc connected by lines to
S-- the center. The parameters are the same as for
-- procedure ArcX

-- Author: David Legge

C-14

/ .: / -.. . .'","• . ' .

-- Implementation Date: 21 Sep 92
-- Modification Date:
-- Reason for Modification:

-- Inputs : Cp : the center point of the arc
S-- Radius : the distance from the Cp to the edge of the arc
S-- Arc-Step : the length of the line segments making the Sector arc
-- AO, Al : the starting and ending angles
.-- Clip : the boundries to clip the Arc to
.-- Pagebase : the offset in video memory of ths page to draw to
-- Color : the color of the arc
-- Outputs : None

procedure SectorX(Cp : in Xsharp.Point;
Radius : in Natural;
Arc.Step : in Float;
AO, Al : in Float;
Clip : in Rectangle;
Pagebase : in Integer;
Color : in Colors);

-- Procedure : CircleX

V-- Purpose: This procedure draws an unfilled circle

-- Author: David Legge
--- Implementation Date: 21 Sep 92
-- Modification Date:
-- Reason for Modification:

-- Inputs : Cp : the center point of the arc
Radius : the distance from the Cp to the edge of the arc

-- Arc.Step : the length of the line segments making the circle
-- Clip : the boundries to clip the Arc to
-- Pagebase : the offset in video memory of the page to draw to
-- Color : the color of the arc
-- Outputs : None

procedure Circle_X(Cp : in Xsharp.Point;
Radius : in Natural;
Arc-Step : in Float;
Clip : in Rectangle;

•' C-15c

. / /: , ¢: 2 ..

"Pagebase : in Integer;
-Color : in Colors);

-- Procedure: Clip-Line

"FT- -

-- Purpose: This procedure clips the end point of a line to the
-- boundry of a clip rectangle. It returns a variable
"-- telling which boundry the line was clipped to.

. . Author: David Legge
.. -- Implementation Date: 25 Nov 92

-- Modification Date:
-- Reason for Modification:

-- Inputs : P1, P2 : the ends of a 2D line
" --- Clip : the boundry to which the line is clipped
" . Pi.Status : which boundry PI was cl. .pped to
. .-- P2_Status : which boundry P2 was clipped to
-- Outputs : None

procedure ClipLine(PI : in out Long-Point;
P2 : in out Long.Point;
Clip : in Rectangle;
P1.Status : out Clip-Type;
P2.Statu- : out Clip-Type);

-- Procedure: Clip_3D

-- Purpose: This procedure clips that portion of a line which

--- falls behind the viewer. It does not clip to the
: -- view volume. The ClipLineX routine should be used
--- after using this routine and projecting the lines to

'-- a viewport."L .I," ,..--

/1 * -- Author: David Legge
" 1 -- Implementation Date: 15 Dec 92

I/ . .-- Modification Date:
S... -- Reason for Modification:

-- Inputs P1,P2 three dimensional endpoints of a 3D line

C-16

/ - ---.- *

:..• -. ,.-.: , ' . ." • ' • . -: • .": ~ ~ .. .I . -... /-'.. . . ' .-----...;

-•- - - .

.V!

utus Line-Status : is Back-Clip if line is behind the viewer
--Outputs None

"procedure Clip_3d(PI : in out Point3d;
P2 : in out Point3d;
Line-Status : out Clip-Type);

end Xsharp;

"with Xsharp;

-- Package: Screen.Pkg

-- Purpose: This package provides the user with a control
-- over the two pages of video memory. These
-- procedures are adaptations of the Screen package
-- found in the Meridian Ada Graphics Utility Library

7 -- (AGUL). They were modified to ma-e them compatible
S-- with the undocumented VGA mode known as XSharp.

-- NOTE: These routines will only work when the graphics
S-- environment has been initialized to the XSharp 320x240
.. . VGA mode.

I-' -- Author: David Legge
-= Implementation Date: 16 Sep 92

-- Modification Date:

-- Reason for Modification:

package ScreenPkg is

.. -- only two pages of video memory are allowed
subtype Display.Page is Integer range 0 .. 1;

-- Current-Page is the page of video memory which is currently
-- being displayed.
Current.Page : Display-Page;

-. Active-Page is the page of video memory which is being written
o-- t in all subsequent output routines.

Active.Page : Display-Page;

C-17
c-i.

• - -i . ." \ / ->/. " ' ,
1;" ,, 1 , _' ,/', ,.*._1. . ::;

S "(: -- • . -:- " : :/
-•:_ -- . _ , .. _ ! . . • ,. /:

-- Procedure: Swap-.Page

-- Purpose: This procedure toggles the Current-.Page

-- Author: Captain Dave Legge
-- Implementation Date: 16 Sep 92
-- Modification Date:
-- Reason for Modification:

-- Inputs :None
-- Outputs :None

procedure Swap-PYSe;

-- Procedure: Set-.Active..Page

-- Purpose: This procedure sets the Active-.Page variable.

-- Author: Captain Dave Legge
-- Implementation Date: 16 Sep 92
-- Modification Date:
-- Reason for Modification:

-- Inputs Which-.Page :either a I or a 0
-- Outputs :None

procedure Set..Active..Page(Which-Page : in Display-.Page);

Procedure: Set-.Display-Page

-- Purpose: This procedure sets the Current-.Page var..able.

-- Author: Captain Dave Legge
-- Implementation Date: 16 Sep 92
-- Modification Date:
-R eason for Modification:

C-1

/I

-- Inputs Which-Page either a 1 or a 0

.-- Outputs : None

procedure SetDisplayagetWhichPage : in Display-Page);

-- Procedure: Flip-Page

-- Purpose: This procedure swaps the Current and Active pages. It
.-- is the foundation of the animation technique of page flipping.

-- Author: Captain Dave Legge

-- Implementation Date: 16 Sep 92

-- Modification Date:
-- Reason for Modification:

-- Inputs : None
-- Outputs : None

procedure Flip-Page;

-- Procedure: CopyScreenToScreenX

"-- Purpose: This procedure copies a rectangle from one place in display
,-- memory and places it in another.

-- Author: Captain Dave Legge

-- Implementation Date: 16 Sep 92
-- Modification Date:

-- Reason for M~4ification:

-- Inputs : SourceRect : A rectangular area to be copied
--- Dest.UpperLeft : The point where the upper left corner

of the copy of SourceRect is to go
-,-- SourcePagebase : The offset in display memory of the source

page

Dest-Pagebase : The offset in display memory of the destination
page

Outputs None

"C-i9

•.; C -1

-/ - -------

-r

procedure Copy-.Screen..To-.Screen-.X CSource-.Rect in Xsharp .Rectangle;

'Dest..Upper..Laft in Xsharp.Point;
Source-.Pagebase in Integer;
DestPagebase in Integer

end Screen-.Pkg;

C.7 Future Enhancements

Because of time constraints, the XSharp routines were not optimized nearly

enough. There are several areas in which these routines could be improved. The

algorithm for drawing lines could be sped up tremendously. The same is true of

the circle procedure. In another series of articles in Programmer's Journal, Michael

Abrash presents a much faster way of drawing circles' (2). These algorithms could be

used to enhance XSharp. A major speed improvement could be achieved if thn 32-bit

mode could interface with the assembly language routines. The matrix manipulations

used in the 3D graphics would be much faster if the native 80386 commands could

be used instead of settling for the 80286 commands.

C.8 Conclusion.-

Throughout the course of this thesis the XSharp graphics have proven to be

a programmingý challenge. Although thc resolution is not as high as, other VGA

modes, its speed has made it, at least, workable in the context of ATACS+. With

some further refi ements, XSharp could find many more uses, not just for this one

project.

.C /

V/
, loih fo rwn ie ol ese p rmnosy h aei reo

' . the circle -- /rcdr.I nte eiso rilsi rgamrsJunl ihe

C-21

,I i i a.-/

........................ "I

Bibliography

1. Abrash, Michael. "Graphics Programming", Dr. Dobb's Journal. 16:7 (July thru
September 1991, January thru March 1992.)

2. Abrash, Michael. "Faster Circles for the VGA",' Programmer's Journal. 8:2
(March/April 1990).

3. Battilega, John A. and Judith K. Grange eds. The Military Applications of
Modeling. Air Force Institute of Technology, Wright Patterson AFB O11, 1984.

4. Bertin, John J. and Michael L. Smith. Aerodynamics for Engineers. Englewood
Cliffs NJ: Prentice-Hall, Inc., 1979.

5. Department of the Air Force. F-15A Flight Manuil. Technical Order IF-15A-1.
Washington: IIQ USAF, 1 January 1992.

6. Department of the Air Force. F-16C Flight Manual. Technical Order IF-16C-1-
1. Washington: IIQ USAF, 31 July 1989.

7. Department of the Air Force. F-111F Flight Manual. Technical Order IF-iI1F-
1-1. Washington: IIQ USAF, 9 Feb 1990.

8. Department of D)efense. Ada Programming Language. ANSI/MIl,-STD-1815A.
Washington: Ada Joint Program Office, 22 January 1983.

"9. Department of Defense. Computer Programming Language Policy. l)oD Direc-
tive 3,105.1. Washingtoni: GPO, 2 April 1987.

10. Feldman, Michael B., and Elliot B. Koffman. Ado Problem Solving and Program
Design. Reading, MA: Addison-Wesley Publishing Co., 1992.

11. Gunston, Bill and Mike Spick. Modern Air Combat. New York: Crenent Books,
1983.

12. Harris, Carl NI. "Computeis and Oper~ttions Research: A Marriage for
Growth",Operations Research. 40:6 1031-1039 (November- December 1992).

13. Hlartman, James K. "Lecture Notes in Hligh Resolution Combat Modeling."
James K. llartman, 1985.

14. Hughes, Wayne P. Jr et al. Military Modeling. The Military Operations Research
Society, Inc., 19841.

15. Joint Analysis D)irectorate, Organization of the Joint Chiefs of Staff, The Catalog
/" of Wargaming and Military Sirmulation Models. JA)ANM 207-91. Washington:

GPO, 1991.

131111.

16. The Joint Chiefs of Staff. Dictionary of Military and Associated Terms. JCS
Pub 1. Washington: GPO, 1 June 1987.

17. Lambert, Mark et. al. eds. Jane's All the World's Aircraft 1991-1992. Alexan-
dria VA: Jane's Information Group, 1992.

"18. Lopez, Pablo. Ada Programming Language and Its Application to Weapon Sys-
tems Simulation. Final Report. Naval Ordnance Station, Indian Head MD, 19
December 1990.

19. Moore, Capt Richard S. A Computer Based Educational Air for the Instruc-
(l tion of Combat Modeling. MS thesis, AFIT/GOR/ENS/92M-21. School of En-

gineering, Air Force Institute of Technology (AU), Wright Patterson AFB OH,
February 1992.

20. Morris, William T. "On the Art of Modeling", Management Science. 11:B-707-
B-717 (August 1967).

21. Nelson, Randy. F-4 Pilot, United States Air Force. Personal Interview. 24
November 1992.

22. Open Ada 386. Version 4.1.1, IBM, 512k, disk. Computer software. Meridian
Software Systems Inc., Irvine, CA, 1990-1991.

23. Porter, Richard F. and Doug D. Perry. Programmer's Manual for the Advanced
Air-to-Air System Performance Evaluation Model (AASPEM) Eglin Version
3.3. Contract F33657-86-C-0084. Columbus, OH: Battelle, January 8, 1990.

24. Press, William H. and Brian P. Flannery et. al. Numerical Recipes in Pascal:
The Art of Scientific Computing. New York: Cambridge University Press, 1989.

25. Shaw, Robert L. Fighter Combat Tactics and Maneuvering. Maryland: United
States Naval Institute Press, 1985.

26. Sheldon, Kenneth M. "You've Come a Long Way, PC", Byte. 16:336 (August
1991).

27. Smellie, Shawn. Aerodynamics and Performance Engineer, United States Air
Force. Personal Interview. 16 October 1992.

28. Software Productivity Consortium. Ada Quality and Style: Guidelines for Pro-
fessional Programmers. SPC-91061-N. Herndon VA: Software Productivity Con-
sortium, 1991.

29. Unger, Brian W., Greg A. Lomow, et al. Simulation Software and Ada. La Jolla
CA: Simulations Councils, Inc., 1984.

30. Yocom, Michael L. The Utility of Ada for Army Modcling. Individual study
project. U.S. Army War College, Carlisle Barracks PA, 1990.

BIB-2

//

/ /-

Vf j
• IForin Approved

REPORT DOCUMENTATION PAGE OMB No 07040188
IF

C.'.,,, i ~ 1 -- 1,1jrlr .d' sod cc mo et'tl Ird --... ,rQ -1- 1fu ,, It 10gy no S-', I mp r -qaga-o q Ilb.s burdun e,lir tcý -r In, t- Isber of051 '.
ý gU '1-t, .,S*fr u'.qls ,, tlUd- 4'. tu y 51i u , r.t IPr 5 tuClo',fte S f lo t f 'd,)-m otI l,~r -od .¾ . ' i~5 Jo1rý,

v ' s5 '¾ 5 . A 12?2~i2430 -d tlo l %I q--qj.mn~ r i ssd jot ýin't~rý u J~s 'uc-on Proj-ýt (01C4 0183) h br' -,t~ 0. ()OCS0C3

1. AGENCY USE ONLY 4e~ave blank) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

March 1992 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Enhancements to the Animated Tutor for Air Combat Simulation

6. AUTHOR(S)

David A. Legge

"7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB O0 45433-6583 AFIT/GOR/ENS/93M-12

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING i MONITORING
AGENCY REPORT NUMBER

11. SUPLEMET•TARY NOTES

12a. DS'8;J it., AVAILABILITY STATEMENT 12b. DISTR!IBUTION CODE

Distribution Unlimited

"1I. X4 ."11 : '.,.Imurr 200 words)
This study investigates the use of the Ada programming language in combat modeling. It takes an existing!
combat model, the Animated Tutor for Air Combat Simulation (ATACS), and re-writes it into Ada. The newt
model also includes enhancements to the original model. ATACS+, as it is now called, is used as a learning tool'
in combat modeling classes at the Air Force Institute of Technology. ATACS+ consists of a preprocessor and a:
model, complete with two and three-dimensional graphics and engagement status resorts. Conclusions are made
about Ada's suitability for combat modeling, some of the features of Ada which can assist combat modelers and
the feasibility of combat modeling on personal computers.

14. SUBJECT TLId.S 15. NUMBER OF PAGES
Ada, Computer Programming, Simulation, Combat Modeling 138

/ 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

N ̀ , .),) .. • .f) 1-. ., 3

0..,,.

	Enhancements to the Animated Tutor for Air Combat Simulation
	Recommended Citation

	tmp.1718897058.pdf.glMe7

