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Abstract

In recent years, Unmanned Aerial Vehicles (UAV) have seen a rise in popularity.

Various navigational algorithms have been developed as a solution to estimate a

UAV’s pose relative to the refueler aircraft. The result can be used to safely automate

aerial refueling (AAR) to improve UAVs’ time-on-station and ensure the success of

military operations. This research aims to reach real-time performance using a GPU

accelerated approach. It also conducts various experiments to quantify the effects of

refueling boom/drogue occlusion and image exposure on the pose estimation pipeline

in a lab setting.
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Real Time Evaluation of Boom and Drogue Occlusion with AAR

I. Introduction

1.1 Problem Background

In recent years, Unmanned Aerial Vehicles (UAV) have seen a rise in popularity

in military operations. Navigational algorithms combined with Global Positioning

Systems (GPS), Mono and Stereo Vision Sensors, or LIDAR based equipment have

been developed to estimate a UAV’s relative pose to the refueler aircraft. The end goal

is to safely guide the UAV to conduct automated aerial refueling (AAR), improving

its time-on-station and ensuring the success of military operations.

Previous works have laid the foundation of the AAR Vision Pipeline (AARVP),

which involves Stereo Block Matching (SBM) in conjunction with the Iterative Clos-

est Point (ICP) Algorithm. One research has proven the use of virtual simulation to

study the effectiveness of the vision pipeline.[1]. Bownes has established a framework

leveraging augmented reality with motion capture to test AARVP with real-life im-

agery [2]. This research serves as a follow-on experiment to analyze USAF Boom and

Navy Drogue occlusion. As boom and drogue occlusions and lighting changes can

occur during real refueling approaches, the experiments aim to quantify the effects of

aforementioned factors on the pose estimation pipeline in a lab setting. It also looks

to improve the performance of AARVP to reach real-time performance using a GPU

accelerated approach.

1



1.2 Research Objectives

The questions this research aims to answer are:

❼ How do refueling boom and drogue occlusions affect the results of the vision

pipeline in a realistic approach?

❼ How do different image exposures affect the results of the vision pipeline?

❼ How can the vision pipeline be improved to run in real-time?

1.3 Document Overview

Chapter II presents background knowledge of the vision pipeline as well as the

latest advancements in the AAR field. Chapter III describes the improvement to the

AARVP and testing methodology in which the data is collected. Chapter IV shows

the testing data which demonstrates the effectiveness of the vision pipeline under

occlusion. To conclude, chapter V summarizes what this thesis has accomplished and

potential future follow-on research topics for AAR-based work.

2



II. Background and Literature Review

This chapter provides the necessary background information to understand the

experimental methodology and the results that follow. The first section will provide

a high-level overview of the AAR Vision Pipeline (AARVP). This includes the funda-

mentals of a stereo vision camera system and pose estimation through the Iterative

Closest Point algorithm. The following section will discuss the benefits of using GPU-

based code to accelerate computer vision processing. Finally, the chapter will cover

previous research conducted in the AAR domain and provide motivation that serves

as a basis for this research.

2.1 AAR Vision Pipeline

This section gives a high-level overview of the AARVP, including the pinhole

camera model, camera calibration, and Epipolar geometry required to project features

from a pair of 2D images into 3D space. The section will also go over the Iterative

Closest Point Algorithm and its relevance to pose estimation.

The pinhole camera model is used to explain the relationship between a 3D co-

ordinate and its respective 2D coordinate on an image plane [3]. A plane containing

a single pinhole is placed in front of the image plane. Light is emitted or reflected

from distant objects placed in front of the pinhole plane, but only a single ray of

light enters the pinhole from any particular point in the object world. The point is

projected onto the image plane and is always in focus, and the distance from the

pinhole to the image plane is known as the focal length.

A variation of the pinhole camera model reverses the order of the pinhole plane

and the image plane in which the objects now appear right side up. The pinhole point

is now re-defined as the center of projection. Each 3D Point (X, Y, Z) on an object

3



emits a ray that heads towards the center of reprojection. The point of intersection

with the image plane produces a point defined as (X, Y, f), with the X and Y being

the 2D coordinates on the image plane and f being the focal point. The pinhole

camera model can be visualized by Figure 1.

The point at the intersection between the image plane and the center of projec-

tion is known as the principal point. Ideally, the principal point is equivalent to the

center of the image plane but is not always guaranteed due to manufacturing imper-

fections. A camera calibration produces a camera intrinsic matrix that contains both

the principal point and focal length of the calibrated camera.

Another motivation for performing camera calibration is to calculate the distortion

coefficients of camera lenses [3]. Two prominent lens distortions are radial and tan-

gential. A radial distortion, which takes the form of barrel, pincushion,or mustache,

occurs when the rays farther from the center of a lens are bent too much compared

to rays that are closer to the center of the lens. The distortion can be represented by

the first three terms of the Taylor series. The corrected X and Y location with radial

Figure 1: The Pinhole Camera Model
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distortion factored in can be represented by the following equations

XCorrected = x ∗ (1 + k1r
2 + k2r

4 + k3r
6) (1)

YCorrected = y ∗ (1 + k1r
2 + k2r

4 + k3r
6) (2)

A tangential distortion occurs when the lens is not fully parallel to the image

plane. The corrected X and Y location with tangential distortion factored in can be

represented by the following equations

XCorrected = x+ [2p1xy + p2(r
2 + 2x2)] (3)

YCorrected = y + [p1(r
2 + 2y2) + 2p2xy] (4)

The technique for camera calibration employed by OpenCV is described in [4]. A

chessboard is captured from multiple orientations by either adjusting the board or the

camera. The chessboard corners are then detected as features and used to estimate

the intrinsic and extrinsic parameters using a closed form solution. Figure 2 shows an

example of a checkerboard pattern that has been successfully detected by OpenCV.

Then the distortion coefficients, a 5x1 matrix which consists of [k1, k2, p1, p2, k3] are

calculated and used to fine-tune the final values by minimizing the following equation:

n∑

i=1

m∑

j=1

||mij − m̆(A, k1, k2, Ri, ti,Mj)||
2 (5)

A is the intrincic calibration matrix which contains the focal length and the

principal point location. k1 and k2 are radical distortion coefficients. R and t

are extrincic calibration matrix for an image required to convert from world co-

ordinate frame into the camera coordinate frame. Mj is a chessboard corner and

m̆(A, k1, k2, Ri, ti,Mj), the projection of Mj into a 2D image coordinate is subtracted
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Figure 2: Checkerboard Corner Detection Using OpenCV

from mij, the observed location of the chessboard corner. This is performed for every

corner in every image, and the iterative minimization of the difference between mij

and m̆(A, k1, k2, Ri, ti,Mj) further refines the all the parameters.

A common problem for planar projection from 3D space to 2D image space is

the loss of depth. With stereo vision, depth can be inferred via triangulation and

Epipolar geometry. A pair of cameras, C1 and C2 is intrinsically calibrated and

looking at a 3D point X, with X1 and X2 being the reprojection 2D coordinate of

X on their respective image plane. Two rays R1 and R2 are extended from C1 and

C2 and passes through both X1 and X2 before intersecting at X, which can be seen

in Figure 3.

Epipoles E1 and E2 are defined as the projection of C1 and C2’s center point

in the opposite camera frame. A baseline can be found as the intersection of both

Epipoles. With the baseline established, the construction of an Epipolar plane in

which the point X1 can be determined to be on the Epipolar plane as X2 limits the

6



Figure 3: Epipolar Geometry

corresponding feature matching from a 2D search to a 1D search. This is also known

as Epipolar constraints.

For epipolar constraint to correspond with horizontal lines in stereo imaging, the

stereo vision sensors will need be parallel to each other. Through stereo rectification,

OpenCV realigns the image planes to align the rows of the image while intersecting

their optical axis at infinity. Figure 5 shows an example of a pair of images before

and post rectified using OpenCV’s algorithm.

To perform triangulation, Stereo Block Matching was first used to detect and

store corresponding features which exist in both images. Following that, comput-

ing the disparity map of a corresponding stereo image pair is performed. Figure 4

showcases an example of a disparity map. Disparity refers to the pixel difference of

a corresponding feature being detected in the image pair. Disparities further away

from the cameras will have a smaller value, while disparities closer to the cameras

will have a larger value. One can store the different intensities of every disparity in a

disparity map, and using the following formula:

Z = B ∗ f/disparity (6)
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where B is the baseline in meters and f is the focal length of the stereo vision system

in pixels, to compute the depth Z in meters of every detected feature. OpenCV

allows for the reprojection of a 2D coordinate to a 3D coordinate using the camera

calibration and the disparity map through the reprojectImageTo3D function.

To obtain a 6 DoF estimate for an object with stereo vision, a 3D Point Cloud

Registration algorithm called Iterative Closest Point is utilized. The algorithm takes

in the reprojected 3D coordinates of the disparity map as the sensed point cloud

generated by the stereo vision cameras. It then uses a predetermined truth model

and attempts to fit the truth point cloud model onto the sensed point cloud model

using a point-to-point approach. The algorithm, using the Euclidean distance metric,

searches for each point in the truth model a corresponding nearest neighbor point

in the sensed points. By iteratively minimizing the Euclidean distance metric, a

rotational matrix and a translation vector can be extracted, and this is used as the 6

DoF estimate for the object.

Figure 4: An Exmaple of Disparity Map
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Figure 5: Image Rectification

2.2 GPU Parallelization

This section explores the motivation behind using Graphical Processing Unit

(GPU) to perform computations. Two areas of GPU applications for computer vi-

sion and image processing are provided as examples demonstrating the effectiveness

of GPU accelerated workflow.

Modern Computer Processing Units (CPU) contains cores with higher clock speeds,

allowing for the speedy processing of various tasks using a wide range of instructions

available to the processor. Due to the CPU’s form factor, the number of cores lim-

its the concurrency of running tasks. Thus, researchers turned to GPU as a viable

solution for parallel processing. Modern GPUs contain thousands of processors. Com-

bined with access to high bandwidth memory, they allow for the concurrent execution

of commands over all the GPU’s cores, making it suitable for processing large data.

Figure 6 shows a comparison of the architecture of CPU and GPU.
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Figure 6: Comparison of CPU and GPU Architecture

GPUs are often used by the industry and academia to tackle time-consuming

computer vision problems. Computer vision is the intake of an image from a camera

source and interpreting each pixel into numerical form, enabling additional process-

ing like feature matching. The ever-growing camera sensor size led to larger image

resolutions, denoted by the number of pixels contained in the image. GPU allow

vectorized operations on each pixels simultaneously, resulting in lower overall com-

putation times. GPU manufacturers such as NVIDIA have enabled programmers to

interface with the GPU using languages like CUDA– extensions of the C language.

Shams et al used CUDA to adapt traditional sequential algorithms like histogram

computations to be parallelized and accelerate the registration of medical images

over the GPU, thus resulting in a 50 fold decrease in processing time [5].

Researchers also saw the benefit of GPU parallelization towards AI and deep

learning for image processing. The bottleneck of a convolutional neural network, or

CNN, is the convolution operation of a n ∗ n matrix using a k ∗ k kernel. A GPU

can parallelize the process while allowing for the acceleration of subsampling/pool

layers [6]. Numerous libraries have been developed to take advantage of GPU for

CNN-based work to include PyTorch, Tensorflow, and Caffe. [7] used a cuDNN-
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HYCNN approach to classify hyperspectral Images, achieving a 75 fold speedup while

maintaining a comparable result against the HYCNN CPU-based algorithm.

2.3 GPU Parallelization of AARVP Algorithms

This section discusses some of the CUDA implementations of the algorithms used

by the AARVP. The following two examples showcase some of the advancements in

CUDA Stereo Block Matching and GPU-driven point registration algorithms.

Ivanavi et al have designed a CUDA implementation of Stereo Block Matching

aimed towards embedded systems [8]. They tested two separate approaches to handle

the passing of data to the GPU. The first method involves two different GPU kernels

invoked by the CPU to calculate the absolute differences between pixels, calculate

new weights, and perform minimization. Due to the second operation taking longer

to complete, both threads are kept separate to avoid halting. The second approach

uploads images to the GPU global memory. A collective shared memory block is

allocated for each of the images’ pixels, then the algorithm is performed over all the

pixels in the block in sequence. The second algorithm is comparatively faster than the

first algorithm due to data accessed from the shared memory of the GPU as opposed

to the global memory, but it comes at the cost of image quality of the disparity map

generated. By taking advantage of the CUDA architecture, the researchers achieved

high framerate processing, from over 70 FPS on 750x500 sized images and up to 23

FPS on 1500x1000 on an NVIDIA Jetson TX1.

Previous research conducted by Mourning et al discussed the viability of using

GPU to accelerate the point registration process [9]. The bottleneck of Robust Point

Matching (RPM) is the mathematical operations of N * N matrices, with N repre-

senting the number of pixels contained in the image. The suggested algorithm took

advantage of the parallelism of a GPU to tackle large image datasets by assigned ma-
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trix operations like multiplication, inversion, and QR decomposition to be performed

in unison on the GPU using CUDA. The implementation was compared to the CPU

iterative closest point algorithm and the MATLAB optimized version suggested by

Chui et all. The GPU accelerated ICP performed 20 fold faster than the CPU version

and 25 percent faster than the Matlab, showing the potency of GPU acceleration for

other point registration methods like Iterative Closest Point. As the listed research

showed great promises towards the speed up of AARVP algorithms, this paper hopes

to leverage GPU parallelization to test the speedup of GPU accelerated AARVP

against the previous CPU-based AARVP.

2.4 Related work on AAR

Previous research on AAR involves the use of Gobal Positioning System to obtain

the pose of the receiver [10, 11, 12, 13]. Since GPS’s capabilities can be degraded

or denied via jamming on the battlefield, other complementary sensors like Inertial

Measurement Units (IMU) are incorporated and tested to compensate for the short-

comings of standalone GPS solutions [11]. Researchers have also tested electro-optical

(EO) and infrared solutions like LIDAR as a standalone package for pose estimation

of the receiver [14, 15, 16].

Other researchers have also made strides towards the area of probe and drogue

refueling. There are studies done to develop docking controls and close loop motion

characteristics for the probe and drogue [17, 18]. Drogue detection is also under

examination. Several researchers used a convolutional neural network in conjunction

with Cascade AdaBoost Classifiers and You Only Look Once (YOLO) to speed up the

detection of the refueling basket [19, 20]. Another study uses monocular vision with

ellipse detection to estimate the 5 DoF of the drogue basket under various distances

and weather conditions [21].

12



2.5 AftrBurner vs. Real World

Flight testing for AAR-based work is expensive, time-consuming, and poses addi-

tional risks to the aircraft and the operator. Therefore, researchers turned to virtual

computer simulations as a solution for testing vision algorithms. Previous studies

[22, 23, 2] at AFIT utilize the AftrBurner engine, a high fidelity 3-dimensional virtual

world (3DVW) [24], as the foundation platform for the research. The researchers used

the truth data from a motion capture system (MCS) with a 1/7th scaled F-15 model.

The tests used simulated refueling approaches driven by truth data from a physical

approach in the motion capture chamber (MCC). The conclusion from these studies

has found the positional and rotational errors from the virtual environment to be

similar to real-world errors, thus hinting at the viability of the virtual environment

as a testing platform of vision algorithms for receiver pose estimation. This research

will also utilize AftrBurner as a testing platform for the latest iterations of AARVP

with GPU acceleration for boom and drogue occlusion testing.

Figure 7: Virtual Approach

13



Figure 8: Real Approach

2.6 Motivation for Research

AAR requires centimeter accuracy for the receiver to make contact with the re-

fueling boom/drogue. For the AAR vision pipeline to produce pose estimate results,

it has to conform to real-time standards. According to the IEEE, a real-time system

is a computing system whose correct behavior depends not only on the value of the

computation but also on the time at which outputs are produced. Previous research

[2] has produced good pose estimation at centimeter accuracy with a roll, pitch, and

yaw error under 2 degrees. However, the CPU implementation of the AARVP failed

to achieve 30 Hertz when processing 4K stereo images. This research aims to im-

prove the previous setup by using CUDA to accelerate the workflow to achieve the

aforementioned standards of real-time computing.

A critical element of the Iterative Closest Point algorithm is the input sensed

point cloud. An ideal sensed point cloud should be identical to the truth model, thus

ensuring a perfect convergence in fit and the generation of accurate pose estimate ma-

trices. The receiver conducting an AAR approach will be occluded by the refueling
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boom or drogue. The generated sensed point cloud with such occlusions will alter the

sensed point cloud model and produces outlier points which result in an inaccurately

estimated pose. Previous research [2] briefly explored boom occlusion by measuring

the error of the receiver with a virtualized boom inserted into the approach. How-

ever, the boom remained stationary while the receiver approach was adjusted. This

research aims to conduct experiments to study the effects of boom and drogue in

various poses to examine potential approaches which allow for an accurate pose to be

generated by the algorithm.

Chang et al have determined that the exposure of images can have a significant

impact on stereo block matching [25]. As AAR can occur under various conditions,

this proposes a challenge for the AARVP. [2] obtained excellent results with perfectly

exposed images but did not test poorly exposed images as part of the study. This

research performs two separate experiments to simulate extreme daytime and night-

time refueling operations. The research aims to quantify the effects underexposure

and overexposure have on Stereo Block Matching and pose estimation while test-

ing various image filters to see if they can mitigate the shortcomings of improperly

exposed images acquired by the stereo vision system.

2.7 Differences between Boom and Drogue refueling

During aerial refueling, a plane can take on fuel via a refueling boom or a probe-

and-drogue system. Modern USAF refueling platforms come configured with a refu-

eling boom. During a boom refueling scenario, the receiver plane first approaches the

contact position. The boom operator manipulates the boom and inserts the refueling

boom into the open receptacle, and then the fuel is transferred (Figure 9). The U.S.

Navy aircraft and helicopters come equipped with a refueling probe, which requires

a probe-and-drogue setup. A probe-and-drogue system involves a drogue basket at-
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tached to a hose that can be extended or retracted. During refueling, the receiver

will align and insert the probe into the drogue basket to receive fuel (Figure 10).

Figure 9: Boom Refueling

Figure 10: Drogue Refueling
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III. Methodology

3.1 Preamble

The primary goals of this work are:

❼ Examine the effects of refueling boom and drogue occlusions on AARVP pose

estimation

❼ Examine the effects of real world image exposure on AARVP pose estimation

❼ Create and evaluate a GPU accelerated implementation of the AARVP

The paper will highlight two distinct testing scenarios to test boom and drogue

occlusions. The refueling drogue scenario will utilize the virtual AftrBurner engine,

capable of reproducing a high fidelity simulated environment for testing. The refueling

boom scenario will leverage an augmented reality scenario that incorporates virtual

and real-world imagery using AftrBurner and a motion capture chamber (MCC).

The truth data provided by the motion capture system (MCS) have demonstrated

sufficient accuracy required to conduct AAR and deemed the scenario suitable for

boom occlusion testing [2]. This chapter provides a detailed description of the testing

methodology for this paper. It begins by describing the virtualized setup for drogue

occlusion testing. Following that, the chapter highlights the augmented reality sce-

nario used for boom occlusion testing [2]. The chapter will also discuss the GPU

accelerated AARVP scenario with potential sources of errors and solutions to correct

them. The chapter will conclude with different testing parameters for the boom and

drogue scenarios with the real-world image exposure test setup.
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3.2 Drogue Scenario

The virtual drogue scenario contains both a refueling aircraft and a receiver air-

craft. The refueling aircraft comes equipped with a refueling pod located on the right

wing. The scenario mounted a pair of cameras on the refueling pod with a baseline of

0.4m. Each camera contains a 2K sensor with a resolution of 2048x1080, a horizontal

field of view of 55.6 degrees, a near plane of 0.25m, and a far plane of 500m. The

pod also contains a refueling hose capable of extending to 14m. A refueling drogue

basket is attached at the end of the refueling hose. Figure 11 provides a visualization

of the virtual refueler setup, while Figure 12 provides an example output of the 2K

stereo vision sensor.

The virtual receiver aircraft is a modified F-15E with a refueling probe mounted

to the aircraft’s right side (Figure 13). The accurate recreation of the refueler and

the receiver allows for a realistic refueling approach with the probe-and-drogue setup.

Figure 11: Virtual Refueler
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Figure 12: 2K Stereo Camera

Figure 13: Virtual Receiver

3.3 Boom Scenario with Augmented Reality

The boom scenario allows for the testing of both virtual and real-world imagery.

This section will first cover the lab setup. Following it will be a discussion of the

virtual recreation of the aforementioned environment. The section finally will consider

the augmented reality (AR) setup used for boom occlusion testing.

The experiment utilized a motion capture chamber equipped with 60 IR sensors

as the basis of real-world approaches. The motion capture system can detect IR
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reflective markers within the room and provide millimeter accurate positional and

rotational truth data at 75 Hz. A pair of 4K cameras with a resolution of 4096x3000

are placed 8 meters above the motion capture chamber with a downward orientation

to mimic the stereo vision sensors located on a refueling tanker (Figure 14). A 1/7th

scaled replica F-15E model is placed on a cart and serves as the test receiver in the

real-world approach (Figure 15). IR markers are attached to the receiver, allowing it

to be tracked by the motion capture system.

The virtual testing environment contains a recreated virtual model of the MCC

textured to mimic its real-world counterpart(Figure ??). A full sized virtual F-15 is

inserted into the room with a 1/7th scaling applied, making the dimensions equivalent

to the real-world F-15 model (Figure 17). The motion capture chamber also contains

a pair of virtual 4K cameras. As Stereo Block Matching with an inaccurate camera

rotation as slight as 1 degree can produce reprojection errors at large distances, a

Gauss-Newton optimization is used as part of the camera calibration process to align

the physical cameras accurately in the MCS coordinate frame [2].

As it is not feasible to install a full-sized refueling boom into the motion capture

chamber, the work employed augmented reality as a solution to generate boom oc-

clusion. Augmented reality is the depiction of elements from both the virtual and

the real world. In AftrBurner, we created two quad objects that serve as the green

screen in a traditional AR setup. The quads use imagery from the virtualized and

real-world motion capture chamber and render them with 1:1 resolution and fidelity

(Figure 18). Two additional AR virtual cameras are placed in front of the quads

with the same orientation as the real-world counterpart (Figure 18). The virtual

cameras capture the quads’ textures in their viewing frustum, creating replica images

mirroring the original input imagery. The setup finally inserted two virtual refueling

booms in front of each AR camera (Figure 18, 19). The disparity map generated by
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Figure 14: Real Camera
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Figure 15: Real F-15 Model

Figure 16: Virtual Model of MCC

Stereo Block Matching on the AR cameras will include scenery from the quad and

the virtual boom. The virtual refueling boom occludes the same set of pixels as a real

boom on images. Thus the virtual augmented reality provide an accurate alternative

to installing a physical boom replica in the MCC.
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Figure 17: Virtual F-15 Model pre-scale

Figure 18: Quad Setup with Virtual Boom
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Figure 19: New imagery generated using augmented reality
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3.4 GPU Accelerated AARVP

This section will elaborate on the GPU implementations of AARVP. It will de-

scribe some of the additional improvements on top of the CPU-based AARVP to

speed up run time.

3.4.1 GPU Accelerated Stereo Block Matching

This paper utilized OpenCV’s CUDA Stereo Class to accelerate the generation of

disparity maps. Calling OpenCV CUDA Stereo Block Match algorithm uploads the

stereo images onto the GPU’s memory as a cv::cuda::GpuMat. The GPU performs

Stereo Block Matching and returns the disparity map also as a cv::cuda::GpuMat.

cv::cuda::reprojectImageTo3D() function uses the generated disparity and the Q ma-

trix obtained from stereo rectify to reproject all the pixels of the 2D image into 3D

space coordinates.

The coordinates are then transformed from the local frame into the camera frame

and inserted into a std::vector using the following formula:

StereoCamDCM · V ector(X, Y, Z) (7)

The end-user can specify an optional filter to eliminate outliers. Finally, the

AftrBurner engine visualizes the reprojected points as the yellow point cloud (Figure

20) as the sensed points generated from the stereo image pair.

Previous iterations of AARVP processed the reprojected points by iterating through

each pixel of the 3D reprojection via two for loops indexing the width and height of

the cv::Mat. A 4K disparity would cause a significant slowdown as the operation is

single-threaded. This paper uses the cv::foreach function to distribute all available

CPU threads to process the pixels in parallel. The new process led to a significant
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Figure 20: Sensed Points after Reprojection

decrease in the time required to complete point insertion into the vector.

3.4.2 GPU Accelerated ICP

This paper uses a GPU accelerated version of the Iterative Closest Point algorithm

described in [1][26]. One of the most time-intensive operations of the algorithm is

the nearest neighbor search, intended to match every sensed point to the closest

correlating point in the truth model (Figure 21 ). The GPU accelerated ICP algorithm

takes advantage of the parallel nature of the operation by distributing each point to

available GPU threads to perform the nearest neighbor matching.

A traditional ICP algorithm would use a tree-based approach like a K-D tree to

partition the data using the median value of each sequential axis. However, this
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Figure 21: Nearest Neighbor Correspondence between Sensed Model and Turth Model

approach requires the search to always start from the root node of the tree. This

GPU-based ICP algorithm further sped up the process by implementing a Delaunay

triangulation [26]. This Delaunay structure enables a query point to find its closest

neighbor node with a minimal graph walk. By traversing a Delaunay structure, the

search walks along edges in the graph until there are no other points closer to the

current candidate point. The new search structure allows a query to be conducted at

any node, resulting in only 1-2 walks required for each ICP iteration and effectively

reducing ICP’s overall runtime.

3.5 Sources of Errors

An ideal sensed point cloud model maintains a 1:1 correspondence with the truth

model producing a optimal pose. However, Stereo Block Matching and reprojec-

tion often result in noisy points, leading to higher rotational and translation errors.

This section will discuss some of the challenges associated with CUDA Stereo Block

Matching and mitigating steps to achieve good reprojection results.
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3.5.1 Probe and Drogue Scenario

The point cloud generated by CPU-based Stereo Block Matching fits tightly

around the receiver aircraft (Figure 22). There are minimal outlier points in the

sensed point cloud model, which does not drastically affect ICP results.

Using OpenCV’s CUDA Stereo Block Matching produces undesired reprojections.

Despite the disparity map generated by both algorithms being similar (Figure 23),

the reprojected sensed point cloud generated by CUDA is noisier, with points often

being reprojected past their intended depth. As the ICP algorithm requires a close

correspondence of points between the sensed point cloud and the truth point cloud,

the additional noisy points will lead to a poor correspondence pairing and higher

translational and rotational errors (Figure 24).

Figure 22: CPU SBM Reprojection

Figure 23: Disparity Map Comparison, with CPU on the left and CUDA on the right
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Figure 24: CUDA SBM Reprojection

This paper employs a near/far plane filter as a part of the reprojection process

to eliminate outlier points generated by CUDA Stereo Block Matching. When the

receiver aircraft is at contact point, the near plane filter is the displacement along the

x-axis from the camera position to the nose of the receiver aircraft and any points

closer to the filter are eliminated. The far plane filter is the displacement along the

x-axis from the camera position to the back of the receiver aircraft. The precise

measurement for the near plane at the contact point is 10 meters, while the far plane

is 30 meters. The experiment subtracted and added a few meters to the near and far

plane filters to generate outlier points and match the behavior of CPU-based Stereo

Block Matching reprojection.

The new filter parameters for a F-15 receiver are:

❼ Near plane filter - 9 meters

❼ Far plane filter - 40 meters

The filter will discard any points with a displacement along the x-axis less than

the near plane distance or greater than the far plane distance and results in a valid
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Figure 25: Near/Far Plane Filter

ICP convergence of the truth point cloud onto the sensed point cloud.

3.5.2 Boom scenario

A limitation of CUDA Stereo Block Matching is the numDisparity range. The max

numDisparity available to CUDA is 256, whereas CPU-based Stereo Block Matching

algorithms have no such constraints. The boom scenario utilizes stereo vision sensors

with a resolution of 4K. Stereo Block Matching takes unique features in the left image,

shifts the search area by the numDisparity, and finds correlations in the right camera

frame to produce a valid disparity map. The increased horizontal pixel of the image

width and the limitation of the numDisparity causes CUDA Stereo Block Matching

to fail in correlating features, thus resulting in the lack of disparity produced in the

disparity map and the reprojected points as the receiver comes closer to the cameras

and disparities increases. (Figure 26).

As a solution to the previous issue, the experiment applied downsampling to the

stereo 4K images. The resolution of the 4K stereo vision sensors is halved, from

4096x3000 to 2048x1500. The downsampling allows the CUDA Stereo Block Match-

ing to search the entirety of the horizontal image pixels when performing feature
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correlation and generating valid reprojection points from the disparity map.

Another requirement for downsampling to work is the modification of the existing

camera calibration. Using the idea by Miller[27], the downsampling camera calibra-

tion can help fix this issue. The intrinsic matrix, the rectification matrix, and the

Q matrix, generated from performing camera calibration, is used to reproject points

from 2D space to 3D space. As the stereo camera sensors are modified, a new cal-

ibration is needed. Instead of calibrating the new sensors using chessboards, the

approach took the previous 4K camera calibration and made modifications to the

following values shown in Table 1.

After downsampling and adjusting the camera calibration, CUDA Stereo Block

Figure 26: CUDA SBM with 4K Imagery and 256 numDisparity

Figure 27: CUDA SBM with Downsampled 4K-2K Imagery and 256 numDisparity
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Table 1: Calibration Adjustment

Left Cam/Right Cam Intrinsic Matrix Stereo Cam Rectification Matrix Stereo Cam Q Matrix
fx = fx/2 fx = fx/2 -cx = -cx/2
fy = fy/2 fy = fy/2 -cy = -cy/2
x0 = x0/2 x0 = x0/2 f = f/2
y0 = y0/2 y0 = y0/2

Matching can generate a valid sensed point cloud from disparity map reprojections

(Figure 27).

Many factors can affect the reprojection of disparities to the 3D virtual world,

because the boom testing scenario utilizes real-world imagery from the Motion Cap-

ture Chamber. Figure 28 serves as an example of reprojection without a filter in

the MCC. The walls, floor, and cart located in the MCC generate additional outlier

points post-reprojection. In a real-world refueling scenario, there will be nothing near

the receiver aircraft to cause outliers. As the motion capture system provides and

updates the pose of the receiver aircraft, a stricter filtering technique can be applied.

The virtual receiver model consists of a bounding box (Figure 29) that encapsulates

the receiver within its boundaries. Using the bounding box and the known position

of the virtual receiver, the filter eliminates any outliers located outside the bounding

box, resulting in a similar point cloud generated with the near plane/far plane filter

in the Probe and Drogue scenario.

Figure 28: CUDA SBM with No Filter
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Figure 29: F-15 Bounding Box

3.6 Experiment Parameters

This section covers the metrics and testing scenario necessary to evaluate the

newly implemented GPU accelerated AARVP against the CPU-based AARVP. It

will then detail various scenario-specific experiments conducted to study boom and

drogue occlusion and their effects on pose estimation. Finally, this section elaborates

on the physical setup and camera parameters necessary for real-world image exposure

testing. It will conclude with an explanation of the filtering techniques aiming to

improve the solution.

3.6.1 Comparison Metrics and Testing scenario

Two criteria are necessary to judge the efficiency of the GPU accelerated AARVP

against the CPU-based AARVP:

❼ Quantify the runtime of CPU and CUDA based Stereo Block Matching and

Iterative Closest Point algorithms.

❼ Quantify the pose estimation results of both AARVP algorithms without occlu-
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sion.

The experiments propose conducting two separate approaches for both the refu-

eling drogue and boom scenarios:

3.6.1.1 Drogue Scenario

The drogue scenario had the receiver aircraft start at a precontact position 41

meters away from the 2K stereo vision sensors. The receiver moved slowly towards the

camera, stopping at the contact position 10 meters away. The experiment analyzed

12,900 pairs of images during the approach.

3.6.1.2 Boom Scenario

The boom scenario had the scaled receiver aircraft start at a precontact position

22 meters away from the 4K camera located in the Motion Capture Room. The

receiver aircraft was then pulled slowly in a straight line towards the camera until

stopped at the contact position 15 meters away. The virtual receiver was updated

using the Motion Capture Chamber truth data and mirrored the movement of the

real-life receiver model. The experiment analyzed 490 pairs of images during the

approach.

3.6.2 Collecting Results

The experiment recorded the runtime of both iterations of AARVP for different

scenarios. The runtime data includes the timing data of individual components of

AARVP and the total runtime of the AARVP under each implementation. It also

recorded the pose estimation generated by ICP for each approach generated from the

cameras’ local coordinate frame specific to scenarios as visualized by Figure 30 and

31. For the boom scenario, the experiment generated a runtime with the CPU-based
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AARVP and 4K native sensor resolution to serve as a baseline from the previous re-

search. It compares the results with the downsampled 2K sensor results of CPU/GPU

implementations.

3.6.3 OpenCV Settings

The experiment will use the following OpenCV settings for Stereo Block Matching:

The experiment also used uniform sampling to decimate the number of points

generated by Stereo Block Matching to be equivalent to the number of points located

Figure 30: A visualization of the cameras’ local coordinate frame in drogue scenario

Figure 31: A visualization of the cameras’ local coordinate frame in boom scenario
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Table 2: OpenCV Stereo Block Match Settings

Settings
blockSize = 21

preFilterType = XSOBEL
preFilterSize = 9
preFilterCap = 31
minDisparity = 0

numDisparity = 256 for 2K Sensor Size / 512 for 4K Sensor Size
textureThreshold = 10
uniquenessRatio = 500

speckleRange = 0
speckleWindowSize = 0

in the truth model.

3.6.4 Computer Hardware

The experiment used the following Computer Hardware for timing tests:

Table 3: Computer Hardware

Parts
CPU = AMD Ryzen 9 5900x
RAM = 32GB DDR4 3600Mhz

GPU = NVIDIA Geforce RTX 3080Ti 12GB

3.7 Boom and Drogue Occlusion

This section goes over in-depth the scenario-specific experiments that generated

boom and drogue occlusions. While using the scenario receiver approach patterns

from above, the experiment added the following guidelines to the testing scenarios:

3.7.1 Drogue Scenario

In the drogue scenario, the experiment fully extends the hose and the basket in a

rigid state for the receiver aircraft to establish contact with its refueling probe. After
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making the connection, the receiver will undergo a simulation that mimics turbulence

experienced during aerial refueling. The experiment obtained approximately 20 hose

positions. AftrBurner, using a third-degree polynomial fit, rendered the hose in mo-

tion with the basket attached at the end of the hose. The AARVP pipeline obtains

the pose estimation results from the cameras’ local coordinate frame and records them

as part of the experiment.

3.7.2 Boom Scenario

In the boom scenario, the location of the physical receiver poses a unique chal-

lenge. The receiver aircraft cannot be elevated above the ground, thus incapable of

presenting itself in different image regions. The experiment will instead manipulate

the pitch and yaw state of the boom to generate occlusions. During a receiver ap-

proach, the refueling boom will sweep through the entire refueling envelope for each

image, occluding different regions of the receiver aircraft. The experiment will record

the number of features pre and post-occlusion. It will use that data to quantify the

effects occlusions have on pose estimation.

3.8 Real-world Imagery Exposure Testing

Real-world aerial refueling can occur at all times of day, from sunny conditions at

noon all the way to pitch black at midnight. The images generated from these extreme

conditions can be overexposed and underexposed. If the stereo vision sensor lacks

auto exposure and gain compensation, AARVP must account for these conditions

to generate a pose estimation. This section will cover the physical setup for real-

world image exposure testing and explore image filters to see if they can improve the

AARVP solution in edge cases.

The experiment uses the physical 4K cameras located in the MCC as the input
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source. A series of ceiling lights illuminate the MCC but aren’t bright enough to

cause image overexposures. With the lights turned off, MCC appears dark to the

human eye. However, the floor coating reflects the IR beams emitted from the Mo-

tion Capture Systems into the camera, causing the image to be more exposed than

intended. The paper instead chooses to leverage camera settings to simulate over-

exposure and underexposure. Each camera contains settings to automate exposure

and gain which is turned off to allow for manual control. We adjusted the exposure

time of the cameras to allow for the camera shutters to close at the specified interval.

The individual performing the experiment inspected the image capture to ensure the

result mimics possible real-world exposure cases during refueling.

3.8.1 Nighttime Approach

For the nighttime approach, the experiment placed a 500W floodlight in front

of the receiver approach path and turned off the lights in the MCC. The floodlight

gives off a similar illumination generated by the refueling light located on the refueler

tanker. The receiver at the precontact position is invisible to the human eye. As the

receiver approaches the contact position, the front of the plane can be visible while

the back remains hidden (Figure 32). The camera settings are:

Table 4: Camera Exposure Settings

Settings
Exposure = 2000

Gain = 0.1

3.8.2 Daytime Approach

For the daytime approach, the experiment kept the same scenario as the nighttime

approach. With the exposure time set at 141000 and the gain set to 9, the wings
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Figure 32: Underexposed Receiver at Contact

Figure 33: Overexposed Receiver at Contact

of the receiver appeared washed out, but the aircraft managed to retain its overall

outline 33.

The experiment compares the number of features and the pose estimation gener-
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ated by the edge cases with a previous collection with proper exposure settings for

analysis.

3.8.3 Image Filtering

A possible method to improve the number of features in poorly exposed imagery

is through histogram equalization. A histogram is a graphical representation of the

tonal values of brightness in an image, with the left side of the histogram being 0

percent brightness and the right side being 100 percent. It contains components

such as blacks, shadows, mid-tones, highlights, and whites. Histogram values in an

underexposed image will be on the left, with possible data being clipped and lost. An

overexposed image will shift the histogram values to the right and produce clippings

of the highlights. Figures 34 and 35 are the histograms of the underexposed and

overexposed imagery used above.

Figure 34: Underexposed Histogram of Figure 32

Figure 35: Overexposed Histogram of Figure 33
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Histogram equalization will attempt to equalize the histogram’s value and dis-

tribute it across the histogram spectrum (Figure 36). Previous studies [28] have

demonstrated an improvement in feature generation using histogram equalization

with disparity map computation. This experiment will explore two histogram equal-

ization filters:

❼ Global Histogram Equalization

❼ Contrast Limited Adaptive Histogram Equalization (CLAHE)

The main difference between global histogram equalization and CLAHE is the

operating range of pixels in the image. Global histogram equalization operates on

the entire image’s pixel all at once. CLAHE instead performs operations on tiles or

small regions, iterating until completion. The experiment will evaluate the results of

filter applications and compare them with non-filtered results obtained earlier.

Figure 36: An Example of Histogram Equalization
Subfigure A and C shows an image and its histogram pre histogram equalization.

Subfigure B and D shows the image and its histogram post histogram equalization.
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IV. Results and Analysis

4.1 Preamble

This chapter presents the results from multiple experiments annotated in the

methodology section. The chapter will provide and analyze the runtime data of both

CPU and GPU-based AARVP using different stereo sensor parameters. The chapter

will also highlight the translational and rotational errors of both AARVP algorithms

for each framework and scenario. Finally, the chapter will discuss the results of image

exposure experiments.

4.2 Probe and Drogue Framework

4.2.1 Straight in Approach Without Occlusion

4.2.1.1 Algorithm Runtimes

Figure 37: AARVP SBM Runtime (2K Sensor/ Virtual Images)
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Figure 38: AARVP ICP Runtime (2K Sensor/ Virtual Images)

With a 2K stereo vision sensor resolution, CUDA-based SBM does outperform

CPU-based SBM in some instances. However, the CUDA-based algorithm does en-

counter a much larger spread in execution time over the entirety of the data. The

CPU-based algorithm has a tighter bound, making it more deterministic for runtime

computation. The CUDA-based ICP algorithm outperforms the CPU-based version

with a faster run time and a tighter bound, making it an ideal replacement solution

in the AARVP.

4.2.1.2 AARVP Results

The follow results are generated with the coordinate frame from Figure 30:
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Figure 39: AARVP Errors (2K Sensor/ Virtual Images) (No Drogue)

Figure 39 indicated that CPU-based AARVP showcased lower translational and

rotational errors compared to the GPU-based AARVP. The result stemmed from the

convergence of the truth point cloud with the much cleaner point cloud produced by

CPU-based SBM.

4.2.2 Straight in Approach with Drogue Occlusion

4.2.2.1 AARVP Results

With the drogue basket and hose present, CUDA-based AARVP produced lower

translation and rotational errors than the CPU-based AARVP (Figure 40). At 27.5

meters away from the camera, the results from both algorithms converged with min-

imal differences.
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Figure 40: AARVP Errors (2K Sensor/ Virtual Images) (With Drogue)

4.2.3 At Contact With Turbulence

4.2.3.1 AARVP Results

At contact with turbulence, CPU-based SBM with the cleaner sensed point cloud

produced lower translation and rotational errors against the CUDA-based SBM (Fig-

ure 41,42). Combined with the previous experiments in the drogue scenario, a com-

bination of the CPU-based SBM along with the CUDA accelerated ICP brings forth

a good balance between speed and accuracy.
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Figure 41: AARVP Translation Errors (2K Sensor/ Virtual Images)
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Figure 42: AARVP Rotation Errors (2K Sensor/ Virtual Images)
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4.3 Boom Framework

4.3.1 Straight in Approach Without Occlusion

4.3.1.1 Algorithm Runtimes
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Figure 43: AARVP SBM Runtime (4K Sensor)
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Figure 44: AARVP ICP Runtime (4K Sensor)

In Figures 43 and 44, the native 4K resolution images took the longest to process

by SBM and ICP. Using Miller’s camera adjustment techniques [27], the source images

are resized from 4K to 2K resolution. CPU-based AARVP experienced a significant

speedup with the 2K resolution images compared to the 4K native resolution images.

CUDA-based AARVP outperformed both CPU-based solutions in certain cases but

does suffer from the larger time spread as seen in the drogue scenario. The real-world

imagery times followed closely with virtual images, which serves as a baseline for

future work using virtual imagery alone.

4.3.1.2 AARVP Results

The follow results are generated with the coordinate frame from Figure 31:
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Figure 45: AARVP Results (No Boom/ Virtual Images)
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Figure 46: AARVP Results (No Boom/ Real Images)
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All three SBM implementations generated results that trend closely to each other

(Figure 45, 46). At the contact point, the differences in translational and rotation

errors between the three implementations are minimal, suggesting an interchangeable

approach of SBM processing to be used with the bounding box filter.

4.3.2 Boom Occlusion

The experiment places the receiver aircraft near the contact point 16 m away from

the camera. The boom pitch is set to 35 degrees, 38 degrees, and 42 degrees while

the boom yaw is alternated between -20 degrees and 20 degrees. The experiment

configuration is within the safe refueling envelope of the KC-46 and ensures that all

parts of the boom geometry can occlude the receiver aircraft.

4.3.2.1 AARVP Results

20 15 10 5 0 5 10 15 20
Boom Yaw (deg)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Tr
an

sla
tio

n 
Er

ro
r (

m
)

Boom Occlusion Translation Error
Feature Occluded

Left Wing
Right Wing
Cockpit
Fuselage
Left Horz Stablizer
Right Horz Stablizer
Left Vert Stablizer
Right Vert Stablizer

Figure 47: AARVP CPU Translation Error (Pitch Set to 35 Degrees)
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Figure 48: AARVP CPU Rotation Error (Pitch Set to 35 Degrees)
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Figure 49: AARVP CPU Translation Error (Pitch Set to 38 Degrees)
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Figure 50: AARVP CPU Rotation Error (Pitch Set to 38 Degrees)

With the boom pitch set to 35 and 38 degrees, the boom’s outer and inner tubes

generated occlusion with the receiver aircraft. With the refueling boom set to 0 de-

grees in yaw, it predominately obstructed the cockpit, parts of the fuselage, and both

the vertical stabilizers. It is during this boom position that ICP reported the highest

translation and rotation errors. This suggests a challenge with refueling aircraft with

centerline-based refueling receptacles.
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Figure 51: AARVP CPU Translation Error (Pitch Set to 42 Degrees)
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Figure 52: AARVP CPU Rotation Error (Pitch Set to 42 Degrees)

When the boom pitch is at 42 degrees, the refueling boom airfoil fins cause further

obstruction of the receiver aircraft, resulting in different translation and rotation

errors from previous observations. It can also be observed that both the rotation and
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translation errors closely mirror each other with boom movement.

4.4 Exposure Testing

4.4.1 Underexposed Images

4.4.1.1 Feature Testing
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Figure 53: Number of Features Produced by SBM (Underexposed 4K Real World
Images)

Using no filter and global histogram equalizer filter has a similar feature count

with 2000 features at contact point. CLAHE produces a higher feature count with

3000 features at contact point.

4.4.1.2 AARVP Results
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Figure 54: AARVP CPU Translation Error (Underexposed 4K Real World Images)
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Figure 55: AARVP CPU Rotation Error (Underexposed 4K Real World Images)

The Global Histogram Equalizer produces the best result when the receiver aircraft

is 19 meters away from the floodlight. As the receiver aircraft approaches the contact

position, all three results converge to 20 centimeters in translation error magnitude
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and 2 degrees in rotation error magnitude.

4.4.2 Overexposed Images

4.4.2.1 Feature Testing
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Figure 56: Number of Features Produced by SBM (overexposed 4K Real World Im-
ages)

With overexposed images, Stereo Block Matching produced significantly lower

features when compared with underexposed images. The result indicates that the

Stereo Block Matching algorithm favors the underexposed regions versus the over-

blown highlights, whereas human vision would prefer the opposite.

4.4.2.2 AARVP Results
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Figure 57: AARVP CPU Translation Error (Overexposed 4K Real World Images)
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Figure 58: AARVP CPU Rotation Error (Overexposed 4K Real World Images)

Using no filters produce the best translation and rotation error even with fewer

features with a translation error magnitude of 20 centimeters and a rotation error

magnitude of 2 degrees at the contact position. Even though the wings of the re-
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ceiver aircraft were overblown with highlights, Stereo Block Matching still managed

to produce features on the edge of the receiver aircraft. The result indicates that the

feature shape rather than the number of features can lead to a lower ICP error.
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V. Conclusions

This paper discusses a GPU accelerated AARVP using CUDA architecture to

generate pose estimation for the use of automated aerial refueling. The GPU-based

SBM achieved a faster run time at certain frames when compared with the CPU-based

SBM. However, the tighter bounded CPU-based SBM would be a good candidate to

be paired up with the GPU-based ICP algorithm. From AARVP results, with a

near/far plane filter, CPU-based SBM generated lower translation and rotational

errors. With a bounding box filter, all three of the SBM implementations mentioned

in III achieved similar results. This suggests that lower errors could be provided by

AARVP when combined with an alternative pose estimation algorithm to generate

the required bounding box around the receiver aircraft.

The paper also performed various occlusion testing for both the refueling probe

and drogue and the refueling boom. The results indicate probe and drogue induced

minimal errors to the AARVP pose estimation at all phases of refueling when utilizing

CPU-based Stereo Block Matching. The refueling boom does introduce a significant

error once the cockpit and the fuselage of the receiver aircraft are occluded. However,

since the experiment utilizes a 1/7th scaled receiver model, the errors will likely reduce

when the receiver aircraft is fully scaled.

Finally, the paper experimented with different simulated image exposures to test

the adaptability of AARVP in real-world refueling environments. The results indicate

a degraded tracking performance during both the underexposed and overexposed sce-

narios. Histogram equalization filters slightly improve the accuracy when the receiver

aircraft is approaching from precontact to contact. The receiver aircraft produces

good features for ICP to converge properly at the contact point, thus ridding the

need for a histogram equalizer filter.
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5.1 Future Work

The next steps that build upon this work are as follows:

❼ Power limits are a good factor for consideration when building AARVP to be

deployed on refueling aircraft. Since AARVP demonstrates good performance

on powerful desktop machines, the next step would be to explore the deployment

on embedded systems. NVIDIA Jetson platforms with CUDA cores support

GPU accelerated work. They serve as viable candidates for further testing.

❼ An augmented reality framework for probe and drogue is required to conduct

further testing. It includes the mounting of physical stereo vision sensors with

the necessary orientation and baseline specified by the refueling pod. A good

camera calibration needs to be performed and tested with real-world imagery

to determine the accuracy of AARVP for pose estimation in a real refueling

environment.

❼ The physical camera setup on the refueler tanker can be mutated slightly due to

turbulence and wear, leading to higher pose estimation errors. Online camera

calibration methods needs to be investigated to correct intrinsic and extrinsic

errors during flight operations.
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