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Preface

This research combines the disciplines of three dimensional data collection,

spacial statistics, clustering, computer aided design and rapid prototyping into a

sizing system for aircrew oxygen masks. It is the first successful attempt at merging

these techniques for the purpose of producing representative faces for a sample popu-

lation. This research is a distinct departure from the methods of the past. The final

result provides a framework for creating beLter fitting masks and, as a consequence,

could reduce the number of custom masks produced every year.

Special recognition is given to Major David G. Robinson. His vision and guid-

ance was our impetus from conception to completion. It was his experience in the

use of spacial statistics and his vision for its practical application which was the

foundation for this research. We offer our collective thanks for all his patience and

assistance in bringing this project to completion.

We would also like to thank the members of our committee: Lieutenant Colonel

Paul Auclair, Captain Dennis Ruck, Captain Chris Hall, and Doctor Robert Beecher.

Their expertise involving related disciplines for this research was invaluable.

We extend our gratitude to Mr Jay Anderson for his service and expertise in

the use of the Stratasys Rapid Prototyper. We are also indebted to the men and

women of the custom ask shop, Aerospace Physiology Directorate, 645th Medical

Group, for their knowledge and assistance in the production of aircrew oxygen masks.

Airman First Class John Shedio and Technical Sergeant Doug Holty deserve special

acknowledgement for sharing their knowledge, time and energy in the creation of

the prototype masks. We are further obliged to the Gentex Corporation for their

hospitality in showing us how aircrew oxygen masks are currently produced.

This research was sponsored by the Life Support Systems Division, Human

Systems Center at Brooks AFB, Texas. The support of Lieutenant Colonel Clemens

has been much appreciated during this endeavor.
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Last, but not least, we would like to thank our families for their patience and

understanding during the past year-and-a-half. You made it all worthwhile.
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AFIT/GSE/ENY/93D-2

Abstract

Emphasis on the human-to-aircraft interface has magnified in importance with

the development of increased performance aircraft. The problem is fitting a largely

variant aircrew population to a minimum number of different sized aircrew protection

equipment. The focus of this research is the fit of positive pressure oxygen masks.

While thaere have been significant advances in the design of aircrew oxygen masks,

the sizing systems used for fitting these masks have not kept pace. Landmark-based

sizing systems have consistently fallen short of fitting a large enough population,

increasing the number of custom masks manufactured every year. The Life Support

Systems Division, Human Systems Center, Brooks AFB TX is the sponsor of this

research. The sponsor's interest in this research is based on their involvement in

the design and manufacture of aircrew oxygen masks: the current contracted manu-

facturing process for standard sized masks (MBU-5/P and MBU-12/P); the custom

mask shop located at Wright-Patterson AFB; and the future design and manufacture

of the COMBAT EDGE mask, MBU-20/P.

The objective of this research is to develop a process which will analyze and

group human faces,concentrating on the oxygen mask seal area, into a minimum

number of generic yet distinct face types. The shape and size, or form, of the face is

described by bending energies. This bending energy provides the features for clus-

tering using fuzzy arithmetic. Fuzzy clustering then permits the grouping of similar

face types, while distinguishing representatives for each cluster. The face tariffs are

the percentage of faces grouped under a representative face. The representative faces

are then transformed into three-dimensional solids using computer-aided design. A

rapid prototyper creates the solids or plugs from which MBU-5/P masks are made

and tested. The two major outcomes of this research are a formal morphological

xviii



method which allows the comparison between multiple faces, and a process to trans-

form anthropomorphic surfaces into a prototype mask mold.
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CREATION OF PROTOTYPE AIRCREW PROTECTION

EQUIPMENT BASED ON FACE ANTHROPOMETRY

L Introduction

An important element in maintaining air superiority is the human-to-aircraft

interface. The research presented here is the first attempt to apply state-of-the-art

data collection and reduction methods coupled with multivariate statistical analysis

and fuzzy clustering techniques to determine face tariffs for oxygen mask designs. A

face tariff is the percentage of faces grouped under a specific representative face type.

The sponsor for this research is LtCol Clemens, Chief of the Life Support Systems

Division, Human Systems Center, Brooks AFB TX.

1.1 Problem Statement

Current aircrew face masks, designed for a 1950's Caucasian male population

with smaller cranial dimensions, fail to adequately fit the increasingly diverse popu-

lation of aircrew members, as evidenced by growing demands for custom masks.

1.2 Background

Aircrew members depend heavily upon their oxygen mask. Unlike many air-

craft components, there are no redundant systems for lungs. Mother Nature did not

create electrical, mechanical, or hydraulic 'back-ups' to keep red blood cells enriched

with oxygen in the event of primary failure. It is in this spirit that the aircrew

member searches for that perfect fitting aircrew oxygen mask (AOM).

The two factors of historical significance making this quest more difficult are

the ever-expanding flight envelopes for aircraft and the changing aircrew demograph-
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ics. First, the modem jet fighter is capable of agility unthought of when jet aircraft

were introduced at the close of World War II. Unfortunately, every increase in per-

formance places an additional burden on the human operators, reaching the point

where a need arises for the interjection of human-factors engineers and physiologists.

These engineers design systems which attempt to prevent the onset of such maladies

as spacial disorientation and G-induced loss of consciousness (GLOC) in high per-

formance aircraft. Aircrews have also become keenly aware of the importance of a

well fitting oxygen mask in this high-G environment and are increasingly selective

in their choice of aircrew ensemble.

The second factor affecting the fit of current mask designs is the changing demo-

graphics among the flying community. When the United States Air Force (USAF)

was created in 1947, the overwhelming majority of aircraft operators were white

males. Forty-six years later, the flying community more accurately represents the

diversification of the American people with the inclusion of minorities and women.

Additionally, as Americans have been receiving better health care and nutrition,

they have been growing larger, with a proportional increase in head size (39).

As the need for a properly fitting mask has increased, it has also become more

difficult to find such a mask. The current operational solution for the most difficult

fit problems is the 64 5th Medical Group, Aerospace Physiology Directorate, Custom

Mask Shop or CMS, located at Wright-Patterson Air Force Base, Ohio. Creating

custom masks is a time consuming and archaic operation, producing masks with an

operating life of only 18 months. The change in demographics has increased the

workload of the custom mask shop; need now exists for a new sizing plan.

1.3 User Needs

The effect of poorly fitting AOMs affects all levels of users, resulting in three

identifiable needs. First, due to changing demographics and physiological evolution,

the USAF needs an updated sizing system for determining future mask designs. The
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second need is of the pilots and aircrews, who need better fitting masks to allow them

to maintain control over their advanced, high-technology environment. Thirdly, the

CMS needs standard size face plugs better representing the growing number of cus-

tom mask users (12), which would minimiz7e the time creating custom masks. Un-

fortunately, the CMS is also hampered by manufacturing techniques developed more

than 20 years ago for the MBU-5/P, the first positive pressure AOM developed by

the United States Air Force. This research analyzes the custom mask user database

for development of a sizing system because the CMS is located at Wright-Patterson

AFB, and is a convenient source for facial data in the form of plaster face casts. The

objective of this research is to meet all three of these needs. While the need for a

custom mask shop may never go away, the efforts of this research will reduce their

work load by providing the USAF with a better sizing system, and by providing

the CMS with designs that better represent a larger percentage of the custom mask

population. Finally, the aircrews will benefit by receiving better fitting masks.

1.4 Scope

The purpose of this research is to develop a process which analyzes and groups

the human face, concentrating on the AOM seal area, into a minimum number of

generic yet distinct face types. The outcome is the set of representative faces with

corresponding face tariffs. A face tariff is the percentage of faces representea by each

distinct face type. The representative faces are prototyped into three-dimensional

(3-D) 'c-e 'plugs' from which MBU-5/P masks are made. This study is limited to the

more difficult to fit face types: the growing number of aircrew members requiring

custom made MBU-5/P masks. The end product is a process that compares the

differences in form (shape and size) between faces, identifies the face tariffs, and

translates face measurements into a prototyped plug. The accomplishment of this

project also reduces the number of custom masks by producing standard plugs for
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custom mask users. The scope is limited to identifying and producing face plugs,

not modifying current face mask designs beyond the mask-to-face seal.

1.5 Research Objectives

The stated objective of this research is to develop a process which determines

the minimum number and optimal form of standard size aircrew oxygen mask de-

signs providing better fitting masks for a larger percentage of the aircrew population.

This research is organized to solve the problems of establishing a better AOM sizing

system, and reducing the workload for producing custom MBU-5/P masks. The re-

search objectives break down this effort into separate pieces, establishing incremental

goals, which when combined, provide solutions to the sizing system problems, ad-

dressing the users needs.

Collect/Prepare Data. The goal of this research objective is

to collect as many samples/faces as possible and prepare them for analysis. From

these samples, a protocol for measuring or digitizing the critical areas of the face

necessary for determining form description is made. The measurements are then

oriented to a common axis to ease comparison. Since the digitization is done by hand,

measurement errors are reduced by processing data through a smoothing routine.

Develop Form Characterization. The purpose of developing an

analytical method to describe the form of a face is to facilitate multiple face com-

parisons. Such an undertaking requires the review of existing anthromorphological

methods and other form analytical methods. Several alternatives exist, but the de-

cision to develop a new form characterization method is based on the type of data

available and the ineffectiveness of past methods. The desired method should also be

insensitive to measurement differences, and invariant to rotational or translational

differences between faces.
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Determine Characteristic Features. A feature is a term used to

describe the element used for comparison in clustering analysis, as opposed to what

might be normally considered a facial feature. Feature selection is the process of

taking the 3-D form description and reducing the data to a set of unique features

for each face. Two restrictions exist on the final feature set selected from each face.

First, the feature sets must be the same size for input into the clustering routine.

Secondly, the maximum number of features is dimensionally constrained by the sam-

ple size and the number of clusters. The key is identifying the optimum number of

features for comparison. There exists some definable minimum and maximum num-

ber of features. The minimum describes the number of features below which there

is insufficient data for clustering truly random data. More features provide more in-

formation which aid in better differentiating and grouping distinct faces. However,

at some point more features provide unnecessary information and only confound

the differences between individual faces. Due to dimensionality restrictions, more

features can actually cause classification rates to decrease. The selection of critical

features therefore characterizes the ability to define goodness of fit, where the critical

features uniquely identify the form of a face for comparison.

Cluster Faces. A cluster of faces is a group of faces with iden-

tifiable similarities. The clustering algorithm distinguishes differences/similarities

between faces and creates meaningful clusters. The number of clusters is an alter-

able, it can be changed at the discretion of the researchers, but is dependent on

several factors. The minimum number of clusters determines the point at which

distinct similarities between faces are captured. Below this minimum, faces less sim-

ilar may end up being grouped together. The maximum number of clusters chosen

is determined by cost. The cost is defined differently for various levels - obviously

the highest cost is already being paid at the custom mask shop where each request

receives a custom mask. At the Air Force level, the best way to ensure quality fit-

ting mask designs would be to provide custom masks to all aircrew members, even
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the 'normal' ones. Therefore, the maximum number of clusters is determined as a

trade-off between the cost of providing each aircrew member their own custom mask,

and achieving the best fitting mask per group of individuals. Once the clusters are

determined, the next task is choosing and describing the face which best represents

each group or cluster. This choice also affects the overall fit of the mask to members

in the cluster.

Prototype Mask. The best way to determine the achievement of

this research is to create a face mask for testing. First a face must be recreated from

the data, then a plug is built which the CMS uses to create an MBU-5/P. In essence,

the goal of this research objective is to create a prototype plug that the CMS can

use, from materials compatible to both the rapid prototyper and the custom mask

manufacturing process. The CMS cooperates in this effort by providing the raw

data and building an MBU-5/P out of the prototype plug. This face mask is used

for testing on the individuals from the cluster group.

Test Ability to Define Fit. The purpose of this research objective

is to take the prototype plugs and evaluate how well they fit on the sample faces.

This should provide information which verifies the applicability of the entire process

to categorizing the human face.

1.6 Constraints

There are several constraining factors which limit the ability to optimally sat-

isfy many of the research objectives. The greatest factors are the form of the source

of data, and the different types and availability of hardware and software tools.

The data consists of plaster face casts. These face casts represent the unique

set of hard-to-fit individuals. Therefore, the sample space does not include 'normal'

faces. Some faces are also noticeably distorted due to the method of creating plaster

face casts. Straws inserted in the mouth for breathing gave the face a sunken-in
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appearance, making the seal area narrower. Also, the plaster casts do not account

for skin deformation under high-G loads. Some areas of the face may deform more

easily than others, and these areas may require a 'tighter' fit. Finally, the choice of

where to measure the faces could also affect the outcome of the clustering. This is

dependent on the robustness of the form characterization method to inconsistencies

in the data from face to face.

The hardware and software are chosen based on availability, ease of use, and

learning curve. These three factors constrain development of the process. The hard-

ware selection is based on availability and speed to produce usable results. The

digitization requires a steady hand and including smoothing and orienting the data,

is labor intensive. The software is developed to avoid spending excessive time pro-

gramming. Therefore, most of the data reduction including feature selection is ac-

complished using MATHEMATICA routines. The clustering algorithm, which is

written in FORTRAN, is the only stand-alone code written for this project.

One outcome of this project is a process for categorizing faces into a minimum

number of face types. Once completed, this process might need to be periodically

re-accomplished, due to changing aircrew demographics and anthropometry. Con-

sequently, the AOM database needs to be updated and 're-clustered' at appropriate

intervals.

1.7 Data Source

This research uses the custom mask user population as the source of facial data

in the form of plaster face casts, since the CMS is conveniently located at Wright-

Patterson AFB. However, it is important to realize that the custom mask users

represent the unique sct of aircrew members, whose faces do not fit the standard

MBU-5/P masks. Their request for custom masks could stem from a variety of

reasons, from ethnicity or sex (recall the current mask designs are based on a study

involving only Caucasian males) to environmental factors (i.e., broken noses).
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The CMS currently makes 300 - 400 custom MBU-5/P masks per year. The

process is very long and manpower intensive. The first step in making a custom

mask is for the user to send a plaster face cast to the lab. This cast is created at the

local hospital/dental clinic and represents a 3-D positive image of the individual's

face. Some casts are omitted from the study due to face deformations during the

process of creating the plaster face casts.

The CMS technicians draw a line indicating the mask seal on the plaster face

cast. The line is used as a guide in the construction of a face plug which mates

to the inside of the hard-shell (see Figure 1.1). The plug is made from hydrocal

or dental stone, and after careful reshaping via scraping and sanding away excess

material, the plug is coated with two layers of an epoxy finish which protects the

surface and shape of the plug. This plug is dipped in latex, which after proper

curing procedures, is carefully peeled off and affixed to the hard-shell creating the

final mask. The most labor intensive part of this procedure is making the plug. The

technicians spend an extra 20 - 30 minutes to test a plaster face against existing

plugs (stored six years) to try and find a match, and avoid making another plug. If

the incoming face matches an existing plug, the face is classified as Category V. If

a face plug has to be made the incoming face is classified as Category I. Categories

II, III, and IV are replacements for the faceform, hard-shell, and both faceform and

hard-shell respectively, and do not require creation of a face plug.

1.8 Technical Approach

The purpose of this research effort is to statistically analyze anthropometric

data to support improvements in the design of aircrew oxygen masks (AOMs) and

use this information to create prototype representative custom masks. To accomplish

these goals, the subject face was defined in terms of its bending energy; that is, the

energy required to deform a flat plane to match the surface geometry of the face.

This energy is analyzed to determine several spacial features, like nose height, chin
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height, etc., of a human face. These features are then clustered and the resulting

groups are analyzed to determine standard aircrew mask designs. The final designs

are then created and tested. Figure 1.2 depicts the sequence of steps. A description

of each step in the process is summarized below. Further details are provided in

subsequent chapters.

Data Collection. Facial data is obtained from the plaster face

casts collected by the CMS. The mask seal line, line drawn by lab technicians, and

spacial delineators are used as the crucial measurements in the differentiation of face

types. A 3-D digitizer is used in continuous mode to obtain (x, y, z) coordinates

of the seal line. Additional points, providing spacial delineation within the seal

area, are taken as individual points called spacial delineators to better capture facial

features.

Data Preparation. Once the seal line and spacial delineator

data (together they define the seal area) are obtained, each file is oriented against a
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similar axis to facilitate input into the computer aided design (CAD) program called

Pro/ENGINEER (41). To accomplish this, an origin for each seal area is calculated

using center of mass calculations on the seal area data. Principal component analysis

is used to orient the seal area. Pro/ENGINEER is also used to check the seal line for

gross errors. These errors are removed and the line is then 'smoothed' transcribing

the rough, hand digitized curve to a smooth curve.

Characterize Form. The seal area data is statistically analyzed

via the form characterization method. This method provides a way for accurately

describing the form of each face and the features necessary for comparison.

Cluster. The faces are clustered using the features from the

form description. The cluster analysis produces group. of similar shapes. From

these groups, a number of tariffs are defined, and a representative for each tariff is

determined.

Prototype. The seal area data for each cluster or tariff represen-

tative is transferred to Pro-Engineer and mated with an outer shell of an MBU-5/P

mask - thus creating a solid image. Once this is accomplished, the data is transferred

to a prototyping machine, a Stratasys 3D MODELER, and a plug is created from

plastic or wax. The material of the prototyped plug is determined by its compati-

bility with the custom mask manufacturing process.

Test. Testing is done in a number of ways at a number of

different stages during the project. The tests include repeatability of digitizing the

seal areas, ensuring Category V's which use the same plug are grouped together, and

testing masks m®Je from the prototype plugs.
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1.9 Summary

The basis for this research is the identification of a problem requiring an an-

alytical solution approach. The ability to cluster and model face shapes is crucial

towards designing a robust face mask. On a smaller scale, the MBU-5/P mask is

the only mask that is custom manufactured for users that have unique or hard-to-fit

faces. By digitizing the seal areas, the faces can be placed in a form that is easily

manipulated and studied. The unique capability provided by statistical clustering

using multivariate spacial statistics allows comparisons to be made of the complex

and diverse data. By endeavoring to assign faces to categories or face types, this

project effectively develops a process to cluster 3-D shapes into distinct groupings

that will enable a few masks to better fit a larger population of individuals. The

CAD and prototyping capability puts the reduced data into a piece of hardware

for testing and custom mask manufacture. The end product enables human factors

design considerations to impact future aircrew protection equipment in a way that

will significantly improve the ability to successfully accomplish the overall mission.

The following chapters explain how these objectives are accomplished. Chap-

*ter II summarizes previous research in this area. Chapters III and IV develop the

process for characterizing and grouping human faces, and Chapter V explains the

methodology applied to the data and the results.
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II. Literature Review

This chapter provides a review of the literature pertaining to two main con-

ceptual areas of the present research. These areas are anthropometric studies of Air

Force personnel and current methods of form description.

The review of anthropometric studies focuses on the work done since 1950 to

measure and classify the craniofacial geometries of aircrew members. These studies

led directly to the sizes of aircrew oxygen masks currently used by the USAF, and

thus are at the root of present-day fit deficiencies. In the years since these studies

were carried out, new methods for analyzing geometric data that express shape and

size have been developed.

In exploring techniques for describing and analyzing form and form differences,

this chapter also examines several methods used in the field of morphometrics. These

methods are procrustes, finite element scaling analysis, Euclidean distance matrix

analysis and thin plate splines. The advantages and limitations of each method are

identified, and conclusions are reached on their usefulness in the present study.

2.1 Anthropometric Studies

The USAF has conducted several studies to collect physical measurements of

its personnel, and determine standard sizes of clothing and equipment. This section

reviews past and current efforts in the characterization of face shapes for the sizing

of aircrew oxygen masks (AOM).

2.1.1 1950 Survey. In 1950, a survey of anatomical measurements was

conducted by the USAF Anthropometric Laboratory, located at Wright-Patterson

AFB, in conjunction with Antioch College (28). The objective of the study was to

gather a large data base to be used in the design of cockpits, flying equipment, and

apparel. The data were gathered by a survey team that traveled to 12 Air Force bases
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around the country to take physical measurements of individual aircrew members.

This 1950's study measured 132 body features, including 41 from the face alone.

The tools used to conduct the study consisted of calipers, rulers, and tape measures.

The survey team consisted of 12 students from Antioch College who went through

extensive training to ensure the measurements taken by any one student could be

duplicated by any other. The goal of the study was to collect measurements and

demographic data from 5,000 aircrew members, but the outbreak of the Korean War

cut it short, with only 4,000 individuals measured.

The information gathered in the survey was analyzed and categorized. By

1957, the 41 head measurements had been cataloged according to relationships be-

tween different facial features. Correlation coefficients were calculated in an attempt

to determine which face measurements were strongly related and which were not

(9). The results of this statistical analysis led to the conclusion that the statistical

relationships between head and face dimensions are quite low, and that procedures

used in sizing equipment for use on other parts of the body; that is, selecting sizing

dimensions so that variability of other dimensions is substantially reduced; could

not be applied in this instance (22). Based on previous experience, the designers

selected overall face length and width as the critical dimensions, and decided upon

six standard sizes for the prototype MBU-5/P oral-nasal oxygen mask. The sizes

were designated short, medium, and long, with each of these having a narrow and

wide version. Other mask dimensions were fixed by taking the mean measurement

in each size group and adding or subtracting a standard deviation, depending on

the particular dimension. For example, the width of the mask in the nasal bridge

area was adjusted downward from the mean to insure a tight fit, to prevent leakage,

and reduce obstruction of the wearer's vision. The portion of the mask that fit over

the rest of the nose, however, was sized larger than the mean to avoid pinching in

this area where a snug fit is less critical. The percentage of personnel who would be

wearing a particular size, or tariffs, were also obtained from the statistical parame-
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ters computed in the survey. A fit test was conducted to confirm the validity of the

six sizes. This test found that the short-wide and the long-wide sizes were unneces-

sary, since the rubber face seal of the short-narrow and the long-narrow were pliable

enough to compensate for the greater width of an individual's face. The medium-

wide was retained because the testing indicated a relatively large percentage of the

population would require this size.

2.1.2 1967 Study. In 1967, another survey of anthropometric data was

conducted to support the design of flight equipment (56). There were 2,420 rated

male officers from 17 bases who had 187 body dimensions measured, of which 48 were

on the head and face. The study found that in the 17 years since the original survey,

head circumference had increased by 4.9mm, face length had increased by 2.7mm,

and face breadth had increased by 1.4mm, on average. These new data were used in

the same regression equations utilized in 1957, and again very little correlation was

found between any pair of dimensions.

These data were used in the design of a new mask to replace the MBU-5/P.

This time, face length alone was selected as the size discriminator, based on the

finding that, for the MBU-5/P, a choice of widths was unnecessary (39). Mean and

standard deviation values for each dimension were calculated within each of the size

groups, and these were applied in designing the overall mask geometry. This new

mask, designated MBU-12/P, was designed for higher G-loads and the incorporation

of chemical warfare gear. During the fit test and evaluation of the MBU-12/P in

1975, the overwhelming majority of aircrews participating in the study preferred the

new mask to the MBU-5/P in the areas of ability to valsaiva, ability to maintain

pressure at higher altitudes (greater than 14,000 meters), lateral head mobility, and

slippage during increased G-loads (13).

2.1.3 Current Focus. Since the 1970s, it has become apparent the MBU-

12/P and traditional G-suit would not be adequate for the future and, to some extent,
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current aircraft. The COMBAT EDGE system was designed to fight the potential

for G-induced loss of consciousness (GLOC) in high-G maneuvers. COMBAT EDGE

is composed of a modified HGU-55P helmet, a CSU-138/P anti-G suit, an external

counterpressure vest, and a MBU-20/P positive pressure oxygen mask. Studies have

been conducted on the entire ensemble. Although the MBU-20/P was said to ease

breathing during high-G flight profiles, a drawback cited was "distraction due to

mask leakage" (38). Mask leakage was typically found to occur around the nose

bridge and under the eyes, where the escaping high pressure oxygen dried the eyes

and interfered with vision. Clearly, quality of fit is still a critical factor in the design

of oxygen masks.

2.1.4 Summary. The analytical techniques used previously to determine

mask shapes and sizes relied on the tools and statistical methods of those times.

This will be the first Air Force research project to use digitized face geometry data

and to employ computer aided design (CAD) technology in processing that data. It

will also be the first to use modern form analysis techniques and fuzzy clustering to

classify face shapes.

2.2 3-Dimensional Form Description

This section covers four existing form analytical methods (also referred to as

morphological methods), all of which have been used for analyzing anthropometric

differences or similarities. The four methods discussed are: procrustes, finite element

scaling analysis (FESA), Euclidean distance matrix analysis (EDMA) and thin plate

splines (TPSs). The next few paragraphs describe some basics pertinent to form

analysis. Then, each of the four morphometrical methods researched are explained.

The explanations include how each method is used in form analysis, assumptions

made, and advantages and disadvantages of using the method. A summary covers

the applicability of each method to this research, and identifies the need to develop

a new form characterization method.
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Form. The 'form' of an object refers to both size and shape.

Form is represented by data collected from the object. The form of an object is de-

fined to be that characteristic which remains invariant under translation, rotation,

and reflection of the object. Shape on the other hand is defined to be the charac-

teristic which remains invariant under translation, rotation, reflection and scaling of

the object (35).

Morphometrics. Morphometrics is the study of form analysis.

It has been described as "the empirical fusion of geometry with biology" (3). "A true

merger of geometry and biology requires that a biological object can be unambigu-

ously reconstructed from the data collected to represent that particular biological

object" (46). Past U.S. Air Force morphometric analyses, such as the multivariate

approaches conducted in the 1950's, could not reconstruct the biological object from

the linear distances collected. The linear distances measured between landmarks

were thought to be points which best distinguished characteristics of the biological

object. Past analyses usually resulted in a series of traits that described particular

features but did not define the geometry of the object (46).

Landmarks. Landmarks must be consistently present on all

objects under consideration to be useful in analysis. The minimum criterion for

landmarks is that a landmark must be "consistently and reliably located with a

measurable degree of accuracy on all objects considered" (36). It is important to

note that landmarks alone do not provide all information pertaining to the form of

an object. When using landmarks in morphometric analyses, information on the

curvature and other surface features between landmarks is lost (46).

Coordinate Dependency. There are two general classes of mor-

phometric method analysis: coordinate-based and coordinate-free. In a coordinate-

based method,
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... results can be rotated to any coordinate system without change in or
loss of information, and a coordinate system is a necessary part of the an-
alytical machinery. Coordinate-based methods measure form difference
as a deformation from a reference to a target form, or as the fit resulting
from the superimposition of two forms (46).

In the coordinate-based method, any arbitrary coordinate system can be chosen. On

the other hand, coordinate-free methods analyze form differences without reference

to any coordinate system. This can be accomplished by using distances between

landmarks as in EDMA. There is a very subtle difference between the two classes

which does not become apparent until comparisons between objects are made. It is

particularly distinguishable in comparisons of patterns of form-change through time,

such as growth analyses of biological objects.

2.2.1 Procrustes. Procrustes is a method which attempts to quantify the

differences between the forms (shapes and sizes) of two objects (35). It is named

after the mythological Greek character who would tie all travellers that crossed his

path to an iron bed. If the traveller was shorter than the bed, Procrustes would

stretch his limbs until he fit it. If the traveller was longer than the bed, Procrustes

would hack off whatever bits hung over the end (7).

The method of procrustes requires that the two forms being compared have a

one-to-one correspondence of landmarks. The landmarks must be points that can

be clearly and distinctly defined on both the reference form and the target form;

that is, there must be a one-to-one correlation between the landmarks on the two

objects. In the method of procrustes, one places an object directly over another

object and calculates the squared distances between corresponding points. These

squared distances are summed and the resulting number is a measure of how different

one object (the target object) is from some reference object. In equation form, this
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summation is:

,d2 (L,, A,) = measure of similarity (2.1)

Where:

d2(Li, A,) = (XL, - XA,) + (YL, - YA.)2 + (ZL, ZA,) 2  (2.2)

and Li is point i on the reference object, A, is point i on the object to be transformed,

and n is the number of points on each object. In matrix form, this equation is

equivalent to calculating the trace of:

d2(L 1, A,) 0 0 ... 0

0 d2(L 2, A2) 0 ... 0

0 0 d 2 (L 3 , A 3 ) ... 0

0 0 0 ... d2(Ln, An)

The procrustes optimal position is obtained by rotating and translating the target

object until a minimum sum of squared distances between corresponding landmarks

of the target and reference object has been achieved.

2.2.1.1 Procrustes Example. A simple example of procrustes analysis

follows. Figure 2.1 shows four simple objects. Object L is the reference object

and objects A, B, and C are the objects to be transformed. Figure 2.2 is object

A placed directly over object L. The positioning of one object over another can

take on different forms. In ordinary procrustes, they are positioned such that each

point on the transformed object is equidistant from the corresponding point on the

reference object. The squared Euclidean distances between corresponding points are

calculated, d2(Li, Ai) = 1.25, i = 1,4 and these distances are summed together,
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i= d (Li,Ai) = 5.0. The number 5.0 is an indication of how different object A is

from object L.

2.2.1.2 Disadvantages. Procrustes analysis has some inherent weak-

nesses. The first shortcoming is in the meaning of the final answer, 5.0. This solution

is not unique between objects L and A. Figure 2.3 is the procrustes comparison of

objects B and C with object L. Both these objects also yield a final solution of 5.0

and yet they are not the same size and shape as object A. Analysis of this shortcom-

ing brings to light other problems. Once a sum of squared distances between points

has been calculated, there is no method for recreating the original figure using this

single scalar value. This value is an indication of a global shape change between two

objects and gives no indication of local variations in shape. Lastly, to use procrustes,

obviously there needs to be the same number of landmark points on both objects

being compared.

In the field of morphometrics, the objective is to transform the biological form

of one entity into another similar entity and measure this sum of squared distances.

For the task of characterizing face shapes, the challenge is to calculate distances

between identifiable and representative landmarks which give an indication of how

alike two faces are. The problem is identifying landmarks. On the human face, there

are not many clearly identifiable points which can be matched without palpation of

the skin between subjects. The face is composed of many intersecting curves which

have a high variability between subjects. Even if it was feasible to identify definitive

landmarks among all humans, it is possible for two faces to have completely different

appearances as judged by the human eye and have the same procrustes measure, as

seen in the previous example. Local facial variations may be equally or more im-

portant than global variations. Procrustes analysis does not reveal any information

about local variations. For these reasons, lack of clear, consistent landmarks and the

lack of an indication of local variations, procrustes analysis is inappropriate for this

research.
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Figure 2.3 Procrustes Example 2: (a) Transforming object B into reference object
L (b) Transforming object C into reference object L.
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2.2.2 Finite Element Scaling Analysis. Finite element scaling analysis

(FESA) is another method of comparing the geometries of two physical forms. It is

closely related to the finite element analysis used in structural engineering to predict

the deformation of a structure after the application of a set of forces (46). In FESA,

a comparison is made between a reference form consisting of a set of landmarks on

an object, and a target form consisting of the same set of landmarks on a second

object.

2.2.2.1 General Description. As with the procrustes method, the

landm scs must be points that can be clearly and distinctly defined on both the

reference form and the target form; that is, there must be a one-to-one correspon-

dence between the landmarks on the two objects. The landmarks are connected by

line segments to make a series of finite elements that together make up the model

under study. In three-dimensions, these elements typically are four-noded tetrahe-

drons or eight-noded cubes. The deformation, or morphological strain, required to

produce the target form from the reference form is calculated element by element

and expressed as a 'form tensor'. Note that in FESA, the term 'strain' simply means

the difference in form between two objects, and is not a result of the application of

external forces.

The form tensor is a symmetric 3-by-3 matrix (when dealing with three-

dimensional forms) containing all information about morphological change occurring

local to each landmark considered. Orthogonal principal directions, or eigenvectors,

can be extracted from the form tensor, and these identify the directions of maximum,

intermediate, and minimum difference between the two forms. The eigenvalue as-

sociated with each principal direction gives the magnitude of the deformation along

that axis. Thus, six values (three angles and three linear distances) are required to

completely describe the strain at each landmark. This information can be used in

any number of ways depending on the aim of the particular study. For example, the

change in distance between each pair of landmarks may be calculated.
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2.2.2.2 Advantages. FESA is a coordinate-based method in that the

two forms being compared must have their landmark positions measured in the same

global coordinate system. But the method has the advantage of being registration-

free, meaning that each form can have any orientation within that coordinate system,

with no regard for how its landmarks align with those of the other form. Translation

and rotation in going from the reference to the target form are eliminated. Deforma-

tions are measured independeut of any specific coordinate system and the movement

of the landmarks is not expressed relative to a specified center (45). Rather, differ-

ences are measured local to each landmark, and can be rotated into any coordinate

system desired. This gives FESA the valuable ability to localize morphological dif-

ferences between objects to the areas around particular landmarks, and to identify

the anatomical dimensions along which two objects differ the most and the least.

2.2.2.3 Disadvantages. As with procrustes, most studies involve

comparing multiple target forms, one at a time, with the reference form. The intra-

landmark dimension that shows the greatest difference between the reference form

and a particular target form is the best descriminator between them. However,

that dimension is not necessarily the best descriminator between the reference form

and any other target form in the group under study. This requires the selection of

landmarks defining anatomical dimensions that are best for a population as a whole,

and therefore not necessarily optimum for any individual target form. The larger

the population under study, the more difficult it becomes to select landmarks that

adequately distinguish between all of the forms.

The dependence of FESA on landmarks makes it unsuitable for this research.

As mentioned previously, the geometry under consideration, the human face, is not

easily described by landmarks. The line of contact between the oxygen mask seal

and the wearer's face ig a complex, three-dimensional curve. It varies widely from

face to face, and the selection of landmarks that adequately capture the geometry

of each face is impossible.
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2.2.3 Euclidean Distance Matrix Analysis. This section gives a general

description of Euclidean distance matrix analysis (EDMA). Discussion includes de-

velopment of the two basic matrices used in E1)MA, the form matrix and form differ-

ence matrix. Examples are added to demonstrate how EDMA is applied to compare

objects. The major advantages and disadvant ages of this method are highlighted in

the summary.

2.2.3.1 General. EDMA, like procrustes and finite element scal-

ing analysis (FESA) described in previous sections, is also based upon landmark

data and also uses matrices to track information. EDMA is a coordinate-free mor-

phological analysis technique and being coordinate-free, this method is indifferent to

rotation, translation and reflection. EDMA can be used for two-dimensional or three-

dimensional data. Discussion on EDMA covers the more difficult three-dimensional

applications: however, for simplification, three two-dimensional examples are given.

Given k landmarks characterized by (x, y, z) coordinates in three-dimensional space,

an object A can be represented by a k x 3 matrix A:

Xi Yi ZI

X2 Y2 Z2

A X 3 
YJ3 Z3

X 4 Y4 Z4

Xk Yk Zk

The information contained in this matrix is used to calculate the form matrix, a

basic matrix calculated for every object considered in EDMA analysis.

2.2.3.2 Form Matrix. Given a matrix A of k landmarks, the Eu-

clidean distance matrix, or form matrix (FM), can be calculated. The Euclidean

distance matrix is a symmetric k x k matrix where each element (i, j) corresponds to

the Euclidean distance between landmarks i and j. This matrix contains information
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on both size and shape of the object and is mathematically designated by F. The

FM is a function of the matrix consisting of landmark data, A, which represents

object A:

0 d(1, 2) d(1, 3) ... d(1, k)

d(2,1) 0 d(2,3) ... d(2,k)

F(A)= d(3,1) d(3,2) 0 ... :-[F,,(A)J (2.3)

d(k - 1, k)

d(k, 1) d(k,2) ... d(k,k- 1) 0

where i =1.,k; j = 1.,k; and d(i,j) = V/(Xi- xi), + (yi - yj) + (zi - zj),

(Euclidean distance between points i and j)(36).

2.2.3.3 Comparison of Two Objects. To compare one object to an-

other, the two objects must have the same number of landmarks, and the landmarks

must be in the same order for comparison; this means that in the k x 3 coordinate

matrix A, a landmark on object A must have a corresponding landmark on object

B. Of course the (x, y, z) data will most likely be different. For instance, the tip of

the nose on one person must be compared to the tip of the nose on another. An-

other matrix, the form difference matrix (FDM), is created to allow the comparison

between two objects. The FDM, D, is a function of two matrices, A and B, where

A and B represent the landmarks of objects A and B: D(A,B). When comparing

two objects, one is designated as the reference. For discussion purposes the reference

object is A, and B represents the target object used for comparison. The off diagonal

elements of the form difference matrix D(A,B) are generated by calculating a ratio

of distance between two landmarks in object A with the corresponding distance in

object B. The terms along the diagonal of the FDM are defined to be zero. The

(i,j)th element of the form difference matrix is a ratio of the (i,j)th elements of the
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form matrices of object A to object B when i j:

D(A,B) = [Di(A, B)] = [F,3(A)/F,,(B)] when i $ j

D(A,B) = [Dj(A, B)] = 0 when i = j

F12L(Al FQ 1(A ... E0 F12 (B) F,(B)F

F( ......

F2(B) -'kk2(B),-(

The form difference matrix is a symmetric matrix. When all off-diagonal elements

are equal to one, the two objects have the same form, i.e. the landmarks of objects

A and B have identical locations. This is not readily identifiable directly from the
individual (z, z) coordinate data because the objects may have different coordinate

systems. If all off diagonal elements are equal to some constant (other than one),

then objects A and B have the same overall shape, but differ in size (scaling of one

object). Typically, the off diagonal elements of the FDM are different. Their values

indicate whether the Euclidean distances between the landmarks on object B are

greater than the corresponding distances for reference object A (element Dco would

be less than on oe or less than the corresponding distances for reference object A

(element Dij would be greater than one). By calculating the FDM and comparing

all possible linear distances, EDMA provides a means for identifying 'local' areas of

form difference (14). Only local areas can be evaluated since the analysis is limited

to landmark information. No information regarding the areas or curvatures between

landmarks on either object can be obtained. To illustrate the methodology a number

of two-dimensional examples follow.

EDMA Example 1: Two objects of the same form. This example

shows how EDMA easily detects two objects of the same form. Two squares A and
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Fiue 2.54 (.5) Exmpe4:.woobetsofth. smefom

II

B are given in Figure 2.4. They are the same size and shape, but have different

coordinates. The comners of the squares represent landmarks. Objects A and B could

come from two different coordinate systems, but are shown together for convenience.

The matrices of the (x, y) coordinates of the four landmarks for A and B in Figure

2.4 are shown below. Note that the first row of each matrix contains the coordinates

of landmark 1; the second row, landmark 2; etc.:

2(5 11 8

6 5 13 11.4641
A~ B =
6 1 16.4641 9.4641

2 1 14.4641 6

The next step is creating the form matrix for each object. The distances between ev-

ery pair of landmarks on each object are calculated using Equation 2.3. For example,

the distance between landmarks and 3 for object A is 5.6569;
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this is element F13(A). The FMs of objects A and B are:

0 4 5.6569 4

4 0 4 5.6569
F(A) =

5.6569 4 0 4

4 5.6569 4 0

0 4 5.6569 4
4 0 4 5.6569

F(B) =
5.6569 4 0 4

4 5.6569 4 0

In order to compare objects A and B, the form difference matrix must be calculated

by using Equation 2.4. Using A as the reference matrix, the (i,j)lh element of

the FDM is found by creating ratios of the (i,j)&h elements of the form matrices
calculated above. For example, D13 (A, B) -F 3 (A) = 5@. The FDM of objects A

F13 (B) -SAM6 M fobet

and B is:

0111

D(A, B) =
1101

1 1 1 0

The off-diagonal elements of the FDM equal one. This illustrates that A and B do

indeed have the same form (shape and size), regardless of any rotation, translation,

and reflection which might be present.

EDMA Example 2: Two objects of the same shape. This ex-

ample demonstrates how EDMA is able to capture the shape similarity and the size

difference of new objects A and B. Figure 2.5 shows two squares A and B which
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(141.4641, 6)

A

Figure 2.5 EDMA Example 2: Two objects of the same shape.

are similar to the first example. However, where object B has remained exactly the

same, A has increased in size. The matrices of the (x,y) coordinates of the four

landmarks of objects A and B are shown below:

0 7 11 8

8 7 13 11.4641
A B=

8 -1 16.4641 9.4641

0 -1 14.4641 6

Again, the next step is creating the form matrix for each object where the distances

between every pair of landmarks on each object are calculated. Because object B

did not change, the calculation of F(B) is the same as in Example 1. However, the
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FM of object A has changed. Both FMs are shown:

0 8 11.3137 8

8 0 8 11.3137
F(A) -

11.3137 8 0 8

8 11.3137 8 0

0 4 5.6569 4

4 0 4 5.6569
F(B) =

5.6569 4 0 4

4 5.6569 4 0

To compare A and B, the form difference matrix is calculated. Using A as the

reference matrix, the (i,j)th element of the FDM is found by creating ratios of the

(i,j)th elements of the form matrices above. For example, D13(A,B) = AlF13(B)

19.Lria = 2. The FDM of objects A and B is:5.6589

0222

2022

D(A, B) =
2202

2220

Note that the off-diagonal elements are equal to two. This indicates that the reference

object A is the same shape as object B, but they differ in size: A is twice as large

asB.

EDMA Example 3: Two different objects. In this example,

object A is the same as in Example 2, but now, object B is altered; it is now four sided

and non-rectangular. Again, the four corners of both objects represent landmarks,
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Figure 2.6 EDMA Example 3: Two different objects.

and the following matrices represent the (x, y) coordinates of the landmarks for

objects A and B in Figure 2.6:

0 7 10 10

8 7 19 10
A- B-

8 -1 20 7

0 -1 12 2

Calculating the FMs for both objects is the next step. Because object A did not

change, the calculation of F(A) is the same as in Example 2. However, the FM of

object B has changed, and for convenience both FMs are shown:

0 8 11.3137 8

8 0 8 11.3137
F(A) 8

11.3137 8 0 8

8 11.3137 8 0
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0 9 10.4403 8.2462

9 0 3.1623 10.6301
F(B) =

10.4403 3.1623 0 9.4340

8.2462 10.6301 9.4340 0

To compare A and B, the form difference matrix is calculated. Using A as the

reference matrix the FDM of objects A and B is:

0 0.8889 1.0837 0.9701

0.8889 0 2.5298 1.0643D(A, B) =-

1.0837 2.5298 0 0.8480

0.9701 1.0643 0.8480 0

As the FDM shows, objects A and B are not the same form. The most significant

change of distances between landmarks is between points 2 and 3. This is showu by

the high value (2.5298) of element D 23 (or D 3 2 because of symmetry) in the FDM

matrix.

2.2.3.4 Comparison of Multiple Objects. To compare more than

two objects an overall reference object must be established. The reference object

is compared to each target object one at a time. The objects are then related by

how they differ from the reference object. Typically in morphometric studies the

objects are pre-segregated and the reference object is calculated as the mean FM of

the sample which contains the largest number of objects. An example of this type

of pre-segregation is the study of skull growth in Cebus apella (a certain type of

monkey) conducted by Corner and Richtsmeier (14).

In this study, the skulls were first segregated into six different age groups

and then each age group was divided by gender (a total of 12 groups). To make

comparisons within each age/gender group, the average or mean of the Euclidean
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distances within each individual form matrix for each of the 12 groups was calculated.

This resulted in 12 mean reference forms, one for each group. To compare all skulls

to each other (no matter what age or gender), the reference object was chosen to be

the mean form matrix from the group with the greatest number of objects.

2.2.3.5 EDMA Summary. Euclidean Distance Matrix Analysis is

a type of morphometric analysis which is coordinate-free but landmark dependent.

When comparing objects, the same number of landmarks must be present on each ob-

ject, and there must be a one-to-one correspondence between the landmarks. EDMA

can be used to compare multiple objects, but only relative to a reference object.

When comparing objects within a sample, the reference form can be determined by

pre-segregation of the sample and taking the mean of the group with the largest num-

ber of objects. The advantages of EDMA are the simple calculations involved and

the coordinate-free property. Disadvantages include the dependency on landmarks

and requirement of a reference object to compare multiple objects.

2.2.4 Thin Plate Spline. The thin plate spline (TPS) was first used for an-

-thropometrics by Fred Bookstein (4, 5); the following section draws heavily from his

work. The TPS is an algebraic method for describing the deformation of landmarks

on a target object to corresponding landmarks on a reference object.

2.2.4.1 Bending Energy. A surface spline may be visualized by bend-

ing a flat thin steel plate to pass through each landmark of an object. The thin plate

spline is the unique spline which requires the lowest physical bending energy for the

plate to pass through all the points.

The bending energy is a function of the work done against the elasticity of

the plate and not against gravity. Therefore, translation and rotation of the plate

require no bending energy. The bending energy at any point is proportional to the
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curvature of the plate at that point. At points not defined by landmarks, the plate

is an approximation of the figure at that point.

If z(x, y) is the height of the TPS, then, the total curvature is found by inte-

grating the second derivative of z over the entire plate. Minimizing the function:

&Z + ) 02 2 +(& )2 ] 21 d
Total Curvature +=2 + dxcdy (2.5)

describes the plate with the minimum required bending energy. The solution will give

the final form of the plate. Recall that bending the plate requires energy; sharper

bends have higher second derivatives and thus higher bending energies.

2.2-.4.2 The U(r) Function. The total curvature will be minimized if

the biharmonic equation is zero. The biharmonic equation:

A2U -- 92 + a2yU} U
/3X2 32 22

(a2u\ 2 + ( a2U )2 +(a2uV2
492ox~y Y 2J

=0

describes the minimum bending energy steel plate. The plate is lofted in the z

direction a distance U = U(x, y) above a landmark on the x, y Cartesian plane. The

fundamental solution is given by:

z(x,y) = -U(r) = -r 2 1n r 2  (2.6)

where r is the Euclidean distance v'xTjy, z(x, y) is the height of the plate above

the plane z = 0, and the negative sign is for convenience (4). Equation 2.6 is valid

if and only if the object is made up of one landmark. When (x, y) is the landmark
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coordinate, z(x, y) is the height of the landmark. When (x, y) is not at the landmark,

z(x, y) is the estimated height of the object at that point.

The overall solution to the biharmonic equation is a linear combination of U

at each landmark. In the overall solution, ri0 is the distance from the point being

estimated (xo, Yo) to the landmark at (xi, ye). For a figure described by n landmarks

the overall solution is the spline:

z(xoyo) = tbU(rio) + tb2 U(r2O) + .-- + tU(ro) (2.7)

where tbi are weighting factors or constants of integration. For convenience, the

subscript '0' is often dropped.

2.2•.4.3 Examples. The following examples illustrate the algebra of

thin plate splines. For simplicity, the first two examples make assumptions about

the form of the data. The general solution to the TPS problem is then found and

illustrated in the third example.

2.2.4.4 TPS Example 1: Constant Displacements and Linear Regression

to x, y Plane. This example illustrates the simplest possible thin plate spline: the

landmarks are lofted some fixed distance above or below the x, y plane, and the

ordinary least square regression of the data should then be the x, y plane.

One such data set is a square of side length V/2 lofted a distance ±2 at each

vertex. The landmarks of the object are given by (0, 1, -2), (-1,0,2), (0, -1, -2),

and (1,0,2).

Next, it is confirmed that the least square regression onto the arbitrary plane
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z c C, + c~x + c3y is indeed the x, y plane:

AC= z

X1 Y " z "

1 Z2 Y2 Z2
C2X3 Y3 Z3
C3

L z 4 Y4 L z4.

1 0 1 -2
Cl

[C -2
C3

1 1 2

C2 = (ATA)-lATz

C3.

C 0 (2.8)

Therefore the linear regression gives z = 0 + Ox + 0y = 0 everywhere. The thin plate

spline can now be calculated:

z(x,y) = tblU(rl) + tb2 U(r 2 ) + tb3 U(r 3 ) + tb4 U(r 4 ) (2.9)

where tbi are weighting factors to force the plate to pass through the data. In this

example 61 = -6 2 = tb3 = -wb4 = wb since all landmarks are lofted by the same

distance above and below the x, y plane. Substituting in the data gives:

z(x,y) = [U(/x2+(y-1)2)-U( ((x+1)2+y2)

+U(lx2 + +(y+ 1)2) - U( (x-1)2 + y2)] x tb (2.10)
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Evaluating the right hand side at the landmark (1,0,2) and solving for tb gives:

Z(1,0) = ×- U(VA) + U(V) - U(0)] x 6

2 = [2ln2-4ln4+21n2-0]xtb

tb = -0.7213

where lir r2 In r2 = 0. With the weighting factors * found above, the height of ther2 -_,0

plate at the following points (which are coincident with landmarks) is:

x y z

0 1 -2

-1 0 2

0 -1 -2

1 0 2

Therefore, the plate passes exactly through each landmark. Recall that the land-

marks are points from a three-dimensional object. The TPS can also be used to

estimate the shape of the object at points where landmark data is not known. For

example, at the point (0.5,0.4) the estimated height of the figure is z(O.5,0.4) =

[U(v/O.6)-U( 2-.4-1)+f' 2•-..21)-U(v0V _41)16 = (-0.3034)x(-0.7213) = +0.2188.

2.2•.4.5 TPS Example 2: Variable Displacement. In the previous

example the landmarks are lofted above the x, y plane by ±2. In this example the

restriction of fixed lofting distance is removed. The first step is to calculate a spline

which passes exactly through all landmarks. The second step shows that the spline is

the minimum bending energy spline (i.e., the TPS). The data considered is (0,1, 1),

(-1,0,2.4188), (0,-1, 1), and (3,0,2.5463).

2-27



The TPS is given by:

z(X, Y) = t~i U(,2 2+ (y - 1)ý2) + t2U( (z-+ 1)2 +y2)

The four weighting factors can be found from the fact that the plate must pass

exactly through the four landmarks. Solving the four simultaneous equations for the

weighting factors gives:

Z(Xi,,YO) Ufru() U(rl2 ) U(rl3 ) U(r,4) ta,,

z(X2,Y2 ) U(r 2 l) U(r 22) U(r 23) U(r24 ) 62,

-Z((0,1) - 0 U(v'3) U(Ii) U(4'-) " ,63

Z(-1,0) U(Vr) 0 U(Vr ) U(Vr-) 64

z(0,-1) U( /04) U(v2/) 0 U(V/f') W3

z(3,0) j U(vf"0) U(v'f-) U(V/i'0) 0 .tb4

1 0 21n2 41n4 10 In 10' t"1 "

2.4118 21n2 0 21n2 161n 16 t62

1 41n4 21n2 0 10 In 10 t3

2.5463 10 In 10 16 In 16 10 In 10 0 .64.

-1. . -0.1243

W2 0.1864 - (2.12)
W03 -0.1243

6 4 .. -0.0621

The next step is to show that the spline (Eq. 2.11) along with the constants from

Equation 2.12 relate to the minimum bending energy spline. Equation 2.5 gives

the total curvature (i.e., bending energy) of the plate. From Bookstein (5:pp. 33-
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34) the total curvature is the sum of the curvature in the z and y directions taken

independently and is minimized if E w = E tix = E 4 = 0. For the above data:

Etb = -0.1243+ 0.1864 - 0.12,.3 + 0.0621 = 0 (2.13)

Stz = (-0.1243)(0)+ (0.1864)(-1)- (0.1243)(0)+ (0.0621)(3) = 0 (2.14)

Eft = (-0.1243)(1)+ (0.1864)(0)- (0.1243)(-1)+ (0.0621)(0)= 0 (2.15)

showing that the spline is the minimum bending energy TPS.

2.2.4.6 General Thin Plate Spline Equations. In this section the

general equations for a thin plate spline are developed. In the general case, the least

squares regression of the data is not necessarily the x, y plane. As stated earlier,

the bending energy of a thin plate spline should be independent of translation and

rotation of the entire plate. To account for this, the general TPS equations determine

an optimal plane through the data and then calculate the deviation from that plane.

In the previous examples, the thin plate spline is given by:

z(x,y)= 3 U(ri)tbi (2.16)
landmarks

which is the height the plate is lofted above the x, y plane. For a general data set,

the data might not deviate only from the z-plane. The data could contain an average

tendency described by the plane:

z = c + c2 x + c3 y (2.17)

The TPS is then:

Z(X, Y) = C1 + C2 X + C3 Y + U(rj)ti (2.18)
landmarks
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The thin plate spline is a valid interpolate of the data for any point (z, y). However,

there are n + 3 unknowns (cI, c2, c3 , tb, • • •, tin) which must be calculated. The first

n equations come from z = z(x, y) which is known at the n landmarks. The last

three equations come from E tb = E = E tby = 0. The equations are:

z" / 1 r1  3" "Wi

" -- K ---

Sn Y n(2.19)

0 1 ... 1 0 0 0 c,

0 XI ... X, 0 0 0 C2

Lo Y ... Yn 0 0 0 J C3J

where:
0 U(r 1 2 ) U(r 1 3 ) ... U(rln)

U(r,-) 0 U(r2 3) ... U(r 2 n)

K= U(ra,) U(r 3 2) 0 (2.20)

: : "-. U(rn-l,n)

Un1) U(rn2) ... u(rn_) 0

These equations can be written in a more compact form by defining:

1 • 1  3(l

1 Z2 Y2

P = Y(2.21)

1 Z n..

L= [T ] (2.22)

Y [61 "" tbn CI C2 c3 ]T (2.23)

=z ... z" 0 0 0 IT (2.24)
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then:

i =Ly (2.25)

where 0 is a 3 x 3 matrix of zeros. Since all the elements of L and i are known for

a given data set, the constants y are calculated from:

y = L-'i (2.26)

With the constants calculated, the position of the figure at any point can be inter-

polated from the thin plate spline (Eq. 2.18).

It is important to note that L- 1, the upper left n x n elements of L- 1, is the

bending energy matrix. It represents the energy required to deform a flat plate to

the data set under the assumption that U(r) = r2 In r 2 (5:p. 319). For the general

thin plate spline, the bending energy matrix L- 1 completely describes the form of

the figure.

2.2•.4.7 TPS Example 3: General TPS Calculation. In this example

the thin plate spline is found for a general set of data. The data set considered

is (2,4,7), (3,10,2), (-4,7,1), (7,-2,-4), and (4,1,5). The spline constants are

calculated from Equation 2.25:

"z(2,4) 0 U(,7) U(vA) U(vA6i) U(V913) 1 2 4 thb

z(3, 10) U(v'3) 0 U(v'"8) U(-Vi"6) U(V82) 1 3 10 62

z(-4,7) U(v'i) U(vrI) 0 U(,2/-62) U(VI) 1 -4 7 63

z(7, -2) U U(,A I-) U (-,f 6) U (-,4 0) 0 U(,/1-8) 1 7 -2 tb4

z(4, 1) U (A'T35 U (,./82) U(v../iO) U(V'rh8) 0 1 4 1 lbs
0 1 1 1 1 1 0 0 0 cl

0 2 3 -4 7 4 0 0 0 c2

0 4 10 7 -2 1 0 0 0 J c3 J
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7 0 37In 37 451n45 61 In61 13a I13 1 2 4 -hii

2 37 In37 0 58In 58 1601n 160 821n82 1 3 10 wM

1 451n45 581n58 0 2021n202 lOOhulO0 1 -4 7 i43

-4 61lin6l IOInISO 2021n202 0 IS8IS 1 7 -2 it

5 131n13 821n82 1001nI00 18In 18 0 1 4 1 It

0 1 1 1 1 1 00 0 co

0 2 3 -4 7 4 0 0 0 C2

0 4 10 7 -2 1 0 0 0 J C3

1h, " .0.0326

t -0.0101

th -0.0240

114 -0.0457 (2.27)

Ibb 0.0471

Cl 22.121

C2 -0.3381

C3 0.2234

The height of the plate at any (x, y) coordinate can now be calculated from the thin

plate spline (Eq. 2.18):

z(XY) = tbi U ( x(x- 2)2 + (y- 4)2) + tb2 U(V (a- 3)2 + (y - 10)2)

+6i3 u(V(x +4)2 + (y -7)2) + 64 u(V(x -7)2 +(y + 2)2)

tbu(V(x--4)2  -12 +C1 +C2 X+C 3 Y (2.28)

2.2.4.8 Comparison of Objects. Up to this point, thin plate splines

have been used to interpolate the coordinates of one object. This interpolation can

be thought of as shifting the z coordinate of the object from z = 0 to a nonzero

value.

An equivalent way to think of the z shift is to consider a reference object with

coordinates (xi, yi, 0) and a target object with coordinates (xi, yi, zn). In this case

the x shift and the y shift arv- zero since the x and y coordinates of the reference and

target objects are the same. The z shift is a measure of the energy required to bend

a thin plate through the reference object to a thin plate through the target object.
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When interpolating an object, the same x and y coordinates are used for the

'reference' and 'target' object and the z shift is calculated. The z shift represents

the difference between the reference and target objects. Similarly, differences in z

and y coordinates can be used to calculate the x shift and the y shift.

For two-dimensional objects, the x shift and the y shift completely describe the

differences between the reference and target objects. For three-dimensional objects,

the x shift, the y shift, and the z shift completely describe the differences between

the reference and target objects. The following examples demonstrate how the shifts

are calculated and interpreted.

2.2.4.9 TPS Example 4: Objects of Identical Form. This example cal-

culates the x shift and y shift for two two-dimensional objects. The reference object

has coordinates (2,4), (3,10), (-4, 7), (7, -2), and (4, 1) which are the (x,y) coordi-

nates considered in TPS Example 3. The target coordinates are (3.83013, -3.36603),

(7.69615,1.33013), (0.133975,2.23205), (5.16025, -11.0622), and (4.06218, -6.9641).

The target object is the reference object translated +3 units in the x direction,

translated - 5 units in the y direction, and rotated +30 degrees about the z - axis.

Therefore, the reference and target object have the same form.

By analogy to Equation 2.19, the constants for the x shift are given by:

" " , T / 1 Y1 y" "I.l
: - K -• : :

=n (2.29)

0 1 ... 1 0 0 0 c.i

0 X1  -- ,, 0 0 0 Cx2

0 J l "'" Yn 0 0 0 . C43 J

where x' are the x coordinates of the target object, L is calculated from the reference

object, and *', and c,, are the weights for the x shift. Substituting in the coordinates
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of the objects gives:

"3.83013 0 371n37 451n45 61 In61 131,n13 1 2 4 Isl

7.0615 371n37 0 58In58 160In 160 82In82 1 3 10 4,2

0.133975 451n45 58In 5 0 2021n202 lOOInlOO 1 -4 7 163

5.16025 611n61 1601n160 2021n202 0 181iSll 1 7 -2 264

4.06218 13JIn13 821n82 lO0In 100 18In 18 0 1 4 1 4*6

0 1 1 1 1 1 0 0 0 C&I

0 2 3 -4 7 4 0 0 0 c&2

0 4 10 7 -2 1 0 0 0 J C&3

162 0

143 0

t64 (2.30)

145S 0

C21 c0.096076

Cz2 0.866025

L Cz3 . 0.5 J

Substituting the constants into the TPS equation gives the x shift:

f,(x, y) = 0.098076 + 0.866025z + 0.5y (2.31)

where x and y are the coordinates of the reference object. Similarly, the y shift is:

fv(x, y) = -5.83013 - 0.5x + 0.866025y (2.32)

The x and y shifts are flat plates with no bending. Since rotating and translating a

plate requires no energy, there is no energy required to shift the reference object to

the target object. Therefore the two objects have the same form.

The shifts can be used to estimate the coordinates of the target object. At the

reference object landmark (2,4), the estimated x and y shifts are f,(2, 4) = 3.83013

and fi(2, 4) = -3.36603 which is coincident with the first landmark of the target

object. Similarly, all the landmarks of the reference object shift to the equivalent

landmark of the target object.
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The shifts can also be used to interpolate points between landmarks. A point

at (5, 8) on the reference object is equivalent to (fe, fv) = (8.4282, -1.40192) on the

target object. The next example compares objects of different form.

2.2.4.10 TPS Example 5: Objects of Different Form. This example

explains the comparison of objects with different form. The reference object is

the same two-dimensional object as the previous example. The target object is

represented by the points (6, -5), (3, -1), (-3,4), (9, -10), and (7, -4). The x shift

constants are given by:

6 0 37In37 45In45 61In61 131n13 1 2 4 WI]

3 371n37 0 58In 58 160In 160 821n82 1 3 10 tbz2

-3 45In45 58In58 0 202In202 1001n100 1 -4 7 t63

9 611861 1601n 160 202 In 202 0 ISin18 1 7 -2 16 4

7 13In13 82In82 1001n 100 18In18 0 1 4 1 Wt5

0 1 1 1 1 1 0 0 0 CAz

0 2 3 -4 7 4 0 0 0 Cz2

.0J 4 10 7 -2 1 0 0 0 c,3.

tbi , .0.033978

ADz2  -0.006510

t63 -0.009051

tS4 --0.003654 = (2.33)
IUS5 --0.014762

Cz1 9.23548

Cx2 0.912579

L Cz3 J -0.307918

The x shift is given by:

f,(x0, yo) = 0.033978 U(r1 o) - 0.006510 U(r 20 ) - 0.009051 U(r 3 o) - 0.003654 U(r 4 o)

-0.014762 U(r 5 o) + 9.23548 + 0.912579x 0 - 0 .3 0 7 9 18 yo (2.34)
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where (zo, yo) is a point on the reference object and f, is the x coordinate of the

equivalent point on the target object. The y shift is given by:

f,(zo,yo) = -0.079285 U(rl 0) + 0.011934 U(r 20) + 0.008095 U(rso) - 0.027290 U(r4o)

+0.086546 U(rso) - 4.33914 - 1.06199x0 + 0.60 98 5 7yo (2.35)

At the first landmark of the reference object:

.4(2, 4) = 0 - 0.006510(37 In37) - 0.009051(45 1n45) - 0.003654(611n61)

-0.014762(13 In 13) + 9.23548 + (0.912579)(2) - (0.307918)(4)

=6

fv(2,4) = 0 + 0.011935(37In37) + 0.008095(451n45) - 0.0272904(61In61)

+0.086546(13 In 13) - 4.33914 + (-1.06199)(2)+ (0.609857)(4)

Therefore, the thin plate does convert the landmarks of the .. erence object +to

the landmarks of the target object.

The affine portion of the shifts orients the object in procrustes optimal position.

The non-affine part of the x and y shifts are:

fn, (xo, yo) = 0.033978 U(rio) - 0.006510 U(r 2o) - 0.009051 U(r 3o)

-0.003654 U(r 4o)- 0.014762 U(rso) (2.36)

ffl,(zo, Yo) = -0.079285 U(rio) + 0.011934 U(r 2o) + 0.008095 U(r 3o)

-0.027290 U(r 4o) + 0.086546 U(r 50 ) (2.37)

These represent the true differences in form as a function of the (x, y) location on the

reference object. They are a measure of the energy to bend a plate passing through

the reference object to a plate passing through the target object.
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The shifts can be calculated between the reference object and any target object

with the equivalent five landmarks. By comparing these shifts, differences in the form

of objects can be compared.

2.2-.-.11 TPS Summary. This section used several examples to de-

velop the algebra of thin plate splines. The spline can be thought of as a plate bent

to pass through all the landmarks of a three-dimensional object. While there are an

infinite number of splines that will pass through all the landmarks, the thin plate

spline is the spiine which requires the minimum bending or curvature of the plate.

Thin plate splines can also be used to compare the difference between objects.

This comparison has many advantages to regression based techniques; however, since

landmarks need to be specified, this method is inappropriate for comparing the facial

seal lines of oxygen masks.

In the examples, the bending energy matrix to deform a flat plate is exploited

to find the form of the object and to compare the form of two objects. There are

several advantages to using thin plate splines to compare objects. Objects are com-

pared by bending a plate from one object to another object. Thin plate splines

give both the magnitude and direction of stretch between the objects while other

methods provide only scalar difference between objects. Thin plate splines put the

objects into procrustes-optimal position saving a step in the calculations. Finally

(and most importantly), Thin plate splines account for the distance between land-

marks while regression based methods ignore the relationship between a landmark

and its neighbors (5).

There are two major disadvantages to comparing objects using the thin plate

spline method. The first is that thin plate splines is landmark dependent. Landmarks

must be predetermined and correlated from object to object. The second is the need

to define a 'standard' object from which all other objects are compared.
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2.2.5 Form Analyses Summary: Procrustes, FESA, EDMA, TPS. The

form analytical methods of this section identify methods currently available for form

description and comparison. Many of these have been specifically developed for

application to anthropometrics. However, each method is unique. Procrustes defines

a scalar which combines the translation, rotation, size, and shape differences between

faces. Finite element scaling analysis measures the 'strain' required to bend one

face to another. Euclidean distance matrix method measures the relative distance

between landmark:, of different faces. Thin plate splines measure the energy to bend

a fiat plate from a reference object to a target object. A drawback to these four

methods is the need to define a reference object. Pre-segregation of objects, such as

the method discussed in Section 2.2.3, to determine a reference object is not feasible

in this research. It is one goal of this research to cluster the faces into groups - not

to pre-segregate them. Another major disadvantage is the use of landmarks. All

four of these methods require the use of landmarks.

Landmarks are common points for obtaining specific relationships or identify-

ing growth patterns. However, landmarks can be hard to locate without the expe-

rience and expertise of someone familiar with anthropometrics. Landmarks like the

sellion (indentation in the bridge of the nose at the brow) and promenton (high point

on the chin) may not be uniquely defined on certain faces due to ethnic backgrounds

or other dissimilarities (see Section 5.17). Typically, a reference plane is established,

like the Frankfort Horizontal discussed in Section 5.1.2.2, so common features are

easily referenced (34). However, a reference of this type requires the entire head

of an individual as the source of data. The data obtained for this research consist

of plaster casts of the face only. Landmarks also require one-to-one correspondence

between objects, so the data sets must be equal in size. It is important to note

that landmarks alone do not provide all information pertaining to the form of an

object. When using landmarks, information on curvature and surface features be-

tween landmarks is lost (46). Therefore, landmarks neglect information regarding
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the relative shape between landmarks, which may be crucial in the determination

of the mask-to-face fit. In essence, the geometry of the human face is not easily

described by landmarks. The line of contact between the oxygen mask seal and the

wearer's face is a complex, three-dimensional curve. It varies widely from face to

face, and the selection of landmarks that would adequately capture the geometry of

every face would be virtually impossib:e.

2.3 Conclusions

Past Air Force morphometric analyses, such as the multivariate approaches

discussed in Section 2.1, could not reconstruct biological objects from the linear di-

mensions collected. Linear dimensions were measured between landmarks thought

to distinguish different characteristics of the biological object. Past analyses usually

resulted in a series of traits that described particular features but did not define the

geometry of the object (46). Therefore, it is necessary to determine a form charac-

terization method which captures all the citical features necessary for comparison

and can reconstruct the form of the object under study.

Several morphological methods are available for form characterization and com-

parison. However, procrustes, finite element scaling analysis, Euclidean distance ma-

trix analysis, and thin plate splines cannot be used to compare the facial seal lines

of aircrew oxygen masks because they are landmark dependent and do not provide

an accurate surface description.
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IlI. Form Characterization

8.1 Introduction

The form characterization methods described in Chapter II do not capture

the true shape or curvature of the face for description, but compare linear distances

requiring the use of facial landmarks. It is the intent of this research to develop a

form characterization method which can accurately describe the curvature of the face

in a form compatible with clustering. This chapter describes a form characterization

methodology which determines the form of a face by utilizing the spacial correlation

of the surface data. It does not require the use of landmarks and is applicable to

unequal size data sets. This new methodology results in an energy matrix, the energy

to transform a flat plane into a face. This matrix is unique to each individual face,

and is the source for feature selection in clustering.

The energy matrix employs many concepts from kriging, a geostatistical meth-

od typically used for predicting ore content at unsampled locations. Therefore,

a brief discussion on kriging precedes the explanation on the development of the

energy matrix.

8. 2 Kriging

The term 'kriging' was introduced by G. Matheron (1963) to describe a spacial

prediction method, named after D.G. Krige, a South African mining engineer, who

in 1951 had developed empirical methods for determining ore reserves based on

distributions of sampled data (17:p. 199). D.G. Krige was a pioneer in applying

statistical techniques to mine evaluation, but it was through Matheron's work that

the field of geostatistics was born. Geostatistics is the application of statistics to

geology, of which kriging is a part.

Kriging can be described as the probabilistic process of obtaining the best

linear unbiased predictor (BLUP) for an unknown variable, where 'best' is defined
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as having minimum estimation error variance (18). It was originally used to predict

ore reserves based on a few test samples. Kriging is unique in that it combines

spacial correlation with linear unbiased estimators. The outcome of kriging is a

system of equations that provides the optimum estimation of an unknown condition,

be it elevation, ore content, or some other desired variable at an unsampled location.

The kriging system is also known as an exact interpolator because it honors the data

(20); i.e., it returns the measured values at all sampled locations.

Before kriging can be applied, a thorough structure analysis must be completed.

Structure analysis is the development of the spacial structure or correlation in the

data through the identification of the variogram. The structure analysis includes

estimation of the trend or drift in the data, development of a functional variogram

model, and identification of anisotropy. After the structure analysis is completed

then the kriging system can be applied and the kriging variance, or minimum esti-

mation variance can be calculated.

3.2.1 Variogram. A variogram describes the spacial variability of a data

set. It is a function solely dependent on h, the distance and orientation between

two locations. As stated previously, the first step towards developing a kriging

system for a multidimensional data set is the estimation of the variogram, "y(h).

The experimental variogram is first calculated from the data and then a functional

variogram is found which best describes the spacial correlation within the data.

3.2.1.1 Assumptions. There are three major assumptions made when

using the variogram. The first is that the variable to be modeled is regionalized.

Unlike a random field, a regionalized variable can be used to describe a random

function which has continuity from point to point, but changes in ways that are so

complex they cannot be described by a simple combination of a deterministic function

and a random variable. The second assumption is that the data is isotropic, and

the third requires that the regionalized variable exhibit at least intrinsic stationarity.
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Stationarity refers to the moments of the regionalized variable (19), and is a model

decision, not an inherent property of the regionalized variable (31).

There are three types of stationarity: weak, strong, and intrinsic. Weak sta-

tionarity, also called wide-sense or second-order stationarity, relates only to the first

two moments of the regionalized variable z(x) where x is the location (z, y), and z(x)

is the variable of interest at x (e.g., elevation or ore content). The definition of weak

stationarity requires that the expected value of the regionalized variable, E[z(x)], be

finite and the same for all x, and the spacial covariance of the regionalized variable,

C(h), is also finite and the same for all x. If the expected value is E[z(x)] - j, then

the covariance is:

E[(z(x)- p)(z(x + h) - )] C[z(x + h),z(x)]

= C(h) (3.1)

where z(x) is a measurement of the regionalized variable taken at a specific location

x, and z(x + h) is another measurement taken h distance away. Note that h is a

vector, and h is the magnitude of h, the two-dimensional Euc.idean distance between

two locations:

hij = r(x,- xj)2 + (y,- yj)2 (3.2)

where i = 1,...,n, j = 1,...,n, and n is the total number of locations in the data

set. The variance of the regionalized variable z(x) is:

Var[z(x)] = E[(z(x) P)2] (3.3)

= C(0)

Therefore, the covariance only exists if Var[z(x)] is finite.

Strong stationarity, also known as strict-sense stationarity, includes higher or-

der moments of the regionalized variable, and exists when all the moments are de-
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fined and finite. Strong stationarity implies the existence of weak stationarity, but

the reverse is not true.

Intrinsic stationarity also relates to the first two moments but applies to situ-

ations where the variance of the regionalized variabie is not finite. The underlying

assumption is that the variance of the changes in the regionalized variable over the

data set is finite, and can be defined. The first two moments of the variations in the

regionalized variable under intrinsic stationarity conditions can be defined as:

E[z(x + h) - z(x)] = 0 (3.4)

Var[z(x + h) - z(x)] = 2-y(h) (3.5)

where -t(h) is defined to be the variogram. Notice that intrinsic stationarity is

a generalization of weak stationarity, where the mean is zero over the data set.

Given weak stationarity conditions, the relationship between the variogram to the

covariance is:

-y(h) = C(0) - C(h) (3.6)

If the regionalized variable is normalized to have a maximum variance of 1.0, the var-

iogram -'(h) is a mirror image of the corresponding autocorrelation function, Figure

3.1 (20). Given these relationships, a variogram representing the spacial correlation

of the regionalized variable is estimated in order to determine the coefficients for an

optimal linear predictor in kriging (19:pp. 92-93).

3.2.1.2 Definition. The variogram is essentially the variance of the

data as a function of h, the distance or lag between data points. Recalling the

intrinsic stationarity assumption, the variogram can be defined for a zero mean
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Figure 3.1 Relationship between the variogram and autocorrelation versus separa-
tion distance, h.

random function:

2-f(h) = Var[z(x + h) - z(x)] (3.7)

= E {[z(x + h) - z(x)12}

For example, choosing the elevation or height as a function of location, z(x), the

variance in height can be estimated using the mean squared differences between

data points, a given distance h apart in a specific direction:

1 n
27(h) h- "[z(xi + h) - z(x,)]2 (3.8)

N(h) i=1

where N(h) is the number of samples separated by a specific h. This relationship is

based on the assumption that the difference in value between two positions depends

only on the distance between them and their relative orientation h. The '2' preceding

the -y(h) is there for mathematical convenience and is a consequence of the fact that

the focus is on the perpendicular distance of the points from the 45-degree line.

Isaaks, et al, (29) equate the variogram to the moment of inertia, noting that as h
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increases, the points drift away from the line where h = (0, 0); therefore, the moment

of inertia about the 45-degree line is a natural measure. The result is:

-y(h) = -y(-h) (3.9)

which indicates that the variogramn calculated in one direction is equal to the vari-

ogram calculated in the opposite direction. Technically, the term 2-1(h) is called the

variogram, and -y(h) the semi-variogram, although some authors call the latter the

variogram. In this discussion, -y(h) is referred to as the variogram.

3.2.1.3 Functional Variogram. The variogram is considered to be the

fundamental tool in geostatistics. It provides answers to basic questions regarding:

the continuity of data, the direction of continuity, the area of influence (range),

and the data isotropy/anisotropy (33:p. 84). As h increases and the data points

appear farther apart, the correlation between the points decreases. The expectation

is that when the distance becomes relatively large then the sample values become

independent of one another. The variogram value becomes essentially constant, since

it represents the relationship between sets of independent samples. The distance h

at which samples become independent of one another is denoted by a and referred to

as the 'range of influence' of a sample. This range or span, a, defines a neighborhood

within which data have statistically significant correlation. In addition, the slope of

the variogram in the neighborhood of h = 0 is an indication of the continuity of the

data.

3.2.1.4 Variogram Models. The next step is determining a continuous

model which provides the best fit to the variogram estimates. A preferred model is

one which incorporates the three parameters of the ideal variogram: the range of

influence, a; the sill, (Co+ C); and the nugget effect, Co (see Figare 3.2). The value

of -y(h) at which the graph levels off (at h = a) is denoted by (Co+ C) and is called
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Figure 3.2 Variogram Parameters: range of influence, a; sill, Co + C; and nugget
effect, Co.

the sill of the variogram (10:p. 6). The sill is equal to the sample variance of the

data. The nugget effect accounts for sampling or measurement errors and is also an

indication of the small-scale variability in the data (33). There are various methods

available for deriving a, C, and Co. The simplest is using weighted least squares.

The selection of the underlying model is a crucial one. The model determines

the continuous relationship of the points within the data, which in turn can affect

the success of the kriging system to predict the unknown variable. However, the

experimental variogram should not be overfit to the data. A simple model may

provide solutions that are as accurate as those found using a more complex model.

Therefore, the goal is to define a parsimonious model which includes these critical

parameters. There are three models which are most common: spherical, exponential,

and Gaussian (Fig 3.3).

Spherical Model. The spherical model, also known as the Math-

eron model, is the most commonly used model. It has linear behavior at small

separation distances, but flattens out at larger h, reaching the sill at a. The tangent
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at the origin reaches the sill at approximately 2a.

0 when h =0
2h h3

-f(h)= CO+C ( -y when0<h<a (3.10)

Co+C when h > a

Exponential Model. The exponential model is asymptotic, with

the variogram never reaching the sill. The exponential model, like the spherical

model, is linear at very short distances near the origin; however, it rises more steeply,

then flattens out more gradually. The tangent at the origin reaches the sill at ap-

proximately 1:

,h)= Co + C [I - exp (-h)] (3.11)

Gaussian Model. The Gaussian model reaches its sill asymp-

totically, and the parameter a is approximately the practical range or distance at

which the variogram value is 95% of the sill. The distinguishing feature of the Gaus-

sian model is its parabolic behavior near the origin; it is the only transition model

presented whose shape has an inflection point:

-y(h)=Co+C 1 -exp 3h2  (312)

The functional variogram can be used to indicate the presence of anisotropy

in the data. If anisotropy exists, it must be corrected so the data can be considered

isotropic when using the variogram model for kriging.

3.2.2 Isotropy/Anisotropy. Isotropy occurs when the range and sill re-

main unchanged as the functional variogram is calculated in different directions. If

isotropy exists then the variogram function is the same for all orientations of h. How-

ever, if the range and sill do change with orientation, then the data is anisotropic.

There are two types of anisotropy: geometric and zonal. An indication of geometric
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Figure 3.3 Functional Variogram Models: exponential, spherical, and Gaussian.

anisotropy is the change in value of a for two different directions with the sill re-

maining constant. Zonal isotropy occurs when the sill changes with direction (19).

For geometric anisotropy a correction factor can be included in the final variogram

model before kriging. Zonal anisotropy cannot be corrected with a simple correction

factor.

The geometric anisotropic correction factor, k, is equal to the ratio of the a's,

and always greater than or equal to 1 (when k = 1, then the data is isotropic):

k = aj >• 1 (3.13)

where amaj and amin denote the orientations of h with the largest and smallest range

of influence (29). The correction factor can be incorporated into the functional

variogram in a number of ways. One method is to include it directly into the func-

tional variogram model (19). For example, if the spherical model is chosen, then the

correction factor is used to scale h:

(h)= Co + C (3kh k3h3 
3 (3.14)

( 2a 2a 3)
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Figure 3.4 Variograrn Anisotropies: (a)Geometric Anisotropy - range of influ-
ence changes with direction, (b) Zonal Anisotropy - sill changes with
direction.

Anoth.cr method is to incorporate the correction factor into the Euclidean distance

calculation, before calculating the functional variogram (29):

h = /(ky(x, - xj))2 + (k.(y, - y,)) 2  (3.15)

where k., and k, are defined as:

If a., > aV then: a., -" amj k,., kv = I
"ay (3.16)If as>a then: ay -= aj k, 1 k (36

The variogram can also be used to indicate a trend in the data. If the data

appear to have a trend, and violates the stationarity assumption, the trend must

be removed before the variogram can be estimated. A common example of nonsta-

tionarity is a mean or expected value of the regionalized variable that changes with

location. Trend removal is discussed in the next section.
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3.2.3 Residual Analysis. The major assumption regarding the use of the

variogram is that the data exhibit at least intrinsic stationarity. Intrinsic stationarity

requires that there be no significant trend in the data. It is therefore generally

desirable to remove the trend or bias from tli data prior to kriging (19, 31).

The trend z'(x) can often be approximated using a second order polynomial:

z'(x) = bi + b2x + b3y + b4 X2 + bsy2 + b6 zy (3.17)

The system of equations in matrix form, z' = Yb, is:

z4 1 xi y, x• y• x~y1
S2 2

Z2X2Y2 X2 Y2 X2Y2 b2
Z 1 X 2 y2 X3Y3 b3

3 3 X 3  3  b (3.18')
1X 4 Y4 X 2 y 2 X04

b5
1 xj I/n Y X2 y2 X J Nnn Ln n Yn xy•

where n equals the total number of points in the data set. Since z and Y are known,

the coefficients vector b can be estimated using least squares regression:

b = (YTy)-IyTz (3.19)

The trend is subtracted from the measured z(x) values to give the residuals e(x):

e(x) = z(x) - z'(x) (3.20)

A functional variogram is found for the residual, and used in the kriging analysis.

The resulting value from the kriging relationships is, in fact, an estimation of the

residual at that location, i.e., ý(x), and the desired value must include the drift

3-11



previously removed:

i(x) = ý(x) + z'(x) (3.21)

where i(x) is an estimate of the regionalized variable at an unsampled location.

3.2.4 Kriging System. The kriging 'system' is the system of equations

used to derive the BLUP, defined earlier as the best linear unbiased predictor for an

unknown variable at a known location. There are several different types of kriging.

This discussion only covers two: ordinary kriging and universal kriging. The differ-

ence between the two is treatment of any trend in the data. Complete knowledge

of the trend allows the stationary variogram to be estimated and leads to ordinary

kriging. Universal kriging assumes weak stationarity and incorporates the calcula-

tion of the trend in the final system of equations. The calculated trend is for the

smaller or local neighborhood.

3.2.4.1 Ordinary Kriging. Ordinary kriging, also known as punctual

kriging or point kriging, estimates the value of the regionalized variable, i(xo) at an

unsampled but known location, xo, by taking the weighted linear combination of the

measured values in the neighborhood of point xo:

ni (X0) = W Z(xj) (3.22)

where i = 1,...,n and n is the number of total points in the neighborhood. To

ensure unbiasedness, the weights are normalized:

w= 1 (3.23)
3=1
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The difference between the actual value, z(xo), which is not known, and the estimated

value, i(xo), is the estimation error:

'(xo) = i(xo)- z(xo) (3.24)

and the error variance can be expressed as:

S = ( - z(x=))2 (3.25)
n

The minimized estimated kriging variance is found by:

17

ak wY,o (3.26)
i-=1

where 'yiO is the variograrn developed in structure analysis for distances from all

measured locations to the unsampled location.

The objective of kriging is to attempt to determine the weights or estimates

which minimize this variation error. The kriging system of equations is derived

through partial differentiation in order to obtain the following relationships:

w1-f(hul) + W2 7y(hi 2 ) + . + w.-y(hi.) = -y(hio)

WJ'Y(h 21) + W2-Y(h22) + . + w.-y(h 2.) = yh0
(3.27)

wJ^y(h. 1) + W27 (h. 2) + + w,,y(h ...) = -y (h,,o)

W1 + W2  + "" + W, = 1.0

Since the number of unknowns is less than the number of equations, a slack variable

A, known as a Lagrangian multiplier is included. This adds an extra degree of
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freedom to assure the solution has the minimum possible estimation error:

w17(hl) + w27/(h, 2) + + w.7(hi.) + A = 7y(h 1 o)

wi-7(h 2,) + W27 (h 22) + ... + w,-y(h 2.) + A = -y(ho)

(3.28)

W17 (h. 1) + W2 Y(h. 2) + + w7y(h..) + A = -y(h.o)

w1 + W2 + + W, + 0 = 1.0

Rewriting these equations in matrix form gives the following result:

y(hu) y(hl2) -y(h1.) 1 w -y(ho)

(1(ha2 ) y(h 22)... y(h2,) 1 W j(h20)

: =(3.29)

-y(h. 1) -f(ha2 ) -'" (h..) 1 W, 7(hno)

1 1 1 0 A 1

This equation can more easily be expressed as:

rw = -Y0  (3.30)

The optimum weights are calculated by:

w = r-170 (3.31)

Once the weights are derived, then the estimation i(xo) is calculated as:

Z(Xo) = WzT (3.32)

The minimized kriging variance is:

ka2 = WTlo (3.33)
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which can be rewritten as:

2 (z) = r- -- ((jTF-p-. -_ 1)2/(lTr-11)) (3.34)

where 1 is a column vector of ones (18).

3.2.4.2 Universal Kriging. The residual analysis removes the global

trend of the data; however, there may still be some localized trend. Universal kriging

attempts to define simultaneously the optimum weights and the coefficients of this

trend or drift in the local neighborhood. It is important to note that the size of

the neighborhood impacts the smoothness of the drift, the size of the residuals,

and the complexity of the variogram. Given a small localized neighborhood, the

drift is less smooth, but the residuals are smaller and the variogram simpler. A

larger neighborhood may give a smoother drift, but the residuals are larger, and the

variogram more complex. The residual analysis discussion presented earlier could be

applied to the entire data set, or a larger neighborhood, to provide a smoother drift.

The residuals could then be used as the data in universal kriging to identify the

BLUP and simultaneously to define the drift in the smaller, localized neighborhood.

Assuming linear drift, the calculation of the localized residual is included in the

kriging system, where the coefficients, a, and a2 are similar to the coefficients, b,

from the residual analysis discussion:

W10(h11) + w2-i(h12) + + wY(hi,) + A + azii + a2Yl = 1'(h0o)

Wy(02 1 ) + tu,2-(hn) + + w,-y(h 2.) + A + alX2 + a2Y2 = -y(h 20 )

W,'Y(h. 1 ) + uwy(h. 2 ) + + w.-y(hnn) + A + al.Q. + a2 n = -y(ho) (3.35)

W1  + W02 + "" + Wn + 0 + 0 + 0 = 1.0

WIXI + U2 Z2 + + Wn Xn + 0 + 0 + 0 Zo

W1 Y1 + W21 2 + + WnYn + 0 + 0 + 0 =
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where zo and yo are the coordinates of the location where the height, zo(x) is being

estimated. Rewriting these equations in matrix form:

Sy(h31 ) -y(hl 2) -y(h 1.) I x, y, 'y(hio)

-y(h2:) •(h22) ... -y(h2.) I X2 Y2 . .(h 2 )

-y(h.1) "y(h.2) -t(h..) 1 x. y. w. -=(h,,o) (3.36)

1 1 .. 1 0 0 0 A 1

X X2 ... X, 0 0 0 a, Xo

LY1 Y2 .. Yn 0 00 a2  L YO

Note that these matrices are slightly different from those presented for ordinary

kriging:

rw -= -Y 0(3.37)

since universal kriging weights include the localized residual analysis, and the uni-

versal kriging -yo includes the coordinates of the unsampled location. The rest of the

calculations are similar to ordinary kriging:

w = r-110 (3.38)

w(Xo) = wTz (3.39)

where z = [z(xl),...,z(xn),0,0,01T and w = [w,,...,wnA,a1 ,a 2]T .

3.2.4.3 Dual-Kriging. Universal kriging can be reformulated into

another form, known as the dual formation of kriging or dual-kriging (18, 31), where

the weights are found from the following linear relationships:

r,*l + X* 2 = Z (3.40)

XT* 1  = 0 (3.41)
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The submatrix, r., is the top left n x n elements of r, 0 is a vector of zeros, and:

[ 1A 1 Zi Y[ z(xi)

[:1 *2 = a X :s

1b.2 X. 1 . z(x. )

The new weights * = [*1, * 2 ]T differ from the universal kriging weights (Eq. 3.38):

* # w. Expanding the dual-kriging equations (Eqs. 3.45, 3.41) shows how dual-

kriging is equivalent to universal kriging:

0(h11) 7(h12 ) ""(hln) W1 1 z1 11 1 z(xi)

1(h 2 1) 0(h 22 ) ". 'v(h2) tb2 1 z Y2 - z(x 2) (3.42)
+ (342

-Y(hnl) lv(h. 2) -. (hnn) j t 1 It. • (x6)W1
• 0

z 5 2 .. Z] . = 0 (3,43)

Y1 It ... Yn 0
wbn

where the residual analysis is partitioned out of the universal kriging r matrix and

the vector of weights. These are combined into a form similar to universal krig-

ing (Eq. 3.36):

7(h1l) t(h 12)... -v(h1n) 1 XI1 til z(xi)

-y(h2l) - )(h22) . (h2nI) 1 Y2 62 z(x 2 )

"y(hnl) -y(hn 2)... y(hnn) 1 X, n tb, , = z(xn) (3.44)

1 1 1 0 0 A 0

XI X2 ... X, 0 0 0 0

Y1 Y2 .. n Y 0 00 a2  0

or:

r* = z (3.45)

3-17



Solving these equations for the new weights, *, results in:

* = r-Iz (3.46)

where the weights in dual-kriging, *, are derived from known data, irrespective of

the unsampled location. The universal kriging weights, w are dependent on the

unsampled location, xo, through -to (Eq. 3.38):

w = r- 17o (3.47)

The BLUP equation is written as:

i(xo) - wTz (3.48)

_ YO T (3.49)

Substituting in the definitions of the weights results in:

g(xo) = %or-,z (3.50)

Which is valid for either formulation. The equation in dual-kriging format is:

i(Xo) = *Tfo + Txo (3.51)

= tbiy(hio) + (ý + aX0o + a2 yo) (3.52)
s=1

Substituting in the value for the dual-kriging weights *1, the BLUP equation can

be written as:

g(xo) = -oyr•iz + (A + a1 xo + a2Yo) (3.53)

where the term in the parenthesis is the kriging regression.
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Well Location, x Water Elevation, z(x)
Well 1 (3.0,4.0) 120.0
Well 2 (6.3,3.4) 103.0
Well 3 (2.0,1.3) 142.0

Point xo (3.0,3.0) ?

Table 3.1 Kriging Example: Water table elevation data.

3.2.5 Ordinary Kriging Example. An example is the best illustration of

how kriging is applied, and the relative simplicity of the method. This example uses

ordinary kriging to calculate the regionalized variable at an unsampled location.

Recall that to do this, the data is assumed to be trend free and weakly stationary.

An example previously described by Davis (20:pp. 386-392) is used where water

table elevations are characterized based on three well samples. The water table

depth at a new well with known coordinates xo is to be predicted. Table 3.1 shows

the well locations x and water table elevations z(x). The variogram for this example

is determined to be linear (i.e., a linearly increasing correlation), 7y(h) = Ah + Co;

with no nugget effect, Co = 0; and with slope A = 4.0 m2/km. The distances

between wells, hii, are calculated from the coordinates. These distances are mapped

into -7(hij) by using the linear variogram model, -y(hij) = 4.Oh,,. In a similar manner,

the well coordinate xo is used to calculate hio and then -y(hio).

The ordinary kriging system of equations is applied to derive the unbiased

weights, which are then used to calculate the BLUP, the best linear unbiased pre-

dictor, i(xo). The kriging equations are written as (Eq. 3.29):

-y(h11 ) -y(h12) -y(hl 2) 1 1 'y(hio)

-y(h21 ) -(h22) -y(h23 ) 1 -y(h2o) (3 )

-t(h3l) y(h32) y(h33) 1 W3  7(h 3o)

1 1 1 0 j 1
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Substituting in the calculations for -y(h,,) and -y(hio), this becomes:

0 13.4 11.5 1 w1 4.0

13.4 0 19.1 1 w2 13.3 (3.55)

11.5 19.1 0 1 W3 7.9

1 1 1 0 A 1

The weights plus the Lagrangian slack varýible are calculated using Equation 3.31:

w1 0.6039

0.0868 (3.56)

Wv3 0.3093

A -0.7267

The best linear unbiased prediction of the water table height at point xo is:

iCxo),=zx,)

= 0.6039(120.0) + 0.0868(103.0) + 0.3093(142.0)

= 125.3 meters

with a minimum error variance of:

= w2 = W

= 0.6039(4.0) + 0.0868(13.3) + 0.3093(7.9) - 0.7267

= 5.3m 2

Assuming a Gaussian distribution, the confidence interval of the prediction is calcu-

lated by:

(xo) ±- 1.9 6ak
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which is the prediction for a 95 percent confidence interval. Applying the water table

minimum variance using ordinary kriging methods gives:

i(xo) = 125.3 ± 4.5 m

which is the prediction of the water table elevation at point xo with 95 percent

confidence.

3.2.6 Kriging Summary. There are several advantages to using kriging

for form characterization. The main advantage is the combination of spacial cor-

relation with minimum estimation variance. Also, by selecting a specific variogram

model, the solution is guaranteed to be unique. Recall that kriging was developed

as a geostatistic tool for obtaining optimum estimates of a regionalized variable at

unsampled locations. Kriging has been applied in many other fields (6, 40), and even

in the field of anthropology (27), but it has never been used for form comparison.

The TPS method uses similar techniques for building the matrices which capture

form description (r = L), but does not include the spacial correlation of the data.

Therefore, kriging has the ability to describe uniquely the form of an object and can

be used to derive relationships between similar objects.

3.3 Comparison of TPS and Kriging

Kriging and thin plate splines, TPSs, are closely related. The kriging and

TPS equations to estimate i(x, y) are identical in form. However, kriging takes into

account the actual spacial correlation of the data through a variogram function while

TPS relates points through the minimum energy function U(r) = r2 In r2 . The form

cha:acterization techniques of TPS can be greatly improved by incorporating the

spacial correlation of the data.
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3.3.1 Mathematical Relationship. The mathematical relationship between

TPS and kriging can be seen by comparing the equations. Looking at the kriging

equations first, the dual-kriging best linear unbiased predictor equation is (see Eq.

3.51):
n

i(xo) = tb k,-y(hio) + (A + a 1 z0 •"+ 2y2o) (3.57)
i=1

where 7(h) is the variogram function found through structure analysis to best repre-

sent the spacial correlation of the data. The dual-kriging weights, *k, are calculated

by (see Section 3.2.4.3, Eqs. 3.44, 3.45, 3.46):

-f(h11) -/(h12) " -y(h1n) 1 X1 Y1 Wk, z(xi)

-y(h2l) y(h22 ) 0 2.) 1X2 Y2 6k2 Z(X 2 )

y(hl) -y(h, 2 ) " -y(hnn) 1 xn yn t. = z(x) (3.58)

1 1 1 0 00 0 0

X1 X2 ... xn 0 0 0 a 0

Y1 Y2 ... Yn 0 00 &82 0

r'•k = Z (3.59)

W5k = r-1z (3.60)

where *k = [tbk,,. . . ), t14, Aa, i, 2 IT, and r- 1 is a symmetric matrix.

From the thin plate spline equations, the predicted height of a landmark (see

Eq. 2.18) is:
?1

S(XO, YO) = E U(rio)ti)', + c1 + C2 Xo + c 3 OO (3.61)
3=1
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where U(rii) is the minimized bending energy function. The TPS weights are calcu-

lated (see Eq. 2.19) by:

U(rI) U(r12) ... U(r1 n) I xI YI Wz

U(r 2l) U(r22) ... U(r 2n) 1 x2 Y2 62 Z2

U(r,,) U(,', 2 ) ... U(r,,) 1 xn yn wt - z,, (3.62)

1 1 ... 1 0 0 0 cl 0

X X2 ... x,, 0 0 0 C2 0

Y1 Y2 ... Y,, 0 0 0 C3  0

L• -- z (3.63)

* = L-1 z (3.64)

where *• = [6t,, .. bt, Ci, C2, C3] T and L` is a symmetric matrix.

Comparing Equations 3.60 and 3.64, the TPS and kriging weights are derived

the same way. Similarly, the TPS and kriging predictors (Eqs. 3.57, 3.61) are derived

in identical formulations except for the important fact that -Y(hii) $ U(rij), because

-f(hii) represents the actual spacial correlation of the data, and U(rij) is the minimum

energy function. Therefore, the thin plate spline and kriging equations are equivalent

except for the variogram function. Example 5 (Sec. 2.2.4.10) uses TPS to compare

the form of two objects. The results of comparing objects can be greatly improved

if the actual spacial correlation of the data is considered.

3.3.2 Error in Development of TPS. According to Bookstein (4), the thin

plate spline minimizes the total curvature (Eq. 2.5):

92 [(32) ( 2Z)2+ ( 2Z 32-

JJ _ý_ + ( -2 dxdy (3.65)
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However, as noted by Cressie (18 :p. 181), the TPS is not the minimization of this

integral.

From Cressie, the two-dimensional Laplacian smoothing spline of degree 2 is:

n

i(so) - , b,e(so - s,) + a0 + a 0xo + a2Yo (3.66)
t=1

where So = [X0 ,,yo]T, e(h) - 1jhl12log(11h112)/(16ir), a = [ao, ai,a 2]T, and b =

[b0 , ... , bn]T. By comparison, this equation is equivalent to the TPS predictor (Eq.

3.61). The Laplacian spline constants a and b are found by simultaneously solving

the n + 3 linear equations:

(K + npl)b + Xa = z (3.67)

XTb = 0 (3.68)

where np is the nugget effect (Co) or the measurement error, K is the upper n x n

elements of L, and:

X= = 1 ] i (3.69)

The TPS solution for the constants is given in Equation 3.64. Equation 3.67 is

equivalent to the first n equations of Equation 3.62 for p = 0. Equation 3.68 is

equivalent to the last three equations of Equation 3.61.

Therefore, the TPS is a two-dimensional Laplacian smoothing spline of degree

2 with p = 0. According to Cressie, a spline of this type minimizes:

[(ý2ga)g \ ( , 2 +\21 xd 3.0'[z(si) - g(z;s)12/n+ 92ay + 1J9 idxdy (3.70)
i=1 49[ 2a\a 2] /
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where g is the smoothing function equivalent to U(r). Since p = 0, the thin plate

spline actually minimizes:

n

Z[z(s,) - g(z; s,)]'/n (3.71)

so Bookstein's statement that the TPS minimizes the double integral is incorrect.

However, Bookstein's final spline equations are useful.

3.4 Energy Matrix

The form characterization method is developed as a combination of kriging and

TPS. This results in a structure analysis technique which provides spacial correlation

of the data points merged with the bending energy definition from the TPS method.

The form characterization method creates a bending energy matrix or energy matrix

for each face. This energy matrix is significant because it captures the unique form of

the face for comparison. By inserting the variogram model into the universal kriging

matrix, the following L matrix develops:

"\ T / 1 x 1

K - :

/ I \ 1x~ ,.
L = (3.72)

1 01 0 0

XI ... X, 0 0 0

Y -l"' Yn 0 0 0J

where:
w 0 -y(h12) ...- (h•)

K = y(h21) 0 -y(h2n) (3.73)

3y(h,,) -t(hn2 ) ... 0
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The variogram, "y(hi,), is a function of the scalar distance hij from (xi, y,) to (xi, yj).

Two seal areas with similar variances have different energy matrices since the sepa-

ration distance hij varies from face to face, depending on size and shape.

The L matrix contains all the available information about the form of a face

within the seal area. It is the spacial correlation plus a localized residual analysis.

In the TPS method, L 1 is referred to as the energy matrix (5). The L-1 in kriging

presents a unique description of a face: The Best Linear Unbiased Predictor (BLUP)

(see Section 3.2). The BLUP for z at the point (xo, yo) is given by (Eq. 3.50):

Z0= y7L-'z (3.74)

where z is a vector of known measurements, and -to is a vector corresponding to

hi0, the distances from all other locations to (xo, yo): z = [z1,... I z,, 0,0, 0]T and

'/i0= ['Y10,..., NO, 1, X0, yo]T.

In the BLUP equation (Eq. 3.74), z forces the points to conform exactly to the

data and -yo accounts for the specific location where the regionalized variable, z, is

being predicted. The remaining term, L', describes the overall shape or bending of

the surface passing through the data. Therefore, L-' is the energy matrix describing

the shape of each mask seal area. The last three rows and columns of L-1 may be

ignored in the derivation because they represent the residual analysis and an affine

transformation. Therefore, the top n x n elements of L' 1 , denoted by L- 1 is typically

referred to as the energy matrix.

The energy matrix is created without the use of landmarks. Therefore, each

face contains a different quantity of data dependent on their relative size. That is,

the total number of data points, n, is not constant from face to face because small

faces have less data than large faces. This results in different energy matrix sizes.

The energy matrix is the source for clustering. In order to conduct a comparison of

seal areas, the identification of a set of minimum unique features is required. The
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number of features can be varied, but must be uniform from face to face for input

to the clustering routine. One method of feature space determination is to identify

the unique features per individual face from the uneven data sets. This is called the

'free form' method. This section describes an application of the free form method

which uses the eigensystem of each energy matrix to create a reduced feature space

for clustering.

3.4.1 Energy Matrix Decomposition. The energy matrix must be decom-

posed into a small number of features for clustering. Spectral decomposition and

singular value decomposition are two techniques to decompose the energy matrix

using eigenvalues and eigenvectors. The eigenvalues could then, potentially, be used

as features for clustering.

Since the L matrix is symmetric, the energy matrix Ln1 is also symmetric.

Spectral decomposition (also called the principal axes theorem) describes the factor-

ization of a real symmetric matrix into:

A=QAQT  (3.75)

where A is a diagonal matrix consisting of the eigenvalues (As) of A, and Q contains

the corresponding orthonormal eigenvectors (50). Using 'pectral decomposition, L-1

can be decomposed into its eigensystem, which is unique to each matrix. The eigen-

values then present a possible feature space for comparison, reducing the amount of

data from n 2 to n.

The singular value decomposition (SVD) for any matrix is:

A 2 T(3.76)

or:

QTAQ 2 = E (3.77)
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where Q, and Q2 are orthogonal matrices and E is a diagonal matrix. The columns

of Qi are the eigenvectors of AAT, the columns of Q2 are the eigenvectors of ATA,

and the singular values on the diagonal of E are the square roots of the nonzero

eigenvalues of both AAT and ATA (50). If A is symmetric (as in L-'), then

AAT = ATA. This means that the diagonal elements of E are equal to VAP. For real

symmetric matrices, SVD is identical to the spectral decomposition (49) regardless

of the sign of the eigenvalues. Therefore, the magnitude of the eigenvalues can be

used as features for clustering.

As described by Bookstein, the eigensystem of the energy matrix, L' 1 uniquely

captures the form of a face (5:p. 323). The eigenvalues represent the magnitude of

the bending energy, and the related eigenvectors identify the location of the bending.

The next section investigates bending modes to determine the bending associated

with an individual eigenvalue eigenvector combination. The use of bending modes

is also explored to verify the ability to reconstruct an object from the eigensystem

using the spectral theorem.

3.4.2 Bending Modes. Bending modes utilize the eigensystem to decom-

pose the bending energy matrix or energy matrix. Each bending mode represents a

surface plot of an individual eigenvalue-eigenvector combination. The bending modes

are compared to show the importance of each eigenvalue-eigenvector combination.

3.4.2.1 Development of Bending Modes. Recall that the dual-kriging

estimation of the height of a face at the point (x0, yo) is:

i7(xo, Yo) - yoL-'z + (c, + C2Xo + c3yo) (3.78)

where -to = [71o,...,'YonIT and z = [z,,. . ., Zn]T. The point estimation is an interpo-

lation of the face between spacial delineators. The two parts of the interpolation are
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the bending (yTL-1z) and the regression (c, + c2xo + c3yo). The regression constants

are deterministic as shown in Section 3.2.4.2.

The energy matrix is a real symmetric matrix so it can be spectrally decom-

posed into:
n

Ln= ZA ieiriT  (3.79)
i=1

where A, e, and r are the eigenvalues, right eigenvectors, and left eigenvectors of the

bending energy matrix, respectively (50). The left eigenvectors are related to the

right cigenvectors by:

R = [rir 2 I... Ir.] = [[eiJe 2 I... Ien]-1] T (3.80)

Substituting spectral decomposition (Eq. 3.79) into the interpolation (Eq. 3.78)

gives:

z(x0,yo) = AT [ ,eirj Z + (c, + c2x0 + Csyo) (3.81)

n

= Z •i + (Cl + C2 XO + C3 Yo) (3.82)

where fli is a scalar defined to be the ith bending mode of the face:

Qi = f 1i(xo, yo) = AiyTeirTz (3.83)

If the eigenvalues are unique, then the left eigenvectors are identical to the right

eigenvectors (49). However, for the energy matrix, there are always three repeated

zero eigenvalues representing the affine transformation of the regression plane. In all

test cases performed for this research, the right and left eigenvectors associated with

a non-zero eigenvalue are identical; therefore ei can be substituted for ri. For the

three zero eigenvalues, the right and left eigenvectors are different, but the bending

mode is always zero because A, = 0. Therefore, the bending modes can be simplified
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to:

fO = fl•(xo, yo) = Ai-Te,eTz (3.84)

The bending mode is a scalar function of (xo, yo). Each bending mode consists of

three scalars: Ai is the ith eigenvalue, O, = eTz is a deterministic constant called

the mode constant, and -joTei is a function of (xo, yo) representing the shape of the

bending mode.

3.4.2.2 Bending Mode Example. This example explains the procedure

for decomposing the energy matrix into individual bending modes. This example is

a continuation of Example 3, Section 2.2.4.7. For simplicity, the same data is used

with variogram function 7(h) = hMinh 2 .

The five data points describing the figure are (2,4,7), (3,10,2), (-4,7,1),

(7,-2,-4), and (4,1,5). The variogram function is y(hio) = h'olnhh2 where h2 =

[(X, - Xo) 2 + (y, - yo) 2] is the distance squared from landmark i to the point (xo, yo).

This variogram function is not representative of a face; however, it is used here for

simplification. These results hold for any variogram function.

In the previous example, the interpolation of the data is found to be:

z(z,y) = 00326- (V-@ )2+ (2y-4)) -0.0101 (V(-3)2 + (- 10)2)

-0.024 0 (Vx + 4)2 +(y- 7)2) - 0.04577 (,f(z - 7)2 + (y+ 2)2)

+0.0471 y (x(z - 4)2 + (y - 1)2) + 22.121 - 0.3381z + 0. 22 3 4y (3.85)

where the subscript is dropped since (xo, yo) can be any location. The regression of

the data is given by the last three terms:

Regression = 22.121 - 0.3381x + 0.2234y (3.86)
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The L matrix is:

0 (N3) -y(\4A) - -(v')-) ((v'i3) 1 2 4

-y(v'Th7 0 -Y(\/58) (v'--6) i(\/-8-) i 3 10

v(v'i5) v(V'ii) 0 (-2/02) -y(v'i•) 1 -4 7
L= y(\/6/1) -(&'6-6) -y(\20-2) 0 -y(v'ii) 1 7 -2

"y(Vi•) •(Vi•) "y(N/i'•) "•(i) 0 1 4 1

1 1 1 1 1 0 0 0

2 3 -4 7 4 0 0 0

4 10 7 -2 i 0 0 0

Substituting 7f(h) = h2 In h2 into L and taking the inverse:

0.02057 -0.00341 -0.00337 0.oo358 -0.01736 1.890 0.01951 -0.05364'

-0.00341 0.00060 0.00071 -0.00015 0.00224 -0.92498 0.09310 0.12493

-0.00337 0.00071 0.00118 0.00115 0.00031 -0.25472 -V.11780 -0.02708

0.00358 -0.00015 0.00115 0.00540 -0.00998 -1.06067 0.06322 -0.06635

-0.01736 0.00224 0.00031 -0.00998 0.02478 1.34998 -0.05803 0.02215

1.89040 -0.92498 -0.2547? -1.06067 1.34998 552.028 -19.2475 -31.3383

0.01951 0.09310 -0.11780 0.06322 -0.05803 -19.2475 9.32795 -1.39663

-0.05364 0.12493 -0.02708 -0.06635 0.02215 -31.33 -1.39663 9.49502

The upper left 5 x 5 elements of the L-' is the energy matrix L51 '

" 0.02057 -0.00341 -0.00337 0.00358 -0.01736-

-0.00341 0.00060 0.00071 -0.00015 0.00224

L
1
'= -0.00337 0.00071 0.00118 0.00115 0.00031 (3.89)

o.00358 -0.00015 0.oo115 0.oo540 -o.0099

-0.01736 0.00224 0.00031 -0.00998 0.02478

The nonzero eigenvalues and eigenvectors of L- 1 are:

A1 = 0.04324 el = [0.62274 -0.09036 -0.05010 0.25142 -0. 7 33 6 9 ]T

A2 = 0.00931 e2 = [-0.63886 0.16488 0.34010 0.53599 -0.40211 IT
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The mode constants are given by the dot product:

01 = ejTZ

= [0.62274 -0.09036 -0.05010 0.25142 -0.73369].

[7 2 1 -4 5]T

= -0.54577

,I]2 = e 2 Tz

= [-0.63886 0.16488 0.3401V 0.53599 -0.40211].

[7 2 1 -4 5 1T

- -7.95667

The mode constants are deterministic scalars. The bending modes are given by:

0 - = e i -- Te1

= (0.04324)(-0.54577) x

[0.,62274 ( - 2)2 +(y - 4)2) - 0.09036 y 3)2 - +( - 10)2)

-0.05010 -f + 4)2 ,+(y - 7)2) - 0.25142 7f (,(z -7)2 + (y + 2)2)

-0.733697y - 4)2 +-(y - 1)2)] (3.90)

02 = A27 TTe202 = A20,27 Te 2

= (0.00931)(-7.95667) x

10638867 yv( 2)2 + (y - 4)2) + 0.16488 y 3)2 + (y - 10)2)

+0.34010o (,(7 + 4)2 + (p - 7)2) + 0.535997 (., - 7)2 + (y + 2)2)

-0.40211 -y (,/z- 4)2 + (y,-1)2 )] (3.91)

The bending modes are only a function of x and y. The surface plots of these modes

as x and y vary are given in Figures 3.5 and 3.6. The first bending mode is more

'bent' than the second bending mode. This shows that Uhe bending of the first mode

is more localized. The first bending mode relates to the higher eigenvalue. Therefore,
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Figure 3.5 Example Bending Mode 1: Bending mode plus regression plane for five

point example.

'ligher eigenvalues represent localized bending of the figure while lower eigenvalues

represent more global changes in the figure.

The next step is to confirm that the bending modes can be combined into the

original figure. For the landmark at (2,4) the bending modes are given by Equations

3.90 and 3.91. The regression is given by Equation 3.86. Substituting the landmark

(2,4) into these equations gives:

Q,(2,4) = -0.42307 (3.92)

f22(2,4) = -14.9152 (3.93)

Regression(2,4) = 22.3383 (3.94)

Adding the bending modes and regression (Eq. 3.81) gives -0.42307 - 14.9152 +

22.338 = 7.0 which is the height of the landmark at (2,4). Similarly, the bending

modes sum to the landmark at each of the five landmarks. The bending modes

can also be calculated at non-landmark positions. For example, at the point (5, 3):

Q1(5, 3) = 0.19503, Q2 (5, 3) - -16.3025, and the regression is 21.1006. Adding these
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Figure 3.6 Example Bending Mode 2: Bending mode plus regression plane for five
point example.

gives 4.9931. The interpolation from Equation 3.85 is also 4.9931 which shows the

bending modes always recombine into the original figure.

This example has shown that the energy matrix can be spectrally decomposed

into a series of bending modes and that the bending modes can be recombined into

the original figure.

3.4.2.3 Bending Modes Summary. The eigenvalues, eigenvectors,

and data points represent a complete picture of the energy matrix and of the face.

However, the feature space used for clustering should be significantly less than the

n2 elements of the energy matrix. One way to reduce the size of the feature space

is to use only the eigenvalues for clustering. As a result of this data reduction, the

eigenvector and mode constant information is lost.

In order to cluster on eigenvalues alone, the relative importance of each eigen-

value must be determined. Bending modes are a valuable tool for 'viewing' the

eigenvalues of a face. They can also show which eigenvalues are the important eigen-

values of a particular face. However, they can not be used to find, in general, which
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eigenvalues are the important eigenvalues for comparison of facial seal data. There-

fore, another technique must be used to infer which eigenvalues best represent the

similarities and differences in facial seal data.

3.4.3 Investigation of Eigenvalues. The eigenvalues of the energy matrix,

L-1, are unique. Eigenvalues alone represent a reduced feature space as compared

to L- 1 (n versus n2 features), but every time a feature space is reduced, information

is lost. If the eigenvalues are analyzed as a feature space, an investigation is needed

to determine if they hold enough information to characterize the seal area. The

next section validates use of the energy matrix eigenvalues as a feature space which

captures changes in form. The validation uses a symmetric flat ellipse, or 'egg', to

test the sensitivity of the eigenvalues to changes in shape and size.

3.4.3.1 The Egg. The 'egg' is developed to investigate whether or

not the eigenvalues of L` 1 contain enough information to characterize the seal area

of a face. The egg consists of 18 (x, y, z) coordinate points. Figure 3.7 shows a plot

of these points and Table 3.2 lists the (x, y, z) coordinates. The first 16 points define

-the circumference of an ellipse in the xy plane (height z = 0), symmetric about the

x and y axes. The major (x-axis) and minor (y-axis) axes represent the length and

width, respectively, of a typical seal area. The last two of the 18 points represent

a nose and chin. They are placed on the x-axis (length of seal area) and given z

coordinates typical of nose and chin measurements after trend removal of the facial

seal areas (refer to the residual analysis used for trend removal in determining the

variogram, Section 3.2.3).

The simplicity of the egg enables slight changes in form to be captured in L' 1 .

These slight changes are made by modifying the egg described previously to create

many different eggs for comparison. Modifications, changes in form of the egg, are

made in several different ways. They are listed here and given an identifying name:
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Elliptical
Points x y z

1 58.0 0.0000 0
2 43.5 29.1033 0
3 29.0 38.1051 0
4 14.5 42.6028 0
5 0.0 44.0000 0
6 -14.5 42.6028 0
7 -29.0 38.1051 0
8 -43.5 29.1033 0
9 -58.0 0.0000 0

10 -43.5 -29.1033 0
11 -29.0 -38.1051 0
12 -14.5 -42.6028 0
13 0.0 -44.0000 0
14 14.5 -42.6028 0
15 29.0 -38.1051 0
16 43.5 -29.1033 0

Nose 20.0 0 20.0
Chin -40.0 0 10.0

Table 3.2 Original Egg Coordinate Data

"* The egg is lengthened 30 % by scaling the x coordinates. (Egg-x130)

"* The egg is widened 30 % by scaling the y coordinates. (Egg-yl30)

"* The egg is increased 30 % in both the x and y directions. (Egg-xyl30)

"* The egg is increased 30% in the x, y and z directions, making it the same shape,

but a different size. (Egg-130)

"* The height of the nose is changed by 5 units in both the positive and negative

z direction creating two modified eggs. (Nose-up, Nose-down)

"* The height of the chin is changed by 5 units in both the positive and negative

z direction creating two modified eggs. (Chin-up, Chin-down)

"* The position of the nose is moved along the x-axis by 5 units in both the positive

and negative x direction creating two modified eggs. (Nose-xpos, Nose-xneg)
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e The position of the chin is moved along the x-axis by 5 units in both the positive

and negative x direction creating two modified eggs. (Chin-xpos, Chin-xneg)

The original egg and all modified eggs are analyzed using the structure analysis

methods outlined in Section 3.2, with the exception of the residual analysis. The

energy matrices for the egg and all modifications are developed using the spherical

variogram model, with an anisotropic correction factor similar to what is used in

the seal area data analyses. After the energy matrix, L- 1, is calculated, the eigen-

values of this matrix are found and compared. The comparisons are done in three

different groups: scaling effects (Egg-x130, Egg-y130, Egg-xyl30, Egg-130), move-

ment in height of the nose and chin (Nose-up, Nose-down, Chin-up, Chin-down), and

movement of nose and chin along the x-axis (Nose-xpos, Nose-xneg, Chin-xpos, Chin-

xneg). Comparisons are discussed with reference to the absolute value or magnitude

of the eigenvalues, since singular value decomposition (Section 3.4.1) shows that the

sign of eigenvalues for real symmetric matrices is not relevant for comparison.

3.4.3.2 Scaling Effects. Five files are used in the scaling effects:

the original egg, Egg-x130, Egg-y130, Egg-xyl30, Egg-130. When comparing the

eigenvalues of the energy matrix from these five eggs, a trend appears. Figure 3.8

shows that the relative magnitudes of the eigenvalues from the corresponding energy

matrices follow the trend:

original Egg > Egg-yl30 > Egg-xl30 > Egg-xyl30 > Egg-130

The symbol > represents a noticeably larger increase in eigenvalues, such as between

Egg-x130 and Egg-y130, compared to differences represented by the symbol >. The

trend shows that smaller sizes, the smallest represented by the original egg, have

higher bending energies than larger sizes. Figure 3.8 also shows that the rate of

decrease in the eigenvalues tends to level out around the eighth eigenvalue after

which the lower eigenvalues of Egg-xl30 and Egg-xyl30 become slightly larger than

the original egg and Egg-yl30. Egg-yl30 is smaller than Egg-x130 because increasing
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Figure 3.7 Plot of the Egg: The original egg which consists of 18 points; (a) egg
top view, (b) egg side view.
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the width by 30% results in a smaller increase in size compared to increasing the

length of the egg by 30%. Bending a plane through a small seal area requires

more energy than bending a plane through a larger area and is shown here by the

eigenvalues of the four eggs compared.

3.4.3.3 Movement in Height of Nose and Chin. Evaluating differ-

ences in eigenvalues for movement in height of nose and chin uses five different files:

original egg, Nose-up, Nose-down, Chin-up and Chin-down. Figure 3.9 compares

the eigenvalues of the original egg, Nose-up and Nose-down, and Figure 3.10 makes

the same comparison between the egg, and Chin-up and Chin-down. These figures

show that as the height of the nose or chin increases from the original position, the

eigenvalues decrease in magnitude and vice versa.

3.4.3.4 Changing Position of Nose and Chin. Five files similar to

those used in height changes of the nose and chin are required for this analysis:

original egg, Nose-xpos, Nose-xneg, Chin-xpos, and Chin-xneg. Figure 3.11 compares

the energy matrix eigenvalues of egg, Nose-xpos, and Nose-xneg, and Figure 3.12

* shows a similar comparison between egg, Chin-xpos, and Chin-xneg. No noticeable

trend in eigenvalues appear. This can be explained by evaluating the variogram,

Equation 3.10, to see how the variables change in this instance.

The sill of the variogram for these eggs remains constant because the z coordi-

nates do not change from egg to egg, but the h's do change. The variogram function

depends upon both the values of the sill, and h. Note that if h is greater than the

range, a, the variogram is constant, the value of the sill. There are only a small

number of h's which are less than the range, therefore only a small number of 7f(h)

values change in the L matrix (refer to Equations 3.72 and 3.73) and thus in L 1 .

Therefore, no noticeable change in the bending energies can be detected between

these eggs.
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Figure 3.8 Egg Scaling Effects Trend: Trend appearing when eigenvalues of the
energy matrix from scaled egg data are compared. The vertical axis
represents the magnitude of the eigenvalues.
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Figure 3.9 Egg Nose Height Effects Trend: Trend appearing when eigenvalues of
the energy matrix from data capturing the movement in height of the
nose are compared. The vertical axis represents the magnitude of the
eigenvalues.
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Figure 3.10 Egg Chin Height Effects Trend: Trend appearing when eigenvalues of
the energy matrix from data capturing the movement in height of the
chin are compared. The vertical axis represents the magnitude of the
eigenvalues.
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Figure 3.11 Egg Nose Position Effects Trend: Trend 4.ppearing when eigenvalues
of the energy matrix frorn data capturing the movement in position of
the nose are cohpwt:.,,. The vertical axis represents the magnitude of
the eigenvalues.
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Figure 3.12 Egg Chin Position Effects Trend: Trend appearing when eigenvalues
of the energy matrix from data capturing the movement in position of
the chin are compared. The vertical axis represents the magnitude of
the eigenvalues.
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3.4.3.5 Trend Validation. The trends depicted by modification in

the form of a simple figure are validated on many other modifications to the egg and

even to seal areas (Appendix B). Some of these modifications include adding more

points to the circumference of the ellipse, where eggs having 20, 22, 26, and 30 points

are created. Other modifications include: adding two more points within the ellipse

to represent the corners of a mouth (Megg), and changing the heights of points along

the ellipse to simulate 'depth' (Degg). Seal areas used in the validation are original

seal area data digitized from plaster casts. The same changes in form itemized in

Section 3.4.3 are made to all the new modifications and seal areas, and the same

trends appear. Appendix B also contains eigenvalue plots of these modifications

similar to plots shown in this section.

The comparisons made in this section demonstrate that the eigenvalues of

the energy matrix contain information which characterizes the seal area oi a face.

These differences can be determined in an experiment such as those conducted in this

section, but a problem occurs when trying to compare two seal areas. The eigenvalue

variances between two seal areas may be due to several differences: one seal area

being smaller, the nose/chin being lower, or maybe a combination of the two. These

differences have the same effect on the eigenvalues from the energy matrix, L' 1 . The

eigenvalues of the energy matrix do contain information which characterizes the seal

area, but this may not be enough of all the information contained in L' 1 .

3.4.4 Energy Matrix Summary. The energy matrix has the ability to char-

acterize the form of a face using spacial correlation. Each energy matrix is unique to

a face, which identifies it as a source for features selection and comparison. The main

advantage to using the energy matrix is that faces can contain an unequal number

of data points. The disadvantage is the existence of a large data set, combined with

the uncertainty of how to identify the critical features for comparison.
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One method of data reduction is spectral decomposing the energy matrix into

its eigensystem, which is unique to each matrix. The verification by reconstruction

of the faces using bending energy modes and the validation methods using the egg,

both justify using 'all' the eigenvalues of the bending energy matrices. However,

clustering necessitates that the number of features used for comparison be equal, and

dimensionality constraints require that the number of features be some minimum to

justify using a greater number of clusters. The next chapter describes clustering

techniques, fuzzy clustering in particular, and addresses these issues.

3.5 Form Characterization Summary

The energy matrix completely and uniquely describes the form of each face by

kriging the seal area data. Kriging accounts for the anisotropy and the trend surface

a--d then calculates the spacial correlation of the data.

Thin plate splines provide a technique for comparing figures but does not

account for the spacial correlation of the data. The thin plate spline equations are the

same form as the kriging equations except TPS uses the minimized energy function U

and kriging uses the spacial correlation function -y. This research develops a true

spacial correlation by combining kriging with the TPS methodology for comparing

objects. The reference object is taken to be a flat plate and the energy matrix

uniquely describes the bending of the flat plate to the object.

The energy matrix contains n2 elements and must be reduced into features for

clustering. The eigensystem decomposes the energy matrix into eigenvalues which,

potentially, can be used as clustering features. Two techniques are discussed to

determine the eigenvalues which best describe the form of a face. Bending modes

combine each eigenvalue with its associated eigenvector in order to quantify the

amount of bending associated with each eigenvalue. The Egg analysis investigates

the effect on the eigenvalues of modifying a simplistic model of the face. Chapter IV
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describes how fec .ares of the energy matrix are clustered to form groups of similar

faces.
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IV. Clustering

Clustering is the grouping of objects into characteristic classes. For example, a

person without any prior knowledge of military aircraft may characterize them upon

first sight as being either large or small, or either single- or multi-engined. It is often

useful categorize sets of objects into groups with similar characteristics. Clustering

algorithms have been developed to objectively accomplish this task. The two broad

categories of clustering are fuzzy and crisp. Crisp clustering refers to 'classical'

clustering where an object can belong to one and only one cluster. Fuzzy clustering

utilizes fuzzy logic to account for situations where the same object may belong to

more than one cluster. Both types of clustering are discussed in the balance of this

chapter.

4.1 Crisp Clustering

Crisp clustering algorithms sort data into mutually exclusive and collectively

exhaustive groups based upon common features. Implementing a crisp clustering

procedure involves several considerations, including

"* the number of clusters

"* the n•'mber and type of features

"* how to decide if a sample is in a cluster

"* the user's definition of good clusters.

Each of the preceding terms deserves some further explanation.

4.1.1 Number of Clusters. The number of clusters depends on the avail-

able data and the application. Returning to the military aircraft example, a priori

knowledge that the aircraft are either fighters or bombers yields the information that

the data set is composed of only two clusters. If prior knowledge such as this is not
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available, then it is desirable to construct an algorithm which searches out the opti-

mal number of clusters. A common method of identifying this optimal number uses

an iterative scheme to evaluate different numbers of clusters. After each iteration,

the algorithm provides a calculated value of a 'criterion of optimality.' When the

algorithm has terminated, the criteria can be compared to decide upon an optimal

number of clusters. The criteria are commonly referred to as validity measures (2).

4.1.2 Feature Selection. The features of a data set are the characteristics

used in a clustering algorithm to decide how the clusters are formed. The number

and types of features, like the number of clusters, are characteristics which are not

controlled by a series of cut and dry equations. Feature selection is very much an art,

requiring experience, intuition, and common sense. Features should be chosen such

that data samples are readily distinguishable from each other. In the design of the

MBU-5/P oxygen mask, facial length and width from the 1950 anthropometric study

were used as features. In the design of the MBU-12/P, facial length alone from the

1967 anthropometric study was the feature used for clustering. Features can also be

derived from physical characteristics using transformations such as Fourier analysis

or eigensystem analysis. The coefficients from these methods are used as features

in a new, transformed feature space. Returning once again to the military aircraft

example, it is desirable to locate the distinctive features which most easily separate

'fighters' from 'bombers.' Possible choices include wingspan, take-off weight, and

maximum velocity. Any of the these features would probably provide more accurate

clusters than using a feature such as the age of the pilots. It becomes apparent

from this simple example that the type of features selected directly impacts the

performance of the clustering algorithm. The choice of the type and number of

features defines the feature space where the clusters exist. Choosing multiple features

creates multiple dimensions in the 'feature space.' It also becomes apparent that

the larger the number of distinguishing features which are available for use in the

clustering, the more accurately the clusters are defined (54).
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4.1.3 Decision Function Selection. A core element of any crisp clustering

routine is deciding in which cluster an object belongs. The algorithm accomplishes

this task by utilizing decision functions, also known as discriminant functions. Deci-

sion functions can be similarity measures which utilize a distance function. If sample

A is closer to cluster 1 than cluster 2 in some multidimensional feature space, then

the decision is made that A belongs to cluster 1. Some commonly used measures

of similarity are Euclidean distance, Mahalanobis distance, and Tanimoto measure

(54). The choice of a decision function is dependent upon the type of data samples

and the desired results from the clustering algorithm. If there are known distri-

butions within the data which can be exploited, the Mahalanobis distance, which

incorporates the data covariance matrix, may be appropriate. If there are no known

distributions, Euclidean distance may be appropriate. If the data is in binary format,

the Tanimoto measure may yield the best results. Like feature selection, decision

function selection is dictated heavily by the nature of the data and the experience

of the programmer.

4.1.4 The Curse of Dimensionalit y. The allowable number of features,

number of clusters and number of data samples used in a clustering algorithm are

closely related. A trade-off exists which is not easily defined in mathematical terms.

Unfortunately, it has frequently been observed in practice that, beyond
a certain point, the inclusion of additional features leads to worse rather
than better performance .... The basic source of the problem can always be
traced to the fact that the number of design samples is finite. However,
analysis of the problem is both difficult and subtle. Simple cases do not
exhibit the experimentally observed phenomena, and more realistic cases
are difficult to analyze (21).

Many analyses have been conducted to derive some concrete rules relating di-

mensionality and sample size. The results of these studies provide general rules which

are often contingent upon assumptions on the number of clusters, the probability

distribution of the data, and the desired classification error rate for each particular
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clustering algorithm. Raudys and Jain have recommended a sample size exceeding

1.2 times the dimensionality of the feature space for a two class problem (44). Cover

has suggested the number of samples needs to be at least twice the dimensionality

of the feature space for a two class problem (15). Tou and Gonzalez recommend

at least ten times the number of samples per feature dimension (54). The relation-

ship between number of features, number of clusters, and sample size can be grossly

stated as:

Number Clusters x Number Features x SF < Number Objects (4.1)

The 'SF' is termed the safety factor and refers to the multiplier needed to achieve

reliable clusters. Per the above references, the SF has a usual range. of between

1.2 to 10. More features make it easier to discriminate between classes, but the

classifier needs enough data samples to support the additional features. Proof of

these relationships abound (32, 44) but usually entail restrictive assumptions on the

number of clusters, the distribution of the data, and the type of classifier. When

designing any clustering or classification algorithm, it is important to keep these

considerations in mind.

4.1.5 Performance Measures. Given a data set large enough for the di-

mensionality of the feature space and an acceptable maximum number of clusters,

an optimal number of clusters within this maximum can be determined. As with

decision functions, there exist many different measures of optimality. A commonly

used performance index is the sum of squared errors (54) given by:

Nc

J Z 1: X - 112 (4.2)
j=1 xES3
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where:

X = data samples,

N= number of clusters,

Si = set of samples belonging to the 3th cluster, and

mj= mean of all values of the jth cluster.

The minimization of this index gives tightly packed clusters. Other perfor-

mance measures include cluster separation distances, cluster hypervolumes, and av-

erage squared distances between samples in different cluster domains (2). This is far

from an exhaustive list. Many different performance measures have been developed

for different applications. Again, the performance index chosen is dependent upon

the data sample and the goals the clustering algorithm is attempting to achieve.

According to Tou and Gonzalez, "..the performance of a particular cluster-seeking

algorithm is dictated largely by the cleverness of its designers in extracting valuable

information from the data being analyzed" (54).

If the samples from the data set are not easily separated into clusters, fuzzy

logic can be incorporated into the clustering algorithm. The following sections give

a brief overview of fuzzy logic, how it can be used in clustering, and a comparison

between fuzzy clustering and crisp clustering.

4.2 Fuzzy Logic

Fuzzy logic is a system devised by Lotfi Zadeh in 1965 to quantify the uncer-

tainty in a system (63). It is used in many applications including decision making,

controls, and pattern recognition. Fuzzy set theory is the application of fuzzy logic

to traditional set theory. It differs from classical (also known as crisp) sets in one key

area. Whereas in crisp sets, an object is only allowed to be in one set, in fuzzy sets, an

object is allowed to belong to more than one set. The degree to which an object par-

tially belongs to a set is called its membership in that set and is usually depicted by

p. The definition Zimmerman gives is: "If X is a collection of objects denoted gener-
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ically by x then a fuzzy set A in X is a set of ordered pairs: A - {(x,#A(z))Ix E X1

where PA(X) is called the membership function of x in A" (64). The memberships of

fuzzy sets quantify the ambiguity inherent in the real world. Rarely do real world

objects have a single function or identity. An FB-11 Aardvark is both a fighter and

a bomber and a KC-10 Extender is both a refueler and a cargo aircraft. Paul New-

man is an actor, entrepreneur and a race car driver. Crisp sets are a subset of fuzzy

sets since all memberships in a crisp set are either zero or one. Mathematically, crisp

membership functions are defined as AAA(x) E 10, 1}. Consequently, the membership

function for fuzzy sets represents a degree of association with a particular set and is

defined as AA(x) E [0, 11.

The memberships AA(x) (where x E X) of the points x in the set A can take

different forms, four of which are graphically shown in Figure 4.1. The first repre-

sentation is a discrete pairing of points within the set and the point's corresponding

membership. If A is defined as {numbers close to 10}, then a possible fuzzy de-

scription of this set is A = {(X,IAA(X))Ix E X1 = {(7,0.1),(8,0.5),(9,0.8),(10,1.0),

(11,0.8),(12,0.5),(13,0.1)}. The further a number is from 10, the smaller the value of

its membership. Numbers not listed in this fuzzy set are assumed to have a member-

ship of zero. Graphically, this fuzzy membership function is shown in Figure 4.1a.

The set A = {numbers close to 10} can also be represented by a continuous function,

such as A = {(XA A(X))IPA(X) = (1 + (x - 10)')-1} (see Figure 4.1b). Two other

common continuous membership functions are the trapezoidal (Figure 4. lc) and the

triangular (Figure 4.1d).

4.2.1 Membership vs. Probability. It is important to note that member-

ships are not probabilities. Although memberships are restricted to be between

zero and 1.0, there is no restriction on the area under the curve being 1.0 as in

probabilities. For example, while a KC-10 Extender is both a cargo aircraft and a

refueler, based on the type of mission or time spent accomplishing each mission it

can have a membership of 0.8 refueler and 0.4 cargo aircraft. Another major differ-
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ence between probabilities and memberships is that probabilities measure ambiguity

in binary, 'either-or' terms. A commonly used example which displays this is the

thirsty drinker. A man is lost in the desert and stumbles upon two bottles of liquid.

Bottle A has a poison membership of 0.1. Bottle B has a probability of being poison

of 0.1. Which bottle should he drink? If the membership function for poison rep-

resents the percentage of poison in the liquid, the membership of bottle A tells the

man the liquid is 10% poison while the probability of bottle B tells the man there

is a 10% chance the liquid is all poison. Assuming a 10 to 1 ratio of water to poison

is nonlethal, the man should obviously choose bottle A. This example graphically

illustrates the binarity of probabilities (2).

4.3 Fuzzy Clustering

Fuzzy clustering is the application of fuzzy set theory to clustering. The evo-

lution of this application is a natural one. Crisp clustering is limited by the features

the practitioner has available. The performance of the clustering algorithm largely

depends on the resourcefulness of the practitioner to extract the most appropriate

features from the data set. It is also up to the practitioner to develop a discriminant

function that separates the samples into representative clusters. A challenge arises

when, through no fault of the practitioner, representative features are not readily

available. An equally challenging aspect of clustering is a data set which is not sep-

arable into definable clusters by a crisp discriminant function. Fuzzy sets allow the

practitioner a margin of flexibility which makes clustering this data a viable exercise

(64).

4.3.1 Cluster Membership. As in fuzzy sets, fuzzy clustering allows an

object to belong to more than one cluster at a time. The degree to which an object

belongs to a cluster is its membership in that cluster. Fuzzy clustering allows the

practioner to decide if an object should belong to a cluster by the object's member-

ship. Depending upon the application and the nature of the data, 'hard' membership
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cutoffs can be decided upon to create crisp clusters. Objects with memberships less

than these cutoffs can be considered indeterminant and not belong to any cluster.

4.3.2 Fuzzy Prototypes. The centroid of a particular cluster is sometimes

referred to as the cluster's prototype. One advantage of fuzzy clustering is its ability

to yield prototypes from data sets which by all appearances have none. Given a set

of data which is not readily separable into n clusters, fuzzy clustering can identify

which n entities best represent the distribution of the entire data set.

4.4 Fuzzy vs. Crisp Clustering

Fuzzy clustering and crisp clustering share many of the same qualities. They

are both influenced by the type of data available and the curse of dimensionality.

Also, they are both highly dependent upon the experience and knowledge of the prac-

titioner in choosing features and discriminant functions. The one major difference

between fuzzy and crisp clustering is the ability of fuzzy clustering to characterize

the distribution of the data points in a more realistic manner than crisp clustering.

Although it may suffice to say for many clustering applications that the objects are

wholly in one cluster and not in another, it is an artificiality which sometimes can

not be accepted.

4.4.1 Example: Fuzzy vs. Crisp Clustering. A classic example of fuzzy ver-

sus crisp clustering 7s the 'butterfly' (64). Figure 4.2a shows a set of 15 data points in

two dimensional s l.kce. Figure 4.2b is how a crisp clustering algorithm might cluster

these data points. A and B mark the centroids of each cluster. The data points in

cluster I are completely in that cluster. In fuzzy terms, they have a membership of

1.0 in cluster I and a membership of 0.0 in cluster II. The memberships for this case

are shown next to their respective points. Similarly, the points in cluster II have 0.0

membership in cluster I and a membership of 1.0 in cluster II.
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The two clusters from this crisp clustering routine may truly represent how

these data points would be distinguished in actual practice. More likely, however,

the pattern of their distribution does not indicate such a precise division into two

sets. Figures 4.2c and 4.2d show how a fuzzy clustering algorithm might evaluate the

same set of data. The values next to each data point are the memberships associated

with a particular cluster. Figure 4.2c is the membership values for points compared

to cluster center A and Figure 4.2d is the membership values for cluster center B.

Assuming the features chosen truly represent the samples, the fuzzy clustering yields

a more accurate and flexible chaxacterization of the data. If the practitioner decided

to create two clusters from the fuzzy clustering, he could use an 0.80 membership

cutoff to decide which clusters data points belong to. Using this threshold, the

clustering would come out the same as in the crisp clustering with the exception of

point x8 . Point X8 has a 0.50 membership with respect to centroid A and a 0.50

membership with respect to centroid B. These memberships indicate point Xs is half

in the top cluster and half in the bottom cluster. Using a 0.80 cutoff, the point x8

would be considered indeterminant. The flexibility indicated by this simple example

could be extended to more complicated situations.

4.4.2 Fuzzy Clustering Summary. The attributes of fuzzy clustering allow

a measure of flexibility which is applicable to this research. Fuzzy clustering is useful

for this research because small differences in faces are not easily distinguishable. It

has the unique ability to assign memberships to objects of different clusters and

determine the theoretical centroid of a cluster. By identifying the memberships of

objects it becomes an easy task to identify the object with the highest membership

in each cluster. This is the object which is closest to the theoretical centroid and

best represents the cluster.
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4.5 Fuzzy Clustering Algorithm

This section describes the fuzzy clustering algorithm used in this research.

There are many crisp clustering algorithms which have been altered to use fuzzy

logic. The algorithm chosen for this research is the fuzzy c-means algorithm (62).

Fuzzy c-means provides a relatively straight-forward method for analyzing data of

an unknown distribution.

4 .5.1 Fuzzy C-Means. The fuzzy c-means algorithm derives its name from

the fact that the user must input the number of clusters, c. It assigns memberships

to objects based upon the objects' Euclidean distances to the fuzzy centroids of the

clusters. In addition to the number of clusters, the user must input the feature

vectors, xi, representing each of the sample objects.

The first step in the fuzzy c-means algorithm is to determine the number of

clusters. The methodology of choosing the number of clusters is explained in Section

4.6. The membership of face j in cluster i is initialized for each face and cluster.

The initial memberships are uniform random numbers ranging from 0 to 1. The

memberships are then normalized such that:

C

= 1 (4.3)

where c is the number of clusters.

The features describing face j are put in the vector xj. The centroid vi of each

cluster is calculated by:

n

Vi= (4.4)
E (zij)-

where m > 1 is the fuzziness index and n is the number of faces. As an exponen-

tial weight, m influences the membership function. For very large values of m the
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membership of every face in every cluster will be 1/n. This is referred to as a fuzzy

membership function. Conversely, small values for m lead to higher memberships

and a more crisp clustering. When using random data, there is no real 'concentra-

tion' around the centers of the clusters, so a value of m = 2 is usually used. The

squared Euclidean distance of each face x, from a cluster centroid vi is:

d2 (x3 , V,) = (Xj - v,)TA(xi - vi) (4.5)

where A is a symmetric, positive-definite weighting matrix, usually the covariance of

the data set. The matrix A is used to determine the shape of the cluster calculated

by the fuzzy c-means algorithm. Since the feature space represents an isotropic

bending energy matrix, A is the identity matrix and the shape of the clusters are

equally sized hyper-spheres (64).

The membership functions are then updated using:

j C (X3 ,vi) 1 (4.6)

The updated membership functions will be normalized as shown in (Eq. 4.3).

The objective function to be minimized for fuzzy c-means is:

C n

Jm = (Ai(Y' (xj - v,)T A(xi - vi) (4.7)
i=1 j=1

The objective function measures the distance weighted by the memberships. Equa-

tions 4.4 and 4.6 are iterated until the objective function Jm converges to a local

minimum. The result of the optimization is high memberships at small d& and vice

versa. According to Xie and Beni, the fuzzy c-means algorithm always converges

to a strict local minimum (62). The global minimum is found using an exhaustive

search technique by initializing ,ij a large number of times.

4-13



130

120

000

Width 11 "'. • "

100 11 12 3 1 0 IS

Length

Figure 4.3 Length and width of 99 faces and resulting cluster centroids.

The final clusters produced by the fuzzy c-means algorithm axe more stable

then crisp clustering algorithms, even if the data appears to be a random scatter.

The results of the clustering are c clusters centered at vi. High values of membership

represent faces that axe strongly related to the cluster and vice versa.

4.5.2 Example. The c-means clustering method is applied to the length

and width of each face to explain the procedure. Clustering on linear facial data

does not produce well defined clusters (24). However, it is useful to look at length

and width clustering because two feature (i.e., two-dimensional) clustering can be

easily visualized.

The data set consists of 99 faces. Figure 4.3 has 99 dots representing the length

and width of each face. The faces are clustered based on 3 clusters and the resulting

centroids are shown as crosses in Figure 4.3.

Figures 4.4, 4.5, and 4.6 give the memberships of each face in each of the three

clusters. The memberships are indicated "by the size of the dots. Points close to

the cluster centroids have large memberships (bigger dots), points close to another
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Figure 4.4 Membership of 99 faces in lower left cluster based on length and width
clustering.

cluster centroid have low memberships (smaller dots), and points equally distant

from the three centroids have equal membership in each of the three clusters.

4.6 Number of Clusters and Features

The first step in executing the fuzzy c-means clustering algorithm is to define

the number of clusters. While mathematical operations exist to define an optimum

based upon a specified criterion, none of these are applicable to this research. The

number of clusters and features is arrived at from an iterative process based upon

dimensionality constraints for the limited sample size of 99 faces. Section 4.1.4 dis-

cussed the relationship between the number of features, the number of clusters, and

the size of the data sample. If the number of features is increased, the algorithm can

more accurately classify the data samples. With increasing the number of clusters,

the entire data sample will be better represented by the increase in the number of

cluster prototypes. This research experimented with many different combinations of

clusters and features in an effort to find a compromise which would yield accurate

clusters which cover an adequate size of the sample data.

4-15



130

120

110
Width11 g *:

100 19 4

100 110 120 130 140 150
Length

Figure 4.5 Membership of 99 faces in center cluster based on length and width
clustering.

120 Og

soo

80
Widt ." o: w

100 1 1 1 0 1

100 110, , 120. . . . . . . . .130 140 1530

Length

Figure 4.6 Membership of 99 faces in upper right cluster based on length and width
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In experimenting with the available data sample of 99 faces, this research is

targeted for the production of six prototype masks using five features. This com-

bination of number of clusters and number of features yields a conservative safety

factor of 3.30. Clustering using the fuzzy c-means algorithm is done on two through

six clusters in an effort to gain some insight into how the data samples behave for

different values of c.

4.7 Facial Feature Selection

One of the most challenging aspects of any clustering algorithm is feature

selection. Feature selection entails choosing which charateristics of the data best

separate the data into the desired clusters. This is a twofold challenge when the

desired clusters are not known a priori. Such is the case with this research. Features

which have been used in past research are landmark dependent and have not yielded

satisfactory results. Distances between landmarks on the human face are highly

uncorrelated and difficult to consistently define. The use of the energy methods

discussed in Chapter III provides an alternative to reliance on landmarks. Recall

that the form of an object is described by the energy matrix, L-'. This matrix is

unique for each object and provides a new set of possible features; the eigenvalues of

the L- 1 matrix are also unique and can be used as a possible set of features as well.

As discussed in the previous section, this research has been limited to clustering

with five features. However, both L- 1 and its eigenvalues have substantially more

than five elements. The challenge becomes one of feature extraction and reduction.

The balance of this section describes the alternative ways to extract five features for

clustering from these potential feature sets. These reductions are broadly divided

into free form and fixed form methods. Free form methods extract features directly

from the eigenvalues of L,'. In contrast, fixed form methods extract features from

L` 1 matrices that have been reduced and transformed into a new feature space.

4-17



4.7.1 Free Form. The bending energy matrix is created without the use

of landmarks. Therefore, each face contains a different quantity of data depending

upon its relative size. That is, the total number of data points, n, is not constant

from face to face because small faces have less data than large f ices, n...11 < nt.,r.

This results in different bending energy' matrix sizes. The free form method of feature

space determination identifies the unique features of each individual face from the

uneven data sets. This section describes an application of the free form method which

uses the eigensystem of each bending energy matrix to create the feature space for

clustering.

Each seal area can be described by its bending energy matrix. The bending

energy matrix is very large, consisting of n' features. Dimensionality constraints dic-

tate reducing this information to an amount compatible with the clustering routine.

The key is to retain the vital form characteristics of the seal area during this reduc-

tion. As was shown in Section 3.4, the eigensystem of the bending energy matrix,

L'j, uniquely describes the form of a face (5). The eigenvalues represent the magni-

tude of the bending energy, and the related eigenvectors identify the location of the

bending. This concept was validated with the bending modes in. One interpretation

of the bending modes is that large eigenvalues could be indicative of high bending

energies, which occur in aieas of high curvature, such as around the nose. These

large eigenvalues could also be related to more localized differences in the shape of

a face compared to a flat plane. Conversely, small eigenvalues may indicate larger

scale differences or global changes, like the size of a face. The bending modes also

verify the reconstruction of a face from the eigensystem using the spectral theorem.

In choosing which five of these eigenvalues to use as a feature set, a decision is made

by the research team concerning the relative importance of global form versus local

variations. A large variety of five dimensional feature sets can be created from this

data.
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Global form characteristics are shown to be contained in the smaller eigenvalues

of the L` 1 matrix, whereas local variations are shown to be contained in the larger

eigenvalues of the L`1 matrix. For this research, the objective is to choose featares

which separate the sample faces into groups of members who wear similarly sized

oxygen masks. The challenge is to select the combination of global features and

local features that best characterize a sample face with respect to mask fit. Both

overall size and the localized area around the bridge of the nose are equally important.

Unfortunately, the best combination of five eigenvalues is not easy to identify. Unless

some other criterion for feature selection is created, trial and error appears to be the

only method for identifying which five eigenvalues to use.

4.7.1.1 Free Form Summary. The advantage of using free form meth-

ods is that facial feature sets can contain an unequal number of features within each

data sample. The disadvantage is the large number of possible features within each

facial data sample and the lingering question of which are the critical features for

comparison. The verification by reconstruction of the faces using bending energy

modes justifies using 'all' the eigenvalues of the bending energy matrices. How-

ever, dimensionality constraints limit the number of features that can be used in

the clustering routine. Clustering necessitates that the number of features used for

comparison be equal. This does not mean the free form method is unworkable or has

no value. The free form method is of significant value if a method could be developed

to locate and extract five critical features. After much experimentation, a method to

accomplish this was not found during this research. Another method to determine

the feature space is reducing the raw data for each face to an equivalent quantity

before calculating the bending energy matrix. This is the fixed form method. Using

fixed form allows for the use of linear transformations to identify critical features for

comparison.
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4.7.2 Fized Form. This section discusses the steps of feature reduction and

extraction of the original data set. The first step is to reduce the data by sparsing

the points on each seal line to a uniform number. Next, the data is transformed into

a new feature space using a linear transformation. Uncorrelated features are then

extracted from this transformed data to provide an alternative data set.

The experiments with the egg data and the bending modes show that there

is indeed information in the energy matrix Ln1 which is unique for each face form.

It is also shown that some of this information is contained in the eigenvalues of the

same energy matrix. By calculating the eigenvalues of L' 1 , a substantial reduction

in the amount of data (from n2 to n) is achieved. However, for a sample of only

n = 99 objects, the curse of dimensionality dictates a feature space much smaller

than even this reduced data set. The challenge is in deciding which elements from

L-1 or which of its eigenvalues to use in the clustering algorithm.

4.7.2.1 Sparsed Data. In the original data collection, points are

digitized every 2 millimeters along the seal line of the plaster casts. A first effort at

reducing the dimensionality of the data set is to delete redundant points along this

curve without changing the curve's original shape. Using the sparsing function on

the Pro/ENGINEER CAD software (see Section 5.1.2.3), two thirds of the original

smoothed data points can be deleted without affecting the shape of the original seal

curve. To aid in the future comparison between faces, the seal curves are sparsed

into a uniform number of points.

The number of points chosen to represent each seal curve is 39. Empirical

testing show that most seal curves start to change shape when reduced to between

25 to 30 points. 39 points is chosen because it allows a substantial reduction in

the amount of data and a margin of confidence in maintaining the original shape of

the seal curve. With the addition of the 14 spacial delineators, the size of L 1 is

53 x 53, yielding 2809 components and 50 non-zero eigenvalues. A further discussion
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of sparsing is found in Section 5.1.2.3. At this point, the same eigenvalues which

emphasize global form and local variations can be extracted from this sparsed data

set as in the free form data set.

Although this represents a significant reduction in the dimensionality of the

data set, the sparsed L- 1 matrix still contains too much information for clustering

with a limited sample si, e of 99 faces. The hypothesis for this sparsed set of data

remains the same as for the original, free-form set of data. The sparsed L`1 or its

eigenvalues can be used to represent the form of the sample face. If it is known

which elements of L` 1 or which eigenvalues of L`1 'best' characterize the face for

clustering, a further data reduction and possible clustering could be accomplished.

A means of achieving this is the Karhounen-Loeve Transform (KLT).

4.7.2.2 KLT. The KLT is a linear transformation which creates

an orthogonal, uncorrelated data set. The KLT has seen much use in the field of

image processing (26). It is referred to by other names such as principal component

analysis and the Hotelling Transform. For the purposes of this research, the real

strength of using the KLT is in the ordering of the transformed data set. The order

of the coefficients of the transformed data set represents an ordering of features in

decreasing variance. In other words, the first transformed featare has the greatest

variance, the second transformed feature has the second greatest variance, and so on.

In using the KLT for feature selection, it is assumed that a 'good' feature dimension

is defined as one having much variance. The more variance along the dimensions

of the feature space, the easier it will be to decide upon possible clusters. Figures

4.7 and 4.8 graphically display this concept. Features A and B were used to cluster

the data set in Figure 4.7. Features C and D were used to cluster the same set of

samples in Figure 4.8. The larger variances of features C and D afforded a clearer

choice of choosing the prototypes, indicated by the X's.
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Figure 4.8 Large variances within features.
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The steps in the KLT are as follows:

Given:

m data samples

n points in each sample

4i, where i = 1, ... , m mean-zero feature vectors

Step 1. Let the matrix A be composed of all the feature vectors Oi:

A = ['P1421 ... 10.1 (4.8)

Step 2. Since the *i's are mean-zero, define the covariance matrix (C) of A to be:

C=AAT (4.9)

Step 3. Calculate the eigenvectors (xi) and eigenvalues (Ai) of C.

Step 4 Create a matrix of eigenvectors corresponding to the ordered eigenvalues

(from highest to lowest):

xT

T

X X2  (4.10)

Step 5. Calculate the KLT coefficients by multiplying the ordered eigenvector

matrix by the original data vectors:

X4ýi =(4.11)

where fli is the vector of the KLT coefficients of the original feature vector fi. The

Ni's are ordered in such a way that the first component over all the flu's has the

greatest variance, the second component has the second greatest variance, and so
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on. The KLT coefficients are the transformed data set for use as a feature set in a

clustering algorithm.

The KLT is applied to two distinct sets of data: L-1 , and its eigenvalues. Using

the KLT on the eigenvalues of L- 1 is a direct application of the aforementioned

process. However, use of the KLT on the entire L` 1 requires further explanation.

To create the feature vectors fi, each L` 1 is 'vectorized.' That is, each matrix is

converted into a vector by appending the second row of the matrix onto the first

row, the third row onto the end of the first/second combination, and so on. If the

original matrix is n x n, the vectorized version is n2 long. The A matrix composed

of all these *i's is n2 x m, where m is the number of different L` 1 matrices. Since

the covariance matrix is created via C = AAT, C has dimensions of n2 x n . In

the case of the sparsed data set, this is a matrix of size 2809 x 2809. Finding the

eigenvectors and eigenvalues of such a matrix is not a trivial task. There is a linear

algebra substitution which can be used to reduce this matrix into a more reasonable

size:

Step 1. Define L = ATA (size m x m)

Step 2. The eigenvectors (ei) and eigenvalues(pi) of L are defined by

Lei = Asei. (4.12)

Step 3. Substituting ATA = L,

ATAei = uiei. (4.13)

Step 4. Multiplying each side by A,

AATAe = piAei. (4.14)

4-24



Step 5. Substituting C - AAT,

C(Ae,) = p,(Aei). (4.15)

Therefore, C has eigenvectors (Aej) and eigenvalues 1,.

For this reduction to have any meaning, the eigenvalues and eigenvectors of the

total covariance matrix (Ai,x,) would have to be equivalent to the eigenvalues and

eigenvectors of this new substitution (pi,Av,). It can be shown that if two matrices

are similar, they have the same eigenvalues (50). The definition of similarity is:

Two matrices (C,L) are similar if L = A 1 CA. For the case at hand, the proof of

similarity is:

L =ATA

AL = AATA

AL = CA

L = A-1 CA

Therefore, L and C are similar. They have the same non-zero eigenvalues, and their

eigenvectors are related by v = A-1 x (50).

4.7.2.3 Fixed Form Summary. The KLT can be applied to both the

eigenvalues of L`' and the entire L- 1 matrix. The KLT can also be applied to a

selected number of eigenvalues from the unsparsed, free form data set. This yields

sets of ordered, orthogonal, uncorrelated features. The question of 'which' features

to choose is now answered. One suggestion is to choose the top nf features from

each data set, where n1 is dependenent upon the size of the sample and the number

of clusters.

It is important to note at this point that the only reason the KLT is able

to be utilized is that the data sets have all been reduced to the same number of
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points. It would have been impossible to create the A matrix if all the #i's had been

different sizes. The acknowledgement of this point brings the logic train back full

circle. If there exists a method for extracting the 'most characteristic' components or

eigenvalues of the original, unsparsed L-', the restriction on identical dimensionality

between data samples would not apply.

4.7.3 Feature Selection Summary. The energy matrix L-1 uniquely char-

acterizes the form of a face and provides an large number of possible feature sets.

This section has presented a sampling of possible feature sets which could be used in

a clustering algorithm. Finding which feature set yields the best results is dependent

upon the application. It is an iterative operation in which selected possibilities are

tested against each other and some criterion of optimality.

4.8 Clustering Summary

Clustering is a process which requires as much common sense as mathematical

agility. There are many parameters that can be altered to affect the results of the

clusters. Such considerations include the kind of clustering algorithm, the number

of clusters, the type and number of features and the number of data samples. This

research limits the fuzzy c-means clustering algorithm to no more than six clusters

and the size of the data set is fixed at 99 faces. The number of features is chosen to

be five as a conservative estimate of what the dimensionality constraints allow. This

research concentrates its efforts on extracting a five-dimensional feature set from

the L`' energy matrix. Features are extracted from the eigenvalues of this matrix,

the eigenvalues of the sparsed energy matrix, the KLT coefficients of sparsed energy

matrix, and the KLT coefficients of the eigenvalues of the sparsed energy matrix.

The following chapter addresses in more detail the selection of the feature set for

clustering and how that feature set performs against the criteria established in this

chapter.
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V. Application and Results

This chapter discusses the methodology applied to develop better fitting air-

crew oxygen masks (AOMs). Figure 5.1 shows the top-level process. The method-

ology begins by collecting the data and preparing it for form characterization. The

form characterization process consists of analyzing the data structure, using univer-

sal kriging to obtain the bending energy matrix, L' 1 , and extracting features from

the bending energy matrix. These features are used to group faces into similar sets,

or clusters, with a c-means clustering algorithm. The face with the highest member-

ship is selected from each cluster, and prototype masks are constructed to fit this

set of high-membership faces. An evaluation is then made of how well the prototype

masks fit other members of the cluster. The following sections explain each element

of the process in greater detail. Throughout the chapter, subject 0002v is used as

the sample data. Appendix C contains data outputs from each step in the data

collection and preparation of face cast 0002v.

* 5.1 Data Collection and Preparation

This section explains the steps of the process used to collect and prepare the

data (see Figure 5.2). It begins with collecting the sample data and continues through

processing the three-dimensional coordinate data to prepare it for form characteri-

zation.

5.1.1 Data Collection. The plaster face casts used in fabricating custom

MBU-5/P AOMs contain all the data needed for form characterization. The face

casts were obtained from the Custom Mask Shop (CMS) of the 645th Medical Group,

Aerospace Physiology Directorate, at Wright Patterson Air Force Base. As the only

producer of custom-made, flight-certifiable masks in the Department of Defense, the

CMS's fabrication process is unique. The next section reviews the custom mask
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Category I Initial issue of custom mask
Category II Latex faceform replacement

Category III Latex faceform and hard-shell replacement

Category IV Hard-shell replacement
Category V Using an existing mask mold (plug) that

conforms to the requesting individual's
face cast

Table 5.1 Categcry Classifications for Custom MBU-5/P Masks.

making process to introduce the particular terminology and data associated with

the process.

5.1. 1.1 Custom Mask Process. The custom mask process begins with

a request sent from any DoD organization, including the Army, the Navy, and the

Marine Corps. The requests are classified into the five categories shown in Table

5.1 (57:1 3.b.5). Pictures of an entire standard MBU-5/P mask, latex faceform,

hard-shell, plug, and plaster face cast can be seen in Figures 5.3 through 5.9.

In order to create a mask, the requesting organization must provide the CMS

with a plaster face cast of the individual who, for some reason, can not be fit by

one of the standard sized masks. No information arrives with the plaster face casts

to indicate why a standard issue mask does not conform to the individual. The

CMS personnel, who are experienced in fitting standard masks, surmise that most

requests are made due to faces that are extremely small (mostly female), have large

noses with very thick bridges, or are extremely flat.

The 'seal line', the line where the latex faceform contacts the face, is drawn

according to Operating Instructions written by the CMS (60:¶ 3.b). Several differ-

ent laboratory technicians drew the seal lines on the plaster face casts collected for

this study, adding some variability into the form characterization process. The re-

quirements for the finished latex faceform are: the mask will cover from the deepest

part of the bridge of nose to 25.4 mm under the chin; 25.4 mm on both sides of the

nostrils; and 31.8 mm on both sides of the mouth. Because the latex shrinks during
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Figure 5.3 Standard MBU-5/P Mask.

Figure 5.4 Interior View of Standard MBU-5/P Mask.
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Figure 5.5 MBU-5/P Custom Latex Faceform.
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Figure 5.6 Unfinished MBU-5/P Custom Hard-Shell.

Il

Figure 5.7 Finished MBU-5/P Custorn Hard-Shell.
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Figure 5.8 MBU-5/P Custom Piug.

Figure 5.9 Plaster Face Cast: A plaster face cast used in MBU-5/P custom mask
process.
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the curing process, the mold or plug must be approximately six percent larger than

the mask faceform, and the seal line is drawn accordingly. The ultimate goal is to

make the plug as small as possible while still meeting the minimum finished mask

size. Keeping the plug small eliminates as much dead space in the finished mask as

possible, and so minimizes rebreathing of exhaled air trapped in the mask.

The plug creation is the most time consuming step of the custom mask process.

First, clay is used to fill negative areas of the plaster cast within the seal line (the

nostrils, mouth, and any indentations below the lower lip or on the chin), as depicted

in Figure 5.10. The seal area is coated with petroleum jelly to reduce adhesion of

the plug material to the plaster face cast. Figure 5.11 shows a partial hard-shell

positioned over the plaster cast. The next step is to build a pocket of clay around

the seal line until it reaches the bottom of the partial hardshell positioned over the

plaster cast. The top of the hardshell, where the valve port is located, is the only

opening. Hydrocal, also known as dental stone, is poured into this opening and

allowed to harden. The hardened hydrocal, referred to as the plug, is removed from

the plaster face cast. The hardshell and any residual clay are then removed from

the plug. This plug is sanded and shaped appropriately with particular attention

paid to areas which may block the sight of the user. Once shaped, two coats of

paint (consisting of two components: polymide and epoxy) are applied to the plug

to protect it (60). Figure 5.8 shows a painted plug. The plug is then dipped in an

alcohol-based coagulant before dipping into the liquid latex. This dipping process is

repeated several times to ensure a thick coat of latex covers the plug. During the

latex curing, the plug must withstand a cold water leach of 210 C (700 F) for three

hours, a 45 minute hot water leach at 600 C (1400 F), and an oven temperature of

500 C (1200 F) for four hours or 660 C (1500 F) for three hours (58, 59).

Once the latex faceform has cured, it is removed from the plug and subjected to

a four hour hot water leach at 50 - 600 C (120 - 1400 F) (59). Next, the appropriate

sized hardshell is made and the entire mask is assembled (61). Plugs are kept by

5-8



Figure 5.10 Plaster Face Cast With Clay: Negative areas of plaster face cast filled
with clay during the manufacturing process of an MBU-5/P.
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Figure 5.11 Positioning Hard-Shell: Positioning a partial hard-shell over a plaster

face cast during the manufacturing process of an MBU-5/P.
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the CMS for a minimum of six years. This is done for two reasons: first, there is the

possibility of reuse (Category V); and secondly, the latex used in the manufacturing

process loses its elasticity and becomes brittle after 18 months, requiring the faceform

to be replaced. The plaster face casts are typically kept for only six months. There

is not enough room to store all the casts received and six months was deemed an

appropriate amount of time to ensure that a second mask can be made if the first

one does not fit.

5.1.1.2 Plaster Face Casts. The plaster face casts stored at the

CMS are the source of the data used in this research. After collecting the casts

from the CMS, excess clay and hydrocal are removed so that the seal line and the

area it encircles are clean. Once this cleaning is done, 14 'spacial delineators' are

marked (see Figure 5.12). The delineators are chosen to help depict the shape of

the face inside the seal area, especially in the hard to fit regions where it is vitally

important that there be no air leakage past the mask-face seal. Eight of the 14

spacial delineators are located in the area of the nose, and the others are chosen to

show the overall shape of the face, so that if a flat plate is deformed to pass through

the points chosen, the snape of the face is adequately represented. The plaster face

cast is now ready for digitization.

5.1.1.3 Digitize. After cleaning and marking the 14 spacial delin-

eators (SD), the seal line and 14 SD are digitized using a METRECOM three-

dimensional digitizer with 0.125 mm accuracy and version 1.01 of the Caliper 3-D

software (23). The seal line is obtained by using 'stream mode', where an (x, y, z)

coordinate is collected every two millimeters, and the SD are taken as points. For

consistency, every face is digitized in the same manner: the seal line trace starts

at the bridge of the nose and continues in a clockwise direction, and the SD are

digitized in numerical order. The plaster face cast is not moved between the two

digitizations; this ensures that the seal line and the 14 SD are collected in the same
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Figure 5.12 Spacial Delineator Sketch: Spacial delineators shown on a sketch of the
face.
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coordinate system. The seal line and SD are saved as two different files for computa-

tional convenience. These two files contain the raw data of the study and are ready

to be processed in order to conduct form characterization analysis.

5.1.2 Data Preparation. The step-by-step process taken to create the data

files needed to conduct form characterization analysis is outlined in this section. It

describes the smoothing of the seal line, orientation of both data files, and sparsing

of the seal line.

5.1.2.1 Smooth. As is mentioned in Section 5.1.1.3, hand digitization

of the seal line is done in stream mode, where an (x, y, z) coordinate is taken every

two millimeters. An entire file of seal line points consists of 130 - 180 points. A

computer aided design program, Pro/ENGINEER (41), is used to highlight and

remove digitization errors in the seal line files. When a seal line file is loaded into

Pro/ENGINEER, the program uses a least-squares regression routine to fit a spline

through the points and displays a closed loop showing the seal line. The curvature of

the seal line file typically shows small inconsistencies, as seen in Figure 5.13. These

inconsistencies occur due to the deformations such as bumps and holes in the plaster

casts, and from operator error during digitization. Obviously erroneous points, such

as those taken when the stylus pointer of the three-dimensional digitizer fell into a

small hole on the plaster face cast, are removed. The next step is 'smoothing' the

seal line by using a feature of the Pro/ENGINEER software which automatically

averages the position of each point with those of its neighbors to either side. The

points are relocated to these average positions, and a new curve passing through

them is calculated and displayed. Comparing Figure 5.13 to Figure 5.14 illustrates

how the irregularities in the original digitized seal line have been removed. The

output from Pro/ENGINEER is a new data file of (x, y, z) coordinates defining the

smoother curve (see Appendix C).
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Figure 5.13 Unsmoothed Seal Line.
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Figure 5.14 Smoothed Seal Line.
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5.1.2.2 Orient. The form characterization method developed in

Chapter III is independent of a common coordinate system, but for convenience

in computations and visualization in CAD programs, a common orientation of the

seal areas is needed. Historically the 'Frankfort Horizontal' plane is the standard

plane of reference for craniometry using a human skull.

The Frankfort Horizontal plane is established by three landmarks on the human

skull: the right and left poria, and the left orbitale (see Figures 5.15 and 5.16). The

porion are the most lateral points on the roof of the external auditory meatus (bony

ear-hole) and the orbitale is the lowest point on the lower margin of the orbit (eye

socket) (34). This definition of the Frankfort Horizontal is modified for use on live

subjects, because the poria are not distinguishable through the skin. A live subject's

head is positioned so an imaginary straight line through the right tragion and right

infraorbitale is horizontal to the ground, see Figure 5.17 (11). The plaster face casts

do not contain any of the points needed to establish a Frankfort Horizontal plane,

so another method, principal components analysis, is used to orient all seal areas in

the same manner.

The smoothed seal line file of each face is joined with its SD file. This creates

one file of (x, y, z) coordinates where the last 14 coordinates are the SD. Because

the files are digitized in the same coordinate system for each face and the smoothing

function performed by Pro/ENGINEER does not change orientation of the seal line

file, it is possible to combine the two files. Principal components analysis is used to

orient the newly combined file, which describes the entire seal area. Principal com-

ponents analysis places the origin of the (x, y, z) coordinate system at the centroid of

each seal area (seal line and SD) and orients the major axes along the directions of

maximum variance of the seal area (30, 53). The first step is calculating the samli>•

variance-covariance matrix S of the data (30):

S= AT(I--lllT)A A (5.1)
n \n5
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where:

A = n x 3 matrix of (x, y, z) points of newly combined smooth file

n - number of data points

I - identity matrix

1 column vector of n ones

Next, the eigenvectors of S are calculated and arranged into a 3 x 3 matrix E.

Multiplication of AE transforms the matrix A so the axes align along the directions

of maximum variance. To center the data at the centroid, the mean values of x, y,

and z (of new matrix AE) are calculated and subtracted from the coordinates of

each point. The original coordinates of A have now been transformed so that the

origin of the new coordinate system is at the center of the seal area and the major

axes correspond to the direction of greatest variance.

At this point, the overall length (aligned along the x-axis) and width (aligned

along the y-axis) of the seal area are determined for possible use as features for

clustering purposes. The length and width are written as an (x, y, z) coordinate and

appended to the end of the data file. The x-coordinate represents the length of the

face, the y-coordinate the width of the face, and the z-coordinate is zero. The seal

areas are now oriented to a common reference point for computational and visual

convenience and are ready for the form characterization phase.

5.1.2.3 Sparsing. One of the form analysis methods considered in

Section 4.7.2 requires that the data files being compared all have the same number

of data points. Therefore, an additional set of data files must be created, in which

each file has a fixed number of data points. Using a procedure called 'sparsing',

the Pro/ENGINEER software has the ability to reduce the number of data points

defining a curve to any desired number. By evaluating the seal lines of each face,

it is determined that the seal line curve can be adequately represented by much

fewer than the original 130 - 180 points obtained during the digitization process.
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Figure 5.15 Frankfort Horizontal Skeletal Landmarks, Side View: The left orbitale
is depicted by 'or' and the left poria is depicted by 'po' in the fig-
ure; these are two of the three landmarks which define the Frankfort
Horizontal plane for skeletal craniometry (34).
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Figure 5.16 Frankfort Horizontal Skeletal Orbitale Landmark: The left orbitale
is depicted by 'or' in the figure; this is only one of the three land-
marks which define the Frankfort Horizontal plane for skeletal cran-
iometry (34).
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Figure 5.17 Frankfort Horizontal Live Subject Landmarks: The right tragion and
right infraorbitale landmarks used to define the Frankfort Horizontal
plane on live subjects.
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An analysis is conducted to determine the minimum number of points needed to

describe the shape of the seal line. It is not until the seal line data file is reduced

to around 25 - 30 points (depending on the size of the face) that the shape of the

seal line becomes significantly different. By using a smaller number of points, but

still large enough to maintain the shape and size of the seal line, the data can be

reduced without loss of information (see Figure 5.18). To ensure an adequate number

of points are used, the seal line data file is sparsed to 39 points. To accomplish

this using Pro/ENGINEER, a value is entered that sets the maximum allowable

deviation from the original curve. The sparsing program deletes points on the curve

and calculates a new curve passing through the remaining points. As many points as

possible are deleted, without allowing the new curve to differ from the original curve

by more than the deviation value. It is found that by selecting a deviation in the

range of 0.3mm to 0.4mm, the seal line files can be reduced to 39 data points. This

reduction in the number of points results in an insignificant change in the shape of

the seal line curves calculated by Pro/ENGINEER, while reducing the size of each

seal line data file to a consistent number across the population.

5.1.3 Data Collection and Preparation Summary. Plaster face casts are

obtained from the CMS with seal lines drawn by lab technicians. The seal lines and

14 spacial delineators (SD) are digitized using a three-dimensional digitizer. The

seal line and the 14 SD are saved as two separate files, but are digitized in the

same coordinate system. Combined, these two files represent the 'seal area' for each

face. During the data preparatioi, phase, two new files per face are created for use

in form analysis. The first file contains the smoothed seal line (obtained through

Pro/ENGINEER), the 14 SD, and the length and width of the seal area. These

files contain anywhere from 130 to 180 data points. The second file contains only

54 points, consisting of the 39 sparsed seal line curvature points, 14 SD, and the

(x,y, z) coordinate describing the length and width of the face. The next step is

characterizing the form of the seal areas.
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Figure 5.18 Sparsed Curve: The line is a curve calculated using ONLY the 39
points representing the sparsed data set. Notice that by using only
the sparsed data points, the curve does not deviate from the original
points.
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5.2 Form Characterization

This section derives the spacial correlation for the seal areas. The structure

analysis on each face results in selection of the spherical variogram model (discussed

in Section 5.2.1) to represent the spacial correlation for the human face. The spherical
variogram model provides the information to build the energy matrix described in

Section 5.2.2.

5.2.1 Structure Analysis. The process of studying spacial correlation and

developing a variogram function is referred to as structure analysis. Spacial correla-
tion is the correlation of data points separated by a given distance and is inversely

related to the variogram function. Points close together are highly correlated (small

variogram) since knowledge at one point is a good indication of the value of nearby

points. Conversely, points far apart have low correlation (high variogram) since

knowledge of one point gives very little information about a point a large distance

away. At sufficiently large distances the variogram is equal to the overall variance

of the data. The distance at which the variance of the data is achieved is defined as
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the range of influence of the data. There are several steps involved in the structure

analysis of the data.

The first step in structure analysis is to calculate the correlation of the data

as a function of the separation between points. The correlation is used to calculate

an experimental variogram. The experimental variogram for the seal areas show

that an overall trend or drift exists which is removed using residual analysis. The

experimental variogram on the residual exhibits weak stationarity (Section 3.2.1).

The next step is to fit a functional variogram to the experimental variogram.

The functional variogram is a continuous function, while the experimental variogram

is defined only at discrete points (i.e., the separation distance of the data). Of the

several existing functional variogram models described in Section 3.2.1, the spherical

model is chosen as the best fit to the facial data. Least squares is used to estimate

parameters of the functional model. The functional model also incorporates the

presence of geometric anisotropy in the data.

The result is a trend free, isotropic, functional variogram which depends only

on the variance in height, z, of the face and the separation distance, h, of the points

being compared.

5.2.1.1 Experimental Variogram. The first step in structure analysis

is to calculate the correlation structure and experimental variogram of the data. The

experimental variogram is estimated using the following equation (Section 3.2.1.2):

y(h) = 1 E [z(xi + h) - z(x,)]2  for0 < h <rm (5.2)
"2N(h) i=1

Strictly speaking, this variogram is calculated by finding the variance of all points

exactly 1, 2, ... , or m units apart in all directions, where m is some distance greater

than or equal to the the major axis or largest distance. The distance h is calculated

as a function of (x,y), and the variance is based on the height, z(x, y), at each

5-24



Y Y

40. .o " .... 40 '"

S• 20. 20 *

-60 -40 -20 20 40 60 ..6 -40 -202

. . . . .-20 . . . . . . - -20 •

. . . . .-40 . . . . . . "'"*. -40

(a) (b)

Figure 5.20 Possible Kriging Grid Shapes: (a) Perfect grid with points separated
exactly 12 units in x direction. (b) Imperfect grid of facial points
separated by irregular distances.

location. This can be done only if the data is distributed in a perfect grid as shown

in Figure 5.20a. There are cases when the data can be taken in a perfect grid. For

example, a mining engineer often has the control to take ore samples in any interval

or grid desired. However, the seal area data of an oxygen mask is not oriented in a

perfect grid as shown in Figure 5.20b.

Because of the irregularity of facial data, the correlation can not be calculated

for ezact separation distances. Instead, the correlation is analyzed at separation

ranges of 0-1 mm, 1-2 mm, etc. By incrementing h in steps of one millimeter,

the experimental variogram is calculated for all separation distances and plotted in

Figure 5.21a. This figure is the experimental variogram of the raw data. There are

two irregularities in the experimental variogram.

The first problem with the experimental variogram occurs at distances of about

60 to 100 mm. At these distances the, variogram is greater than the variance of the

data. Physically, this means that est i'ation of heights at unknown points located

60 to 100 mm from a known point is -less' accurate, or has less correlation, than
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Figure 5.21 Experimental Variogram of Seal Area Data: Experimental variogram
vs separation distance for (a) original data with variance of 69.0 and
(b) residual data with variance of 14.1.

a random guess based on the variance of the data. It is undesirable to have the

variogram exceed the variance of the data.

The second problem with the experimental variogram occurs at distances of

about 100 mm and greater. At these distances the variogram drops 'below' the

variance of the data. Points separated by relatively large distances should have no

correlation and the variogram should be equal to the variance of the data. However,

in this case it appears that at large distances the correlation increases. These prob-

lems signify the presence of a trend in the data due to the symmetry of the human

face, realizing that at large distances (across the breadth of the face) the height of

the face is very similar.

5.2.1.2 Removing Trend in Data. There are two problems with the

experimental variogram of the seal area data. As can be seen in Figure 5.21, it rises

above the sample variance of the data over the range of 60 to 100 mm, and is below

the sample variance for distances greater than 100 mm. These problems are due

to an overall trend in the data. The trend is removed by calculating the residuals.
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The residuals exhibit weak stationarity, and are used to calculate the experimental

variogram (19).

The first step in the residual analysis is to fit a polynomial through the oriented

facial data (see Section 3.2.3). Choosing a second order polynomial fit of the data

in order to approximate the trend, z'(x, y), gives:

z'(X, y) = bl + b2X + 3Y+ b4 x 2 + by + bxY (5.3)

where the coefficients vector b is different for each face. The polynomial surface is

a least squares regression of the data and does not pass exactly through all the data

points, z(x, y). The residual, e(x, y), is the difference between the actual measured

data point and the trend at each location:

e(x,y) = z(x, y) - z'(x, y) (5.4)

5.2.1.3 Experimental Variogram of Residual Data. The third step

in tne structure analysis is to calculate the experimental variogram of the residual

data. If the experimental variogram is trend free, then the second order polynomial

represents a good fit of the data. If the variogram still has a trend, a higher order

polynomial fit of the data is required.

The result of calculating the experimental variogram (see Section 5.2.1.1) of

the residual data is shown in Figure 5.21b. The experimental variograms of the

residuals of the seal areas rise and stay at the variance of the data, showing that the

trend has been removed.

5.2.1.4 Functional Variogram Model. The final step in the structure

analysis is to fit a continuous or functional variogram model to the experimental

variogram plots of the residuals. The functional variogram model is defined at all
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separation distances, not just at discrete points. Also, this continuous variogram

model must satisfy the three assumptions for a variogram function (Section 3.2.1.1).

The first assumption of a variogram function is that the variable being mod-

eled is regionalized. A regionalized variable has continuity from point to point, but

changes in ways that are too complex to be described by a deterministic function.

The experimental variogram is an increasing function at small separation distances,

which indicates continuity from point to point. However, at larger separation dis-

tances, the variogram levels out, and estimating the regionalized variable is more

difficult. Therefore, the experimental variograrn satisfies the first assumption of a

variogram function.

The second assumption required is that the data being modeled exhibit at least

weak stationarity (Section 3.2.1.1). Data exhibit weak stationarity if the first and

second moments (mean and variance) are not functions of location on the face. The

raw data do not satisfy this requirement. The residuals, however, do exhibit weak

stationarity, and so are used in all follow-on analysis.

The final assumption is that the data being modeled are spacially isotropic.

The data are assumed isotropic if the sample variance and range of influence do

not change with the orientation of h, the vector between two points. If geometric

anisotropy is detected, then a correction factor can be found which restores isotropy

to the variogram. The seal areas do exhibit anisotropy, which is corrected for in

order to satisfy this assumption.

5.2.1.5 Fitting Functional Model. A functional variogram is deter-

mined by selecting a simple model which best fits the experimental variogram. Sev-

eral models are tried, and the best fit to the experimental variogram of the residuaii

5-28



40

25

7(h) 20
04 0 * 0 .0

15 __0___

0 0

10

0

02 - , -- -.

20 40 60 h 0 100 120 140

Figure 5.22 Spherical Variogram of Residual Data: Functiornal variogram vs sepa-
ration distance for residual data fitted with spherical model.

is the spherical model (Figure 5.22):

0when h = 0

-yh o+Cwhen 0 < h <a (5.5)

ICo+C 2a 23 whenh > a

where h is the separation distance - x3 )2 + (y, - Y,)2 . The unknown parame-

ters in these models are the nugget effect Co, the range of influence a, and the sill

Co + C, which must be calculated for each face.

The nugget effect is the variance of data separated by very small distances. For

continuous data the nugget effect is zero since points infinitesimally close together are

perfectly correlated to each other. Conversely, for white Gaussian noise the nugget

effect is equal to the variance of the data, since points infinitesimally close together

have no correlation to each other. When estimating ore content, the variance of

nearby samples may not be zero due to nuggets of ore creating discontinuities in the

ore levels, hence the term 'nugget effect'. When estimating the shape of the face,
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the nugget effect may be nonzero due to measurement errors. However, errors in the

digitization of the seal areas are corrected during data preparation so that Co =_ 0.

The sill is the overall sample variance for a seal area. This is estimated using

the calculations for the experimental variogram of the residuals e at large separation

distances, or:
2 n
((e (5.6)

Since the nugget effect is zero, the sill (Co + C) reduces to C, and is the variance in

the residuals, e, of the face.

The range of influence is the separation distance at which the variogram attains

the sill of the data. The range of influence is calculated by minimizing least squares

error in the fit of the functional variogram model to the experimental variogram.

Many computer codes have been written to automatically calculate the variogram

parameters; see, for example (27).

The spherical model provides the best fit to the data at small separation dis-

tances, and gives the most consistent results. Therefore, for the purpose of this

research, the spherical model is chosen to represent the variogram of the residuals

on the seal areas.

5.2.1.6 Anisotropy. One assumption required in the use of exper-

imental variograms is that the data are isotropic. This is checked by calculating

correlations in different directions. The previous experimental and functional vari-

ograms are calculated regardless of direction. Recall that since h is a vector, it has a

specific orientation, h = (xi - xj, yj - y,). This orientation becomes important when

dealing with anisotropic behavior. If the experimental variogram is dependent on

direction, the data are anisotropic. The'ire are two types of anisotropy: geometric and

zonal (see Section 3.2.2). The next step is to calculate the experimental variogram

in several directions and fit the spherical model to each experimental variogram.

The type is determined by finding the parameters, a and Co + C, of the functional
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Figure 5.23 Variograms of Anisotropic Residual Data: Functional variogram vs
separation distance for residual data in two different directions.

variogram in several directions. The data are isotropic if a and Co + C are the same

in all directions. Figure 5.23 shows the spherical variogram in different directions for

a single face. This variogram plot shows that while the sill remains the same, the

range of influence of the data changes with direction. This indicates the seal area

data are geometrically anisotropic.

The simplest method to correct for geometric anisotropy is to scale the principal

axes of the data. The anisotropic correction factor is found by calculating the a's

for various directions. Figure 5.24 is obtained by calculating the a for directions

starting at 100, and incrementing by 20, up to 1800, with a narrow 'window' of

200. The window sets limits on the orientation of the distances to be evaluated. In

this case, at 100, the window spans from 00 to 200, and only evaluates orientations

of h that fall in this range, for a given length. The directions only need to cover

1800, since -1(h) = -'(-h). Figure 5.24 enables the identification of the major and

minor axes of the range of influence (29). The ranges of influence (or rose diagram)

typically represents an ellipsoid, where the major and minor axes are also known as

the maximum and minimum continuities. The rose is not a perfect ellipse due to
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Figure 5.24 Anisotropy Rose: The range of influence, a as a function of direction.

some asymmetry in the seal area, especially along the x-axis. By fitting an ellipse to

the figure, the maximum and minimum ranges of influence are aligned in the x and

y directions. This is because the data are already oriented in principal components.

The correction factor is defined by:

k = a- j (5.7)
arnin

which is incorporated into the (x, y) Euclidean distance calculation. The range of

influence in the x direction is a. = amj and the range of influence in the y direction

is ay = anin. Applying this correction, the magnitude of h, or the separation distance

h is:

hii = /(X - xi)2 + [k(y, - yj)]2 (5.8)

Therefore, since the faces are already oriented in this research, the major and minor

a's are calculated using directions along the x and y axes or 0* and 900, with a

window of 900. This range is shown in the double arc in Figure 5.25. The figure

shows that points 14, 15, 16, 17, 18, and 19 are separated from point 138 by 70 to

71 mm in the x direction. By moving the arc to each data point there are a total
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of 36 points separated by 70 to 71 mm in the x direction. The arc looks only in the

positive x direction to avoid counting points twice.

5.2.1.7 Constant Range of Influence. The final step in calculating the

functional variogram model is to find the average range of influence of the human

face. Based on the best fit of the experimental variogramn function, the range of

influence for each face varies slightly. However, all human faces are similar to each

other, so the range of influence of any two faces should be approximately the same.

To correct for this, a, and a. are averaged for the 99 faces in the data set. The mean

values for the ranges of influence are a, = 33.621 and a. = 17.655, resulting in a

correction factor of k = 1.90.

5.2.1.8 Summary of Structure Analysis. This section has explained

how the structure analysis of the data is used to calculate the functional variogram

model. The residuals of the data are calculated to remove the trend in the data.

Several different models are fit to the experimental variogram, and it is found that

the spherical model produce, the nest match to the seal area data. Anisotropy is

identified, and a correction factor, k, is derived and incorporated into the distance

calculation. The spherical variogram includes the range of influence for the 'average'

human face and the variance of each individual face. Substituting the range of

influence for the major axis, the modified separation distance, and zero nugget effect

into the spherical variogram model gives:

0 when h =0

[(22414 76C38] when 0 < h < 33.621 (5.9)

C when h > 33.621

where C is the variance of each individuai face. The resulting functional variogram

model is a function of the overall variance of a face and the separation distance of

the points being compared.
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5.2.2 Energy Matrix. The energy matrix provides a unique form character-

ization for a face. This section describes how the energy matrix is constructed using

the variogram calculated in the previous section, and discusses how the eigensystem

decomposition of the matrix can be viewed as bending modes of the face.

5.2.2.1 Steps to Create L- 1 . The structure analysis done in the

previous section was based on the unsparsed data. This resulted in removal of the

trend, selection of the spherical variogram model, and determination of the average

ranges of influence : er all faces. However, the most consistent clustering results

came when using the .sparsed data. For this reason, the energy matrix is created

using the residuals of the sparsed data, while still using the variogram parameters

(C , a,,.j, and k) from the unsparsed data set.

Step 1: Calculate the distance between each pair of data points,

hii = V(X, - xj)2 + [1.90(y, - yj)] 2  (5.10)

where i = 1,...,n and j = 1,..,n, with n being the total number of data points.

Distance hij represents the Euclidean distance in the xy plane only, and includes the

anisotropic correction factor, k = a = 1.90 (arnj occurs in the x-direction in all
,Auhn

of the seal areas). The distances form the H matrix:

0 h12  h13  ... hij

h 21  0 /123 ... h2j
H= h3l h32 0 (5.11)

: " " "" • hn-l,n

hil hl,. hn.n-i 0

Note that the matrix H is identical tt, Ih. fiwo-dimensionJl EDMA matrix, F(A) in

Equation 2.3.
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Step 2: Calculate the variogram -y(hj) using the spherical model, where the pa-

rameters for each face, Co = 0, amj = 33.621, and C are derived from structure

analysis:
0 hwhen h = 0

-C 3h hog when 0 < h < 33.621 (5.12)

C when h > 33.621

The function "y(h) is applied to each element of H resulting in a new matrix K (as

in Equation 3.73):

0 y(h, 2 ) .. (h,.)

K = 7 (h2 ) 0 702.) (5.13)

y(h. 1) -y(h. 2) ... 0

The variogram, -I(hij), is now a function only of the scalar distance hij from (xi, yi)

to (xj, yj). Two seal areas with similar variances have different energy matrices since

the separation distance hij varies from face to face, depending on size and shape.

Step3: Create the L matrix. In both universal kriging and TPS, the L matrix

includes the localized trend analysis, Equation 3.72, where (xi, yi) are the coordinates

of the known data points, and n is the total number of data points (Section 3.2.4.2):

By inserting the spherical variogram model into the universal kriging matrix, the

following L matrix is developed:

\ T / X1 Yi

L = . (5.14)
I 1 00 0

X1 ... 1" 0 0 0

Yi ... n 0 0 0
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Step 4: Calculate L-', and create L- 1. Since the L matrix is well-conditioned (real

and symmetric), the inverse exists and is unique to each individual face (29). The

entire L matrix is inverted, and the upper left n x n matrix, L- 1, is formed by merely

dropping the last three rows and columns. The energy matrix is now analyzed to

determine the form of the face it represents.

5.2.2.2 Bending Modes of Facial Data. As discussed in Section 3.4.2,

one possible method of analyzing the energy matrix is via the eigensystem decompo-

sition. The eigenvalues and eigenvectors can be viewed as individual bending modes

of a face. Figures 5.26a and 5.27a show the bending modes for the largest and small-

est eigenvalue of L`" for mask identification number 0002. Figures 5.26b and 5.27b

are cross sections of the respective bending r odes along the plane y = 0 (i.e., the

vertical z xis of the face). The vertical axis is the residual, e, which is being predicted.

These show (as in the bending mode example section 3.4.2.2) that large eigenvalues

of L- 1 relate to localized bending and small eigenvalues relate to global bending.

The eigenvectors show the location on the face where the bending is located. The

overall magnitude of the bending, as shown by the different scales, is determined

largely from the mode constant 0, = eTz.

The sum of the fifty bending modes and the regression plane is the residuals

of the faces. Finally, the residual3 plus the trcnd surface results in the predicted

physical height of the face (Figure 5.28). Appendix A contains the complete set of

fifty bending modes and shows the recombination into physical facial dimensions.

The energy matrix contains information that uniquely characterizes the phys-

ical form of a face. In order to group faces into similar clusters, the information

contained in the energy matrix must be put into a form compatible with clustering.

Since no existing clustering routine can operate on matrices, the energy matrices

must be reduced in some way. During this reduction, the vital form characteristics
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Figure 5.29 Clustering.

of the seal area must be retained, while unimportant information is eliminated. This

stage is called feature space determination.

5.3 Clustering

The six different feature sets discussed in Chapter IV are used in the fuzzy

c-means algorithm. Based upon the unique descriptive nature of the L-" matrix,

these features appear to hold the most promise for clustering the seemingly unclus-

terable faces. To review, the feature sets compared are:

* every 2 0 'h percentile eigenvalue of the unsparsed L-1 matrix

* the top 5 eigenvalues of the unsparsed L-' matrix

* the top 5, inverted, nonzero eigenvalues of the unsparsed L- 1 matrix

* every 20 th percentile inverted, nonzero eigenvalue of the sparsed L- 1 matrix

* the KLT coefficients of the eigenvalues of the sparsed L- 1 matrix

"* the KLT coefficients of the sparsed L;1 matrix
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Also recall that the clustering results are based upon the following:

1. The number of clusters is less than or equal to six. This value is determined using

engineering judgement outlined in Section 4.6.

2. The maximum number of features is restricted to five. The decision to use five

features is an engineering decision based upon literature pertaining to dimensionality

constraints (15, 21, 32, 44, 54).

3. The clustering is accomplished using the fuzzy c-means algorithm outlined in

Section 4.5.1.

A sample is considered to belong to a cluster if it achieves a membership of at

least 0.80 in that cluster. Any sample not achieving at least 0.80 membership in any

cluster is considered indeterminant. This threshold membership value is set from

practical experience in the use of the fuzzy c-means algorithm.

5.3.1 Clustering Results. From these six clusterings, a decision is made

on which set of features best represents the actual distribution of the faces. This

is done by examining the 99 plaster face casts, grouping faces according to the

different clusterings, and visually estimating if the cluster memberships actually

indicate similarity between faces. The results of this empirical study show the fixed

form KLT on the entire energy matrix performs the best. In this feature space, faces

with memberships above 0.90 have many similarities in size and shape which are not

seen in the other clusterings. The KLT on the eigenvalues of the energy matrix also

performs well, but has some inconsistencies which do not appear in the KLT of the

entire matrix. It is hypothesized that more information is lost in taking the KLT

on the eigenvalues of the energy matrix, than in performing the KLT directly on the

fixed form energy matrix.

A second validation of the feature set selection also supports the selection of the

KLT on the sparsed energy matrix. Face 1963 has two separate digitizations (1963

and 1963-2). Each digitization is slightly different in the location of the spacial delin-
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eators and the number of points recorded around the seal curve. The purpose behind

the existence of two matrices for the same face is twofold: to test the robustness of

the energy methods to variations in data collection and to test the validity of the

feature space selection. If the chosen feature set truly represents facial forms, 1963

and 1963-2 should end up in the same cluster with similar memberships. Using the

KLT on the L` 1 energy matrix, 196. -2 has a membership of 0.90 and 1963 has a

membership of 0.86, for a difference of 0.04. This difference is by far the smallest of

all the feature sets attempted in this research.

The results from clustering on this feature space are presented in Figure 5.30.

The figure shows the hierarchical grouping of the faces as the number of clusters

increases from two to six. The numbers in the arrow head blocks on the left represent

the number of clusters input into the clustering routine. Each row shows the results

for that number of clusters, using five features. Therefore, the top row has two blocks

and the last or bottom row has six blocks. Each block contains the identification

numbers corresponding to the plaster face casts. As the number of clusters increases,

some faces consistently maintain high memberships (above 0.80) in the clusters,

which allow for the hierarchical organization. On the fringe, other faces drop out

(decrease in memberships) while others increase in memberships and show up. Note

the relative sizes of the six clusters. Clusters 1 through 4 are notably smaller than

clusters 5 and 6. When physically grouping the plaster face casts into their respective

clusters, there is a noticeably larger variance in the forms of the faces in- clusters 5

and 6 than clusters 1 through 4. This is due to the nature of the data set. The

data set is composed of aircrew members who do not fit into the standard sizing

categories. These are the 'fringe elements' of the entire flying population. Clusters

I through 4 each represent a small population of custom users that are very similar.

Cluster 1, for example, is made up of only two members, both of them small females.

The faces grouped into clusters 5 and 6 are similar in size within each cluster but

still retain variations in form that may be too small to be differentiated by the
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0004 0020 0033 0001 0010 0021 1906 1958 1972 1978 1987 2006 2016 2024 2043 nn8
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Figure 5.30 Fixed Form Clustering Results: Feature space consists of the top five

KLT coefficients from the sparsed, bending energy matrix.

clustering algorithm. This is due to the relative magnitude of the features used by

the clustering. It is hypothesized that if the data set is larger, then clustering could

be confidently done for a larger number of clusters, and clusters 5 and 6 would split

into smaller, more representative clusters.

5.3.2 Face Prototype Selection. To create the six prototype masks, the

samples with the highest memberships are chosen from the KLT of the entire sparsed

energy matrix to represent the clusters. The six faces chosen to represent these

clusters are listed in Table 5.2. Front and side views of these seal areas are shown in
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
1986 0027v 001lv 0035v 1980 1918

Table 5.2 Cluster Representatives: Using results from fixed form clustering, with
features from the KLT on the sparsed bending energy matrix.

Figures 5.31 and 5.32. The front views show the outlines of the sparsed seal lines.

The points within the seal lines are the 14 spacial delineators. The bridge of the

nose is to the right and the chin is to the left. The side views show the seal curves

and the 14 spacial delineators as if the wearer is lying face up. The highest point on

the right of the side view represents the tip of the nose and the highest point on the

left is the chin.

5.4 Prototype Mask Production

One of the objectives of this research is to apply current coniputer technology in

the production of custom and prototype aircrew oxygen masks (AOMs). As detailed

earlier in this chapter, face geometry is collected as digitized points, and the data

are manipulated to determine cluster prototype faces. This section describes how

the digital data representing those prototype faces are utilized in the design and

production of hardware that can be worn by operational aircrew members.

Figure 5.33 outlines the process described in this section. The Pro/ENGINEER

computer aided design (CAD) system is used to create a CAD model of the plug (see

Sec. 5.1.1.1). This model can be based upon the digitally recorded geometry of any

selected face. The CAD model is then fabricated using thermoplastic on a computer-

controlled rapid prototyping machine (RPM), and the resulting plug is used by the

custom mask shop (CMS) to produce latex faceforms for custom MBU-5/P masks.

5.4.1 Computer Aided Design. The following sections explain how com-

puter aided design is used to create a solid image of a MBU-5/P plug. This image

is used to create the prototype.
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Figure 5.31 Sparsed Prototype Faces: Masks 1986, 0027v, and O011v.
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Figure 5.32 Sparsed Prototype Faces: Masks 0035v, 1980, and 1918.
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Figure 5.33 Prototype Mask Production Process.

5.4.1.1 Creating the Base Plug Model. The CAD model of the plug

is created on the Pro/ENGINEER system, the same system used in the reduction
and analysis of digital seal area data (see Sec. 5.1.2). The basic shape of the plug is

that of the hard-shell portion of the MBU-5/P mask, so construction of the model

begins with reproducing the geometry of the hard-shell in Pro/ENGINEER. Five

cross-sections of the hard-shell are digitized in the same manner that the seal lines
are digitized from the plaster face casts. These are introduced into Pro/ENGINEER

as curves (see Fig. 5.34) and a surface is then created that connects the curves (see
Fig. 5.35). Some additional geometry is added to this model so that the plug can

accept the metal rod used to hold the plug while it is dipped in latex (52). The

result is the 'base plug model' from which all prototype mask plugs are created.

5.4.1.2 Mating the Seal to the Base Plug Model. To create a plug

that matches a specific prototype face, the smoothed seal line data file of that face

(see Sec. 5.1.2. 1) must first be converted into a surface that can be mated to the base

plug model. To give the seal line a finite width, an 'outer seal curve' is generated
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Figure 5.34 Digitized Cross Sections of the Hard Shell.

Figure 5.35 Surface Formed from Cross Sections.
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Figure 5.36 Seal Curves.

by offsetting each point in the seal line six millimeters out ,ard from the center.

An 'inner seal curve' is also created by drawing a line through ten of the spacial

delineators (SDs) in the seal area data file. This curve is an attempt to snugly

encircle the nose, mouth, and chin of the face being modeled. Because there is only

one SD low on the chin, the inner seal curve is only a rough approximation of the

face in this area.

These three curves (the seal line, outer seal curve, and inner seal curve) are

connected to form a surface that matches the contours of the prototype face around

the seal line and inward toward the nose and mouth (see Fig. 5.36). This surface is

aligned with the base plug model, and t ie two are joined. The result is a CAD model

of a plug that is ready to be fabricated. The plug produced will be the functional

equivalent of the hydrocal plug currently hand-made by the CMS (as described in

Sec. 5.1.1.1).
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Figure 5.37 Seal Surface.

5.4.2 Rapid Prototyping. The plug model created on the Pro/ENGINEER

CAD system is turned into hardware by a rapid prototyping machine (RPM) manu-

factured by Stratasys, Inc., and known by the trade-name 3D MODELER (51). To

prepare the CAD model for fabrication, the RPM system software cuts the model

into horizontal 'slices' from 0.05mm to 0.76mm thick, depending on the resolution

desired in the model. The slices are formed one at a time by the RPM in a process

called Fused Deposition Modeling. Thermoplastic material is extruded from a nozzle

that moves in the horizontal plane. The nozzle lays down a 'road' of heated, liquid

thermoplastic, ranging from 0.25mm to 3.81mm in width, on a base that moves ver-

tically. On each pass, the nozzle lays down a road that constitutes a horizontal slice

of the model. After each pass, the base moves downward a distance equal to the

thickness of the slices being produced, so that on the subsequent pass the material

is laid on top of the previously formed slice. In this manner, the model is built up
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Figure 5.38 The 3D MODELER Rapid Prototyping Machine (RPM).

from the base, with the successive layers solidifying and fusing together as the ther-

moplastic cools. The overall tolerance of parts produced on the RPM is ±0.13mm,

and they have the look and feel of nylon.

To reduce the amount of material and time required to produce a plug, a

fabrication mode is used that does not result in a solid block of thermoplastic.

Rather, the RPM forms a part with smooth exterior surfaces, but a mesh-like interior.

Even with this time-saving mode, each plug requires approximately 72 hours to

fabricate on the 3D MODELER.

5.4.3 Prototyping Results. The procedure developed in this research

demonstrates the feasibility of using computer aided design and rapid prototyping

technologies in the production of custom-made aircrew oxygen masks. The procedure

replaces the very labor-intensive process currently used, in which plugs are made by

hand from a plaster face cast. The quality of fit achievable with the new procedure
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Figure 5.39 Prototype plug fabricated by the RPM.

is assessed to be comparable to the traditional process, although a thorough study

of fit is not possible due to time and funding constraints.

5.4.3.1 Time Economy. During the development of this procedure,

the production of a single plug required approximately 2 1 person-hours to create the

plug CAD model (excluding form analysis and clustering), and an additional 72 hours

to fabricate the plug on the RPM. In a production environment, the 2 1 hours could

be reduced in several ways. First, the manual digitization of face geometry could be

replaced by a laser scan. This procedure takes only seconds and has the additional

benefit of providing data that may be used to produce a plug that more accurately

captures the subject's face (see Sec. 5.1.3,2). Second, an experienced CAD operator

can design and implement a custom s(equence of commands, streamlining the model-

creation phase by reducing the number of operations necessary to mate the base plug

model wit! the seal area. It is likely that these two changes, along with the natural
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learning-curve that occurs when a process goes from development to production,

would reduce the person-hour requirement to between 1 and 1 1 hours per plug.

This is much less than the 12 person-hours required for the current process.

The limiting factor at this point in the development is the time needed by the

RPM to fabricate a plug. The full capabilities of the Stratasys 3D MODELER were

not explored during this research, and it is possible that a more time-efficient mode

of operation exists. For example, some amount of accuracy in the parts produced

could be sacrificed to achieve a reduction in the fabrication time.

5.4.3.2 Quality of Fit. Because of funding constraints, only enough

plastic material was available to produce one of the prototype plugs on the RPM.

With only one plug on which to make latex faceforms, a rigorous evaluation of how

well the faceforms fit their intended wearers was not possible. As an alternative to

this, the plug was held against the plaster face cast on which it was modeled, and a

visual evaluation made of how well it matched the face cast. This can not, of course,

yield any information on the comfort of the mask or the quality of the seal, but does

give an idea of whether the procedure results in a plug that is close to the desired

shape and size.

The plug appears to closely match the geometry of the plaster face cast around

the drawn seal line. This is to be expected, since this seal line is digitized and

introduced into Pro/ENGINEER, and forms part of the plug model.

Moving away from the seal line, however, the plug does not match as exactly.

In creating the CAD model, only ten data points (selected from the 14 spatial delin-

eators) are used to define the inner seal curve. Recall that this curve is used to form

the surface of the plug extending from the seal line, along the cheeks, nose, and chin

(see Section 5.4.1.2). This surface is only an approximation of the face in that area,

and a particularly poor one in the area around the chin. This is because there are

only three spatial delineators below the mouth, much too few to accurately recreate
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the geometry of the chin area. To produce a surface that very closely matches the

face would require that many more data points defining facial geometry be gathered.

The most practical way to gather the large amount of data required would be

with a laser scan of the face. This data could be transferred directly into the CAD

program, which would create a surface that exactly duplicates the face scanned.

When mated with the base plug model, the resulting plug would produce faceforms

that match the face just as precisely as those made from the hydrocal plugs currently

used.

5.4.3.3 Faceforrn Production. The plu" currently used by the CMS

are made from hydrocal and sealed with an epoxy finish. The end product of this

research is an uncoated plastic plug. To ensure that the plastic plug is compatible

with the process used in the production of latex faceforms, a sample plastic plug was

sent to the CMS for testing.

Before testing the plug, a material expert at Stratasys, Inc., was contacted

and asked if the process would adversely affect the plastic (42). He expressed two

major concerns. The first is the ethyl alcohol based coagulant used to coat the plug

before the latex dip. Ethyl P'lcohol is a solvent to many forms of plastic, and could

destroy the bonds between the plastic molecules. His second concern was the 600 C

(1400 F) water bath used to cure the latex is above the 380 C (1000 F) glass transition

temperature of the plastic. While the plastic would not actually melt, the plug could

undergo some changes in shape.

The CMS produced one faceforrn, and neither the chemical nor the thermal

treatment caused any degradation of the plastic plug. However, more testing is

required to ensure that the plug will riot dlegrade under repeated use.

Two unexpected problems surfaced in the test production of a faceform. The

interior of the plastic plug is formed as ail open mesh, and the ethyl alcohol coagulant

entered the plug through the mesh. While this did not cause physical damage to the
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material, it created a mess and made the plug difficult to store. This problem could

be solved by sealing the exposed mesh surfaces with epoxy or a similar material.

The second problem is difficulty encountered in removing the dipping rod.

During the faceform manufacturing process the plug is hung by a 6 mm diameter

rod while it is dipped in latex and cured in water. After the cured latex faceform

is taken off of the plug, the dipping rod is removed for use in another plug. For

the test, the dipping rod was glued into a hole in the plug and could not be easily

removed afterward. A possible solution is to press a threaded metal insert into the

plug and thread the end of the dipping rod so the two can be easily connected and

separated.

Testing of the plastic plug shows that it can be used for the production of

latex faceforms. There are no major material compatibility problems. The minor

problems of sealing the plastic mesh and attaching the dipping rod can be corrected

with simple design modifications.

5.5 Evaluation

An evaluation is conducted to show the clustering does indeed work, and to

determine a membership cutoff range for the clusters. The evaluation is conducted

in two parts. The first is an evaluation of the clusters through use of latex faceforms

representative of the cluster centers and the plaster casts of each member in the

clusters. The second is a survey in which aircrew members of each cluster evaluate

the fit of the custom MBU-5/P mask made for the representative center.

Latex faceforms of the representative centers for clusters 1,3,5 and 6 are made

and held to plaster casts in an attempt to evaluate the 'fit'. Clusters two and

four cannot be evaluated. The plaster cast with identification number (ID) 0027,

the representative center of cluster two, has no known identification; no name; no

tracking number; no way to identify the owner of the plaster cast nor any custom

MBU-5/P which was made for this person. Cluster four contains only one person,
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ID 0035, a person with a very flat face. If a faceform is made for this cluster, there

are no other members in the cluster who can be used for evaluation purposes. The

faceforms made (clusters 1,3,5,6) are held firmly on plaster casts, and checked to

ensure the faceform does not inhibit vision and fits around the chin and nose area.

It is noted that the faceform does not 'fit' those with lower membership values, closer

to 0.80, as well in the larger clusters, 5 and 6. Deviations of fit occur around the chin

area and obstruct the view in some cases. Although a guess can be made about fit

in this manner, no information can be gained as to where leakage may occur during

positive pressure air breathing. Holding a latex faceform to a plaster face cast is

much different than strapping on an entire MBU-5/P mask tight enough to preclude

most air leakages during positive pressure breathing. The preferable way to evaluate

fit of a mask is having an aircrew member breath positive pressure air to test for air

leakage. To accomplish this a survey was conducted.

5.5.1 Survey. A complete custom made MBU-5/P mask is made for the

representative centers of clusters 1,3,5 and 6. The representative centers have the

highest membership values in each cluster. The custom masks made for each cluster

are sent to the person with the next highest membership. Table 5.3 shows the

identification numbers and membership values for the representative centers and

the survey personnel. Appendix E contains the representative center and survey

personnel data plots for each cluster, and photographs of each representative cluster

center plaster face cast. Survey personnel are asked to take the custom mask to their

life support office, which fits all aircrew personnel with masks, and test the mask

for air leakages by breathing positive pressure air. Questionnaires accompanying

the mask are completed by the survey subjects and their answers are provided in

Appendix D.

All four test masks have been evaluated by the survey subjects breathing pos-

itive pressure air through the custom MBU- 5/P mask representative of the cluster

centers. The survey results are split: one test mask fit well and the other three did
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not. Two survey subjects whose test masks did not fit well are from the larger clus-

ters 5 and 6. These subjects comment that the masks are too large, obstruct their

view under positive pressure breathing, and leak around the eye/nose area. Cluster

3 test subject comments that he had difficultly fitting the mask around the nose

area. The test subject from the smaller cluster 1 comments that the test mask is

suitable and requests the test mask as a replacement to her own custom MBU-5/P

mask.

Although an extensive survey has not been conducted, the results suggest

that the membership cutoff values for fit within each cluster may be affected by

the inherent variability of form between the members within each cluster. The

survey subjects from the larger clusters 5 and 6 have memberships of 0.88 and 0.93

respectively, yet the subjects did not find the test mask adequate. This suggests

that the membership required for fit is larger than 0.88 for cluster 5 and 0.93 for

cluster 6. The larger variability in form within these two clusters could be due to

the uniqueness of the entire data set. The clustering algorithm inherently groups

similar seal areas within a cluster and identifies different clusters which have large

dissimilarities between clusters. Clusters 1,2,3, and 4 contain very few seal areas,

while Clusters 5 and 6 are much larger. If the clustering algorithm separated the

most unique seal areas into clusters 1-4, that leaves the majority of the seal areas

in clusters 5 and 6 which cannot be reliably broken into smaller clusters due to the

small sample size.

It is important to note a few facts concer-iing cluster 3 survey subject. First,

the subject found the overall size of the test mask is good, but leaks occur around

the bridge of the nose under the eyes while breathing positive pressure air. The

mask can be tightened so the leaks stop, but the subject experiences pain in the

nose area where the subject has broken his nose several tim, z. Secondly, the plug

used to create the faceform of the test mask did not come from the representative

center of cluster 3. The representative center of cluster 3 is a Category V, so there
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was no CMS plug created from this plaster face cast. The CMS did not have time

to create a new plug from ID 0011 plaster cast (the representative center) in order

to create the test mask faceform. The plaster face cast which was used to create the

plug utilized in manufacturing the test mask faceform has long ago been destroyed;

it was not available to digitize and add to the analysis to determine whether or not

it too would have been classified within cluster 3.

The survey subject from cluster 1 having a membership of 0.84 found the test

mask to fit well. This implies the representative center mask would fit other faces

in the cluster with memberships above 0.84. This survey subject was classified as a

Category V when her plaster cast was received by the CMS. This means another plug

was used to create the faceform of her cust-m MBU-5/P mask. This indicates that

the form characterization method ,developed in this research was able to determine

a better Category V plug than the CMS.

5.5.2 Survey Summary. The survey demonstrates that membership cutoff

values for fit within each cluster may be affected by the inherent variability of form

between the members within each cluster; evidenced by the shape of the clusters. Due

to the small sample size, breaking clusters 5 and 6 into a larger number of clusters

is not possible. Time constraints of the research and CMS precludes a faceform

from the representative center of cluster 3 (ID 0011) from being manufactured; thus

cluster 3 has not been adequately tested. Testing of cluster I shows that the method

presented in this research clusters seal areas better than the CMS can by visual

inspection, and the trial and error method of fitting existing plugs to plaster face

casts.
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Cluster Rep Center Survey Personnel
Number ID Number Membership ID Number Membership

1 1986 0.92 0025 0.84
2 0027 0.96 - -
3 0011 0.94 2024 0.89
4 0035 0.91 - -
5 1980 0.93 1958 0.88
6 1918 0.99 J 1981 0.93

Table 5.3 Representative Centers and Survey Personnel Cluster Memberships
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VI. Conclusions and Recommendations

This chapter consists of conclusions made in regards to this research, and

recommendations both for continued research using the MBU-5/P data (project

recommendations) and for future studies using the energy method developed.

6.1 Conclusions

The major contributions of this project were the ability to characterize form

through the use of spacial correlation in the form of the energy matrix, the use

of fuzzy clustering to classify the human face into groups for aircrew oxygen mask

designs, and the creation of a prototype plug from the information gathered on the

seal areas. The end product was an ability to create face masks from the cluster

represer.Ltatives which better fit the population of custom mask users. All this was

done without prior knowledge of the anthropometrics or demographic information

of the aircrew members: pre-segregation was not possible since the source of data

consisted of plaster face casts, some without identification regarding sex, and with

no additional information regarding age or size. The input data consisted only of

three dimensional data points, which were chosen based on the best representation

of the seal area under investigation.

The energy matrix, based on a linear system of equations using the variogram

function, enabled the prediction of values in areas where there were no measure-

ments. This was the source of spacial correlation and surface prediction which pro-

vided features for clustering. The difficulty lay in data reduction and identifying

the critical features for comparison. The Karhounen-Loeve Transform performed

reasonably well and provided features of greatest variance for cluster determination.

Fuzzy clustering enabled the selection of the cluster representatives and tariffs based

on membership values. Computer aided design combined with rapid prototyping

technologies allowed for the recreation of the seal area. The final proof of the ap-
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plicability of the entire process to grouping custom MBU-5/P mask users involved

the contributed efforts of the custom mask shop to send masks based on the cluster

representatives to other members within the cluster. The general response is that

the ability to identify similarities between individuals is reasonably high for small

clusters, but goodness of fit decreases as variability of form between members within

each cluster increased.

The contribution to the cLt.0om mask shop, is that CMS could use the cluster

prototypes as a source of Category V masks. The Category V masks should then fit

better, providing a better quality product to the aircrew member. The result is a

potential reduction in the number of plugs that have to be produced. This research

addressed the problem of the current aircrew face masks failure to fit the increasingly

diverse population of aircrew members, by providing a new sizing method, which in

turn would reduce the efforts of the custom mask shop. The research was organized

by incremental goals or objectives to develop a sizing method sensitive to the needs

of the Air Force. The following paragraphs address conclusions developed as a result

in attaining the research objectives.

Collect and Prepare Data. The first goal was to collect as

many samples as possible of the only sample data available to this research, the

custom MBU-5/P mask users: aircrew members who do not fit standard sizes. This

research utilized plaster casts made for custom MBU-5/P mask requests and em-

ployed a state-of-the-art, three-dimensional digitizer to collect seal area data for use

in form characterization analysis. This seal area data were pre-processed by smooth-

ing the seal line and orienting it for computational convenience and visual ease in

CAD programs. Orientation of the seal area data eased structure analysis, but was

not required for utilization in the form characterization analysis developed in this

research.
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Develop Form Characterization. It was necessary to develop

a form characterization method which captured all the critical features necessary

for comparison, was coordinate free, independent of landmarks, did not require a

reference form, and could reconstruct the form of the object under study in order

to reach the next goal of this research. Multivariate statistical methods used in the

1950's Air Force form analyses for air-breathing oxygen masks could not consistently

reconstruct the face from the linear dimensions collected. The linear dimensions were

measured between landmarks thought to distinguish different characteristics of the

face. There were several other morphological methods available for form characteri-

zation but were not applicable to this research because they were landmark depen-

dent, did not provide an accurate surface description between the defined landmarks,

and required a reference or target face to compare multiple faces. These were: pro-

crustes, finite element scaling analysis, Euclidean distance matrix analysis, and thin

plate splines. Kriging was the only method discussed in this research which included

the spacial correlation of the data, is not landmark dependent, and does not require

a reference form.

The form characterization method utilized spacial correlation as determined

in the structure analysis portion of kriging. Kriging combined spacial correlation

with linear equations for optimal prediction while minimizing estimation error. The

foundation for providing the spacial description was the variogram function which

depends on the linear distance between locations. The result was an energy matrix

which captures the form of a face without the use of landmarks.

The energy matrix uniquely characterized the form of a face and provided

an large+ number of possible feature sets to cluster. The 'curse of dimensionality'

permitted only a few dimensions, or features, per seal area be utilized in clustering.

Two methods of data reduction, free form and fixed form, were explored to find

the feature set which yielded the best results. The advantage of using free form

methods was that seal areas could contain an unequal number of data points. The
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disadvantages were the existence of a large data set, coupled with the difficulty of

identifying the critical features for comparison. The fixed form method allowed the

application of linear transformations, such as the KLT, which could be applied on

the entire energy matrix of the sparsed seal areas, the eigenvalues of the energy

matrix of the sparsed seal areas, or to a selected uniform number of eigenvalues from

the unsparsed, free form data set. The KLT yielded sets of ordered, orthogonal,

uncorrelated features. Many different feature sets were explored in the fuzzy c-

means algorithm used for clustering, but the fixed form KLT performed on the

entire sparsed energy matrix provided the best clustering results. It was postulated

that more information was lost during data reduction in taking the KLT on the

eigenvalues of the energy matrix than in performing the KLT directly on the fixed

form energy matrices.

Clustering. Six clusters were produced from the 99 sample seal

areas using only five features: the top five KLT coefficients from the fixed form energy

matrices. The seal area having the highest membership within each cluster became

the representative for the corresponding cluster. The representative seal area data

were fitted to a hard-shell in a computer aided design (CAD) program and a three-

dimensional computer representation of a complete plug was developed. Surface

information was then input to a rapid prototyping machine capable of producing

prototype plugs made of polyamide or polyolefin. Due to funding constraints, the

amount of prototyping material available was only enough to produce one prototype

plug. The procedure developed in this research demonstrated the feasibility of using

CAD and rapid prototyping technologies in the production of custom-made aircrew

oxygen masks.

Evaluation. An evaluation was conducted to demonstrate that

the energy method developed, the feature set chosen, and resulting clusters did

indeed meet the goals of this research. The evaluation was executed in two parts.
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First, latex faceforms of the cluster representatives were fitted to the plaster face

casts of each member within their cluster. Secondly, custom MBU-5/P masks made

from the cluster representatives were sent to the aircrew members in their cluster

for fit testing. The aircrew members were asked to test the masks for comfort and

air tight seal under positive pressure breathing conditions. The evaluation showed

that the cluster membership value required for fit could have been affected by the

inherent variability of form between members within each cluster.

The entire method, from form characterization to prototyping, presented in

this research achieved the objectives set forth, but was limited in the extent of

its success. The seal area data used were not landmark dependent, but the same

number of data points per seal area were required in order to perform the KLT on the

entire energy matrix. Other limitations were due to the number of sample seal areas

available, the sample space (custom MBU-5/P users) itself, and the number and

placement of spacial delineatol - These limitations are explored further as project

recommendations in the followii section.

6.2 Project Recommendations

A limiting factor on this research is the uniqueness of the sample space. The

custom made MBU-5/P masks are for the unique aircrew members who cannot be

fitted with standard masks. Using this 'fringe' data leads the research to attempt

cl,-,ering on individuals who should be 'unclusterable' by the standard fitting MBU-

5/P. Despite this fact overshadowing the research, there are alternatives to evaluate,

continuing research in this area by: collecting more plaster casts as they become

available; using more spacial delineators; applying different data reduction methods;

choosing different feature space selections; and sealing the prototype plug before

faceform production.
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Sample Size. As the Custom Mask Shop (CMS) receives more

masks, the sample size increases. The dimensionality constraints would still apply

but the increased sample size allows for a larger number of features and/or larger

number of clusters to be used in the analysis. This provides for the classification of

more faces together and the possibility of more prototype plugs which fit a larger

population.

Spacial Delineators. This research could be continued by adding

more spacial delineators within the seal areas, particularly in the area of the chin.

Adding more data points will enable a better description of the bending energy

required to deform a plane through the seal area data, which better captures the

form of the face. This results in more descriptive energy matrices and thus a better

feature space for clustering.

Data Reduction Method. The energy matrix contains all the

information necessary to describe the form of a face. This research investigates

the spectral decomposition of the bending energy matrix, the eigenvalues of the

bending energy matrix and sparsing of the original seal line data as methods to

reduce the data. In this research the entire energy matrix was used during the

analysis. However, taking the inverse of L is a computationally expensive process.

The process of finding features could be made much more computationally efficient

if equivalent features were extracted directly from L without taking the inverse. A

partial simplification woula be to take advantage of the fact that the energy matrix

is symmetric. For a symmetric matrx. ('holesky factorization gives A = RTR where

R is an upper triangular matrix (50). The inverse of a triangular matrix requires

significantly less steps then a 'full' mat rix. These are not the only data reduction

methods available. Others could be I ined (13, 47, 55).
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Feature Sets. Along with different data reduction methods,

different feature sets could be attempted. Many different feature spaces are investi-

gated in this research, but only the KLT of the bending energy matrix gave accurate

results. The KLT is used to identify the most unique features for a fixed form data

set, simplifying the selection of which features to use. Other transformations, such

as Fourier series, Eigensystem, and wavelets are available.

Prototype Plug Modifications. The procedure developed in this

research demonstrates the feasibility of using computer aided design and rapid pro-

totyping technologies in the production of custom-made aircrew oxygen masks. The

process significantly reduces the time required to produce a custom MBU-5/P mask.

The prototype plug fabricated on the Stratasys rapid prototyping machine (RPM)

accurately reproduces the geometry of the face from which it is modeled, but only

in those areas where sufficient digital data is available. For the RPM-produced plug

to be as accurate as the hand made plug it attempts to replace, a more complete

digital representation of the face is needed. This digital data could come from a

laser scan of the face. The prototype plug tested shows that the material used to

form the plug withstands the chemical and thermal treatments involved in producing

latex faceforms. Only one modification, that of sealing the mesh within the plug, is

needed to keep the chemicals from seeping into the interior of the plug.

6.3 Recommendations for Future Research

Future research is recommended in applying the methods developed in this

thesis to sample data sets other than the custom MBU-5/P users, such as COMBAT

EDGE helmets or other aircrew equipment, and to further investigate the methods

developed here.

Sample Data Set. A recommended sample data set is a 'normal'

data set with as many objects as possible. A 'normal' data set includes a homoge-
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neous representation of the objects being analyzed. For further research in the area

of air-breathing oxygen masks, the methods developed in this research should be ap-

plied to the whole population of aircrew members to better evaluate the information

carried in Ln- and to develop a better sizing system for the Air Force. This new

sizing system could be used to determine better designs for air-breathing oxygen

masks currently under development such as the MBU-20/P, COMBAT EDGE.

Further Investigation of Free Form Analysis. The free form

method is advantageous because it allows an unequal number of data points per

object, but its disadvantages are the large data set and the difficulty of determining

which features best characterize the object form. The validation methods using

the 'eggs' and the verification by reconstruction of the seal areas using bending

energy modes both justify using 'all' the eigenvalues of the bending energy matrices.

However, the 'curse of dimensionality' permits only a few dimensions to be used in

the clustering routines. Due to the nature of the seal area data, a sparsing routine

enabled the reduction in data to a uniform number. Given a different type of data

collection method, such as laser scans, this may not be possible. Therefore, a method

for evaluating free form derived features in order to identify which are critical is

necessary.

Adapting Method to Use Laser Scan Data. The technology

exists to laser scan entire parts of the human body, such as the head. Laser scans

provide much more data than that obtained from digitizing the seal areas from

plaster casts. Future research could be directed toward developing a method to use

laser scan data as input into the bending energy method. The method would need to

address minimizing computational time and memory, and data reduction methods

already discussed would be required. Most of these techniques have been developed

in previous studies and could easily be incorporated in future efforts.
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Project recommendations and future recommendations for further research in-

volve adapting the energy matrix to different types of data bases, such as laser scans.

The ensuing problem is the large matrix which magnifies the importance of data re-

duction and feature space reduction. However, the form characterization method is

applicable to any size data base, and is fairly simple to use. This research provides

the basis for future aircrew oxygen mask sizing and designs which would better fit

the larger population of aircrew members.
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Appendix A. Bending Modes

This appendix contains the complete set of bending modes for mask identifi-

cation number 0002. The derivation of bending modes is given in Section 3.4.2. The

derivation shows that the sum of the bending modes is equivalent to the bending of

a flat plate to the face. The sum of the modes plus the regression plane which they

are bent from is the best linear unbiased predictor of the face.

Figures A.1 through A.50 are the fifty bending modes for mask identification

number 0002. Figure A.51 is the sum of the fifty modes. Figure A.52 is the regression

plane which all the modes are bent from. Figure A.53 is the sum of the modes plus

the regression.

For the facial data considered in this research, the BLUP is based on the-

residuals of the face. The residuals are created by subtracting the second order trend

from the facial coordinates. Adding the trend to the residuals gives the recreation

of the face.

The polynomial trend is given in Figure A.54. Figure A.55 is the addition of

the polynomial surface and the residuals. This is the estimated height of the object

in physical dimensions.

The face is oriented with the nose pointing 'down' in the -z direction. The

approximate location of the bridge and tip of the nose are x = 50, y = 0, z = -30,

and x = 30, y = 0, z = -30, respectively.

Figures A.56 through A.65 show a slice of the face through the plane y = 0.

The same summation process is shown in these figures as in the surface plots. The

result is a profile of the nose and chin.
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Figure A.1 Bending mode for A, -0.73799.
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Figure A.2 Bending mode for A2 = -0.66514.
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Figure A.3 Bending mode for A3 = -0.463198.
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Figure A.5 Bending mode for A5 -0.36815.
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Figure A.6 Bending mode for A6 = -0.34010.
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Figure A.7 Bending mode for A•7 =-0.33584.
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Figure A.8 Bending mode for A8 = -0.29655.
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Figure A.9 Bending mode for Ag -0.29053.
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Figure A.10 Bending mode for Alo = -0.28155.
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Figure A.13 Bending mode for A13 -0.24257.
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Figure A.14 Bending mode for A14 = -0.22847.
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Figure A.15 Bending mode for Ajs -0.22052.
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Figure A.16 Bending mode for A16 = -0.21202.
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Figure A.17 Bending mode for A17 -0.20526.
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Figure A.19 Bending mode for A19 -0.16536.
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Figure A.20 Bending niode for A20 =-0.15400.
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Figure A.21 Bending mode for A21 -0.14840.
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Figure A.22 BendMg mode for A22 = -0.12810.

A- 12



100

-55

010 • -0

-500

100 -- 100

Figure A.23 Bending mode for A23 =-0.12148.
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Figure A.24 Bending mode for A24 = -0.11171.
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Figure A.27 Bending mode for A27 -0.088829.
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Figure A.28 Bending mode for A28 = -0.087321.
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Figure A.29 Bending mode for A29 -0.080692.
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Figure A.30 Bending mode for A30 = -0.076363.
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Figure A.31 Bending mode for A31 -0.075163.
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Figure A.32 BendMg inode for A32 = -0.068943.
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Figure A.34 Bending mode for A0 = -0.068205.
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Figure A.34 Bending mode for A34 = -0.068205.
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Figure A.35 Bending mode for A35 -0.065954.
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Figure A.36 Bending mode for A36 = -0.061600.
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Figure A.37 Bending mode for A37 = -0.058455.
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Figure A.38 Bending mode for A38 = -0.055670.
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Figure A.39 Bending mode for A3o -0.054397.
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Figure A.41 Bending mode for A41 -0.048476.
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Figure A.42 Bending niode for A42 = -0.046709.
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Figure A.43 Bending mode for A•43 - -0.0495590.
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Figure A.45 Bending mode for A45 -0.035200.
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Figure A.47 Bending mode for A•47, -0.032208.

55

-5

-50

0: 5 -50

100 -- 100

Figure A.48 Bending mode for A•48 = -0.028752.
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Figure A.49 Bending mode for A49 = -0.022311.
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Figure A.50 Bending mode for A50 = -0.021602.
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Figure A.56 Cross section at y = 0 of bending modes 1 - 10.
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Figure A.57 Cross section at y = 0 of bending modes 11 - 20.
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Figure A.58 Cross section at y = 0 of bending modes 21 - 30.
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Figure A.59 Cross section at y = 0 of bending modes 31 - 40.
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Figure A.60 Cross section a. y = 0 of bending modes 41 - 50.
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Figure A.63 Cross Section at y = 0: Sum of bending modes and regression plane.
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Figure A.64 Cross Section at y = 0: Polynomial trend (z') subtracted from physical
z coordinates.
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Figure A.65 Cross Section at y = 0: Estimated height of face in physical
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Appendix B. Eigenvalue Investigation

This appendix contains complete analysis for only three of the seal areas used to

validate the trend discussed in Section 3.4.3: the Megg, Begg, and a sparsed seal area

data file (plaster cast identification number 1918). The information presented here is

similar to that presented for the original egg. The comparisons made in Section 3.4.3,

and those presented in this appendix are only a few of all the investigations done for

this research. All the investigations validate the premise that the eigenvalues of the

energy matrix contain information which characterizes the seal area of a face. The

eigenvalue trends show that smaller seal areas have larger bending energies compared

to larger seal areas, and more protruding noses/chins have smaller bending energies.

This appendix also includes the data files and two-dimensional plots of other egg

modifications such as the Degg.

B.1 Megg

The Megg is a slight modification of the original egg described in Section 3.4.3;

it has an additional two points representing the corners of the mouth. The Megg

coordinate data is listed in Figuro B.1 and plotted in Figure B.1. The following are

modifications to the Megg and the identifying name:

* The Megg is lengthed 30 % by scaling the x coordinates. (Megg-x130)

* The Megg is widened 30 % by scaling the y coordinates. (Megg-y130)

* The Megg is increased 30 % in both the x and y directions. (Megg-xyl30)

* The Megg is increased 30 % in the x, y and z directions making it the same

shape, but a different size. (Megg-y130)

* The height of the nose is changed by five units in both the positive and negative

z direction creating two modified eggs. (Nose-up, Nose-down)
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"* The height of the chin is changed by five units in both the positive and negative

z direction creating two modified eggs. (Chin-up, Chin-down)

"* The position of the nose is moved along the x-axis by five units in both the

positive and negative x direction creating two modified eggs. (Nose-xpos, Nose-

xneg)

"* The position of the chin is moved along the x-axis by five units in both the

positive and negative x direction creating two modified eggs. (Chin-xpos, Chin-

xneg)

The eigenvalue plots for the various megg configurations (scaling, nose and

chin height movement, and nose and chin position movement) are shown in Figures

B.2 through B.6. In Figure B.2, the difference in eigenvalues between Megg-yl30

and Megg-x130 is not as large as it is for Egg-x130 and Egg-y130 of the original egg-

in Section 3.4.3.
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Elliptical
Points x y z

1 58.0 0.0000 0
2 43.5 29.1033 0
3 29.0 38.1051 0
4 14.5 42.6028 0
5 0.0 44.0000 0
6 -14.5 42.6028 0
7 -29.0 38.1051 0
8 -43.5 29.1033 0
9 -58.0 0.0000 0

10 -43.5 -29.1033 0
11 -29.0 -38.1051 0
12 -14.5 -42.6028 0
13 0.0 -44.0000 0
14 14.5 -42.6028 0
15 29.0 -38.1051 0
16 43.5 -29.1033 0

Nose 20.0 0.0000 20.0
Chin -40.0 0.0000 10.0

19 -10.4 26.0000 0.1
20 -10.4 -26.0000 0.1

Table B.1 Megg Coordinate Data: Points 19 and 20 represent corners of the mouth.
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(b) Megg Side View

Figure B.1 Megg Two-Dimensional Plots: The Megg which consists of 20 points;
(a) Megg top view, (b) Megg side view.
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Eigenvalues 1 - 17, (18 - 20 are zero)

Figure B.2 Megg Scaling Effects Trend: Trend appearing when eigenvalues of the
energy matrix from scaled megg data are compared. The vertical axis
represents the magnitude of the eigenvalues.
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Figure B.3 Megg Nose Height Effects Trend: Trend appearing when eigenvalues of
the energy matrix from data capturing the movement in height of the
nose are compared. The vertical axis represents the magnitude of the
eigenvalues.
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Figure B.4 Megg Chin Height Effects Trend: Trend appearing when eigenvalues of
the energy matrix from data capturing the movement in height of the
chin are compared. The vertical axis represents the magnitude of the
eigenvalues.

B-7



0.09

Note that all three lines representing
Nose-xpos, Nose-xneg, and Megg are

0.08 barely distinguishable.

0.07

0.06

0.05

0.04

0.03

0.021

2.5 5 7.5 10 12.5 15 17.5

Eigenvalues I - 17, (18 - 20 are zero)

Figure B.5 Megg Nose Position Effects Trend: Trend appearing when eigenvalues
of the energy matrix from data capturing the movement in position of
the nose are compared. The vertical axis represents the magnitude of
the eigenvalues.
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Figure B.6 Megg Chin Position Effects Trend: Trend appearing when eigenvalues
of the energy matrix from data capturing the movement in position of
the chin are compared. The vertical axis represents the magnitude of
the eigenvalues.

B-9



B.2 Begg

The Begg is a modification of the original egg discussed in Section 3.4.3; it has

additional points located on the ellipse. The Begg coordinate data used is listed in

Figure B.2 and plotted in Figure B.7. The following are modifications to the Begg

and the identifying name:

* The Begg is lengthed 30 % by scaling the x coordinates. (Begg-x130)

e The Begg is widened 30 % by scaling the y coordinates. (Begg-y130)

* The Begg is increased 30 % in both the x and y directions.(Begg-xyl30)

* The Begg is increased 30 % in the x, y and z directions making it the same

shape, but a different size. (Begg-y130)

* The height of the nose is changed by five units in both the positive and negative

z direction creating two modified eggs. (Nose-up, Nose-down)

* The height of the chin is changed by five units in both the positive and negative

z direction creating two modified eggs. (Chin-up, Chin-down)

o The position of the nose is moved along the x-axis by five units in both the

positive and negative x direction creating two modified eggs. (Nose-xpos, Nose-

xneg)

o The position of the chin is moved along the x-axis by five units in both the

positive and negative x direction creating two modified eggs. (Chin-xpos, Chin-

xneg)

The eigenvalue plots for various begg configurations (scaling, nose and chin

hieght movement, and nose and chin position movement) are shown in Figures B.8

through B.12. In Figure B.8, the difference in eigenvalues between Begg-y130 and

Begg-x130 has narrowed even more than what it is for the Megg.
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Elliptical
Points x y z

1 58.0 0.0000 0
2 55.8 12.0000 0
3 51.7 20.0000 0
4 43.5 29.1033 0
5 36.8 34.0000 0
6 29.0 38.1051 0
7 14.5 42.6028 0
8 0.0 44.0000 0
9 -14.5 42.6028 0
10 -29.0 38.1051 0
11 -36.8 34.0000 0
12 -43.5 29.1033 0
13 -51.7 20.0000 0
14 -55.8 12.0000 0
15 -58.0 0.0000 0
16 -55.8 -12.0000 0
17 -51.7 -20.0000 0
18 -43.5 -29.1033 0
19 -36.8 -34.0000 0
20 -29.0 -38.1051 0
21 -14.5 -42.6028 0
22 0.0 -44.0000 0
23 14.5 -42.6028 0
24 29.0 -38.1051 0
25 36.8 -34.0000 0
26 43.5 -29.1033 0
27 51.7 -20.0000 0
28 55.8 -12.0000 0

Nose 30.0 0.0000 20.0
Chin -35.0 0.0000 12.0

Table B.2 Begg Coordinate Data.
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(a) Begg top view, (b) Begg side view.
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05 B Begg
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0.15 r Begg.gy, \

0.1

,%A

0.05

Begg-130 --

0 10 15 20 25 30

Eigenvalues I - 27, (28 - 80 are zero)

Figure B.8 Begg Scaling Effects Trend: Trend appearing when eigenvalues of the
energy matrix from scaled begg data are compared. The vertical axis
represents the magnitude of the eigenvalues.
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o f . . , .. . . . . . . . . . .. i i l i

5 10 15 20 25 30

Eigenvalues 1 - 27, (28 - 80 are zero)

Figure B.9 Begg Nose Height Effects Trend: Trend appearing when eigenvalues of
the energy matrix from data capturing the movement in height of the
nose are compared. The vertical axis represents the magnitude of the
eigenvalues.
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0.25

0.2 ,

0.15

\ \\\

0.1 Chin-Up

0.05

5 10 15 20 25 30

Eigenvalues 1 - 27, (28 - 80 are zero)

Figure B.10 Begg Chin Height Effects Trend: Trend appearing when eigenvalues
of the energy matrix from data capturing the movement in height of
the chin are compared. The vertical axis represents the magnitude of
the eigenvalues.
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Note that all three lines representing
Nose-xpos, Nose-xneg, and Begg are

0.25 barely distinguishable.

0.2

0.15

0.05

0.0

5 10 15 20 25 30

Eigenvalues 1 - 27, (28 - 80 are zero)

Figure B.11 Begg Nose Position Effects Trend: Trend appearing when eigenvalues
of the energy matrix from data capturing the movement in position of
the nose are compared. The vertical axis represents the magnitude of
the eigenvalues.
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0.25

Note that all three lines representing
Chin-xpos, Chin-xneg, and Begg are very
similar for the first four eigenvaues

0.2 then a small deviation of Chin-xneg occurs.

0.15

0.1[

0.05

0 10 15 20 25 30
Eigenvalues 1 - 27, (28 - 80 are zero)

Figure B.12 Begg Chin Position Effects Trend: Trend appearing when eigenvalues
of the energy matrix from data capturing the movement in position of
the chin are compared. The vertical axis represents the magnitude of
the eigenvalues.
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B.3 The Sparsed Seal Area

The sparsed seal area data presented contains 53 points, 39 along the seal line

and 14 spacial delineators, refer to Section 5.1.2.3. The sparsed seal area coordinate

data (Spar) used is listed in Table B.3 and plotted in Figure B.13. The following are

modifications to the sparsed data and the identifying name:

o The sparsed data is lengthed 30 % by scaling the x coordinates. (Spar-x130)

* The sparsed data is widened 30 % by scaling the y coorainates. (Spar-y130)

* The sparsed data is increased 30 % in both the x and y directions. (Spar-xy130)

"* The sparsed data is increased 30 % in the x, y and z directions making it the

same shape, but a different size. (Spar-y130)

"* The height of the nose is changed by five units in both the positive and negative

z direction creating two modified eggs. (Nose-up, Nose-down)

"* The height of the chin is changed by five units in both the positive and negative

z direction creating two modified eggs. (Chin-up, Chin-down)

"* The position of the nose is moved along the x-axis by five units in both the

positive and negative x direction creating two modified eggs. (Nose-xpos, Nose-

xneg)

"* The position of the chin is moved along the x-axis by five units in both the

positive and negative x direction creating two modified eggs. (Chin-xpos, Chin-

xneg)

The eigenvalue plots for the various sparsed seal area configurations (scaling,

nose and chin hieght movements, and ,nose and chin position movements) are shown

in Figures B.14 through B.18. In Figu re B. 11. the first eigenvalue of Spar-y130 is just

slightly less than Spar, and the first eigenvalue of Spar-x130 is just slightly greater

than Spar-xy130. After the fifth eigerivalue, both Spar-y130 and Spar-x130 are very

similar. This is probably due to the increased number of points along the seal line.

B- 18



Elliptical
Points x y z

1 75.3535 1.0817 5.8181
2 75.0300 3.5596 5.5165
3 71.6694 7.7874 2.5061
4 62.9443 11.8356 -4.2388
5 54.8664 16.5134 -8.5468
6 46.5132 22.6889 -10.0646
7 41.6974 28.5294 -8.8402
8 34.9158 36.5712 -3.0690
9 28.6590 41.9883 1.3609
10 21.2669 46.0699 4.2047
11 10.8931 48.9706 4.3194
12 -1.06646 50.3352 2.4471
13 -15.9515 50.8339 1.6566
14 -29.5916 48.7260 1.8970
15 -43.9652 43.3279 0.2222
16 -55.4673 37.6029 -1.5748
17 -64.0308 31.3819 -2.8301
18 -69.5895 25.3499 -2.9655
19 -74.5105 16.7834 -2.8263
20 -76.5366 8.9360 -1.9456
21 -76.8219 2.6442 -1.4316
22 -76.1938 -5.3707 -1.1406
23 -74.591r -13.3583 -1.4927
24 -70.1770 -23.3732 -0.3726
25 -63.8443 -31.6359 -0.0097
26 -55.1023 -38.2173 -0.8278
27 -46.7816 -42.8015 -0.6409
28 -39.6643 -46.1180 -0.6140
29 -29.3433 -48.9500 0.0766
30 -7.2097 -51.2553 -1.2595

Table B.3 Sparsed Seal Area Coordinate Data: First 30 points of sparsed seal line.

(continued on following page)
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Elliptical
Points x y z

31 9.8409 -50.2378 1.6152
32 19.6829 -48.9064 3.7401
33 27.5739 -45.7295 3.0875
34 33.4359 -40.8089 -0.0001
35 47.2234 -23.5921 -10.047
36 55.9552 -15.5143 -8.8086
37 64.5642 -10.0478 -3.5586
38 71.6957 -5.6506 2.5156
39 74.4026 -1.9702 4.9482
40 57.3407 -11.7034 -0.4100
41 64.2647 1.26816 11.8555
42 55.3632 14.0791 -0.5817
43 38.4175 -23.0996 -7.0621
44 37.2901 -0.0846 25.4365
45 35.3161 22.8596 -5.7490
46 23.3749 -20.8377 -8.0985
47 7.3363 0.4003 0.6586
48 20.5686 21.0038 -7.4595
49 -11.0403 -30.8569 -2.5253
50 -11.9916 31.0462 1.6530
51 -26.5475 -2.6282 2.9290
52 -39.1494 -3.2615 8.4771
53 -56.0975 -4.3406 12.0504

Table B.3.b. Sparsed Seal Area Coordinate Data Continued: Points 40 - 53 are the
14 spacial delineators of sparsed seal area.
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(b) Spar Side View

Figure B.13 Spar Two-Dimensional Plots: The Spar which consists of 53 points;
(a) Spar top view, (b) Spar side view.
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0.2 . . . .

0.175 The first eigenvalue of Spar-y130 is just slightly

less than Spar, and the first eigenvalue of Spar-x130
less than Spar, and the first eigenvalue of Spar-x130

0.15 fifth eigenvalue, both Spar-y130 and Spar-x130 are
very similar.

0.125

0.1

"0.075 Spar

0.05
-*\Spar-x~13 %A

0.025

10 20 30 40 50

Eigenvalues 1 - 50, (51 - 53 are zero)

Figure B.14 Spar Scaling Effects Trend: Trend appearing when eigenvalues of the
energy matrix from scaled spar data are compared. The vertical axis
represents the magnitude of the eigenvalues.
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0.15 \
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Nose-IY \.

0.05

10 20 30 40 50
Eigenvalues I - 50, (51 - 53 are zero)

Figure B.15 Spar Nose Height Effects Trend: Trend appearing when eigenvalues of
the energy matrix from data capturing the movement in height of the
nose are compared. The vertical axis represents the magnitude of the
eigenvalues.
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0.2 . . . . . . . . .

0.175 This particular sparsed seal area data

Spar does not show much deviation whenlowering the chin.

0.15

0.125

0.1

0.075
Chin-Up hin-Down

0.05

0.025

10 20 30 40 50

Eigenvalues 1 - 50, (51 - 53 are zero)

Figure B.16 Spar Chin Height Effects Trend: Trend appearing when eigenvalues of
the energy matrix from data capturing the movement in height of the
chin are compared. The vertical axis represents the magnitude of the
eigenvalues.

B-24



0.2

Note that all three lines representing
Nose-xpos, Nose-xneg, and Spar are barely

0. 175 distinguishable.

0.15

0.125

0.1

0.075

0.05

0.025

10 20 30 40 50

Eigenvalues 1 - 50, (51 - 53 are zero)

Figure B.17 Spar Nose Position Effects Trend: Trend appearing when eigenvalues
of the energy matrix from data capturing the movement in position of
the nose are compared. The vertical axis represents the magnitude of
the eigenvalues.
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0.2 . . . .

Note that all three lines representing
Chin-xpos, Chin-xneg, and Spar are very

0.175 similar.

0.15

0.125

0.1

0.075

0.05

0.025

0 10 20 30 40 50

Eigenvalues 1 - 50, (51 - 53 are zero)

Figure B.18 Spar Chin Position Effects Trend: Trend appearing when eigenvalues
of the energy matrix from data capturing the movement in position of
the chin are compared. The vertical axis represents the magnitude of
the eigenvalues.
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Elliptical
Points x y z

1 58.0 0.0000 6.0
2 43.5 29.1033 -5.0
3 29.0 38.1051 0.0
4 14.5 42.6028 2.0
5 0.0 44.0000 0.8
6 -14.5 42.6028 0.4
7 -29.0 38.1051 0.0

8 -43.5 29.1033 -0.
9 -58.0 0.0000 -2.5

10 -43.5 -29.1033 -0.8
11 -29.0 -38.1051 0.0

12 -14.5 -42.6028 0.4
13 0.0 -44.0000 0.8
14 14.5 -42.6028 2.0
15 29.0 -38.1051 0.0
16 43.5 -29.1033 -5.0

Nose 30.0 0.0000 20.0
Chin -35.0 0.0000 12.0

Table B.4 Degg Coordinate Data: This modified egg has 'depth' - the points along
the ellipse have been given a he~ght similar to the residual 'height' of
points along the seal line after the trend has been removed.
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(b) Degn Side View

Figure B.19 Degg Two-Dimensional Plots: The Degg which consists of 18 points;
(a) Degg top view, (b) Degg side view.
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Elliptical
Points x y z

1 58.0 0.0000 0.0
2 55.8 12.0000 0.0
3 43.5 29.1033 0.0
4 29.0 38.1051 0.0
5 14.5 42.6028 0.0
6 0.0 44.0000 0.0
7 -14.5 42.6028 0.0
8 -29.0 38.1051 0.0
9 -43.5 29.1033 0.0
10 -55.8 12.0000 0.0
11 -58.0 0.0000 0.0
12 -55.8 -12.0000 0.0
13 -43.5 -29.1033 0.0
14 -29.0 -38.1051 0.0
15 -14.5 -42.6028 0.0
16 0.0 -44.0000 0.0
17 14.5 -42.6028 0.0
18 29.0 -38.1051 0.0
19 43.5 -29.1033 0.0
20 55.8 -12.0000 0.0

Nose 20.0 0.0000 20.0
Chin -40.0 0.0000 10.0

Table B.5 Beggl Coordinate Data.
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(b) Beggl Side View

Figure B.20 Beggl Two-Dimensional Plots: The Beggl which consists of 22 points;

(a) Beggl top view, (b) Beggl side view.
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Elliptical
Points x y z

1 58.0 0.0000 0.0
2 55.8 12.0000 0.0
3 51.7 20.0000 0.0
4 43.5 29.1033 0.0

5 29.0 38.1051 0.0
6 14.5 42.6028 0.0
7 0.0 44.0000 0.0
8 -14.5 42.6028 0.0
9 -29.0 38.1051 0.0
10 -43.5 29.1033 0.0
11 -51.7 20.0000 0.0
12 -55.8 12.0000 0.0
13 -58.0 0.0000 0.0
14 -55.8 -12.0000 0.0
15 -51.7 -20.0000 0.0
16 -43.5 -29.1033 0.0
17 -29.0 -38.1051 0.0
18 -14.5 -42.6028 0.0
19 0.0 -44.0000 0.0
20 14.5 -42.6028 0.0
21 29.0 -38.1051 0.0
22 43.5 -29.1033 0.0
23 51.7 -20.0000 0.0
24 55.8 -12.0000 0.0

Nose 20.0 0.0000 20.0
Chin -40.0 0.0000 10.0

Table B.6 Begg2 Coordinate Data.
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(b) Begg2 Side View

Figure B.21 L'egg2 Two-Dimensional Plots: The Begg2 which consists of 26 points;
(a) Begg2 top view, (b) Begg2 side view.
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Elliptical
Points _ y z

1 58.0 0.0000 0.0
2 55.8 12.0000 0.0
3 51.7 20.0000 0.0
4 43.5 29.1033 0.0
5 36.8 34.0000 0.0
6 29.0 38.1051 0.0
7 14.5 42.6028 0.0
8 0.0 44.0000 0.0
9 -14.5 42.6028 0.0

10 -29.0 38.1051 0.0
11 -36.8 34.0000 0.0
12 -43.5 29.1033 0.0
13 -51.7 20.0000 0.0
14 -55.8 12.0000 0.0
15 -58.0 0.0000 0.0
16 -55.8 -12.0000 0.0
17 -51.7 -20.0000 0.0
18 -43.5 -29.1033 0.0
19 -36.8 -34.0000 0.0
20 -29.0 -38.1051 0.0
21 -14.5 -42.6028 0.0
22 0.0 -44.0000 0.0
23 14.5 -42.6028 0.0
24 29.0 -38.1051 0.0
25 36.8 -34.0000 0.0
26 43.5 -29.1033 0.0
27 .51.7 -20.0000 0.0
28 55.8 -12.0000 0.0

Nose 20.0 0.0000 20.0
Chin -10.0 0.0000 10.0

Table B.7 Begg3 Coordinate Data.
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(b) Begg3 Side View

Figure B.22 Begg3 Two-Dimensional Plots: The Begg3 which consists of 30 points;
(a) Begg2 top view, (b) Begg2 side view. NOTE: Begg3 and Begg differ
in Nose and Chin.
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Elliptical
Points x y z

1 55.8 12.0000 0.0
2 43.5 29.1033 0.0
3 29.0 38.1051 0.0
4 14.5 42.6028 0.0
5 0.0 44.0000 0.0

6 -14.5 42.6028 0.0
7 -29.0 38.1051 0.0
8 -43.5 29.1033 0.0
9 -55.8 12.0000 0.0
10 -55.8 -12.0000 0.0
11 -43.5 -29.1033 0.0

12 -29.0 -38.1051 0.0
13 -14.5 -42.6028 0.0
14 0.0 -44.0000 0.0
15 14.5 -42.6028 0.0
16 29.0 -38.1051 0.0
17 43.5 -29.1033 0.0
18 55.8 -12.0000 0.0

Nose 20.0 0.0000 20.0
Chin -40.0 0.0000 10.0

Table B.8 Begg4 Coordinate Data.
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Figure B.23 Begg4 Two-Dimensional Plots: The Begg4 which consists of 20 points;
(a) Begg4 top view, (b) Begg4 side view.
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Appendix C. Data Preparation Steps for Face 0002v

The tables in this appendix show the sequence of steps taken to prepare the

data for form analysis. Face 0002v is used as an example.

Table C.1 is the raw data file, as taken by the digitizer (see Section 5.1.1.3).

Table C.2 is the data after it has been smoothed by the Pro/ENGINEER CAD

program (see Section 5.1.2.1). Table C.3 is the data after it has undergone principal

components analysis, which places the origin of the coordinate system at the centroid

of the seal area (see Section 5.1.2.2). Table C.4 shows the result of the sparsing

operation performed by Pro/ENGINEER (see Section 5.1.2.3). Table C.5 contains

the results of the residual calculation for the entire, 'un-sparsed' file, with the residual

value, e, for each point given in the third column (see Section 5.2.1).

Note that in all of the tables, except Table C.4.4, the last 14 points are the

spacial delineators. In the sparsed data file, the final point shows the overall length

of the seal area as the x coordinate and the overall width of the seal area as the y

coordinate. The 14 points prior to this are the spacial delineators.
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Pt. x y z Pt. x y z
No. coord coord coord No. coord coord coord

1 148.94 88.08 118.34 36 201.47 25.36 81.72
2 150.91 88.45 117.84 37 201.09 20.64 81.31

3 153.34 87.70 117.02 38 201.02 18.45 81.09

4 155.70 86.81 115.50 39 199.84 14.75 82.00
5 157.33 85.86 113.33 40 197.88 7.42 82.04
6 158.58 83.78 111.38 41 197.37 5.45 82.19

7 160.64 80.91 108.29 42 196.53 1.81 82.35

8 161.88 79.07 107.47 43 196.11 -0.19 82.50
9 163.10 77.80 106.39 44 195.90 -2.91 82.29

10 164.86 76.03 105.30 45 195.20 -5.86 82.72
11 166.66 74,75 104.33 46 193.84 -11.43 82.21
12 169.54 73.30 102.65 47 192.87 -13.28 81.88
13 171.38 72.23 101.90 48 190.37 -16.08 83.22

14 173.67 70.96 100.96 49 188.48 -18.14 83.14

15 176.98 70.03 99.41 50 185.33 -20.49 82.72
16 179.87 69.34 98.06 51 183.67 -21.46 83.26

17 182.10 68.64 97.31 52 180.57 -22.79 83.54
18 184.12 67.86 96.73 53 178.09 -23.32 83.75
19 187.39 66.81 95.81 54 176.11 -24.11 84.81

20 189.51 66.14 95.10 55 173.70 -25.28 86.43
21 191.92 65.67 94.23 56 171.35 -26.13 87.55

22 194.01 65.03 93.49 57 168.97 -26.89 88.04
23 195.77 64.25 92.83 58 165.70 -28.03 89.12

24 199.17 61.27 91.09 59 163.71 -28.28 89.27

25 200.90 59.03 89.79 60 159.09 -29.11 89.10
26 202.22 57.32 88.57 61 155.75 -29.31 88.80

27 203.44 55.28 87.25 62 151.88 -29.56 89.49
28 204.20 52.42 86.24 63 148.51 -29.64 89.62

29 204.92 49.93 85.05 64 144.29 -29.18 90.07
30 204.50 46.45 84.44 65 141.25 -28.98 89.74
31 204.02 44.03 84.32 66 138.09 -28.69 89.51

32 203.56 38.38 82.87 67 133.55 -27.68 90.14

33 203.39 35.98 82.32 68 129.96 -26.40 90.45
34 202.51 32.79 82. 16 69 127.99 -25.42 90.37
35 202.22 30.24 181.93 70 125.34 -23.88 90.35

Table C.1 Raw I)igitized Data Points.

(continued on following page)
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Pt. x y z Pt. x y z
No. coord coord coord No. coord coord coord
71 123.16 -22.19 89.79 106 110.77 60.26 99.57
72 120.46 -20.34 88.88 107 112.78 61.30 100.26
73 117.65 -17.61 88.43 108 115.78 62.28 101.25
74 116.65 -15.55 88.80 109 118.38 62.98 102.15
75 115.18 -14.05 87.76 110 121.13 64.46 102.99
76 113.97 -12.34 86.91 111 123.30 65.82 103.59
77 112.60 -8.61 86.64 112 125.39 67.03 104.37
78 110.70 -6.05 85.26 113 127.69 68.12 105.37
79 109.97 -3.17 84.83 114 129.06 69.56 105.89
80 108.43 -0.70 84.02 115 131.18 71.31 106.79
81 107.14 2.91 83.72 116 132.85 73.02 107.50
82 105.65 5.84 83.97 117 134.55 75.10 108.18
83 104.17 8.65 84.22 118 135.88 75.66 109.89
84 103.69 11.17 84.73 119 137.08 77.98 110.75
85 102.40 14.17 84.75 120 138.13 80.56 112.04
86 101.55 16.51 84.81 121 138.73 82.36 112.95
87 101.27 18.90 85.08 122 139.04 84.33 113.25
88 100.32 21.67 85.12 123 140.98 85.29 115.63
89 98.70 24.95 84.98 124 142.93 86.58 117.00
90 97.95 27.64 85.48 125 145.25 87.43 117.98
91 96.60 31.39 85.54 126 147.35 88.24 118.18
92 95.86 33.27 85.63 127 149.08 88.43 118.16
93 95.01 37.79 86.39 128 136.87 73.66 112.22
94 95.44 39.76 87.22 129 148.92 78.75 122.65
95 95.43 41.72 87.87 130 161.65 75.67 111.38
96 95.39 44.22 89.10 131 128.80 60.76 107.81
97 95.72 46.07 90.30 132 151.58 56.24 131.22
98 96.59 47.85 91.59 133 173.10 64.77 105.03
99 97.07 50.30 92.59 134 128.92 46.00 104.18
100 98.48 51.66 93.90 135 152.63 34.09 113.04
101 100.01 53.11 94.96 136 173.34 48.32 102.37
102 101.78 55.17 96.01 137 123.54 14.48 103.36
103 103.70 56.72 96.79 138 185.44 19.66 100.58
104 106. 12 57.81 97.90 139 156.48 -0.86 110.16
105 107.88 58.62 98.51 140 158.86 -15.87 114.95

141 1159.93 1-26.69 1105.74

Table C.l~b. Raw Digitized Data Points.

(continued from previous page)
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Pt. x y z Pt. x y z
No. coord coord coord No. coord coord coord

1 149.08 88.43 118.16 36 201.59 25.42 81.65
2 150.91 88.45 117.84 37 201.19 21.48 81.37
3 153.32 87.65 116.79 38 200.65 17.95 81.47
4 155.46 86.79 115.28 39 199.58 13.54 81.71
5 157.20 85.48 113.40 40 198.36 9.21 82.08
6 158.85 83.51 111.00 41 197.26 4.90 82.19
7 160.37 81.25 109.05 42 196.67 2.36 82.35
8 161.88 79.26 107.38 43 196.18 -0.43 82.38
9 163.28 77.63 106.39 44 195.74 -2.99 82.51
10 164.88 76.19 105.34 45 194.98 -6.74 82.41
11 167.02 74.69 104.09 46 193.97 -10.19 82.27

12 169.20 73.43 102.96 47 192.36 -13.60 82.44
13 171.53 72.16 101.84 48 190.58 -15.83 82.75

14 174.01 71.07 100.76 49 188.06 -18.24 83.03
15 176.84 70.11 99.48 50 185.83 -20.03 83.04

16 179.65 69.34 98.26 51 183.19 -21.58 83.18
17 182.03 68.61 97.37 52 180.78 -22.53 83.52

18 184.54 67.77 96.62 53 178.26 -23.41 84.03
19 187.01 66.94 95.88 54 175.97 -24.94 85.00

20 189.61 66.21 95.05 55 173.72 -25.17 86.27
21 191.81 65.62 94.27 56 171.34 -26.10 87.34
22 193.90 64.99 93.52 57 168.67 -27.02 88.24
23 196.32 63.52 92.47 58 166.13 -27.73 88.81
24 198.61 61.52 91.24 59 162.84 -28.47 89.17

25 200.77 59.21 89.82 60 159.52 -28.90 89.06
26 202.19 57.21 88.54 61 155.57 -29.33 89.13
27 203.29 55.01 87.36 62 152.04 -29.51 89.30
28 204.19 52.54 86.18 63 148.23 -29.46 89.73

29 204.54 49.60 85.25 64 144.69 -29.27 89.81
30 204.48 46.80 84.60 65 141.21 -28.95 89.77
31 204.03 42.95 83.88 66 137.63 -28.45 89.80

32 203.66 39.47 83.17 67 133.87 -27.59 90.03
33 203.16 35.72 82.55 68 130.50 -26.50 90.32
34 202.71 33.01 82.24 69 127.77 -25.23 90.39

35 202.07 29.46 82.04 70 125.50 -23.83 90.17

Table C.2 Smoothed Data Points.

(continued on following page)
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Pt. x y z Pt. x y z
No. coord coord coord No. coord coord coord
71 122.99 -22.14 89.67 106 110.48 60.06 99.45
72 120.43 -20.05 89.04 107 113.11 61.28 100.36
73 118.25 -17.83 88.71 108 115.65 62.19 101.22

74 116.49 -15.74 88.33 109 118.43 63.24 102.13

75 115.26 -13.98 87.82 110 120.94 64.42 102.91
76 113.91 -11.66 87.10 111 123.27 65.77 103.65
77 112.42 -9.00 86.27 112 125.46 66.99 104.44

78 111.09 -5.94 85.58 113 127.38 68.24 105.21
79 109.70 -3.31 84.70 114 129.31 69.66 106.02

80 108.52 -0.32 84.19 115 131.03 71.29 106.73
81 107.07 2.68 83.91 116 132.86 73.14 107.49

82 105.65 5.80 83.97 117 134.43 74.59 108.52
83 104.50 8.55 84.31 118 135.84 76.25 109.61
84 103.42 11.33 84.57 119 137.03 78.07 110.90

85 102.55 13.95 84.76 120 137.98 80,30 111.91

86 101.74 16.53 84.88 121 138.63 82.42 112.75
87 101.05 19.03 85.00 122 139.58 83.99 113.94

88 100.10 21.84 85.06 123 140.98 85.40 115.29
89 98.99 24.75 85.19 124 143.05 86.43 116.87
90 97.75 28.00 85.33 125 145.18 87.42 117.72

91 96.80 30.77 85.55 126 147.35 88.24 118.18

92 95.82 34.15 85.86 127 149.08 88.43 118.16
93 95.44 36.94 86.42 128 136.87 73.66 112.22
94 95.29 39.76 87.16 129 148.92 78.75 122.65

95 95.42 41.90 88.07 130 161.65 75.67 111.38

96 95.51 44.00 89.09 131 128.80 60.76 107.81
97 95.90 46.05 90.33 132 151.58 56.24 131.22

98 96.46 48.07 91.50 133 173.10 64.77 105.03
99 97.38 49.94 92.69 134 128.92 46.00 104.18

100 98.52 51.69 93.82 135 152.63 34.09 113.04

101 100.09 53.31 94.96 136 173.34 48.32 102.37
102 101.83 55.00 95.92 137 123.54 14.48 103.36
103 103.87 56.57 96.90 138 185.44 19.66 100.58

104 105.90 57.72 97.73 139 156.48 -0.86 110.16

105 108.26 58.90 98.66 140 158.86 -15.87 114.95

1_ 1__ 141 159.93 -26.69 105.74

Table C.2.b. Smoothed Data Points.

(continued from previous page)
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Pt. x y z Pt. z y z
No. coord coord coord No. coord coord coord

1 58.68 4.20 -10.92 36 -15.03 51.14 9.70
2 58.46 6.03 -10.68 37 -18.88 50.37 9.19
3 57.25 8.37 -9.91 38 -22.26 49.49 8.39

4 55.90 10.44 -8.70 39 -26.40 47.99 7.29
5 54.08 12.09 -7.20 40 -30.43 46.35 6.10
6 51.52 13.60 -5.32 41 -34.51 44.84 5.15
7 48.77 14.93 -3.94 42 -36.90 44.00 4.50
8 46.35 16.27 -2.78 43 -39.56 43.24 3.91
9 44.43 17.54 -2.20 44 -41.99 42.55 3.29

10 42.66 19.01 -1.54 45 -45.59 41.43 2.64
1i 40.75 21.03 -0.71 46 -48.89 40.10 2.11
12 39.08 23.09 0.04 47 -52.03 38.17 1.32
13 37.41 25.32 0.79 48 -53.98 36.16 0.63
14 35.90 27.70 1.52 49 -56.04 33.42 -0.03

15 34.44 30.45 2.45 50 -57.58 31.03 -0.32
16 33.18 33.20 3.37 51 -58.83 28.25 -0.66
17 32.08 35.52 4.00 52 -59.46 25.75 -1.09
18 30.87 37.95 4.45 53 -59.98 23.15 -1.67
19 29.69 40.34 4.90 54 -60.38 20.77 -2.69
20 28.57 42.87 5.46 55 -60.83 18.41 -4.03
21 27.63 45.03 6.01 56 -61.30 15.93 -5.17
22 26.67 47.06 6.53 57 -61.76 13.17 -6.13
23 24.81 49.34 7.15 58 -62.11 10.56 -6.73
24 22.39 51.46 7.85 59 -62.46 7.20 -7.09
25 19.66 53.41 8.68 60 -62.60 3.86 -6.94
26 17.32 54.66 9.46 61 -62.64 -0.11 -6.93
27 14.83 55.57 10.12 62 -62.46 -3.64 -6.99
28 12.10 56.25 10.73 63 -61.99 -7.45 -7.24
29 9.01 56.33 11.02 64 -61.46 -10.95 -7.14
30 6.16 56.02 11.08 65 -60.85 -14.38 -6.89
31 2.30 55.21 11.02 66 -60.03 -17.89 -6.66
32 -1.21 54.53 11.01 67 -58.80 -21.56 -6.56
33 -4.95 53.68 10.87 68 -57.38 -24.81 -6.48
34 -7.62 52.98 10.64 69 -55.89 -27.41 -6.18
35 -11.05 52.00 10.14 70 -54.36 -29.53 -5.58

Table C.3 Oriented Data Points.

(continued on following page)
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Pt. x y z Pt. x y z
No. coord coord coord No. coord coord coord
71 -52.59 -31.85 -4.65 106 30.63 -36.55 3.16
72 -50.45 -34.18 -3.49 107 31.78 -33.84 2.41
73 -48.17 -36.12 -2.62 108 32.61 -31.24 1.65
74 -46.05 -37.66 -1.75 109 33.57 -28.39 0.86
75 -44.33 -38.71 -0.85 110 34.66 -25.80 0.24
76 -42.10 -39.81 0.39 111 35.91 -23.36 -0.30
77 -39.55 -41.02 1.81 112 37.07 -21.09 -0.92
78 -36.59 -42.03 3.17 113 38.27 -19.07 -1.50
79 -34.08 -43.14 4.62 114 39.65 -17.03 -2.07
80 -31.17 -44.02 5.79 115 41.23 -15.18 -2.50
81 -28.18 -45.16 6.74 116 43.03 -13.19 -2.94
82 -25.00 -46.27 7.37 117 44.52 -11.52 -3.72
83 -22.14 -47.16 7.66 118 46.23 -9.98 -4.50
84 -19.29 -47.97 8.02 119 48.16 -8.64 -5.44
85 -16.61 -48.59 8.40 120 50.46 -7.50 -6.01
86 -14.01 -49.14 8.85 121 52.64 -6.67 -6.42
87 -11.49 -49.60 9.27 122 54.33 -5.60 -7.31
88 -8.65 -50.27 9.83 123 55.86 -4.09 -8.40
89 -5.68 -51.09 10.34 124 57.01 -1.97 -9.81
90 -2.38 -52.02 10.92 125 57.95 0.22 -10.53

91 0.45 -52.70 11.31 126 58.65 2.46 -10.91
92 3.89 -53.35 11.75 127 58.68 4.20 -10.92
93 6.76 -53.48 11.79 128 44.15 -9.25 -7.63
94 9.67 -53.37 11.64 129 50.19 3.00 -17.28
95 11.93 -53.05 11.19 130 43.70 15.61 -7.42
96 14.19 -52.78 10.61 131 31.40 -18.44 -5.63
97 16.40 -52.22 9.80 132 29.81 3.29 -30.38
98 18.57 -51.49 9.06 133 30.73 26.09 -3.92

99 20.55 -50.42 8.23 134 16.26 -19.67 -5.11
100 22.39 -49.14 7.45 135 4.36 2.58 -17.19
101 24.06 -47.45 6.60 136 14.13 24.79 -4.69
102 25.75 -45.57 5.93 137 -14.12 -28.05 -10.55
103 27.30 -43.42 5.21 138 -15.24 34.10 -9.32

104 28.41 -41.30 1..55 139 -30.62 3.09 -21.70
105 29.54 -38.86 3.79 1,40 -44.46 3.90 -29.56

1 I 141 -57.00 4.12 -22.81

Table C.3.b. Oriented Data Points.

(continued from previous page)
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Pt. x y z Pt. x y z
No. coord coord coord No. coord coord coord

1 58.68 4.20 -10.92 28 3.89 -53.35 11.75
2 58.46 6.03 -10.68 29 11.93 -53.05 11.19
3 55.90 10.44 -8.70 30 18.57 -51.49 9.06

4 51.52 13.60 -5.32 31 24.06 -47.45 6.60

5 44.43 17.54 -2.20 32 28.41 -41.30 4.55
6 37.41 25.32 0.79 33 37.07 -21.09 -0.92
7 30.87 37.95 4.45 34 41.23 -15.18 -2.50
8 26.67 47.06 6.53 35 46.23 -9.98 -4.50
9 22.39 51.46 7.85 36 50.46 -7.50 -6.01
10 14.83 55.57 10.12 37 54.33 -5.60 -7.31
11 9.01 56.33 11.02 38 57.01 -1.97 -9.81
12 -7.62 52.98 10.64 39 58.65 2.46 -10.91
13 -22.26 49.49 8.39 40 44.15 -9.25 -7.63

14 -41.99 42.55 3.29 41 50.19 3.00 -17.28
15 -48.89 40.10 2.11 42 43.70 15.61 -7.42

16 -53.98 36.16 0.63 43 31.40 -18.44 -5.63

17 -58.83 28.25 -0.66 44 29.81 3.29 -30.38

18 -60.38 20.77 -2.69 45 30.73 26.09 -3.92
19 -61.76 13.17 -6.13 46 16.26 -19.67 -5.11

20 -62.46 7.20 -7.09 47 4.36 2.58 -17.19

21 -62.46 -3.64 -6.99 48 14.13 24.79 -4.69

22 -60.03 -17.89 -6.66 49 -14.12 -28.05 -10.55
23 -55.89 -27.41 -6.18 50 -15.24 34.10 -9.32

24 -50.45 -34.18 -3.49 51 -3C.62 3.09 -21.70

25 -44.33 -38.71 -0.85 52 -44.46 3.90 -29.56
26 -31.17 -44.02 5.79 53 -57.01 4.12 -22.81

27 -22.14 -47.16 7.66 54 121 110 0

Table C.4 Sparsed Data Points.
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Pt. x y e Pt. x y e
No. coord coord coord No. coord coord coord

1 58.68 4.20 -5.49 36 -15.03 51.14 0.99
2 58.46 6.03 -5.29 37 -18.88 50.37 1.00
3 57.25 8.37 -4.44 38 -22.26 49.49 0.79
4 55.90 10.44 -3.20 39 -26.40 47.99 0.69
5 54.08 12.09 -1.57 40 -30.43 46.35 0.53
6 51.52 13.60 0.56 41 -34.51 44.84 0.42
7 48.77 14.93 2.20 42 -36.90 44.00 0.19
8 46.35 16.27 3.50 43 -39.56 43.24 -0.10
9 44.43 17.54 4.10 44 -41.99 42.55 -0.48
10 42.66 19.01 4.65 45 -45.59 41.43 -0.74
11 40.75 21.03 5.16 46 -48.89 40.10 -0.76
12 39.08 23.09 5.46 47 -52 38.17 -0.67
13 37.41 25.32 5.60 48 -53.b,8 36.16 -0.34
14 35.90 27.70 5.53 49 -56.04 33.42 0.37
15 34.44 30.45 5.37 50 -57.58 31.03 1.20
16 33.18 33.20 5.03 51 -58.83 28.25 2.13
17 32.08 35.52 4.49 52 -59.46 25.75 2.81
18 30.87 37.95 3.62 53 -59.98 23.15 3.28
19 29.69 40.34 2.66 54 -60.38 20.77 3.14
20 28.57 42.87 1.59 55 -60.83 18.41 2.57
21 27.63 45.03 0.67 56 -61.30 15.93 2.13
22 26.67 47.06 -0.27 57 -61.76 13.17 1.84
23 24.81 49.34 -1.30 58 -62.11 10.56 1.77
24 22.39 51.46 -2.17 59 -62.46 7.20 1.93
25 19.66 53.41 -2.84 60 -62.60 3.86 2.45
26 17.32 54.66 -3.02 61 -62.64 -0.11 2.65
27 14.83 55.57 -3.04 62 -62.46 -3.64 2.58
28 12.10 56.25 -2.92 63 -61.99 -7.45 2.12
29 9.01 56.33 -2.56 64 -61.46 -10.95 1.82
30 6.16 56.02 -2.10 65 -60.85 -14.38 1.48
31 2.30 55.21 -1.29 66 -60.03 -17.89 0.92
32 -1.21 54.53 -0.60 67 -58.80 -21.56 0.01
33 -4.95 53.68 0.06 68 -57.38 -24.81 -0.95
34 -7.62 52.98 0.45 69 -55.89 -27.41 -1.58
35 -11.05 52.00 0.77 70 -54.36 -29.53 -1.79

Table C.5 Residual Data Points.

(continued on following page)
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Pt. x y e Pt. x y e
No. coord coord coord No. coord coord coord
71 -52.59 -31.85 -1.84 106 30.63 -36.55 1.35
72 -50.45 -34.18 -1.74 107 31.78 -33.84 2.13
73 -48.17 -36.12 -1.79 108 32.61 -31 24 2.76
74 -46.05 -37.66 -1.68 109 33.57 -28.39 3.35
75 -44.33 -38.7L -1.29 110 34.66 -25.80 3.83
76 -42.10 -39.81 -0.61 111 35.91 -23.36 4.18
77 -39.55 -41.02 0.16 112 37.07 -21.09 4.30
78 -36.59 -42.03 0.99 113 38.27 -19.07 4.27
79 -34.08 -43.14 1.77 114 39.65 -17.03 4.15
80 -31.17 -44.02 2.40 115 41.23 -15.18 4.00
81 -28.18 -45.16 2.59 116 43.03 -13.19 3.78
82 -25.00 -46.27 2.42 117 44.52 -11.52 3.13
83 -22.14 -47.16 2.03 118 46.23 -9.98 2.35
84 -19.29 -47.97 1.73 119 48.16 -8.64 1.29
85 -16.61 -48.59 1.58 120 50.46 -7.50 0.44
86 -14.01 -49.14 1.52 121 52.64 -6.67 -0.29
87 -11.49 -49.60 1.50 122 54.33 -5.60 -1.40
88 -8.65 -50.27 1.38 123 55.86 -4.09 -2.64
89 -5.68 -51.09 1.04 124 57.01 -1.97 -4.12
90 -2.38 -52.02 0.62 125 57.95 0.22 -4.94
91 0.45 -52.70 0.21 126 58.65 2.46 -5.44
92 3.89 -53.35 -0.21 127 58.68 4.20 -5.45
93 6.76 -53.48 -0.53 128 44.15 -9.25 -0.24
94 9.67 -53.37 -0.84 129 50.19 3.00 -9.99
95 11.93 -53.05 -1.23 130 43.70 15.61 -0.51
96 14.19 -52.78 -1.80 131 31.40 -18.44 1.48
97 16.40 -52.22 -2.35 132 29.81 3.29 -19.65
98 18.57 -51.49 -2.70 133 30.73 26.09 1.50
99 20.55 -50.42 -2.82 134 16.26 -19.67 3.50
100 22.39 -49.14 -2.73 135 4.36 2.58 -4.03
101 24.06 -47.45 -2.37 136 14.13 24.79 2.94
102 25.75 -45.57 -1.74 137 -14.12 -28.05 -3.78
103 27.30 -43.42 -0.98 138 -15.24 34.10 -5.59
104 28.41 -41.30 -0.22 139 -30.62 3.09 -8.67
105 29.54 -38.86 0.59 140 -44.46 3.90 -17.73

_ _ 1_ _ _ 141 -57.01 4.12 -12.58

Table C.5.b. Residual Data Points.

(continued from previous page)
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Appendix D. Survey Questions and Answers

The following are the questions contained in the survey discussed in Section

5.5 and the answers provided by the subjects.

1. Because you ordered a custom MBU-5/P mask, the standard issue sizes must not

have fit. Why? (i.e. air leaks around bridge of nose and eye area, comfort reasons .... )

"* Cluster 1: The other masks were too large for my face causing leaks around

the nose and eyes; also I had to tighten the mask to the point of discomfort.

"* Cluster 3: Air leaked around side of nose approximately ¼ inch below bridge

of nose, unless tightened so tight that bridge of nose VERY painful and cause

tears to eyes.

"* Cluster 5: Air leaks around bridge of nose and eye area. Had to be tightened

so much in that area it was painful and it still had to be readjusted/refitted

every flight or every other flight to prevent leaks.

"• Cluster 6: My first mask was the old 2 piece green mask due to the shape of

my nose. I had continual leaks beneath both eyes. To stop these made the

mask too tight for comfort. I hoped a custom would solve that, but I was sadly

di,;appointed.

2. Do you use the custom mask made for you - or did you decide to wear a standard

mask?

"• Cluster 1: I had been using the custom mask even though a lot of times when

I went into the chamber the mask would still have a leak.

"• Cluster 3: I use my custom mask.

"* Cluster 5: Custom Mask.
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* Cluster 6: The custom is too large and bulky. It tends to obstruct your field

of view and is incompatible with eyeglasses. (The mask rides too high on the

bridge of the nose. NOTE: This is true of all MBU-5/P masks.)

3. Does the custom mask you currently wear fit better than the standard mask(s)

you have been fitted with? (i.e. standard mask leaked around the nose-eye area,

new mask does not leak...)

"* Cluster 1: The custom fit around the nose eye area but at times it was painful

to wear.

"* Cluster 3: Yes, see question 1.

"* Cluster 5: Yes. Custom mask does not leak and is much more comfortable.

"* Cluster 6: 1 currently wear the new one piece grey mask. It fits better than

any I've worn. It still won't seal under pressure at 41,000 feet, but I'll never

see that altitude in a B-lB. (This subject is referring to the MBU-12/P mask)

4. What is it about the custom mask you currently wear that you do not like? (eg.,

the latex is uncomfortable in warm weather)

"* Cluster 1: Hurts to wear. Isn't always reliable.

"* Cluster 3: I like the mask under all conditions, in warm weather I use a little

powder.

"* Cluster 5: Nothing. It is leaps and bound above the standard mask. Its

slipperiness during hot weather is easily prevented by using talcum powder.

"* Cluster 6: Don't currently wear it. Hate the whole thing.

5. How long have you been using the custom mask you current wear?

o Cluster 1: 1.5 years.

o Cluster 3: 1 have been using custom masks since pilot training - my first

assignment.
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* Cluster 5: Over 2.5 years.

* Cluster 6: Used it for three months of flying before I gave it up.

The following questions pertain to the test mask sent to the survey subjects.

6. How did you test the fit of this mask?

"* C',,iter 1: I took a chamber flight to FL 350 with positive pressure breathing

starting at FL 280.

"* Cluster 3: Breathed normally and under pressure with oxygen mask tester.

"* Cluster 5: The mask was connected to MQ1 oxygen mask tester and was tested

for leaks.

"* Cluster 6: The mask was connected to the tester.

7. Was a good seal obtained?

"* Cluster 1: Yes.

"* Cluster 3: No.

"* Cluster 5: No.

"* Cluster 6: No. It was like holding a balloon to my face. Once pressure was

applied, it inflated making it hard to see over.

8. Were there any leaks? If so, where?

"* Cluster 1: No.

"* Cluster 3: Yes, mask leaked below the bridge of nose.

"* Cluster 5: Yes. Around bridge of nose and eye area.

"* Cluster 6: Yes. Around the bridge of the nose.

9. Was the mask comfortable?

* Cluster 1: YES!
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"* Cluster 3: No.

"* Cluster 5: No. It leaked into my eyes and was very big.

"* Cluster 6: There were no pressure points. However, the sheer bulk of this mask

would make it unbearable to fly with.

10. Would you be able to wear this mask to fly? (your opinion)

"* Cluster 1: Yes.

"* Cluster 3: Not at all.

"* Cluster 5: No. Large size of mask reduced visibility. Material around bridge

of nose cut into field of vision. And again, could not obtain a good seal.

"* Cluster 6: No.

11. If a standard mask was available in this size, would you wear it?

"* Cluster 1: Yes.

"* Cluster 3: Sure, less problems procuring new one when needed.

"* Cluster 5: No.

"* Cluster 6: No.

12. Any other comments?

"* Cluster 1: This mask seemed more round on the outside unlike my regular

mask. So when I went to get a m&- seal I didn't have to tighten it down all

the way on my face. It was extremely comfortable. It also gives me hope that

I can go through chamber flights without discomfort. Thanks.

"* Cluster 3: NOTE: In a conversation with cluster 3 survey subject, the subject

mentioned he has always required a custom mask due to the shape of his nose.

His nose had been broken several times before entering pilot training.
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* Cluster -5: It was noted by both life support technicians and myself that the

mask was lopsided at the bridge of the nose. One side was not straight.

* Cluster 6: The test mask also began to lose its shape as it was fitted to my

face. The rubber would bend then crease causing leaks. It also rode way too

high up on the bridge of my nose. I wouldn't even be able to wear glasses with

the test mask.
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Appendix E. Cluster Representatives

This appendix shows a comparison between the faces closest to the centroid of

a cluster (prototype seals) and the faces tested with masks based on the prototype

seals, referred to as survey seals. Figures E.1 through E.4 are the graphical repre-

sentations of .°his comparison. Each face is shown in front and left side views. The

front views are shown with the nose facing out of the page, the bridge of the nose

to the right and the chin toward the left. The left side views are shown as if the

wearer is laying face up. In the side views, the point with the largest z value is the

tip of the nose and the point with the second highest z value is the chin. The (a)

and (b) plots are the survey seals and the (c) and (d) plots are the prototype seals.

The balance of this appendix are photographs of the actual plaster face casts from

which the prototype seals are taken.
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Figure E.1 Comparison between prototype seal 1980 and survey seal 1958
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Figure E.2 Comparison between prototype seal 1918 and survey seal 1981
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Figure E.3 Comparison between prototype seal 1986 and survey seal 0025
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Figure E.4 Comjaw 9s.n between prototype seal 0011 and survey seal 2024
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Figure E.5 Prototype face 1986 (front)

Figure E.6 Prototype face 1986 (side)
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Figure E.7 Prototype face 0027 (front)
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Figure E.8 Prototype face 0027 (side)
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Figure E.9 Prototype face 0011 (front)

001

Figure E.10 Prototype face 0011 (side)
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Figure E. 11 Prototype face 0035 (front)

055

Figure E.12 Prototype face 0035 (side)
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Figure E.13 Prototype face 1980 (front)

Figure E.11 Prototype face 1980 (side)
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Figure E.15 Prototype face 1918 (front)

Figure E.16 Prototype face 1918 (side)
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