Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

3-1994

A Genetic Algorithm Approach to Automating Satellite Range
Scheduling

Donald A. Parish

Follow this and additional works at: https://scholar.afit.edu/etd

6‘ Part of the Space Vehicles Commons

Recommended Citation

Parish, Donald A., "A Genetic Algorithm Approach to Automating Satellite Range Scheduling” (1994).
Theses and Dissertations. 6770.

https://scholar.afit.edu/etd/6770

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFITENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/220?utm_source=scholar.afit.edu%2Fetd%2F6770&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6770?utm_source=scholar.afit.edu%2Fetd%2F6770&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/GOR/ENS/94M-10

AD-A278 577
A

A GENETIC ALGORITHM APPROACH TO
AUTOMATING SATELLITE RANGE SCHEDULING

ragsts DTIC
Donald Arthur Parish FELECTE
Captain, USAF s APR 2 2 1994 D
AFIT/GOR/ENS/94M-10 G

DI GUALIy T Il oTEN 3

Approved for public release; distribution unlimited

12269
\\\\\\\\\\\\\\\\\“\\\\\\\\\\\\“\\\\\\\\\\\\

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

Accesion For

NTIS CRA& g
DTIC TAB

Unannounced]
Justification

eedromnmssemensevesarsed

2 — -
Dist. ibution |

Availability Codes

Avail and]or
Dist Special

g1l |

THESIS APPROVAL

STUDENT: Donald A. Parish, Capt, USAF

CLASS: GOR-94M

THESIS TITLE: A GENETIC ALGORITHM APPROACH TO
AUTOMATING SATELLITE RANGE SCHEDULING

DEFENSE DATE: 1 March 94

COMMITTEE:

Name/Title/Department

Advisor:

James W. Chrissis, PhD, P.E.

Associate Professor of Operations Research
Department of Operational Sciences
School of Engineering

Reader:

Gary B. Lamont, PhD

Professor of Electrical Engineering
Department of Electrical and Computer
Engineering

School of Engineering

Reader:

James T. Moore, Lt Col, USAF, PhD
Assistant Professor of Operations Research
Department of Operational Sciences
School of Engineering

Signature

peyy) (Z -

AFIT/GOR/ENS/94M-10

A GENETIC ALGORITHM APPROACH TO
AUTOMATING SATELLITE RANGE SCHEDULING

THESIS

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Operations Research

Donald Arthur Parish, B.S.
Captain, USAF

March, 1994

Approved for public release; distribution unlimited

Acknowledgements

I would like to thank everyone who helped with this thesis. Of special note were my
advisor Dr. James W. Chrissis for his solid recommendations, and my readers:
Dr. Gary B. Lamont and Lt Col James T. Moore for their patience and understanding. I
would also like to thank those whose work this research was based on: Capt Timothy D.
Gooley, who was also my sponsor at AFIT, and Capt Stanley M. Schalck, who answered
many of my questions about satellite range scheduling and data processing. Thanks are
also due to my classmates and instructors who made the journey here an interesting one.
Not least, I am grateful for the support and encouragement of my wife Lisa. I owe her

much attention and a trip back to Nebraska.

Donald Arthur Parish

Table of Contents

Page

Acknowledgements ii
Listof Figures i e vii
Listof Tables i viii
Abstract e e e e e e ix
I Introduction e e e 1
Problem Description 2

Previous Solution Efforts 3
Computational Complexity 4

Research Objective 4

Overview e e e e e e e e e 5

. Literature Review 6
Genetic Algorithms 6

Imtroduction 6

Simple Genetic Algorithm 6

WhyGAsWork 9

Permutation Genetic Algorithms 10

Traveling Salesman Problem 11

Blind Traveling Salesman Problem 11

Order-based Crossover Operators 12

Ordering Schema 13

Genetic Algorithms in Scheduling 15

Direct Chromosome Representation 15

Indirect Representation
Scheduling Examples
Other Solution Efforts for Satellite Range .Scheduling

Arbabi's Approach,

Gooley'sApproach

Solution Methodology for Satellite Range Scheduling
Formulation,
Definition of the Problem

Small Problem
Mixed-Integer Programming Approach
Scheduling as a Sequencing Problem
Hybrid Approach
Algorithm Design and Implementation
Overview e e e
Assumptions
DataProcessingc0uuuuun...

Data Structures
Schedule Builder Program
Genetic Algorithm Implementation.
GENITOR Parameter Settings
DayOneResults

iv

16
16
18
18
18.
19
19

21
21
21
21
23
23
25
25
25
26
26
27
28
29
30
31
33
33

IV. Results.

Experimental Procedure
Week One Results

.....................

.....................

.....................

Breakdown by Support Type

Additional Runs

V. Conclusions and Recommendations . .

Appendix A.

Appendix B.

Appendix C.

Appendix D.

Conclusions
Recommendations
Minor Improvements . . .

Extensions

.....................

.....................

.....................

.....................

.....................

.....................

Modified GENITOR Program Code

Genetic Algorithm: GENITOR

Modified Main program Code

Ga global.h Include files .

Position Crossover Operator . .

Evaluation Function Code

Schedule Builder

.....................

Satellite Range Scheduling Data Processing

ASTROData
Requests and Visibility Windows

44
44
45
45
45
46

47
47
48
51
53

57

63

69
69
69

LREQPAS
HREQPAS e
TOLPAS e
CROSS2PAS i
RTS.PAS
Prepare Time Window Data for GENITOR

Appendix E. Schedules for Week One Data

..

vi

73
74
75
7
79
81
83
84

87

89

Figure

© ® N o o s W b

[S S S N
“w o = o

List of Figures

Page
Genetic Algorithm Procedure 7
Exampleof Crossover, 8
Example of Mutation @ e e e e 8
Sample TSP tours.t 11
Small Schedule 22
Schedule Builder Flowchart 25
Schedule Builder programflow 29
Day1 DataConvergence vttt ittt enennnn 32
Vary Population Size for Day 1 Data 33
Vary Selective Pressure for Day 1Data 34
Random Sequence Generation for Day1Data 34
Week One DataResults 42
Low-Altitude Supports given Priority for Day 1 Data 43

vii

Table

[

® ® N o o s

List of Tables

Page
Small Schedule Time Windows 22
Small Problem Schedule 24
Small Schedule Time Windows 27
Results for Week One Data 37
Low-altitude Results for Week OneData 38
High-altitude Results for Week One Data. 39
Week One Data with Low-Altitude Supports given Priority 39
Low-altitude Results with Low-Altitude Supports given Priority 40
High- Altitude Results with Low-Altitude Supports given Priority 40

viii

AFIT/GOR/ENS/94M-10

Abstract

Satellite range scheduling involves scheduling satellite supports in which a satellite
and a specific remote tracking station communicate with each other within a specified time
window. As the number of satellite supports continue to increase, more pressure is placed
on the current manual system to generate schedules efficiently. Previous research efforts
focused on heuristic and mixed-integer programming approaches which may not produce
the best results. The objective of this research was to determine if a genetic algorithm
approach to automating the generation of 24 hour schedules was competitive with other

methods. The goal was to schedule as many supports as possible without conflict.

The genetic algorithm approach attempted to find the best priority ordering of sup-
port requests, and then used a schedule builder program to build schedules based on simple
rules. A schedule was produced for seven days of representative satellite range data with
slightly better results compared to earlier results using a mixed-integer programming for-
mulation. Based on the reported results, the genetic algorithm approach presented in

this research appears to be a competitive approach for generating 24-hour satellite range
schedules.

A GENETIC ALGORITHM APPROACH TO
AUTOMATING SATELLITE RANGE SCHEDULING

I. Introduction

Scheduling is the allocation of resources over time to perform a collection of tasks
(2:2). Many important scheduling problems exist that are of interest to the Air Force. Ex-
amples include allocation of test range resources, airlift scheduling problems, and satellite
communication support scheduling. Many standard scheduling problems may be formu-
lated as mixed-integer programming problems where some decision variables take on integer
values while other variables, such as time, have continuous values. While a mathemati-
cal programming formulation generally guarantees an optimal, or best possible, solution,
the computation times required to find exact optimal solutions may be prohibitive for
practical-sized problems. This is because many scheduling problems belong to the class of
NP-complete problems (6:4).

In such NP-complete problems, the solution time may increase exponentially with
the number of variables. For example, a problem with 10 times the number of variables
as an original problem might take an order of 2'° times longer to solve. Because of these
possible long solutjon times, heuristic techniques are often used to find good solutions in
a reasonable amount of time. Heuristics are procedures which do not guarantee optimal
solutions. They usually, but not always, provide feasible solutions, often require human

ingenuity in their development, and are often quite problem-specific.

Heuristic methods for solving scheduling problems that are less dependent on the
specific problem could be useful in solving problems of Air Force interest. This would be
especially true when the constraints of the problem are difficult to put in mathematical
form. One such method for finding good solutions to scheduling and other optimization
problems is called a genetic algorithm.

Genetic algorithms (GAs) are artificial intelligence search methods based on the idea
of natural selection and evolution. Initially developed by John Holland at the University

of Michigan (10), applications include problems in optimization and machine learning.
Although initially applied to function optimization problems, genetic algorithms have also
been applied to scheduling and combinatorial optimization problems. The main strength
of genetic algorithms is their ability to quickly explore a large space of possible solutions
for good, if not optimal, solutions. They differ from many traditional algorithms as their
search is based only on the overall evaluation of a set of parameters. As such, they do not
need to rely on derivative information to proceed. Genetic algorithms are also able to find

solutions where multiple optimal solutions exist (7:2-5).
Problem Description

One particular scheduling problem of interest to the Air Force is the Satellite Range
Scheduling (SRS) problem. The Air Force Satellite Control Network (AFSCN) must sched-
ule over 300 command and control communications per day between nine remote tracking
stations (RTSs) and approximately 100 satellites (8:1-3). Each communication between a
satellite and a RTS is called a support. The satellite supports are necessary to maintain
command and control, tracking, and system tests of the satellites (11:10). The scheduling
of these supports must take place in a time window because each RTS is geographically
separated from the others, and can only “see” each satellite for a limited time during its
orbit. The time window is shorter for low-altitude satellites than for medium- or high-
altitude satellites, as the low-altitude satellites pass out of the line-of-sight of the RTSs
much more quickly than higher-altitude satellites. The longer time window of the higher-
altitude satellites makes scheduling them less difficult than scheduling the low-altitude
satellites.

Each Mission Control Complex (MCC) is responsible for the health, status, and
orbital control of a subset of the total satellites. The composition of the subset depends
on the mission type of the satellite. A MCC determines the length and required time
windows for each support request for their satellites, as well as which RTSs can serve each
request. These time windows may be more restricted than the physical visibility limits due
to mission schednling requirements. For example, a satellite may need a communication

every hour after an operation is performed.

All requests from the individual MCCs are passed on to the range schedulers who
are responsible for making an overall schedule. This schedule must ensure that each RTS
antenna supports only one satellite at a time. The schedulers must also allow for a required
turn-around time between supports to allow the RTS antennas to be reoriented. Down-
time for RTS maintenance is also necessary. The resulting schedule is called the initial
24-hour schedule. The development of this schedule using genetic algorithms is the focus
of this research.

The goal of the initial 24-hour scheduling process is to schedule as many commu-
nication supports as possible in a 24-hour period while satisfying the constraints of time
windows, turnaround time, and scheduled maintenance down-time for the RTSs. If a con-
flict cannot be resolved by the range schedulers, they must de-conflict it with the MCCs
and RTSs involved. If a support cannot be scheduled initially, it may be possible to facil-
itate its scheduling by changing the support requirements, by decreasing the turn-around
time, or by altering other constraints. In the worst case, a support may not be scheduled.
A good scheduling process minimizes the need for this deconfliction process. Although
the current manual scheduling process schedules approximately 95-98% of the requested
supports (8:5-2), the process is time-consuming, and could be streamlined by automating
the development of the 24-hour schedule.

Previous Solution Efforts

Two recent thesis efforts have investigated automation of the 24-hour scheduling
process. Gooley used both a mixed-integer programming (MIP) approach and heuris-
tic scheduling methods to schedule satellite supports (8). As a follow-on research effort,
Schalck improved Gooley’s solution by reducing the number of integer variables necessary
to define the problem (14). In both cases, the problem was too large to be solved in its
entirety and had to be decomposed into smaller problems to find a solution in reasonable

time.

Computational Complezity

Computational problems are often classified based on their complexity. According
to Garey and Johnson (6:4), problems that are classified as NP-complete can take an in-
ordinate amount of time to solve if the size of the problem is large enough. The general
resource-constrained scheduling problem is in this class. According to Gooley, the SRS
problem is a type of resource-constrained scheduling problem (8:2-9), and a fast (polyno-
mial) solution cannot be guaranteed. Genetic algorithms, which have had some success
in finding good solutions to other NP-complete scheduling problems, may be useful when
applied to the SRS problem.

The mixed-integer programming approach can find optimal solutions for the satellite
range scheduling problem when the number of support requests is small. However, when a
larger problem is decomposed into smaller subproblems, a global optimal solution may no
longer be guaranteed. A genetic algorithm approach may be expected to produce schedules
that are at least as good while meeting the requirement of a short solution time since it
would attempt to generate a solution to the entire problem. Also, a genetic algorithm
approach can be more flexible in handling special case scheduling requests. These issues
are addressed in this research.

Research Objective

The overall research objective is to determine whether a genetic algorithm-based
solution methodology can effectively be applied to the satellite range scheduling problem.

Successful solutions must:

1. Generate feasible 24-hour schedules which schedule the greatest number of support

requests possible.

2. Find solutions quickly. A short solution time is useful in rescheduling as requirements
change.
A secondary objective is to explore the scheduling of special-case requirements. These

include supports which require simultaneous support on multiple RTSs and those that must

be scheduled at fixed intervals. Rescheduling of satellite supports is also a consideration.

Overview

Chapter II is a summary of current literature relevant to genetic algorithm applica-
tions to scheduling problems and includes a review of previous work on the satellite range
scheduling problem. Chapter Il explains the methodology used in constructing a genetic
algorithm solution to the satellite range scheduling process and details the implementation
of the solution. Chapter IV presents the results and compares them to past efforts. Finally,

conclusions and recommendations for future work are presented in Chapter V.

II. Literature Review

This chapter summarizes current literature on genetic algorithms (GAs) as related
to scheduling problems. It begins with the development of genetic algorithms. Next,
the extension of genetic algorithms to combinatorial optimization problems is reviewed.
Discussion then turns to applications of genetic algorithms in scheduling problems, espe-
cially to problems with similarities to the satellite range scheduling problem. Finally, past
research efforts in satellite range scheduling are discussed.

Genetic Algorithms

Introduction. Genetic algorithms were developed by John Holland as part of his
artificial intelligence research on how artificial adaptive systems can evolve, or change,
in response to their environment in order to solve problems (10). His ideas were based
on the biological theory of evolution where variations in chromosomes, or genetic codes,
result in different traits of the individual. These traits of an individual in turn result in
a level of performance, or fitness, of an individual. Usually, the more fit individuals in a
population survive from one generation to another and reproduce. Sexual reproduction by
two individuals produces individuals with new chromosomes formed by a combination of
the chromosomes of its parents. If a child inherits good parts of chromosomes from each of
its parents, it has a higher level of performance than the parents. Through “survival of the
fittest” and reproduction of high-fitness individuals in each generation, the population as a
whole tends to evolve towards higher levels of fitness. The artificial version of this process
is called a genetic algorithm. It does not seek to exactly simulate biological evolution, but
the concepts of biological evolution are used to find good solutions to difficult problems.

Simple Genetic Algorithm. Most genetic algorithm work is based on the simple ge-
netic algorithm as developed by Holland (10) and described by Michalewicz (13). Figure 1

illustrates the process and a brief review follows.

Coding. The first, and generally most difficult, step of any genetic algorithm

is to choose a proper coding to map the problem solution space into a genetic string,

Generation t Generation t+1

00111 11100 | Mutation 1 51100
|| 11100 11100 11010

t=——"
01010 Selection 01010 Crossover | ~01100

. [Roulette Wheel |
Fitness
-Evaluation
F(00111) = 0.1 M Individual 1
F(11100) = 0.9 B individual 2
F(01010) = 0.5 @ Individual 3

Figure 1. Genetic Algorithm Procedure

or chromosome, and to randomly create an initial population of individuals with varying
strings. In the simple genetic algorithm, this coding is a binary string of zeros or ones.
For function optimization, groups of binary digits are mapped so as to translate to a real

number parameter representing the function value (13:19-20).

Evaluation and Selection. The strings in the population can be evaluated
for their fitness relative to other strings in the population by entering their parameters
into an evaluation or fitness function. The best strings reproduce by mating with each
other to produce offspring for the next generation of the population. In the simple genetic
algorithm, selection is governed by a “roulette wheel” selection operator. Each string has
a probability of reproducing in proportion to the ratio of its fitness and the total fitness
of the population. As in Figure 1, these ratios can be shown as pieces of a circular pie.
New strings are selected for reproduction by randomly “spinning” the wheel. The strings

whose proportion of the pie are greatest should, on average, be selected more often than

the less-fit strings.

Other selection rules can be used (13:62). These include selection by ranking, where
instead of a continuous scale based on fitness the strings are ordered, or ranked, by their
fitness. The higher-ranked strings are given a greater chance of reproducing than average

or low-ranked strings. In this way, the more fit individuals tend to reproduce.

Crossover Operator. During mating, two strings swap part of their “genetic”
material. The children of these matings have parts of each of their parent’s string. The
swapping of genetic material, called crossover, allows for new child strings to be created,
combining good aspects of their parents. The resulting strings with above-average fitness
tend to survive and prosper, while those with below-average fitness tend to die out. An

example of crossover is shown in Figure 2.

Mates Children
1{111]010 111lol1lo
v 1
o{tjoj11]0 0 1]o]o

- Crossover point

Figure 2. Example of Crossover

Mutation. Mutation randomly changes part of the string of a child to help
maintain a diverse population. It is not as important as crossover in some applications

since it merely acts as a type of random search (7:14).

Input Result

1{1}111]01}0 oj1]1]0]o

L— Mutation Point——T

Figure 3. Example of Mutation

The general genetic algorithm thus consists of three steps which are repeated for
each generation: evaluation/selection, crossover and mutation. These steps continue until
termination conditions, such as some predetermined number of generations, are met. Often
the genetic algorithm ends when the population converges: all strings evaluate to the same
fitness (13:56). This string or strings may be the best answer, but a genetic algorithm may
often converge to a suboptimum, in which case the population has prematurely converged.
The major variables controlled by the experimenter to combat premature convergence are:
population size, type and probability of crossover, type and probability of mutation, and
selection operators (7:106-124).

Population Size. A genetic algorithm population contains a fixed number
of strings. This number is called the population size. The population size affects the
convergence rate of a genetic algorithm by controlling the variety of genes in the population.
A smaller population may converge quickly, but usually to a sub-optimum. A larger

population converges more slowly, and usually, but not always, finds a better final answer.

Although the basic procedure is simple, the framework of a simple genetic algorithm
has been successful in solving a wide range of problems in function optimization and has

been extended to other types of problems such as combinatorial optimization (13:165,193).

Why GAs Work. Although there is no complete formal theory to explain the
operation of genetic algorithms, several hypotheses which partially explain their power
have been advanced (13:51). The point they make is that in each generation, the genetic
algorithm combines good partial solutions in the genes of parent chromosomes to find
even better solutions in child chromosomes. The following discussion briefly describes
these hypotheses. A more formal treatment of genetic algorithm theory is available in
Goldberg’s text (7).

Schemata and Schema Theorem. A schema is a pattern of values in a gene
with the alphabet 1,0,%, where “*” is the “don’t care” symbol matching any position. For a
chromosome to include a particular schema it must match the schema values. For example,

the chromosome (01101) contains 32 schemata. These include: (0%%01), (*1#x*x), (01101),

(#x#%x), (0x1%1). The defining length of a schema is the distance between the outermost
non-* symbols. The order of a schema is the number of non-* symbols contained in the

schema.

Holland’s schema theorem was the first rigorous explanation of how a simple genetic
algorithm works. The schema can be thought of as representing the partial solutions in
chromosomes and Holland concluded that genetic algorithms manipulate schemata when
they execute (13:91). In the simple genetic algorithm, individuals reproduce and increase
in proportion to their fitness. The schema theorem asserts that because of this, schema
associated with individuals with above average fitness tend to increase exponentially, while
those schema associated with below average performance tend to occur less often in suc-

ceeding generations (7:32-33).

Building Block Hypothesis. Much of the power of genetic algorithms comes
from finding good building blocks (7:41). Building blocks are highly fit, low-order schema
of short defining length. Because of their short length, these blocks tend to survive, even
under the disruption caused by crossover. “In a way, by working with these particular
schemata (the building blocks), we have reduced the complexity of our problem; instead of
building high-performance strings by trying every conceivable combination, we construct
better and better strings from the best partial solutions of past samplings” (7:41).

Together, the schema theorem and the building block hypothesis help to explain why
genetic algorithms work. However, the hypothesis does not give a formula for designing
genetic algorithms. Instead, most practical information on genetic algorithm design and

performance have come from empirical studies.

Permautation Genetic Algorithms

The simple genetic algorithm with a binary coding is appropriate for many uncon-
strained optimization problems. However, in many order-based problems, the solution may
be specified by a specific arrangement of items. Examples include scheduling problems and
the Traveling Salesman Problem (TSP).

10

Traveling Salesman Problem. The Traveling Salesman Problem is easily stated: a
salesman must visit customers in each of n cities without visiting a city twice (13:165-167).
The objective is simply to travel the least total distance and return to the starting city. A
sample network of cities is shown in Figure 4. The solution to the TSP can be represented
as a list of integer numbers with each integer corresponding to a city, and the cities visited
in the order of the list. For example, a starting solution for a TSP with six cities could be
represented as: A = 12 3 4 5 6. This solution visits each city in ascending order from “1”

to “6”, returning to “1” to complete the tour. All possible solutions to the TSP can be

Tour 1 ={123456) Tour2={164235)

Figure 4. Sample TSP tours

represented as a permutation of the list of integers. A permutation is simply an arbitrary
reordering of a set of items in a list. One permutation of the 6-city problemis A =1 6 4
2 3 5. Although the ordering of the cities has changed, the number of cities remains the

same and no city values are repeated in the list.

With n cities, there are L;H-' possible tours; a TSP with n = 6 has 60 (3}) pos-
sible solutions. For a TSP twice as large (n = 12), the total number of permutations
is 239,500,800. The number of possible solutions is obviousiy incredibly large. Although
smaller problems can be solved via deterministic graph search formulations, most large

TSP problems are solved (non-optimally) using heuristic techniques which take advantage

of distance information between the cities (12).

Blind Traveling Salesman Problem. Note that the TSP being solved by the genetic
algorithm is harder to solve than the typical TSP because it does not use any distance

11

information to solve the problem. “In the blind traveling salesman problem, the salesman
has the same objective with the added restriction that he is unaware of the distance
he travels until he actually traverses a complete tour” (7:170). However, other ordering
problems may not have “distance” information that can be exploited by a heuristic. As
pointed out by Whitley, “This is important, because it means the method may be used on
sequencing problems where there are no actual distances to measure, but rather only some

overall evaluation of the total sequence” (19:137).

Since genetic algorithms had been applied successfully to other optimization prob-
lems, it seemed natural to attempt a genetic algorithm solution to the TSP. However,
when standard genetic algorithms are applied to the TSP, they have difficulty in finding
good feasible solutions (9). The major problem with a standard crossover operator is that
most solutions are infeasible (i.e., 1 2 2 4 5 6) and the genetic algorithm probably con-
verges on sub-optimal solutions (13:167). Some early attempts used a hybrid technique
to combine genetic algorithm crossover with a repair mechanism to make valid tours (9).
This approach was somewhat successful, but other approaches have been attempted using

order-based crossover operators (13:168-191).

Order-based Crossover Operators. Another approach to solving ordering problems
uses a different representation than the standard genetic algorithm. Instead of binary
digits, an order-based crossover operator uses a chromosome that directly represents a
solution. This chromosome is simply a list of integers; an example is a solution to the

six-city TSP problem described previously (16423 5).

To exploit the information in the chromosomes, an order-based crossover operator,
like simple crossover in the standard genetic algorithm, preserves part of the first parent
while incorporating information from the second parent. The position of the genes is im-
portant. This contrasts with a standard genetic algorithm where their value is important.
For the benefits of genetic algorithms to be realized for ordering problems, crossover oper-
ators must find other ways of combining information from two parents to build offspring

with better fitness.

12

Although not strictly following the standard schema theorem for binary-based genetic
algorithms, researchers have developed the concept of ordering schemata for order-based
genetic algorithms (7:175-179). In an ordering problem, the absolute or relative positions

of the items are important.

Ordering Schema. Ordering schema use a “don’t care” symbol “!” to represent
unfixed positions in a string. This is different from the “+” symbol presented earlier which
represented unfixed values in a string. For example, in a position-based schema, the string
(! ' 64! !) represents cities 6 and 4 in the third and fourth positions, with the “!” position
filled arbitrarily from the remaining cities. Possible strings with this position schemata

include: (516423),(256413),(326451).

Another ordering schema uses relative ordering. As described by Davis(5:79):

It is important to understand that what is being passed back and forth here
is not information of the form “node 3 is in the fifth position.” Instead this
operator combines information of the form “node 3 comes before node 2 and
after node 7.” The schemata in a n order-based representation can be written
in just this way. Let us denote the nodes in a permutation by their indices.
The chromosome (5 1 6 4 2 3) contains a number of schemata, including (5 4),
(1423),(563),and (51642 3).

New crossover operators were developed that could work with ordering problems.
Examples include Partially Matched Crossover (PMX) (7:154), position-based crossover
(16:343), and edge-recombination (19). These methods attempt to retain the benefits of

crossover while maintaining feasible solutions. Two of these operators are described below.

PMX. PMX was developed by Goldberg for use in solving TSPs. He
describes the operator using a ten-city problem as an example (7:171). Each city is visited

in ascending order; a sample permutationis: (123456 7 8 9 10).

Under PMX, two strings (permutations and their associated alleles) are aligned,
and two crossing sites are picked uniformly at random along the strings. These
two points define a matching section that is used to effect a cross through
position-by-position exchange operations.

To see this, consider two strings:

13

A=984|567]13210

B=871[2310{9546

PMX proceeds by positionwise exchanges. First, mapping string B to string
A, the 5 and the 2, the 3 and the 6, and the 10 and the 7 exchange places.
Similarly mapping string A to string B, the 5 and the 2, the 6 and the 3, and the
7 and the 10 exchange places. Following PMX we are left with two offspring,
A' and B’:

A=98423101657

B'=81015676243

where each string contains ordering information partially determined by each
of its parents (7:171).

Position-based Crossover. Another crossover operator, position-based crossover,
was developed by Syswerda (16) and is called uniform order-based crossover by Davis (5).
This operator attempts to ;ireserve information about the relative ordering of elements
in each of the parents. Several random positions are selected from each parent. These
positions are inherited by one child. The other positions in this child are inherited in the
order they appear in the other parent, skipping over all those included by the first parent.
For example, using the strings used to illustrate PMX, first generate a bit string that is

the same length as the parents:

A= 98456 713210
01100 1001 O
B= 8712310954 6

Next, fill in some of the positions on Child 1 by copying them from Parent A wherever a

“1” appears in the binary template.

Child1 = -84-~-7--2-
0110010010
A list of the elements in Parent A associated with “0” is made, and permuted to

appear in the same order as in Parent 2. These permuted elements fill in the gaps in Child

1 to complete crossover.

14

List of elements associated with “0”: (9,5,6,1,3,10)
Permuted in order of Parent 2: (1,3,10,9,5,6)
Child1=18431079526

A similar process is used to create a second child, but with the roles of Parent A and B

reversed.

Although PMX and position-based crossover are effective for ordering problems, they
process different kinds of ordering schema. PMX tends to respect absolute city position,

whereas position-based crossover tends to respect relative city position. Davis explains:

The information that is encoded here, however, is not a fixed value associated
with a position on the chromosome. Rather, it is relative orderings of elements
on the chromosome. Parent 1 may have a number of elements ordered relatively
well. Uniform order-based crossover allows Parent 2 to tell Parent 1 that others
of its elements should be ordered differently. The net effect of uniform order-
based crossover is to combine the relative orderings of nodes on the two parent
chromosomes in the two children (5:79).

These crossover operators are mentioned because they were used during the imple-
mentation of this research. They are effective for problems where ordering is important.
PMX is more important where absolute position matters, while position-based crossover

is more effective where a relative ordering is more important.

Genetic Algorithms in Scheduling

Many recent papers involving genetic algorithms deal with scheduling problems. Two
main approaches to solving scheduling problems with genetic algorithms have been devel-

oped: direct chromosome representation and indirect chromosome representation.

Direct Chromosome Representation. Bruns advocates a direct chromosome rep-
resentation for scheduling problems. In a direct problem representation, the production
schedule itself is used as a chromosome. No decoding procedure is therefore necessary. The
extended chromosome representation requires the construction of domain-specific recom-

bination operators (4:355) and would therefore be problem-specific. In this case:

15

The sequence of the items within a chromosome is of no importance. To deter-
mine the quality of a chromosome any arbitrary evaluation function that has
been used in traditional scheduling approaches is applicable without any prior
transformation. (4:356)

According to Bruns, this approach should perform better than domain-independent
operators, although he admits he cannot rely on any theory (4). It also involves creating
custom crossover operators for each problem, which may be difficult. However, this ap-
proach has the advantage that the genetic algorithm is allowed to search the entire solution

space, not just the ordering of the requests.

Indirect Representation. An indirect representation may also be referred to as a
hybrid technique (7:202) where part of the problem is solved with the genetic algorithm and
the other is solved using a deterministic routine. The first part is a sequencing problem,
solved by the genetic algorithm, which orders each job request in a list. The second part
is a schedule builder which takes each job, in the order of the list, and attempts to place
each job request in a place in the schedule without overlapping another scheduled job.
Obviously, those jobs earlier in the list are easier to schedule since more room in the

schedule is available.

The schedule builder uses a simple rule to schedule each job; usually, a job is sched-
uled in the first position which meets the constraints of the problem. Although a schedule
builder can use some information to find a good place in the schedule for each job, it is usu-
ally best to attempt the genetic algorithm search for good overall schedules by permuting
the list of supports (16).

Much research on genetic algorithms in scheduling has been conducted recently in
areas such as job shop scheduling and vehicle routing (3:452-459). For application to the
satellite range scheduling problem, resource and sequence scheduling are more relevant.

Two of these are reviewed by way of example in the next section.

Scheduling Ezamples

F-14 Test Range Scheduling. To solve a resource scheduling problem involv-
ing a test laboratory for F-14 fighter aircraft, Syswerda separated the genetic algorithm

16

from the specific problem (16:332). The list of items to be scheduled is represented as a
string of numbers. The genetic algorithm permutes the order of the items in this string to
find the best order in which to schedule the items. Then, given the ordered list of items
produced by the genetic algorithm, a schedule builder program builds a feasible schedule.
The schedule builder is merely a program which attempts to schedule each item in the
order presented by the string. The number of items successfully scheduled is returned to
the genetic algorithm as a fitness score. This type of approach to scheduling assumes that
given a correct ordering of tasks, the schedule builder program can build the best schedule.

Syswerda noted:

One thing that is clearly important, especially with regard to the greedy con-
siderations of a single task, is the position of that task in the list. The closer
the task is to the front of the list, the greater is its chance that it will be placed
into the schedule ... if two tasks both require a scarce resource, the first task in
the list may prevent the second from being scheduled, implying that the order
of tasks is also important. (16:340)

Syswerda’s implementation is interesting because he was able to satisfy many schedul-
ing requirements such as priority of items and user preferences for scheduling days. Such

flexibility is important for successful implementation of a scheduling solution.

Coors Scheduling. Much work has been done at Colorado State University on
developing genetic algorithms for application to the Traveling Salesman Problem and some
scheduling problems. Whitley developed a genetic algorithm called GENITOR (described
in Chapter ITI, and used for this research), and Whitley and Starkweather developed an
order-based crossover operator called genetic edge recombination for use in solving traveling
salesman problems. Along with such theoretical developments, they also applied genetic
algorithm solutions to a warehouse/shipping scheduler at Coors (15:74), and a production
line scheduler at Hewlett-Packard (18:358-360).

From this research Whitley generalizes the application of genetic algorithms to schiedul-

ing problems in general:

... 8 broad class of scheduling problems can be viewed as sequencing prob-
lems. By optimizing the sequence of processes or events that are fed into a

17

simple schedule builder, optimization across the entire problem domain can
be achieved. Schedules have not always been viewed this way because there
has not existed a general purpose mechanism for optimizing sequences that
only requires feedback about the performances of a sample sequence... Thus, a
“genetic” approach to scheduling has the potential to produce some very gen-
eral scheduling techniques, and could be the foundation of a general purpose
approach to sequence scheduling. (18:358)

For this research, an approach similar to that used by Syswerda in the F-14 test range
scheduling problem seems promising, as it does not require a custom chromosome. Hence,
existing genetic algorithm packages, such as GENITOR, may be used for implementation.
This approach only requires selecting an ordering crossover operator and constructing a
schedule building program to simulate the scheduling operation. As described in the next
chapter, such a strategy can be easily formulated.

Other Solution Efforts for Satellite Range Scheduling

Solutions to the satellite range scheduling problem have been studied recently. These
include an effort by IBM, and two thesis efforts at the Air Force Institute of Technology
(AFIT). These efforts used mixed-integer programming and heuristic approaches to find

solutions.

Arbabi’s Approach. The first study of automating satellite range scheduling took
place during the 1981-84 time period when IBM conducted a study to determine the
feasibility of automating satellite range scheduling (1:271-277). Arbabi concluded that
a mixed-integer programming approach was not feasible for problems with more than 50
requests. Instead, he developed an approach called Continuous Time Scheduling (CTS).
The procedure was not described in detail, as it is apparently proprietary, but it used a
heuristic approach. This procedure reportedly scheduled 92% of the requests for one day
(1:277).

Gooley’s Approach. Gooley used both a mixed-integer programming approach
and heuristic scheduling methods (8). The satellite range scheduling problem was success-
fully formulated as a mixed-integer program (MIP), but the number of integer variables

18

prohibited direct solution. To reduce the number of integer variables, Gooley divided the
problem into two mixed-integer programs which scheduled low-altitude satellite supports
(the MIP could handle up to 85 low-altitude supports at once). He then used heuristic
insertion and interchange techniques to schedule the medium- and high-altitude satellite
supports. Using this method, a test set of problems was solved in under 20 minutes with

approximately 92% of all requested supports scheduled (8:5-2).

Schalck’s Approach. In a follow-on thesis effort, Schalck improved on Gooley’s
solution by reducing the number of integer variables needed in the MIP formulation. By
doing so, one MIP solution scheduled all low-altitude supports for one 24-hour period.
Solution times for scheduling the high-altitude satellites in one 24-hour block was too long,
and was reduced to about 30 minutes by scheduling high-altitude supports in two 12-hour
blocks. The resulting solution scheduled approximately 98% of requested supports (this
number is not directly comparable to Gooley’s results because of differences in how the

support requests were generated).

The mixed-integer programming approach taken by Gooley and Schalck is the best
approach for the satellite range scheduling problem when the problem is small enough to
be solved by the mixed-integer program, since such an approach should find an optimal
solution. However, by decomposing the problem into separate problems, an overall optimal
solution may no longer be guaranteed. For example, splitting the requests into two blocks
means that support requests near the division point may not be scheduled. A genetic
algorithm approach may produce better schedules while meeting the constraints of a short
solution time becanse it would attempt to find a solution to the entire problem at once.
Although the gen:=ti: algorithm approach is not guaranteed to find an optimal solution,
it can attempt to find good solutions. Also, a genetic algorithm approach may be more
flexible in handling additional constraints for special scheduling requests.

Summary

This chapter summarized the development of genetic algorithms including the stan-

dard genetic algorithm and variants. The extension to order-based genetic algorithms

19

allows good solutions to some combinatorial optimization problems, such as the TSP. This
in turn allows applications of genetic algorithms to scheduling problems by dividing the
algorithm solution between a deterministic schedule builder and a genetic algorithm. Fi-
nally, past research efforts in satellite range scheduling were reviewed, with the conclusion
that better solutions may be found by scheduling the entire day’s schedule in one time
block instead of decomposing the problem into smaller time blocks. This may be done
with a genetic algorithm based approach.

20

III. Solution Methodology for Satellite Range Scheduling

This chapter presents a review of the satellite range scheduling (SRS) problem, fol-
lowed by the development of a genetic algorithm-based scheduling strategy. By formulating
the scheduling problem as a sequencing problem rather than as a mathematical program, a
straightforward solution by an order-based genetic algorithm is possible. The chapter ends

with a review of the implementation of the approach using the genetic algorithm package
GENITOR.

Formulation

Definition of the Problem. In the SRS problem, satellite communication supports
compete for RTS (remote tracking station) time in a 24 hour schedule. Each support must
be scheduled in a restricted time window at certain RTSs due to visibility and scheduling
requirements. For the low-altitude satellites, the requested support length fills the entire
window. For medium to high altitude satellites, the time window is more flexible, as a
tolerance for the beginning of the support is allowed for scheduling. Although each low-
altitude support requires a fixed time window at one RTS and fills a time-window, the
scheduling task is eased as most RTSs have two sides (antennas) capable of supporting
communications. The RTS sides can support a satellite support simultaneously; if a satel-
lite is visible to an RTS, it can be supported by any one of the available sides at the RTS.
In addition, most medium-to-high altitude satellites are visible to more than one RTS. This
fact, combined with the more flexible time windows of these satellites, makes scheduling
them easier than scheduling low-altitude satellites.

Small Problem. An example set of time windows for a small set of five support
requests is shown in Table 1. “Spt” is an arbitrary support number, “Begin” is the starting
time for the window, “End” is the ending time for a window, “Length” is the actual service
time needed, and “TAT?” is the setup time required before a service time can begin. These

supports are all serviced by RTS “POGO-A.”

This sample time window data can be used to illustrate the satellite range scheduling
(SRS) problem. This small problem is simplified since a real day’s schedule would include

21

[S: || Begin | End | Length | TAT 1
1 1 13 3 1
2 15 22 3 2
3 7 17 3 1
4 1 10 3 1
5 2 8 3 2

Table 1. Small Schedule Time Windows

over 300 supports, nearly all of which would have alternate windows for scheduling. These

alternate windows could come from different antennas or sides at the same RTS, or from

different RTSs. In addition to the table, this information is shown graphically in Figure 5.

Supports 3|

24—

POGO-A

5

Figure 5. Small Schedule

10 15

Time (minutes)

20

Key:

3 Turn Around Time
g Service Time
e Time Window

The horizontal axis shows time in minutes, the vertical axis shows the supports by

support number, and the entire chart is for RTS POGO-A. A problem with more than

one RTS could be represented by more than one chart. In Figure 5, the time window is

represented by a thin line, while the required TAT and service time is shown by the boxes

(darker pattern for TAT). Such a representation clearly shows a schedule. The schedule

22

for the example successfully schedules all supports with no overlap of the support times
and no violation of time windows. The TAT for support 5 is outside the service support
window, but this is legal as no communications take place at that time, only set up for a

support.

Mized-Integer Programming Approach. Previously, the SRS problem has been
formulated as a mixed-integer programming (MIP) problem (Gooley and Schalck). For a
problem with a small number of variables, this is the best approach because an optimal
solution can be found. But, as the number of supports to be scheduled increases, so
does the number of integer variables in the MIP formulation. Because of this increase,
an optimal solution may no longer be available in a timely manner. Gooley and Schalck
address this problem by decomposing the problem into parts. Gooley combined the use of
a MIP formulation with heuristics. Schalck accomplished variable reduction and scheduled
the satellites using an MIP for various combinations of satellites and blocks of time. These

methods produce feasible schedules which are not necessarily optimal.

A MIP solution includes the starting time for each support and the RTS used for
the support. The schedule can then be generated by adding the service times to the
starting times. With this type of formulation, the mathematical program must find the
actual starting times without violating constraints. A MIP solution of the small problem
described in the previous section might begin with support 1 scheduled to start at time
10, support 2 scheduled to start at timg 19, and so on, as shown in Figure 5.

Scheduling as a Sequencing Problem. Instead of formulating the satellite range
scheduling problem as a mixed-integer program, this research approaches the problem as
a sequencing problem where a sequence is defined as an ordered list of items. A solution
to a sequencing problem in scheduling determines the “best” order in which to schedule
items using simple rules for placing each item in the schedule. For example, in the satellite
range scheduling problem, the solution is represented as a sequence of supports. In the
small problem, there are five supports. An example ordering is: (5, 4, 1, 3, 2). To build
a schedule from this representation, each support is scheduled according to the order it
appears in the list.

23

In the example schedule, the first support, 5, would be placed in the first available
time segment. The entire schedule is open and support 5 is scheduled at the beginning of
its time window from time 2 to time 5. Note that the turn-around time of two minutes
is scheduled from time 0 to time 2 which is outside the time window. This is valid since
no communications take place during the turn-around time. The schedule is then updated
to reflect that time 0 to 5 is no longer available. The second support in the list is 4. Its
time window begins at 1, but it cannot be placed there because support 5 has already
used minutes 0 to 5. Support 4 is then scheduled from time 6 to time 9 (1 minute TAT;
3 minutes for service). This support remains within its time window which ends at time
9. This procedure repeats for supports (1, 3, 2), and completes a schedule as shown in

Table 2.

[Spt || Begin || End || Length || TAT |
5 2 5 3 2
4 6 9 3 1
1 10 13 3 1
3 14 17 3 1
2 19 22 3 2

Table 2. Small Problem Schedule

The actual start and end times for each support were determined by examining the
completed schedule. Thus, all the information needed to define a solution is contained in
the sequence of supports, and can be “decoded” by following simple deterministic rules.
Obviously, such rules are somewhat arbitrary. The “first available” rule, as shown here, is
simple. A rule which attempts to find the “best” place for each particular support would

also work, but at the expense of simplicity and possibly time.

An arbitrary ordering of supports is not likely to produce a perfect, or even good,
solution which schedules all support requests. However, if a solution exists, an ordering
can be found which results in the optimal solution. In many cases, more than one ordering
results in the same schedule depending on the interdependence of each support request. To
find good schedules, an efficient way of generating better alternative orderings is needed.

In this research, a genetic algorithm with order-based crossover operators is used to spawn

24

good orderings of the support requests. Genetic algorithms can quickly search the solution
space, defined as the permutations of the list of items. These permutations can then
be used to build a schedule as described above, and the number of supports scheduled

successfully can be used as a fitness measure for the genetic algorithm search.

Hybrid Approach. As noted in the previous section, a schedule can be built from a
sequence of supports using a schedule builder program. This schedule builder is required for
building feasible schedules given a sequence of support by the genetic algorithm. The overall
process is shown in Figure 6. Although some decision information can be incorporated into
the schedule builder to improve local search, the genetic algorithm should do most of the
exploration of the search space. This approach is based on the assumption that if the
supports are entered in the schedule builder in a certain order, the greatest number of
supports can be scheduled. It is reasonable to expect that many orderings of the supports
may exist which produce the same schedule.

Order-based Sequence | Schedule

Genetic Algorithm Builder
. Program
Fitness t

Evaluate Feasible
Schedule Schedule

Figure 6. Schedule Builder Flowchart

The nature of the genetic algorithm and schedule builder approach allows other
constraints to be imposed on the supports; for example, a request that a support be
handled by a certain set of RTSs on a particular day, or that supports must be scheduled

exactly one hour apart.

Algorithm Design and Implementation

Overview. Implementation of a hybrid approach requires data preprocessing of

satellite requests to generate support request time windows, followed by application of the

25

GENITOR genetic algorithm. The schedule-building evaluation function is used within
GENITOR to produce a given schedule, given a sequence of supports from a GA string.

Assumptions. The research assumes the constraints of the satellite range schedul-
ing problem are those used in the previous efforts by Gooley and Schalck (14:1-7):

1. Requested support times are known in advance.

2. Time windows for satellite visibility are not flexible. The goal of the SRS problem is
to schedule as many supports without having to change the time windows. After the
initial schedule is formed, these constraints may be relaxed to schedule unscheduled

supports. However, it is desired to minimize the number of such changes.

3. Downtimes for RTS maintenance are not included. If known, flexible downtimes
could be added as additional supports. Fixed downtimes could be be scheduled
before regular supports are scheduled.

Use of these assumptions allows comparison of the genetic algorithm results to previous

efforts.

Data Processing. Time windows for each support are processed from the raw satel-
lite visibility and request data in the ASTROS database for a day. The support requests

and time windows are represented as lines in a database with the following information:

Support Number: arbitrary support number

RTS: Remote tracking station and antenna side (example: POGO-A for A-side, POGO-B
for B-side)

Beginning of Time Window: in minutes (example: 0200 is 120 minutes; 2400 is 1440

minutes)
End of Time Window: in minutes
Support Length (minutes): actual service time needed

Turnaround Time (TAT): set up time at RTS needed before service time (20 minutes
for low-altitude satellites; 15 minutes for medium-high altitude satellites)

26

Satellite Identification: IRON (first four digits; identifies satellite)and revolution num-
ber (last three digits; identifies orbital pass)

An example set of time windows is shown in Table 3. This data is the same as

for Table 1, but with fields included for the RTS name and and satellite identification

number.
[Spt]| RIS | Begin || End | Length | TAT | Ident |
1 POGO-A 1 13 3 1 2532097
2 POGO-A 15 22 3 2 4774042
3 POGO-A 7 17 3 1 9845009
4 POGO-A 1 10 3 1 3187074
5 POGO-A 2 8 3 2 9757024

Table 3. Small Schedule Time Windows

This time window data is read into data structures at the beginning of a run.

Data Structures. Time window data is read into a structure of arrays. The
information can then be used each time a schedule is built from a sequence of supports.
These array structures keep track of time window alternatives for each support, and allows

the schedule to be filled in as supports are scheduled.

Schedule array. An array named filled(RTS, time) shows the statas of each
minute (time) for every RTS and antenna combination. A ‘0’ represents an empty minute;
a ‘1’ indicates that minute is filled. This array is updated whenever a support is scheduled
by setting the minutes used by the support to ‘1.’ Any set up time is also blocked out of
the schedule.

Support Information. Three arrays specify the requirements of each support:
NumWin(support) is the number of time windows where a support can be potentially
supported. Then the support time length requirements and turn around time are given by
Length and TAT, respectively. This information is used when running the schedule builder

program.

27

For each alternative time window for a support, three arrays give specific information.
BVIS and EVIS give the beginning time and ending time, respectively, of each time window.
RTS specifies the particular RTS used for the support.

Schedule Buslder Program. The schedule builder is implemented as a program in
the C language since many genetic algorithms are written in C. It is used as an evaluation
function for the genetic algorithm by building a schedule from a sequence of supports
generated by the GA, as shown in Figure 6. To construct the schedule builder, an insertion
program was written, modeled loosely on those used by Gooley (8), which attempts to
schedule each support into an available time window. Many alternative schedules are
possible, as the insertion rules for the schedule builder are arbitrary. For example, the
simplest implementation attempts to schedule supports to the first available numbered
RTS. A schedule could also be built by assigning a support to an available RTS with
the most open space left in its schedule. The “first available” approach was chosen for
simplicity, and to schedule supports next to each other to utilize the available time at
the RTSs. This approach simply schedules satellite communication supports to the first
available position in time, and across each RTS, starting with the first RTS.

Each support is scheduled in the order it appears in the ordered list of support
réquests. The schedule builder tries the first RTS where there is a window for the support.
If this fails, it tries the next until it runs out of windows. If the support is scheduled, the
schedule score is incremented and the space used is blocked out of the schedule. Pseudo-

code for the program is as follows:

Empty schedule
Attempt to schedule each support
Try each window until succeed or exhaust windows
Try each set of empty spaces until succeed or reach end
Update schedule if support scheduled
Update score if support schaeduled
Output final score

This can also be represented by a flow diagram, as in Figure 7.

28

Clear schedule

Schedule all Supports

Try each time window

Try each open space

Schedule support
Update schedule

Update score if scheduled

Return total number scheduled

Figure 7. Schedule Builder program flow

This procedure finds the schedule corresponding to a sequence of supports. It is also
used to build a schedule given a sequence of supports or to evaluate a given sequence as

part of a genetic algorithm implementation.

Genetic Algorithm Implementation. To find “good” support sequences, the sched-
ule builder is integrated into a genetic algorithm as an evaluation function. The genetic
algorithm, GENITOR, and associated parameters are described,

GENITOR. Whitley’'s GENITOR (GENetic ImplemenTOR) code was cho-
sen for use in this research because it has been used with success for other scheduling
problems (17). GENITOR includes crossover operators for order-based genetic algorithms
(edge recombination, order, and PMX) which have been shown to be useful in solving
many scheduling problems (15). GENITOR differs from the standard genetic algorithm as
described in Appendix A.

The evaluation function assigns a raw fitness measure to each population member. In
GENITOR, the fitness is assigned by an evaluation function written in the C programming
language (17). The function input parameter is the chromosome of a population member

which is a list of supports. After attempting to schedule each support in the schedule

29

builder, the function returns a fitness value. In the satellite range scheduling problem, the

chosen fitness measure is the number of supports successfully scheduled.

GENITOR Parameter Settings. In GENITOR, the major settings are the crossover
operator, population sige, selective pressure, and mutation rate (for binary-encoded chro-

mosomes):

Crossover. The crossover operator is important in the quality of the answer.
GENITOR includes crossover operators for order-based genetic algorithms as discussed in
Chapter II. These include edge recombination, order, and PMX.

Population Size. As explained in Chapter II, the population size affects
the convergence rate of a genetic algorithm by controlling the variety of genes in the
population. A smaller population may converge quickly, but usually to a sub-optimum. A
larger population converges more slowly, and usually, but not always, finds a better final
answer. For example, a population size of 30 finds a good answer within 1000 reproductions,

but converges to a worse solution.

Selective Pressure. Selective pressure is a selection parameter specific to
GENITOR. This parameter controls the rate at which a population converges by giv-
ing more reproductive opportunities to higher ranking individuals in the population. In
GENITOR, selective pressure is usually set between 1.0 and 2.0. For example, a selective
pressure of 1.5 gives the top-ranked individual 1.5 times the chance to reproduce than
the median-ranked individual. A lower setting slows down convergence, hopefully allowing
more time for the best solution to emerge. A higher setting drives the GA towards the
final answer more quickly, but often at the expense of the best solution.

Mutation. It is important to keep a diverse genetic pool as the population
converges. Mutation randomly changes part of a chromosome and is usually of less im-
portance than crossover. Mutation was not used in this research because an order-based
mutation operator was not present in GENITOR. The addition of such an operator may

improve results and is discussed in Chapter V.

30

Day One Results. Various population sizes and selective pressure settings were
tested in GENITOR using the first day of data to determine good parameter settings. In
preliminary tests, all order-based croasover operators in GENITOR were tested. Position-
based crossover found the best answer more quickly than the others. Position-based
crossover was expected to produce good schedules since it explores the relative position
of supports. Since supports are competing for resources, it makes sense that the relative
order of supports in a scheduling list is more important than an absolute position in the
list. Based on these results, the position operator was chosen as the operator for the test
set, although the other order operators would be expected to perform nearly as well. The
edge-recombination operator is tailored more towards the TSP and did not do as well as
the other operators in this scheduling problem because it stresses adjacency information

instead of relative ordering. This agreed with past results using edge-recombination for

scheduling problems (15:74).

For Day One data, a graph of performance is shown in Figure 8. As GENITOR
executes, at a given interval of reproductions it displays the best individual, the worst
individual and the population average. The population has converged when these three
numbers are equal, and little improvement can be expected. Convergence indicates that
the individuals all have the same fitness score; they are either identical or similar enough

to evaluate to the same fitness.

At any time during the run, the GA can be stopped and the best individual found
thus far can be chosen as the best schedule found. Usually, the best schedule is found
before convergence, but there is no way to know this in advance. In the Day One data,
the best schedule was usually found at about 4000 reproductions, while the population did
not converge until about 6100 reproductions. A genetic algorithm run could be stopped

prior to convergence if time is critical.

Vary Parameters. The runs shown in Figures 9 and 10 display the interplay
of exploitation versus exploration in a genetic algorithm solution (7:37). A high selective
pressure or a small population size leads to quick convergence of the population. This

exploitation of the best individuals found so far often leads to a quick, but less satisfactory

31

Population Size 200; 1.5 Pressure
U @ oottt e
n
S 40
c
h 30
°
d 20
u
| 10
: o T T L] 1

0 2000 4000 6000 8000
Best
. Best . Worst @ Average

Figure 8. Day 1 Data Convergence

solution. On the other hand, a larger population with lower selective pressure encourages

population diversity longer, but at the cost of slower convergence.

Repeated Runs. Since a GA has random components, a set of 10 runs was
used for the Day One data in order to initially evaluate the variance of the results. Of 322
supports requested, the number of unscheduled supports was 8 in five of the runs and 9
in the other five runs; the average is 8.5, with a variance of 0.28. For this problem, the

difference between runs is minor, and in practice one run should be sufficient for scheduling.

Random Schedule Generation. To give a baseline of the performance of
this work, one might ask how well a random permutation of supports would perform.
To answer this question, an additional run which generated random permutations of the
support list and then used the schedule builder program to create schedules was performed.
It found reasonable results within 8,000 reproductions, with a best solution of 23 supports
unscheduled out of 322. This is not as effective as the best genetic algorithm schedule of
only 8 unscheduled. These results are shown in Figure 11.

32

Convergence as Population Varies

Population Size

l 1000
M 400
E1 200
100
M so

&

w
o

-
o

ao —c Qo 00 23 C
N
o

o
o

2000 4000 6000 8000
Reproductions

Figure 9. Vary Population Size for Day 1 Data

Overall Implementation. The overall implementation of the genetic algorithm-
based approach begins with the processing of raw satellite request and visibility data into
a format readable by the GENITOR main program. This processing is handled by Pascal
programs written by Gooley and Schalck. After processing, the time window and request
data for each support is stored in an array structure which the schedule builder uses to
build feasible schedules.

Summary

This chapter describes how the SRS problem may be solved by scheduling it=ms in
an order determined by a genetic algorithm. By using this evaluation of each schedule to
determine fitness in an order-based genetic algorithm, better schedules can be developed.
The genetic algorithm package chosen for this research is GENITOR, because of its success
in similar problems. Experiments using the first day of data provide good parameter
settings for the GENITOR genetic algorithm in producing 24-hour schedules. The final
settings are: position-based crossover, population size of 200, and selective pressure of 1.5.
These settings gave a good compromise between the greatest number of supports scheduled

and execution time. These settings are used to produce the schedules in Chapter IV.

33

Population = 200

. Pressure = 1.1

g [l Prossure = 1.3
5 Pressure = 1.5
C

h . Pressure = 1.7
g . Pressure = 2.0
u

]

e
d

0 T 1 v T
0 2000 4000 6000 8000
Reproductions
Figure 10. Vary Selective Pressure for Day 1 Data
Random Sequence Generation
40

U [Best

n P~ . Average
s

c

h

@ 30 4

d

u AN

|

. \

d

20 hl T T)
0 2000 4000 6000 8000
Best

Figure 11. Random Sequence Generation for Day 1 Data

34

IV. Results

In order to evaluate the performance of a genetic algorithm approach to satellite
range scheduling, the schedule builder model described in Chapter III was integrated into
the GENITOR (17) genetic algorithm. This genetic algorithm was then tested on real
satellite range data. In nearly all cases, the GA-based solution was able to match or
exceed previous results that used a mixed integer programming (MIP) approach.

The primary purpose of this research was to evaluate the performance of the GA-
based solution in scheduling satellite supports. A secondary purpose was to explore the
flexibility of the GA-based approach in handling additional constraints on the scheduling of
supports. Such flexibility would be important in implementing a genetic algorithm-based
approach in the real world. The additional constraint tested here is the priority of different

supports.

The criteria used to judge scheduling results is the number of supports scheduled and
the time required for the solution. Supports not scheduled in the initial 24-hour schedule
by the range schedulers must be deconflicted through coordination with the MCCs. In the
worst case, those supports that cannot be rescheduled by relaxing constraints may have
to be canceled. Short solution times are important if different parameters or priorities are
to be used by the schedulers. Short solution times are also important for rescheduling on

short notice.

Test Set

Scheduling data used in previous research efforts was available and used to test
the hybrid GA approach, and to allow a comparison between these results and results of
previous efforts. This data is taken from the ASTRO (Automated Scheduling Tools for
Range Operations) (1:271) database which is currently used to assist manual scheduling.
The primary data is from the seven day period from 12 Jul 92 to 18 Jul 92. This is
the same data used by both Gooley and Schalck. Each day includes approximately 300
support requests and their associated request windows. Of these, approximately half are

low-altitude satellite support requests.

35

The database contains satellite support requests and the visibility windows of the
requests to remote tracking stations for each day. Pascal programs developed by Gooley
and modified by Schalck were used to to put the requests in a format suitable for further
work. Schalck’s processing of the data was used here to allow comparisons to his results.
After processing, the final data tables list the visibilities and requests for each day as shown
in Table 3 of Chapter III. Processing details are available in Appendix D.

Although each day is scheduled separately, supports are allowed to overlap into the
next day if their time window extends into the next day. This is included to match the
approach of Schalck. The genetic algorithm implementation schedules across days by
keeping track of the overlap into the next day and scheduling these overlaps in the next
day’s schedule before scheduling regular supports.

The schedule builder code developed in Chapter III serves as the evaluation function
in GENITOR. The schedule builder produces a valid schedule from an ordered list of
supports for each string in the population. The number of supports successfully scheduled
is the fitness of each string. This fitness value is then returned to the genetic algorithm.
The fitness is used by GENITOR to rank a particular schedule in relation to others in the
population. The more fit strings have a higher probability of being selected to reproduce

and exchange their genetic information with other strings through crossover.

Ezperimental Procedure

Tests were conducted in two major stages. The first day’s data was tested to find
good parameters for the GA (as shown in Chapter IIT). These parameters included pop-
ulation size and selective pressure. The primary goal of these parameters is to facilitate
achievement of the best solution within the shortest time, where the solutions are scored
by the number of supports scheduled. Good general settings were sought which would
work well for the data sets. In practice, the general settings would not need to be changed

each time a new set of data is introduced.

36

The final settings included position-based crossover, a population size of 200, and a
selective pressure of 1.5. These settings appear to be robust in giving a good compromise

between the best results and execution time.

These parameters were used to produce schedules‘ for all seven days. Experimental
runs were performed on Sun Sparc-10 and Sparc-2 workstations. Solution times for one
day of data averaged 10 minutes on a Sparc-10 workstation and approximately 24 minutes
on a Sparc-2 workstation. On the Sparc-10, producing 1,000 schedules took approximately

one minute.

Week One Results. Once a good set of parameters was found, schedules for all
seven days of data were produced. The genetic algorithm (GA) results are from GENITOR
with a population of 200, selective pressure of 1.5, and up to 8,000 reproductions. Overall
results are shown in Figure 12 and Table 4. Supports whose time windows extend into
the next day were allowed to be scheduled into the following day. These overlaps were
then blocked out of the available RTS time for the next day. This is done by scheduling
these overlap requests before the normal support requests in the following day’s schedule.
The corresponding results from Schalck’s mixed-integer programming (MIP) solutions are

included for comparison (14:4-2).

The total number of supports requested and scheduled are shown in Table 4. The
difference between the MIP and GA-based results are labeled “GA-MIP.”

[Day | # Requested || GA# Scheduled " MIP# Scheduled | GA - MIP ||

1 322 314 312 2
2 302 296 296 0
3 311 307 304 3
4 318 315 311 4
5 305 301 299 2
6 299 292 292 0
7 297 201 291 0

37

The genetic algorithm results compare favorably to the MIP results of Schalck. In
every case, the number of total supports the genetic algorithm schedules is at least as good
as the number of supports scheduled by the MIP.

Breakdouwn by Support Type. Results are also broken down by low-altitude and
high-altitude supports. As mentioned in Chapter I, low-altitude satellite supports are
usually given higher priority in scheduling since they are more difficult to reschedule. Here
the GA scheduled more high-altitude satellites than in the MIP solution and scheduled
fewer low-altitude satellite supports than the MIP approach. This is due to the fitness of a
schedule being calculated as the total number of supports scheduled without reference to
the support type. Schalck’s solution guaranteed scheduling of the greatest number of low-
altitude supports possible because they were all scheduled before attempting to schedule
any high-altitude satellites. This guarantees the scheduling of the greatest number of low-
altitude satellites, but this may not always be necessary. Since set up times for low-altitude
supports may be flexible, adjustment of the low-altitude satellite setup times may allow
scheduling more supports overall.

Table 5. Low-altitude Results for Week One Data
| Day [[# Requested]] GA# Scheduled || MIP# Scheduled | GA - MIP |

1 153 147 149 -2
2 137 132 134 -2
3 146 143 143 0
4 142 139 140 -1
5 142 139 139 0
6 144 138 138 0
7 142 138 138 0
Additional Runs

Since one of the advantages of a hybrid GA approach is flexibility, other constraints
on the scheduling of supports should be allowed. The first obvious constraint for inclusion
is the scheduling of priorities for different support types.

38

Table 6. High-altitude Results for Week One Data

[Day [[# Requested]] GA# Scheduled || MIP# Scheduled | GA - MIP |

1 169 167 163 4
2 165 164 162 2
3 165 164 161 3
4 176 176 171 5
5 163 162 160 2
6 155 154 154 0
7 155 154 153 1

Support Priority. Low-altitude supports usually take precedence over high-altitude
supports since they are more difficult to schedule. To introduce this preference in schedul-
ing, different fitness scores can be assigned to the different types of supports. As an
example, low-altitude supports were given a score of two for each one scheduled; the value
of high-altitude supports was set to only one. Where a low-altitude support and a high-
altitude support compete for the same position in the schedule, the low-altitude support
should be scheduled. The overall results are shown in Table 7 and in Figure 13. A break-
down by low-altitude and high-altitude satellites is shown in Table 8 and Table 9.

Table 7. Week One Data with Low-Altitude Supports given Priority

| Day | # Requested || GA# Scheduled | MIP# Scheduled] GA - MIP ||

1 322 313 312 1
2 302 296 296 0
3 311 307 304 3
4 318 314 311 3
5 305 300 299 1
6 299 293 292 1
7 297 291 291 0

Note that more low-altitude supports were accomplished, although at the cost of a
tradeoff of some high-altitude supports. Note, however, for Day Two, the GA scheduled
two fewer low-altitude supports than the MIP. Upon examination of the schedule, this is
due to some high-altitude satellites from Day One scheduled into Day Two.

This type of priority assignment could also be applied to other situations; even so
far as to give each satellite a different priority. An array of priority values could be used

39

Table 8. Low-altitude Results with Low-Altitude Supports given Priority

[Day [# Requested]] GA# Scheduled || MIP# Scheduled | GA - MIP ||
1 153 149 149 0
2 137 132 134 -2
3 146 143 143 0
4 142 139 140 -1
5 142 139 139 0
6 144 138 138 0
7 142 138 138 0

Table 9. High-Altitude Results with Low-Altitude Supports given Priority

[Day [[# Requested|| GA# Scheduled || MIP# Scheduled | GA - MIP |

1 169 164 163 1
2 165 164 162 2
3 165 164 161 3
4 176 175 171 4
5 163 161 160 1
6 155 155 154 1
7 155 153 1563 0

to provide a different score for scheduling each support. A higher score would indicate
greater scheduling priority for that support.

Two-Day Scheduling. Even with a priority score given to low-altitude satellite
supports, the GA does worse in scheduling low-altitude supports for Days Two and Four.
For Day 2, this is caused by the overlap from Day 1. Since each GA only schedules for
one day, without regard to the following day, overlaps may reduce the overall number of
supports scheduled. The simplest way to overcome this is to schedule two days at once in

one block, with priority given to low-altitude supports.

This was attempted with data from Day One and Day Two. Results were encour-
aging, as the overall number of supports scheduled remains the same, but the number
of low-altitude satellite supports scheduled increased to the same level as the MIP so-
lution. In return, the number of high-altitude supports scheduled decreased. Thus, the
priority scheme, in conjunction with scheduling for two days, succeeded in matching the

40

low-altitude results of the MIP. Note that the genetic algorithm in this case scheduled
two days at once. The solution time was approximately double that for scheduling one
day. This indicates that an increase in the number of supports for a day may be handled

without much degradation in solution time or quality.

Summary

Results using one week of satellite support data indicates the GA can be successful
in scheduling satellite supports. Results match or exceed those returned by the Schalck

MIP approach. Solution times are short, and only one computer run is required.

41

Figure 12. Week One Data Results

O~ NWhLONM~N®OO

Number Not Scheduled

B wr
GA

Day1 Day2 Day3 Day4 Day5 Day6é Day7

Low-Altitude Not Scheduled

... GA

Day1 Day2 Day3 Day4 Day5 Day6 Day7

High-Altitude Not Scheduled

... . “lp
.. GA

Day1 Day2 Day3 Day4 DayS Day6 Day7

42

Figure 13. Low-Altitude Supports given Priority for Day 1 Data

Number Not Scheduled

B ve
GA

O NWENMON®©OO

Day1 Day2 Day3 Dayd4 Day5 Dayé6 Day7

Low-Altitude Not Scheduled

GA

5 -

4 4

3

2

Day1 Day2 Day3 Day4 DayS5 Day6 Day7

High-Aititude Not Scheduled

6 BT . MIP
S AR ey e eneanisnens GA

Dayt Day2 Day3 Day4 Day5 Day6 Day7

43

V. Conclusions and Recommendations
Conclusions

The satellite range scheduling (SRS) problem involves scheduling over 300 satellite
communication supports between Air Force Satellite Control Network (AFSCN) satellites
and remote tracking stations (RTS) for a 24-hour period. Scheduling the greatest number
of requests minimizes the time needed by schedulers to resolve conflicts in the schedule. The
scheduling is currently done manually, with computer aid. Although the current system
schedules approximately 95-98% of the requested supports, automating the scheduling
process may produce better schedules in less time and use less human resources. The
objective of this research was to discover if a genetic algorithm based approach can be
effective in automating the scheduling of the requests for a 24-hour period.

The problem can be formulated as a mixed-integer program, but the sige of realistic
problems precludes producing optimal schedules in a timely manner. By partitioning the
original mixed-integer problem into subproblems, Schalck and Gooley found good solutions
(14:4-1), but since they do not solve the entire problem at once, there may be room for

improvement.

For a test set of seven days of scheduling data, the GA solution matched and often
exceeded the results of previous MIP efforts by solving the entire problem at once instead
of decomposing the problem into subproblems. The algorithm scheduled over 96% of
requested supports. Note, however, these results do not include RTS downtimes. Solution
times on Sun Sparc workstations suggest a 24-hour schedule can be produced in under 15

minutes.

These results suggest a genetic algorithm (GA) based method can produce good
schedules for the SRS problem. Although the genetic algorithm-based approach described
in this research appears to be capable of producing good schedules in a short time, much
work remains to be done to implement this automated scheduling approach. Further
refinement of the program code may decrease time needed to provide a schedule. More
importantly, a fully automated scheduler must also schedule other types of supports which
occur in the scheduling process.

44

Reconimendations

Improvements to the algorithm involve further modification and testing of the genetic
algorithm with more complicated support requests. The genetic algorithm-based method
is easy to implement and modify since all that is required is a schedule builder program to
build a schedule one support at a time and to evaluate its fitness score. Since this schedule
builder program is easy to test, modifications which allow new constraints can be tested

quickly.
Minor Improvements.

Schedule Builder. If the GA-based algorithm is to be implemented, the
program code for the schedule builder must be improved. Both readability and code
efficiency would lead to better performance and easier modification by users. The program
could also be integrated with the processing of satellite request data to make scheduling a
one step process for the schedulers, from data processing to final schedule output.

Genetic Algorithm. The genetic algorithm implementation in GENITOR
may be improved by adding a mutation operator. Although it does not play as large a
role in the genetic search as crossover, mutation acts to keep variety in the population
by randomly changing the genes of the population. An order-based mutation operator,
such as that advocated by Davis (5:81), would be appropriate for use in this scheduling
algorithm. Also, other genetic algorithm packages could be used besides GENITOR. The
schedule builder program would simply be used as an evaluation function in the genetic
algorithms.

Eztensions. To make the produced schedules more realistic, other types of supports
should be scheduled. RTS downtimes and scheduling priorities should be determined and
included in the schedule. Also, the schedule builder program could be modified to schedule
special requests not currently considered by this program. The most important of these
would involve scheduling long requests by dividing them into shorter requests which may
be scheduled on different RTSs.

45

Summary. A genetic algorithm based approach offers a way of quickly (minutes)
scheduling 24-hour schedules in the satellite range scheduling process. In addition, the
general approach could also be applied to other similar scheduling problems where resources
must be scheduled. These include ICBM crew scheduling and test range scheduling.

46

Appendiz A. Modified GENITOR Program Code

This appendix describes the GENITOR genetic algorithm, and lists the files modified
to use GENITOR with the satellite range scheduling problem. These files include the main
program and include files. Although not modified, the source code for the Position crossover

operator is included since it is used for the final results.

Genetic Algorithm: GENITOR. The code from an existing genetic algorithm was
used for this research. Whitleys GENITOR (GENetic ImplemenTOR) code was chosen
because it has been used for similar problems (17). It includes crossover operators for
order-based genetic algorithms (edge recombination, order, and PMX). These operators
have been shown to be useful in solving many scheduling problems (15).

GENITOR differs from the simple genetic algorithm in two ways. First, instead of
creating distinct generations, it creates only one new offspring at a time. Then, rather than
replacing the parents with the offspring, GENITOR replaces the lowest ranking member.
This approach has been called steady-state réproduction (5:35). It works by first selecting
two parents from the population and producing two offspring. One offspring is randomly
discarded. The other offspring replaces the lowest ranking member of the population. This
new string is then ranked in relation to the fitness of the other members of the population,
and inserted into the population. The new member can then compete for reproductive

opportunities.

The second difference from the standard genetic algorithm is the way fitness is mea-
sured. Instead of relying on raw fitness measures, GENITOR uses relative ranking of
population members to determine reproductive opportunities. Ranking prevents scaling
problems associated with raw fitness values. Scaling problems occur when one individ-
ual is so much better that the others that it dominates the population too soon, causing
permature convergence of the algorithm. To determine the reproductive opportunities of
population members, GENITOR uses linear bias scaling. This linear bias is usually set
between 1.0 and 2.0. For example, a bias of 1.5 means the top-ranked individual has 1.5

times the chance of the median-ranked population member to be selected to reproduce

(15).

47

Modified Main program Code. The following listing is the main program code for
GENITOR, modified for use with the satellite range scheduling problem. At the beginning
of a run, this code reads in satellite time window data and overlap data. During execuation
of the program, it calls tsp eval.c to evaluate schedules. Finally, it stores the best sequence
in the file tourdata.

This main program is modified for use with the Position crossover operator.

/* MAIN Program - 31 Jan 94 */

/* - 1 Feb, 31 Jan: read/write to files */

/* - 28 Jan: add in pre/post processing for overlap #*/

J T R T Y

* */
/* Copyright (c) 1990 */
/* Darrell L. Whitley */
/* Computer Science Department */
/* Colorado State University */
/* */

/* Permission is hereby granted to copy all or any part of */

/* this program for free distribution. The author’s name #*/

/+* and this copyright notice must be included in any copy. */
*

/*
/###*‘##tt#***t#*##t**t#*#*#######**#t####*###*t##t*t##t#t##**/
/* T I) * REEREEREREREERERERERRRREREREERRERSRERRRERRRRE RN RR
main_pos.c
kg kR kR L2 134 ke kbR Rkkkhhhkbk bRk hkgkhh kb kkhhskkbkp Rk Rkkkbkkkkg

#%gclnde <stdio.h>
#include <ctype.h>

#include <string.h>
#include "ga_random.h"
#include "gene.h"
#include :ga_global.h:
T Sin
_pool.
#include "ga_selection.h"
#include "ga_status.h"
#include "“ga_signals.h"
#include "op_position.h"

/AERREERRRERREESERAERERRRRRRRRERREERRRE AR
Declare evaluation function which tells you
how “good" a particular gene’s solution is.
NOTE: the input parameters for the eval

function should always be a gene and
the gene’s length
FREREERERSRRRRRRREERAREREAE SR RRRERRRERRRDRR]

#include "eval_pos.h"
int

main (argc, argv)

int argc;

char =argv(];

int i,j;

GENEPTR mom, dad, child;
FILE *1p;

int **coord_array;
CITY_DATA *city_table;

/* int num_diffs; =/

/* Character names for input/output */

48

int daylum;

static char overlap[10] = {"overlapO"};
static char tourdata[10] = {“tourdata0"};
ltatic char dntatilo[10] = {"dntatiloO"}.

lotup_lignal().

lrgc-—; AR S /
argv++;
parse_command_line (argc, argv);

tprintf (stdout, "\n");
print_params(stdout);
fprintt (stdout, "\n");

/
Input the day “number
and concat to file nagg,

printf("what is the day number (1-7)?");

scant ("%u", &dayNum);

printf(“Day Number is %u\n",dayKum);

overlap[7] += dayNum - 1; /* Adds day number to filenames */
tourdata[8] += dayNum;

datafile[8] += dayNum;
printt(“%s\n%s\n%s\n",tourdata,dataiile,overlap),

LT wha

Seed the Randon lumber Generator/

srandon(nandonSeed).

Allocate a genetic pool reterenced by the global Pool

it (! (Pool = got_pool(PoolSizo, StringLength)))
fatal_error(NULL);

/
Read in a description ot the points to be toured and
create a representation of the distance botwoon thenm.

sesrar sxs . /

/* make_dist_array (lodeFxle, Stringlength); +/
Assign-schedule paranotars to the program

/* #inclnde "“data. h" */
/ "
Read in data

*/

read_data (datatile Pool->string longth), /* set = string length */

read_overlap_data (ovorlap). /* 1/28: read overlap data */
/% for (i=1; 1<=18; i++)

printt(" gRTS[%d]=%d, gBeginVis[%d]=Yd, gEndVis[%d]l=%d,

gReqlength(%dl=%d, gTurnAroundTime[%d]=%d \n",i, gRTS[i],i,gBeginvis(i],
i,gEndVis(il, i, gReqLength[il,i,gTurnAroundTime[i]); */

/* printt(“Initializo genetic pool\n"); =/

LR 2L 2 2 SRk ShkgE

Initialize the genetic pool with data.

init_pool (SeedPool, Pool, 0 Pool->size, tsp_eval);

49

/+ print2("Sort Initial genetic pool\n"); */
T T T T e e

Sort the initial genetic pool data.

T L Y YY)

sort_pool (Pool);
/+ printf("Allocate temporary storage for parents of reproduction\n"); */
P A P Y PP PP P r P

Allocate temporary storage for parents of reproduction, and for child.
T T TP T TR Py ey

mom = get_gene (Pool->string length);

dad = get_gene (Pool->string_length);

child = get_gene (Pool->string_length);

/* printt(“lllocata a table to be used with the Orderi (Davia) Oparator\n") */

AAAAAAAAA ¥ % *%x/

REEEES BEREE FEFEES .

city_table = get_ city_table (Pool—)string_langth),

Vet ot tit L
Optimize !
sknbsrhink/

for (/* CurrentGeneration already set :
either intialized to 0 in its declaration OR
initialized by a restart of a previous experiment */;
CurrentGeneration < FumberTrials;
CurrentGeneration++)

{
[a%sdrtens » Lt DT T Ll

kB RREFRERERE ¥k *kkkRkkk

Call Order oparator to craate a child

*/
/* rintt("Start Order operator\n"); =/
it (bitgan())

{
/* printf("After bitgen = O\n"); */
position (mom->string, dad->string, child->string, Pool->string length, city_table);

else

/* printf("After bitgen = 1\n"); */
position (dad->string, mom->string, child->string, Pool->string length, city_table);

}
/* pr1nt£(“So, kxid, how good are you?\n"); #*/

g 2 4

child->worth = tsp_eval (child->string, Pool->string_length);
/* printt("Insert new gene into population according to its worth\n"); #*/

BRERBEEEERREXRRLERERBRBRERR Rk e kD RR e Rk R kg kR gk k
insert_gene (child Pool),
[ERERERERRRE SRR RAERRRAARE AR S ERARER % SRBRRE
If the StatusInterval parameter was set and this is the appropriate
time, print tha population best worst, mean, and average to stdout
it (StatnsIntarval &k ! (CurrentGeneration % StatnsInterval))
show_progress (stdout, Pool, CurrentGeneration);

kkkkkRkRhkhR kg kg % *¥

If the DumpInterval parametar was set and this is the appropriate
time, save the population and key parameters to disk for later

reference (or to restart execution later.

50

PR Grara R & i g e ke -k P
bbb S BEEES

it (DupIntorval n t (CurrentGeneration % DulpIntornl))
dump_status(Pool, DumpBase);

final_pool (FinalPool, Pool, CurrentGeneration);
fprint? (stdout, "\n");

printf("Right before print_pool\n");

print_pool (stdout, Pool, 0, 1);

print? (“Attor print_pool, before tourdata\n");

Print out tourdﬂ:, to file

.}t (fp = topen(tourdata, "w"))

printf(“Inside print tourdata\n");
for (1=0;i < Pool->string length; i++)

fprintf(fp,"%d " ,Pool->datal1].string[11);
printf(“Its past!\n");

} fclose(1p);

printt(“Cannot print tourdata file“),

[overessssasssssesssnesssenemerEreerEbRERKRRRER S SO SSS rersssereas/
}

}

Ga global.h Include files. This file contains the global variables used in GENITOR.
The global variables used to store time window information for each support are included
here as global variables and used in the tsp eval function. Another related file called ga
global external.h is also listed.
/*ga_global.h */

/* mod 9 Feb: add temp LF Num for Priority =/
/* modified 8 Feb for downtimes; 28 Jan for overlap */

A didd L FEREBRBRRE EEEEE RS 22/
/* */
/* Copyright (c) 1990 */
/+ Darrell L. Whitley «/
/* Computer Science Department »/
/* Colorado State University */
/* */

/* Permission is hereby granted to copy all or any part of #*/
/* this program for free distribution. The authors name =*/
/* and this copyright notice must be included in any copy. #*/
/* */

EERRRERERRRRRRRRRERERRRRRERRRERRERERERRERRERD REERRRRR AR
* Thoae BEQUIRED and OPTIONAL parameters can be chosen by the user. =
% SRARBRERREEREERRRRERE SERERRSRREREERER e/

/* REQUIBBD t/
int PoolSize;

51

int StringLength;
int NumberTrials;

char NodeFile[80]; /* contains coordinates of tsp nodes s/

/* OPTIONAL s/
long RandomSeed ;
float SelectionBias;

float MutateRate = 0.0;

int StatusInterval = 0; /+ dump status every nth generation */

int DumpInterval = 0; /* save state of every nth generation #/

char SeedPool[80] ; /* tile containing init data */

char FinalPool[80]; /* tile containing final results s/

char DumpBase[80] ; /* basename of file(s) into

which to dump population */

int NBumPop; /* ¥umber of Subpopulations */

int Swaplnterval; /* Trials between Swapping of Subpopulations */
int Swaplumber; /* Number of Strings Swapped between Subpops */
int Experiments; /* Experiments must be used in main() */

float CutOff; /* Cutoff value for a given experiment »/
/eennnn ShEkS SRERRRR % /

int SequenceFlag = /% if set to 1 in main, insert_unique_gene() */

/* will use ditterent criteria for sameness */
int CurrentGeneration = 0;
POOLPTR Pool;

/% Schedule Builder Global Variables =/
/* [sptllwin] =/

int gRTS[700][20];

int gBeginvis[700] [20];

int gEndVis [700] [20] ;

int gReqLength[700];

int gTurnAroundTime [700] ;

int gBeginSched[700] ;

int gEndSched[700);

int gWumWin[700] ;

int gOverlapBegin[20];
int gOverlapEnd[20];
int gDownNum;

int gDownRTS[100];

int gDownBegin[100];

int ghownEnd[100];

int glumLF;

/* ga_global_extern.h */

/* mod 9 Feb: add temp NumLF for priority */

/* mod 8 Feb for downtime */

/* modified 28 Jan 94 to add overlap variables */

VA2 DI 22T P v e e e RREERRRRRERRER L2 21 * /
/x */
/* Copyright (c) 1890 */
/* Darrell L. Whitley */
/* Computer Science Department s/
/* Colorado State University t;
/* *

/* Permission is hereby granted to copy all or any part of */
/* this program for free distribution. The authors name #/
/* and this copyright notice must be included in any copy. */
/* */

52

/S5 SEEEEELEEES SRR L LRSS sese » s/
extern int PoolSize;
extern int StringlLength;
extern int FumberTrials;
extern char NodeFile(];
extern long RandomSeed;
extern float SelectionBias;
extern float MutateRate;
extern int StatusInterval;
extern int DumpInterval;
extern char DumpBase[] ;
extern char SeedPool (] ;
extern char FinalPool[l;
extern int CurrentGeneration;
exteran int NumPop;
extern int Swaplnterval;
extern int SwapNunmber;
extern int Experiments;
extern float CutOff;
extern int SequenceFlag;
a2t i I TS EEEEELES PR EAREEREE Ty T TR

extern POOLPTR Pool;
/* Schedule Builder Global Variables */

extern int gRTs[700] (20];

extern int gBeginVis[700] [20] ;
extern int gEndvis[700] [20];
extern int gReqLength[700] ;
extern int gTurnAroundTime [700] ;
extern int gBeginSched [700] ;
extern int gEndSched [700] ;
extern int glumWin[700];

extern int gOverlapBegin[20];
extern int gO0verlapEnd[20];

extern int gDownNum;
extern int gDownRTS([100];
extern int gDownBegin[100];
extern int gDownEnd[100];
extern int glumLF;

Position Crossover Operator

This program code is unchanged, but included since it was used in GENITOR to
test the data.

o e o o e o e o

/* */
/* Copyright (c) 1990 */
/* Darrell L. Whitley */
/* Computer Science Department */
/* Colorado State University »/
/% */
/* Permission is hereby granted to copy all or any part of =/
/* this program for free distribution. The author’s name */
/+* and this copyright notice must be included in any copy. #*/

53

/+ s/
/AAAA L] SRS BEEEE R EEERS SEESABR SR ERE R el 2221t L /
/ SEDEEssH . SERVRREER R SRS B SRR SRS S SEE S S8 S

IQ{’***Q***I’*’.*Q*Gﬁ**ﬁ#*{&{{iﬂli L E R I E N EI R IELRRZELENNEMNY

This is the position operator developed by Syswerda #
(The Genetic Algorithms Handbook, L Davis, ed) and =»

implemented by Susan McDanisl at Colorado State =*
Univorlity. *

To use this program include the tollowing lines in =
the main_tsp.c file: *

»

]

This call should only happen once: *

§ot_c1ty_tablo (Pool->string_length); *

»

This code should be in a loop so it is called once *

for each recombination: *
it (bitgen ()) =*

position (mom->string, dad->string, child->string, =»
Pool->string_length, city_table); =*
else +
position (dad->string, nom->string. child->string, =
Pool->string_length, city_table);

L2122

This operator attempts to preserve position =*
information during the recombination process. =

Several random locati in the to lected #*
aio:E wiih oge ogc%heoggrents and uﬁe‘ii i‘ ein‘ *

those positions are inherited from that parent. *
The remaining cities are inherited in the order in *
which they gpear in the unselected parent skipping =
over all cities which have already beenr included in *
the offspring. *

Exanple- Position based crossover: *
Parent 1: a b c de t ghijs=

Cross Pts: * (Parent 1 selected) *
Parent 2: ¢ t a j h d igbe=

Oftspring abcjhfdgies
*

The cities b, ¢ , £ and i are inherited from =
Parent 1 in positions 2, 3, 6 and 9 respectively. =
The remaining cities are inherited from Parent 2 as *

follows: O0Off[1] = P2[3] since P2[1] and P2[2] have =
already been included in the child tour. Then =

oing thro Parent 2 in order, Off£([4] = P2[4], =
or£(6] = p2(8], off(7] = p2{6], 0r£(8] = P2[(8] and =+
o:t[io] = p2[10]. *

FEERES L2 e FEEREE

#inc e <stdio.h>
ig ude

<malloc.

#include "ga_random.h"
#include “gene.h”
#include "op_position.h"

/

L I X N X)

FYIT T o ol e - - oo e o ol e e

FUNCTION: get_ city_table i

DESCRIPTION: allocates space for the city data table
the city data table contains the position

of each city in each pareant and also

has a field which is set when a city has

b4

besn included in the offspring tour.
INPUT PARAMETERS: string lemgth

R Z I X X & J

RETURN VALUE: the address of the city tabls

T FYY YT Y) * va/

CITY_DATA =
et_city_table (length)
t length;

CITY_DATA *city_table;

/* malloc one extra location so that cities 1-N can be accessed
directly. 1location O will not be used =/

if (!(city_table = (CITY_DATA *) malloc ((length + 1)¢sizeof (CITY_DATA))))
printt ("get_city_table: Malloc failure. \n");

return (city_table);

}
/ErrssRnEnnssns KBRS SRR SR BRERERSRBRRRERE SRERARR =
* FUNCTION: positio

™

*+ DESCRIPTION: performs position crossover operation

Iy

* INPUT PARAMETERS: two parent gene strings

* space for child str

* the length of the two strings

* the city table address

*

*

* RETURN VALUE:

RBREREEERERRREEREEER REREREREREEERBEREERER t 21 * /

void position (dad, mom, kid, length, city_table)
GENE_DATA dad([], mom[], kid(J;

int length;

CITY_DATA *city_table;

{

int num_positions;
int i, pos, dad_index, kid_index;

for (i=1; i<=length; i++) { /* initialize city table */
city_table[i].used = 0;

/* select #positions that will be inherited directly from parent */

num_positions = randomain (2+length/3, length/3);

for (i=0; i<num_positioms; i++) {
pos = randomain (length - 1, 0); /* select position randomly */
kid[pos] = mom[pos]; /+ transfer cities to child #/
city_table[mom{pos]].used = 1; /+ mark city used */

dad_index = 0
kid_index = O

while (kid_index < length) {
if ('city_table[mom{kid_index]].used) { /* next position in kid filled*/
it (Ycity_table[dad[dad_index]].used) { /#next city in dad not used+/
kid[kxid_index] = dad[dad_index]; /¢ inherit from dad */
dad_index ++; /* increment indexes */
kid_index ++;

we we

}

55

else { /* next city in dad has been used s/
dad_index ++; /* so increment dad index */
} /% end else 3/
} /¢ end if #/
else { /* next position in kid is filled */
xid_index ++; /* so increment kid index */
} /+ end else s/

} /* end while #*/

56

Appendiz B. FEvaluation Function Code

The tsp eval program is a procedure which builds and evaluates a schedule. It takes
as input an ordered list of supports to schedule and then, in the order of the list, attempts
to schedule each support into a schedule. The function returns a fitness value to the main
genetic algorithm.

The schedule builder code includes threé procedures: ScheduleWindow, Schedule-
Support, and tsp eval. Tsp eval is the main procedure. It is called from GENITOR,
and returns the evaluation of a schedule. Tsp eval first clears a schedule, schedules any
overlaps from the previous day, then attempts to schedule each support in the order given
in the sequence passed to it from GENITOR. ScheduleSupport attempts to schedule each
support in the available time windows. Each time window is attempted by calling the
ScheduleWindow routine. If a support is scheduled in a window, the space taken by the
support is blocked out of the schedule. Then ScheduleSupport returns a fitness value to tsp
eval. This fitness value is normally one, but can differ if a priority scheme is used to weight
the scheduling of different types of supports. After all supports have been scheduled (or
failed to be scheduled), tsp eval returns a fitness score based on the number of supporis
scheduled to the main GENITOR function.

/* SCHEDULE BUILDER PROGRAM #*/

/* 31 Jan 94: auto file generation */

/* 28 Jan 94 Eval_tsp.c -- position crossover */

/* 28 Jan: add overlap variables */

/* This modification allows supports to be scheduled past the end of the day */
/* if allowed by the supports windows */

/* do this by increasing filled array from 1470 to 2100, and take off end */
/* conditions */
#include <stdio.h>

##tinclude <math.h>
#include "gene.h"

#include "op_position.h"
#include "ga_global_extern.h"

P L T T Ty
int
ScheduleWindow (spt, win, filled)
int spt;
int win;
int filled[21][2100];
{
/* Declare Variables */
int

bVis, /* gBeginVis - gTurnAroundTime : O if latter <0 */
eVis, /% ending visibility »/

rlLength, /* ReglLength + TurnAroundTime */

endSpt, /* Flag for Support either scheduled or run out */

57

3 /% Counter for support index being scheduled */

1, /% Counter for filling in scheduled blocks */
/% spt: Index for support */
minute, /* current time interval »/

length, /* length so far s/
scheduled, /* binary: 1 or scheduled; 0 for not schedule %/
beginSched,
endSched,
start, /* current start of support %/
tat, /* turn around time */
rts; /* RTS number -- passed from global gRTS[support} */
/* scheduledPtr : indicates if scheduled or not %/
/*+** Initialize Variables #s#*#/
scheduled = 0;
length = 0;
endSpt =0; /* initialize flag; end when it = 1/

/* Initialize Starting Point, Required Length with TAT */

rts = gRTS[spt] [win];

tat = gTurnAroundTime[spt];
bVis = gBeginVis[spt] [win] - gTurnAroundTime[spt] + 20 ;
eVis = gEndVis[spt] [win] + 20;

/* add twenty for overlap area */
it (bvis < 0)

tat = bVis + tat;
bvis = 0; /+**% reduces tat if near boundary at start ***x/

rLength = gReqLength[spt] + tat;
minute= bVis + 1; /* my blocks are filled to the right of position */

start = minute; /* Starting position of current attempt =/
while (endSpt != 1) /* schedule until successful or end */
it (filled[rts] [minute] == 0) /* it current space free */
length += 1; /* increment length if space free */
else

length = 0; /* reset to zero if space is filled */
tat = gTurnAroundTime[spt];
rLength = gReqLength[spt] + tat;
} start = minute+i;

if (length == rLength) /* then schedule the support here */
{

beginSched = minute - gReqLength[spt] - 20;
endSched = minute - 20;
scheduled = 1;
for (1 = start;l <= minute;l++)
filled(rtsl[1] = 1;

if ((minute == eVis) || (scheduled == 1))
endSpt = 1;

minute += 1;
} /* End Support */
/* fprintf (stdout, "scheduled = }d\n", scheduled); */
/*if(scheduled == 1)

printf ("SCHEDULE Support %d in window %d at RTS %d, begin: %d
end: %d\n",
spt, win, rts, beginSched, endSched);

else
printf(" Support %d not scheduled in window %d\n", spt, win); */

58

return(scheduled);
} /* end ScheduleWindow */

59

T T e Y
int

ScheduleSupport(spt,filled)

int spt;

int filled[21][2100];

int i, win, flag;
int sched; /* tlag = 1 it scheduled , 0 ow *»/

sched = 0;
win = 1; /* counter for number of windows tried =/
flag = 0;

vh}le (flag != 1)

sched = ScheduleWindow(spt,win,filled);
/* printf (“sched=¥d, gFumWin[%d)=%d\n", sched,spt,giumWin[spt]); */
it ((sched == 1) || (win == gNumWin(spt]))
flag =1;
win +=1;

}
/% if (ached==0)

printf("+** Support %d NOT SCHEDULED!#*#\n",spt); */
return(sched) ;

/% wREphkrrhrrbkkkEhnn ik Lt S22 2 * ks x/

float

tsp_eval (order, num_supports)
GENE_DATA order(];

int num_supports;

{

/* Declare Variables */

int
£i11ed[21]1[2100], /#* time units in schedule are filled[rts][time] */
J» /* Counter for support index being scheduled */
k
sit, /* Index for support */
numScheduled, /* number of supports scheduled */
minute, /* counter for current time */
rtslum; /* max number of RTSs */

/*%x* Initialize Variables #*#*x%/
rtsNum = 20; /* must be one less :than max cause of arrays 0-19 #*/
/* printt("rtsNum = %d\n", rtslum); */
for (k = 1;k <= rtsHum;k++)
for (minute = O;minute <= 2100;minute++)

filled[k] [minute] = 0;
/* printf("filled[%d] [%d]= %d\n",k,minute,filled[k] [minutel); */

}
/* Schedule the overlaps first, before the real supports */
for (k = 1; k <= rtsNum; k++)

for (minute = gOverlapBegin{k]; minute <= gOverlapEnd[kx]; minute++)
f£illed[k] [minute] = 1;
numScheduled = 0;
/* Schedule each Support in Priority Order */

for (j = 0;j< num_supports; j++) /+ Try to schedule support */
{

spt = order[j];

60

/* printf("Start SS Order[%d] = %d\n",j, order(jl); =/

numScheduled += ScheduleSupport(spt, filled);
} /% end num_supports */
/* fprintt (stdout, "num_supports = ¥d\n", num_supports); */
/* The GA wants to MINimize something... so do Max poss - actual »/
/* printf(“\n Number Scheduled =)d\ntssssssssssusssssssssssssss\n\n\n",
numScheduled); */
return(num_supports - numScheduled);
} /* End Eval */

P e T P T T P T P A S e P P
FUNCTION: read_data

DESCRIBE: read in data
INPUT PARAMETERS: filename of list of satellite support data

RETURN VALUE: none

CALLS: get_coord_array
read_coords
goet_2D_dist_array
calc_distances
wFephkkkhrppkhhk bk kkhhhhRkk BRERREREBREEEER B R B RS REE *h¥ LI IT RS il
void
read_data (coord_file, num_supports)
char coord_file(];
int num_supports;

{
int i;
int spt;
int rts;
int bVis, eVis, rLength,tat;
FILE »fp;

printf("coord_file is: %s", coord_file);
for (i=1; i<=num_supports; i++)

IR R R XIXELILRZELE.]

{
giumWin[i] = 0; /* set number of windows [spt] = 0 */
/* printf(“glumWin[%d]=%d\n",i,gRunWin[i]); */

it (fp = fopen{coord_file, "r"))

while (fscant(fp, "%d %d %d %d %d %d", &spt, &rts, &bVis,
&eVis,&rlLength, &tat) !=EOF)
{

gNumWin(spt] +=1;

gRTS[spt] [gHumWin(spt]] = rts;

gBeginVis [spt] [gNumWin[spt]] = bVis; /* add for overlap */

gEndVis[spt] [gNumWin[spt]] = eVis; /+ add for overlap #*/

gReqLength[spt] = rLength;

gTurnAroundTime[spt] = tat;

/* printf ("spt =)d, rts= Yd, Bvis= /d, Evis = %d, ReqLen = %d,
TAT = %d\n", spt, gRTS[spt] [gNumWin(spt]l], gBeginVis[spt][ghumWin[spt]],
gEndVis[spt] [ghumWin[spt]], gReqLengthlspt]l, gTurnAroundTime[spt]); */

/* printf("------ gBumWin[%d] = %d\n", spt,gNumWin(sptl); */
}

fclose (fp);

/* for (i=1; i<= num_supports;i++)
printf("glumWin(%d] = %d\n",i,gNumWin{il); */
}

else

61

iatal_orror ("Cannot read inmput city file datafile");

abhd prarars ey - - - - PN

FUNCTION: read ovcrl&p_dnta

DESCRIBE: read in data
INPUT PARAMETERS: filename of list of satellite support overlap data

RETURN VALUE: none

CALLS: get_coord_array
read_coords
get_2D_dist_array
» calc_distances
EREEES T2 * *x% e 222 10 e RERSRERERR RS SRREREES 2222 Y
void
read_overlap_data (coord_file)

char coord_file[];
{

[E R EIXZLI N 22X]

int i;

int rts;

int bVis, eVis;
FILE #*fp;

it (fp = fopen(coord_tile, "r"))
while (fscanf(fp, "%d %d %d", &rts, &bVis, &eVis) !=EOF)
{

gOverlapBeginlrts] = bVis;
gOverlapEnd[rts] = eVis;

/* printf(“gOverlapBegin[’d] = %d\t gOverlapEnd[%d] = %d\n", rts,
gOverlapBegin{rts], rts, gOverlapEnd[rts]); */

/* printf ("spt = %d, rts= %d, Bvis= %d, Evis = %d, ReqLen = %d,
TAT = %d\n", spt, gRTS[spt] [gHumWin[spt]], gBeginVis([spt][gHumWin[sptl],
gEndVis[spt] [gNum¥Win[spt]], ReqLength[spt » gTurnAroundTime(spt]); */
/* printf("------ glumWin = %d\n", spt,gNumWin(spt]); »/

}
fclose (fp);
/* for (i=1; i<= num_supports;i++)
printf("gHumWin[%d] = %d\n",i,gNum¥Win[i]); »/
}

else
fatal_error ("Camnot read input city file overlap");
}

62

Appendiz C. Schedule Builder

This program code is a modification of the Evaluation Function code in Appendix B.
Schedule Builder generates a schedule corresponding to an input solution sequence. This
solution is stored in a file named tourdata and is produced by the GENITOR code at the

end of a run.

The output of the Schedule Builder code is an overlap file and a schedule file. The
overlap file contains the start and end times of all supports which overlap into the next
day or within the maximum turn around time of the end of the day. The schedule file
contains the schedule produced for the 24-hour period. Included in this file is the support

number, RTS, beginning time, ending time, service time, and turnaround time.

/* Schedule Builder Code - build schedule */

/* 1 Feb: print schedule to file */

/% 30 Jan 94: <fix overlap by clearing the global overlaps */

/* 28 Jan 94: overlap of 20 minutes allowed at beginning */

/* 3 Jan 94: allowed supports to be scheduled past 1470 %/

/* changed filled[] array from 1470 to 2100, take off condition */
#include <stdioﬁ§>

#include <math.
#include <gene.h>

#include <op_edge_recomb.h>

#include <ga_global_extern.h>

PA L L e L e T Ty 2 Y4
int

ScheduleWindow (spt, win, filled)

int spt;

int win;

int filled[21]([2100];

/* Declare Variables */

bVis, /* gBeginv. gTurnAroundTime : O if latter <O */
eVis, /* ending visibility 28 Jan #*/
rLength, /* RegLength + TurnAroundTime */
endSpt, /* Flag for Support either scheduled or run out */
i /% Counter for support index being scheduled */
1, /* Counter for filling in scheduled blocks */
/* spt: Index tor support */
minute, /* current time interval »/
length, /* length so far */
scheduled, /* binary: 1 or scheduled; 0 for not schedule */
beginSched,
endSched,
start, /* current start of support */
tat, /* turn around time */
rts; /* RTS number -- passed from global gRTS[support] */

/* scheduledPtr : indicates if scheduled or not */
FILE »fp;

/*#** Initialize Variables ***x/
scheduled = 0;
length = 0;

63

endSpt =0; /#* initialize flag; end when it = i/

/* Open file for output to schedule 1 Feb #/
tp = fopen(schedule , a);

/* Initialize Starting Point, Required Length with TAT »/

rts = gRTS[aspt] [vin];

tat = gTurnAroundTime[spt];

bVis = gBeginVis{spt] [wvin] - gTurniroundTime[spt] + 20;

eVis = gEndVis[spt][win] + 20; /* 20 is max TAT - 28 Jan #/

/+ iz ((spt==1) || (spt==165))
printf(tat=%d,bVis=¥d\n ,tat,bVia); =/
iz (bVis < 0)

tat = bVis + tat;
bVvis = 0; /***s reduces tat if near boundary at start #*xs/

}
rLength = gReqlLength[spt] + tat;

/+ it ((spt==1) || (spt==155))

printf(rLength=Yd\n ,rLength); */
minute= bVis + 1; /* my blocks are filled to the right of position »/
start = minute; /* Starting position of current attempt */
while (endSpt != 1) /* schedule until successful or end */

if (filled(rts] [minutel == 0) /* if current space free */
length += 1; /* increment length if space free »/

glse

{

length = 0; /* reset to zero if space is filled »/
tat = gTurnAroundTime[spt];
rLength = gReqLength[spt] + tat;
start = minute+i;

it (length == rLength)
{

beginSched = minute - gReqLength(spt] - 20;
endSched = minute - 20;

scheduled = 1;

for (1 = start;l <= minute;l++)

filled[rtsl(1] = 1;

/* If ends in TAT zone then save to overlap #/

if (endSched > 1420) /% 1440 - max TAT; in overlap */
if ((gOverlapEnd{rts] = 0) || (endSched >
gOverlapEnd[rts]))

/* if rts overlap is new or this one is longer than

last */
gOverlapEnd[rts] = endSched - 1420;

it (beginSched > 1420)
gOverlapBegin[rts] = beginSched - 1420;

0;

els

; gOverlapBegin[rts]

}

if ((minute== eVis) || (scheduled == 1))
endSpt = 1;
minute += 1;
} /* End Support */
/* fprintf (stdout, scheduled = %d\n , scheduled); */

if(scheduled == 1)

printf(Y%d %d %d %d %d %d\n ,
spt, rts, beginSched, endSched , gReqlLengthlspt],

64

gTurnAroundTime[spt]);
tprintf(fp, %d %d %4 %d %d %d\n ,

spt, rts, beginSched, endSched , gReqLength[spt],
gTurnAroundTime [spt]);

/*else

printf(Support %d not scheduled in window %d\n , spt, win); */
fclose(fp); /* stop printing to file 1 Feb #/
return(scheduled);

} /% end ScheduleWindow */

F A Y Ty
int

ScheduleSupport(spt,filled)

int spt;
int filled[21][2100];

{
int i, win, flag;
int sched; /+ flag = 1 if scheduled , 0 ow */

sched = 0;
win = 1; /* counter for number of windows tried */
flag = 0;

while (flag != 1)
{

sched = ScheduleWindow(spt,win,filled);
/* printt (sched=%d, gNumWin[%d]l=%d\n , sched,spt,gumWin[spt]); */
if ((sched == 1) [| (win == gNumWin(spt]))
flag =1;
win +=1;

}
/* if (sched==0)

printf(#*++ Support %d NOT SCHEDULED!###\n ,spt); =*/
return(sched);

/* EEEsERsRERR SESRARRRE EERRERERSTEREERR R R *xnkx)

float

tsp_eval (order, num_supports)
int order[];
int num_supports;

{

/* Declare Variables */

int
f£illed[21][2100]), /* time units in schedule are filled[rts][time] */
3 /* Counter for support index being scheduled */
k
sit, /* Index for support */
numScheduled, /* number of supports scheduled */
minute, /* counter for current time =/
rtelum; /* max number of RTSs */

/#**x Initialize Variables #*s%x/
rtslum = 20; /* must be one less than max cause of arrays 0-19 */

/* printf(rtsBum = %d\n , rts¥um); */
for (k = 1;k <= rtsHum;k++)

ioz (minute = O;minute <= 2100;minute++)

filled [k] [minute] = 0;
/#* printt(filled[%d](%d]l= %d\n ,k,minute,filled[k][minute]); =/

}
/* Schedule the overlaps first, before the real supports */

65

for (k = 1; X <= rtslum; k++)
for (minute = gOverlapBegin[k]; minute <= gOverlapEnd[k]; minute++)
2illed (k] [minute] = 1;

/+ Set the Overlaps back to zero; since written to in scheduling 30 Jan #*/
for (k = 1; k <= rtslum; k++)

{
gOverlapBegin(k] = 0;
gOverlapEnd (k] = 0;

numScheduled = 0;

/* Schedule each Support in Priority Order %/
printf(Spt RTS Beg End Length TAT\n\n);

for (j = 1;j<= num_supports; j++) /* start at 0 for Tsp, 1 for sb */
{

spt = order[j]l;
/* printf(Start SS Order[%d] = %d\n ,j, order(jl); */

numScheduled += ScheduleSupport(spt, filled);
} /* end num_supports */
/* tprintf (stdout, num_supports = %d\n , num_supports); */
/* The GA wants to MINimize something so do Max poss - actual */
printf(\n Number Scheduled = %d\n###s*sssxxsssssssssssssnsss\n\n\n ,
numScheduled) ;
return(num_supports - numScheduled);
} /* End Eval %/

- e o e ik s e kol e ok . - * v ol 2 s o o ol ol e gk B e

[rrrne *hRRER * ke hREE RERERRREREREREEEE *
EUICTIOI: read_data

DESCRIBE: read in data
INPUT PARAMETERS: filename of list of satellite support data

RETURN VALUE: none

CALLS: get_coord_array
read_coords
get_2D_dist_array
calc_distances .
#**t****#***#**t*#t#t‘*#***#t**#t#*#**#0#*####***###0**‘**####*t##*tt**#tt‘#/
void
read_data (coord_file, num_supports)
char coord_file(];
int num_supports;

{

I E R EIXILIRZL]

int i;

int spt;

int rts;

int bVis, eVis, rLength,tat;
FILE *fp;

for (i=1; i<=num_supports; i++)

{
glumVin[i] = 0; /* set number of windows [spt] = 0 */
;* printf(gHumWin[%d]=¥%d\n ,i,gNumWin[il); */

it (fp = fopen(coord_file, r))
while (fscanf(fp, %d %d %d %d %d %d , &spt, &rts, &bVis, &eVis,krLength, &tat) !=EOF)
glumWin[spt] +=1;

gRTS[spt] [gHumWin[spt]l] = rts;
gBeginVis[spt] [gHumWin[spt]] = bVis;

66

gEndVis(spt] [gNumWin[spt]] = eVis;

gReqLength(spt] = rLength;

gTurnAroundTime[spt] = tat;

/* printt (spt = ¥%d, rts= %d, Bvis= %d, Evis = %d, ReglLen = %d,
TAT = %d\n , spt, gRTS[spt) [ghumWin[spt]], gBeginVis[spt] [gNumVWin[sptl],
gEndVis([spt] [gium¥Win[spt]]), gReqLength(spt], gTurniAroundTime[spt]); */

fclose (fp);
/* for (i=1; i<= num_supports;i++)
{rintt(giumWin(%d] = %d\n ,i,gBumWin[i]); »/

else
fatal_error (Cannot read input city file);
}

/tt###i**vv ERRERERRRRRRAERRESEREEEEXEREREREXE B R R R EREE RS X RRRREERRERERRERE
FUNCTION: read_overlap_data

DESCRIBE: read in data
INPUT PARAMETERS: filename of list of satellite support overlap data

RETURN VALUE: none

CALLS: get_coord_array
read_coords
get_2D_dist_array
calc_distances
t;z#*t*t##t‘t#tt#t*t***##tt*tt#**#*tt#****#tt#t#*t##*t*#t##t**t*##ttt#t#t‘t*/
vo
read_overlap_data (coord_tile)

I R R EIELINE XL

char coord_file(];

{
int i;
int rts; 3
int bVis, eVis; ai%
FILE *fp; &

it (fp = fopen(coord_file, r))
while (fscanf(fp, J%d %d %d , &rts, &bVis, &eVis) !=EOF)
{

gOverlapBegin[rts] = bVis;
gOverlapEnd[rts] = eVis;
/* printf(gOverlapBegin(’d] = %d\t gOverlapEnd[%d] = %d\n ,
rts, gOverlapBegin[rts), rts, gOverlapEnd[rts]); */
/* printt (spt = %d, rts= %d, Bvis= %d, Evis = %4, ReqLen = %d,
TAT = %d\n , spt, gRTS[spt] [gNumWin(spt]l], gBeginVis[spt] [gNumWin(sptl],
gEndVis[spt] [gNumWin[spt]], gReqLengthlspt), gTurnAroundTime[spt]); */
/% printf(~----——- gNumWin(%d] = %d\n , spt,gBumVWin(spt]); */

fclose (fp);
/* for (i=1; i<= num_supports;i++)
grintf(gNumWin[%d] = %d\n ,i,gNumWin[i}); */

else
fatal_error (Cannot read input city file);

}

/‘###‘*##**##***####t#*#tt#ttt#*#*t#t*#t##tt#*##**##t##t#tt#t#*#**##*###**#‘
FUNBCTION: print_overlap_data

*
* DESCRIBE: print out data
*

67

IJPUT PARAMETERS: filename of list of satellite support overlap data

:

* RETURN VALUE: none
t;#tttttt‘t#ttt#t#ttttttt#tttt#t‘ttt#t##ttttttttttttttttt‘#tt‘#tttt#tttt‘#t#/

void

print_overlap_data (coord_file)

char coord_file[];
{

int i;

int rts;

int bVis, eVis;

FILE *fp;

it (tp = fopen(coord_file, v))
ior (rts = 1; rts <= 19; rts++)

bVis = gOverlapBegin[rts];
eVis = gOverlapEnd[rts];
fprintf(fp, %d\t%d\t¥d\n , rts, bVis, eVis);
}

fclose (fp);
}

else
fatal_error (Cannot read or write overlap file);

}

68

Appendiz D. Satellite Range Scheduling Data Processing

The processing of satellite support data begins with raw ASTRO data which is pro-
cessed by Pascal programs to produce satellite request windows. This data is filtered by a
C program to prepare the data for the genetic algorithm.

ASTRO Data

ASTRO (Automated Scheduling Tools for Range Operations) is a computer system
and database to aid the range schedulers. The report information for the seven days of
test data is in a file named FINLDATA.DFT. This file is the raw input which determines

support requests and request visibilities.

Requests and Visibility Windows

Pascal programs written by Gooley and Schalck are used to process the ASTRO
data. The programs extract the satellite support requirements and request visibilities.
Five programs are used for this algorithm: one to process the low-altitude satellite (low-
flyer) support information, and four to process the medium and high-altitude satellite
support (high-flyer) information. These programs are run using TurboPascal on a IBM

PC compatible computer.

The final data format is:

1. Support Number

2. RTS the satellite is visible to

3. Beginning visibility time of window (in minutes)
4. Ending visibility time of window

5. Length of support (in minutes)

6. TAT (turn around time) required by an RTS

7. IRON/Revolution: identifies satellite and pass

69

LREQ.PAS. This Pascal program reads in the information on low-flyer supports
and saves the information to a file called REQLF.DAT containing the low altitude satellite

support requests for a day.

HREQ.PAS. This program reads in the information on high-altitude requests for
a day and saves the information to two files: 1) REQHF.DAT: the high-altitude requests
for a day, and 2) D1V.DAT: the visibilities for tke high altitude requests for a day.

TOL.PAS. This program takes tolerance data presented in different formats for
each request from HREQ.PAS = d standardizes the tolerance window data.

CROSS2.PAS. This program cross checks requests and visibilities. It cross refer-
ences the visibility file created in HREQ.PAS and the output from TOL.PAS to determine
all the RTSs that can satisfy each medium or high altitude support request from TOL.PAS.

RTS.PAS. This Pascal program ensures all RTS sides are included once and only

once for each support request-RTS visibility combination.

Prepare Time Window Data for GENITOR

This program reads in the separate data files for the low-flyers and high-flyers and
combines them into one file for use in the GENITOR gena:tic algorithm. It also changes

the RTS name to a number for reference in array structures.

/* b Jan B4 Preprocess Data modications #*/

/* now strips out all windows for RTS # 9, 16, 18 to match Spike */

/* -- reads in request windows of LF/HF and prints out concate file */
/* with RTS names changed to numbers =/
/* 1) Open output file "Dayout.dat" =*/

/* 2) Ask for LF file name (ex. "LFDaylg.dat") =/

/* 3) Read in data, convert name to number and drop IRON */

/* 4) Ask for HF file name, read in data -- start spt # at LF +1 */

[REERBRREERERRRRRERRARRRERRERRERRREARRERREARAERRERERBRRRRRERRKKERERERRKR AR KR
Program: Process.

DESCRIBE: read in data
INPUT PARAMETERS: filename of list of satellite support data for LF and HF

RETURN VALUE: none, but print a support list to Dayout.dat
CALLS: read_data

LA R E LTI R ELE;]

70

T Y e P P R e T e R I T2 L 2 Vg

#include <stdio.h>

int
equal_strings (si, 82)

char si1[],s2[];

int 1 = 0, answer;

while (81[i] == 82[i] && s1[i] '= ’\0’ && 82[i] != ’\0’) ++i;
it (s1[i] == ’\0o’ && s2[i] == ’\0’)
answer = 1; /* strings equal */

else

answer = 0; /#* not equal

return (answer);

int
name_to_Num (name)
char namel[];

int rts;
iz

rts = 1;
else if (equal_strings
rts = 2;

else if (equal_strings
rts = 3;

else if (equal_strings
rts = 4;

else if (equal_strings
rts = 5;

else if (equal_strings
rts = 6;

else if (equal_strings
rts = 7;

else if (equal_strings
rts = 8;

else if (equal_strings
rts = 0;

else it (equal_strings
rts = 10;

else if (equal_strings
rts = 11;

else if (equal_strings

(equal_strings

rts = 12;
else if (equal_strings
rts = 13;

else if (equal_strings
rts = 14;

else if (equal_strings
rts = 15;

else if (equal_strings
rts = 16;

else if (equal_strings
rts = 0;

else if (equal_strings
rts = 18;

else if (equal_strings
rts = 0;

else
printf (“UNKNOWN\n");
return(rts);

*/

{name, "POGD-A")
(name, "POGO-B")
(name, "POGO-C")
(name,"HULA-A")
(name ,"HULA~B")
(name, "'COOK-A")
(name, "COOK-B")
(name,"INDI-A")
{name,"INDI-B")
(name, "BOSS-A")
(name, *BOSS-B")
(name,"LIOK-A")
(name,"LION-B")
(name, "GUAM-A")
(name, "GUAN-B")
(name,"PIKE-A")
(name,"PIKE-B")
(name,"REEF-A")
(name, "REEF-B")

s Nt Nl Nl Nl Nt N Nt N N NS SN N N N S N N

read_data (out_file, coord_file, start, endPtr)

FILE sout_=file;

71

char coord_file(];
int start;
int sendPtr;

{
int i;
int spt;
char rtsName[8];
int bVis, eVis, rLength,tat;
char iron[16];
int totNumSpt;
int rts;
FILE *input_tile;

input_tfile = fopen(coord_tile, “r");
while (fscanf(input_file, "%d %s %d %d %4d %d %s", &spt, &krtsName, &bVis,
&eVis,&rLength, &ktat, &iron) !=EOF)

spt = spt + start;
totNumSpt = spt;
rts = name_to_Num(rtsName);
if (rts '=0)
fprintf (out_file,"Yd\t/d\t¥%d\t%d\t%d\t%d\n", spt, rts, bVis, eVis,
rLength, tat);

fclose (input_tfile);
*endPtr = totNumSpt;

VAT I T MAIN PROGRAM *%%*x/

main()

{ /#* start MAIN #*/

/***% Initialize and declare Variables *##*#%/
char 1fdata[12], hfdata[12];

int NumLFSpt, NumBFSpt;

FILE =#output_file;

output_file = fopen("datafile", "w");

/**** Input LF Filename *#*%%x/
printf("What is the LF filename?");
scanft ("%s", lfdata);

/++*x Read in LF Data and print to Dayout.dat *##*x/
read_data (output_file, 1fdata, O, &NumLFSpt);

/***+ Input BF filename **#*x/
printf("What is the HF filename?");
scant ("%s", hfdata);

/#*s* Read in HF Data and print to Dayout.dat *++xs/
read_data (output_tfile, hfdata,NumLFSpt, &NumHFSpt);

fclose (output_tile);

printf("NumLFSpt = %d, EndEFSpt = %d\n", NumLFSpt, NumHFSpt);
} /¢ end Main =/

72

Appendiz E. Schedules for Week One Data

Schedules produced for each of seven days of data follow. The scheduled supports are
sorted by RTS, and by time. The columns are: Support number, RTS, Beginning Time,
Ending Time, Support Length, and Support turn around time.

73

w0

O W O OOOOWw W00 O oo

[Vl Talalt-lalalalyl NN A ONONON NN
ww] 0 w WU W0 i - L w0 -t 7] W WWWURG _ WHNO -t Wit 0
OO vH+IDO O OO +HAOW O O O OO WWOM OOWMHHHOWOYOWD ONNLOO HAHHOHAHHHONWOWWPN W O Ow WO
Uoiala] N OO 1 (N N NOW AN IO NN v NN N ID it N o~ OO (N WM 0N
W O w0 (=] win N 4 ouw] WL OWWOL) W o Lo/ o

LD et = NI LOLOLOM~ P O R oM PN

LN N
O vt ™M 40w M~ D O WAHOOOIMNM N~ 00 OO-OANMOO L © QONMNDO ™M OO ©Ovivt
nm VOO © oW M WD N OMP-IORONL) OO0 M~ W (NONONLIBAASNOO WHOOWLW WD —HDRON0 OO Q
M OONVHILIDMLI DD OOMNOHMOROOHrNMMNO O D HODOMDOOOO HNNNM OHFO DO MINHONO v - (N FHO N HM =N HFNFO N v
1059ﬂ122333“5155565n7“88%9~m914 - .m.d a2 .b5”7WSWI1.1.1111104123“55678W9911111114.“571111359”2
Ot e « wdd @ dd @ dddeSgtCam mmm m M moamammmMdindds deddde dddddddgaid MMMMMMiKa
| Tl lagleageead | | |dld) i) b b L LV LD LIE@MILI@I@i@l 1110 DRONOG TNOYOROROG JORORORDSOROROROYUSL OO O 1 1)
(o] [1t)1 | |)| - [| gl et D NN | Desdethettetnd | e Deidcihel i Deihethet) | Dt Dbt et i |
1T - G | OOCNMOOOOONMOOOOO0000 | OO0 | mm.lm
(= OMOOOOOO000000000000OOMOO0OOOOOH m
8 CWCCCmCCCCCWCCCCCCCCCWWCCCCCC T.IT.T.
NP 00 O OO M“ DO ¥ OMNOOINIO RO D W CNCNMIMONDOVONRW ORHNO —HONMHOROD Helte OG- M
436278829005223“2“%%”% 77189901164.39123%15

Day 1

7m71223°1—b M OON Pt N PLOOD OV ORNNMYHILD LOTDMI] OM0

00
AANNAHNNRNIM AN N v v v e OV LD v v NN NN O N NN N H M O MO N HO) v vt vt

WOWOOOOOOW WOWOWWIOWO OOWOLIW
O OOV N ANH AN NN (N

w ww w0 _ww _wnw w WO 0 U] O) w_w_uw W
WO OO HOQ HEHOO O HOHHO O OWNOMP-P PO HOO HHAOMHOO O OO HHHHOMUHIHMOOUOMNDHO O OO HOHOHOO v NDLIMDLD
LOTHONICION (NN NN _ N N NIt ettt i) NN N NN NN vt eeEN NN O N NN T dvieiieN

-t o wno o 00 Wwo w_w oW W (7] WO w (==] o
o 0454.1.14.211.4.661.311.6321654.96854.3501.01.061174.64.4.34.4.14101558382055315627154.61.4.4.4.1.6704.50
CNDvdvt wivd wivd vieivd vt -4 HeA M- AMOMB-MMLD (N i - vt e NODNNOOWME-Mv vivdeded v wd =it MOMMHD
- |y ¢ ow w0 oW Wwo OOOHHHHNNMMYO O o0 © 0 00 OQOOO+HHHNNMM (=3 w N O WNOOO (NN
© BND DDA HBOMMTHHO MNP O Tt vt v v i vt = M N RO ORNOUORHN THOM O Qi viris Tt UM N ONO O =LA N MDD v vt v vt it

OO (DI I 00 P 00O LOM-M-E~ 000D 117433“5737774899 OO NO LN O DWO DOV RND
Wit NN MM <O O L RRONRNM 1O NMOLD - OO _ M0 OMOOWMOMONHS NMMS W0 _© M0 HrDHOW
[>] o ¢ Wy W oW o0 NN N O v IO ow W o IO LD v H RPN] W N @ QONMOOW
HLUNH DO LD D DANONP-OODNDON B-OOOTH-NNM MW 60925767950974617000111122300098490183894.17001122
OB MMO N O MY OO MOMDOOMN rHrdvivtrird viv it 16333245266538991111111111752426“55556359911.1.1.11.

o Loy 3 I, L] *OW O ~ (e 10] (N N OO 0 - (NI (T -
Nt o - -gg -l ool ol e o] o} o L OAUOX men Mm m mmImmEOMEmMMRMMMML O L O O LOLLLLOLOL
|| eg) weg | o | | e |) |l) gl |)80 L1 DELI 1eam il e immmimmt F 1101l HI0IOVLVOIVIVIVOLE |1 L L L
<O0 10110 IOOI] 101001001 00000000000MoOl 100101 1 101 1 000000EO0DC000IT0I 111010101 1 00000000
1 PVUOBUO0VOO0VUOO0OLIOBIOOLIIIIIITIIIICD | OOV OHO0000THOHGHOMLIBIIBLLOLOOOOLOLOBOOIIIIONRD
OOOGOGGOGGO0GGGOGOOGOOGG00000000000OOGGOOGOGGGOGGOO00000000000OGOGGGGOGOGOGGOOOODOOO
GD;POPOOPO0D.D.00OPOpPOPPOOPD.PPppPPPPD_.GPOOPD.OPOOOPODPPPPPPPPPPPPPPOPOOOOPOPOPOOPPPPPPPP
o [T [-V) Y PRy =Y O ARy PRy By AR P B Befle

PO O om b ® WO n ON OO~ DLONOAN oM O 0 NP HDRHDMN W00 N - ¢ N NOMHO D
O OO D HRNOO M NN HO FOH AN OO NN HNLD LD OO OO MM ML O O+ RRDMO FDMWD OMLIHHNDMLDODOHDNRNO
21.1.11221332245526227229921211.1.1.1.1.314.112224256627822221221221311112334252627822112123

74

[T.]
o O [elele]l:] [elelelell.] L= (=] ow
WNO N NN NN~ W N o~ Nt
W w w ~ N wwuw (Vo174 VBT] -Q [T+3 w0 [Vo17s Vs IVe T 1T] w0 n
HOHOHO M WIDOOTHHMOOWSOW rHriOHOOOYMOVOO OFOOHOOO®W OHOOOOOON AT IO O 00 OHOHHO OO v
N N NOHO~MNN NN ONO N NNt = ONINO NN NN~ (N NN N LD [T+ ONNONONONNN N oK
o O W N (o lol=] NOWO W 00 - o ~“ROWOO W o wn
NOMNNMW NP OHM =N-IPIOM OO NN IO O NHRAO HFH DO O H LIV O H NO FNHO MO LD AL = O M- O (NrD NN OO
v AOLMO rive e OO OO0 - el HONN vt OO O vttt [T.] - it vt i
W M B~ SO NM [olele] OONHOOW W O LDNM w0 i N N FHOOWOO Qo WO w0
00N OO viv it DY M v (NP vt vivd DM RO v vt vt v v vt vt v H) = SO D - O HOOH - D v AP =00 NI NO RO UMMM
UOM ML v MO MWD M=HONDIDN 0O~ WDLPUONN —ONODR PP O i ONONMMMN- I OO ONOND
O 0 O OOAONONN ORAONOWN M WOANVOMO™ WO HHOON N PIOMNONTIO [+] HHOWO M 0Oo
W M N OMNWW [ol=l=] WL HOWW O MARNOOD O ® L3 SO M WOOQ O w OO0 (=4
HOABLOM OR O -NMONDDONMOO N M ODINIODLIO O NMMW ML ONH-HNHMNONNOMNM LHONOMAXN O NI O NN 00N~
L0 OO 00 PN vt v v NI IO D () v vl v QO - N OO S MM M v vt v A N MM et DN NM M v vt S =HONNNMAHO OO R M~OWVO R
o 00 O (2]3] ool (= M DOR - (N PO v PLDONON HPOWO O (reloels]
- a o wafatal mmm MMM vt atat wateagial MMOM - €00 -t ot e et ot Qe -
g Giagt 1)) COE)) Ipe) | 1) 1 |of) et 4t | 1PQ] | | e | el | o) felatiaiag) | L] ettt | | | et |
S Y S 0 B { S REEmLE | | SRSEEE |) SEBEMEtE -G | M 1| | SIS) A 1§ fad]) .EA_ﬂm_ (I _“HF 00000001 111101001110
ORMOmMOEROOCCOOMBMOOOMEMOO O | w35 = X] o < =t M e [LINA (LA L0N?) frofalfeqbofaofagfeofafedbad BRIIBIIVO00OVOLVO0OL
O OO OO HHHOOHHHFHIGD DD €D < D DD DD w DD M-, KIFEMEEEEEEEM sy S000000VBIVGHBOVOOIIVO
Yy d st st T s T D 11021 I LI DD DU O VO DO HIHA IO, H MEMHME 0,008,880, A0 000 OR.0AADOON.
S G s 1] wTnd =] (TR (Z) ane AR, (=~ o> AAife, Ao [-Y-W-9
™M M O PONNY oM HOONOOND b WGANN-M O~ -t [¥s} - QW [WANNOMO - N~ -t
M YDIDD O M HONDHNM—OONO MMV ONFMNOHNMTHODBOHN MO MMON OORNROINNNNT SLOLOD OM 0O vD v (N v NN QOLOLD
OO I N 7434 40D (NN O N 00 O ¥4 ¥4 w473 00 v~ v v D LD O D w4 v 74 v v N v NN HUO D v v i HLOO M- 0 DY D D b e A H) D PPN OO M 00N
© W WNOOWW WOOW CWOOW WOWOWOWO
IO O i N it OO IO N NN - OO
W DUAUOUDWLY WWW W) Lol - ww L 0w - wwn _ w w0 w D 0
i HO WO OO0 OOUNOO wHwOOWOWNHOOHHIOOOWHO OOMPO O OO OHOUNDINO P YOO O O
- -4 i vt D H N - (N NN NN 4NN et vetrd L) vt N WON AN NN (Nt 1) 08 N N
© WOOWOWOO 000 O oo o OO N O O (=] (T2 207+ i un
A H I v v LD HOICHO CUO D DO QO OO MO ONMAIWLINO PH OO HAFOOWOMD O NHHFD AN OV O LIFHON AN iD O
RO HDONOFOMDOM vivd v Lol YO HH - N O F MO O - e SOWUPO0 O W N e -
QLID OO O HHPUNOOOOWNOOHHHNNMP NP« LD QO Ot OO0 OOHHHNNMNMMY i OO O OOFNMMAPIINOO M wn
QM i O v M0 IO D IO D -4 v OO MOOHNOMHOOM v rivirirdriviviried O O MION LMD N M wird rlrtviedrtetet NP0 =M
NN LUUNO DN 0D DD DD © 0) 00LD 00D O 00 0000 O MO O I MM NOLOL MO 000020 AD RO MO N
WHOONOOMMO-NM e D o~ DOLINEOHD PN~ Mt ™M OO OWOWNONOWDLOW0 N M ¢
QOO OO POO OO OWLYONLIC (MILO 1D (MO0 LD wn L) vt QoW NUAMODHONANOI «~ OWu O - OMOMMNON« i N o

AMDRNMD DO COOMNMOMPBO OO NNMMNHHOOM=HLINHONONOERAOOCOHHANNNMNMNY 11O MANOVRRHONOO ~NNMMP O HOL-LONO

. v

)] e o] o o e o] o}] 0] 2 2 o]] o] o o ol o ol o el - g wale Lt d MM MM M m MMAMMAMMM gl -
O D N D T N T N N I R N N N U G £ G UG & U I N A N A A R I il Iimimaamiml fLe b)) g) -
e Bt et P ed e et =t S = b b e et bt = = = = = AN | 1 D N0 | 00 | NNNNNNINININNINY, mumaiLnning | ILn NNUININY 1151 11 - AR IR
mmmmmmmm"))))))))))))))))))W 3NN NNNY NN NN NTINININY NN,] s [K7217217; AN, -n-quSODOOIO'IOH
S O e e e Sy S S 2y 52 5 2 S S O O O O N CNNO O O 0000 000000 00NONNOONOURNUNL DOOOODDHMHOHDODHO
* 4 L et bt b = P = =4 =4 } 4= == == MM O C OOmMMmme solvelvalsalssleales mOMMC OOC C [eal-alsal=o]- o N NG Fb T2 B | =TSN [2)
mm A mm m 0 Om m_ mm m S RS S s |

=D O MO O YO MO O R NNHOM =4O ORI M v w0 M~N P00 NN =WOON—-MNNM O O M MOOONINMDOMM © w0
DNO RO MM IO O OO M NN OO HOBNIO MO+ ONN~OHONONI= - DOMOPINI) O SO PN D AU P v OO NN O P IO M- LD RO OO
11212222222222222122223311331114425227722292211231311313191113266728212131311111212324

75

¥+

QLW LW LW OO w o wow Ow
WON v vt vivied W Orivivivie NN il . OO =N ON v

W -~ WWN WD _ O WA - W W W W 0w O v i
e~ WOW OWWW WOOO™ W WOWMOM OOOTHHMMEHHONVOHOHHHHO M LD v v v HHIO HOW O i vl vivi vt WO~0 O (=
i OMwMeWrtrvMm NN O et et H OOV NP N OO vt Lol - (Nl (N - NI A N oN
ONv W oM Lo WDWOWNO OO v~ WO 0000 O O QOO0 000w oN
W~ OOV LD+ IOLODD vt LOOOLOM LOOMNHHM O OO QWM NM MY QORHONNINHHNINOWDHONHONHN _INODFOMDON O
O DM=HOOW e ONONP-O DO v vdoert D MNP DO LD v~ - -t OO O PO PN vt

O HOH HOINM MY O OO NHNNNNM OWWOOOO0 NANMM OOWONNMM HOWINOIOWO WL WOOOWVWHOONMMMPY M«
VMO O rrivivrv ONMM~ONO v ivivrivd 471293836921111619261111594924835937606031491501111111151 (=]
DDt L=NNRDO DD DD S P-P- 0000 000 NHH- et NN MM HH OO D O M- 00NN - 00m
HWOOWOOOW Mt O OWOMMNNM ROHONN OV vt) Ll QOWNPOND O

WO OOWOMOWRN O YOI D0 W) WOOOWNE YO OCLOWOOY« OWWOIOWOOO O DO OO OO MM ON O v
43511223334067829330111236924072794860223995918233 WNHOOFONYNIOOU=HONMONOCOQ=HMMMYYPO—
el et mmMm MMM - wdd g <t mmmmEanMA@gtddadadCCga g g deaddaiel <L QLG PO
NS RN -1 - - - R - DR - - FOR SUSOSURURUR TUR DO O O N RO N N ORI UNUNUNUS - TN SR LU -t
MKKKKIIIIIIIIIIII I e I o L U o S T e o L L Lot o v e L

e e

VOV O O - - L] C
DY ONMDOOORNNMO MY M~OMUBINO MPOOOOC OO LDMMWDMM RO ORMOOORON OM O riddwits RO BN 4
44570677899045197024.1.677894.694.8922334.851.834.8914.57724.4.5566777799311013334.4.365618930 N
22291.222222311223222922222111.211.22222821211112222211..111.1.1.11.1.111.42262222229222122135681

Q

WD OWOWOWO (o]l /ololele] w0 ONOOOWNO
QNN =N ONONONNN HONHNNN N
o~ W0 LOWOWOWD _ 1AW wy NN WOWWIDWOWLE L0 o N [FolVo 1T SRt] UL w0 V]

OO OO WD v et A O T HH OO HO OO O v (NLOHOWDWD it T A HO HOW O (NOODMUWWD O H OO IO —HOUNWNDLD O
CNvivt et et e vt WO - o~ NN NN (Nvift vt vt N Qv et e el W0 N NN O (Nedwdeted (N
vi We W WD OW o et WOOOWHIOWO O 0noe « —“0NOO0 O oo (=] o

WWVMNOOVOOWM v LTI e i vt Mt 1 O P OHON LOLON O 00 O v (M) v et el e (N H O L L) MO +OW OO 4 4O OO L) v OO M) O LD N
OO GNY M - et vt OHOFNN - - HHPONM-MNOMNO it - -t
O NNNNHO v OO MO ©0 WL HNNMMNHOOOOINOOW I LOWWOMHHINNMMH ANWOO © WOOO0O O WOOoOOW
QOvrivivrivtriviviviviy OBRR D A AND P NIOWB RO H it H OV NGO NNB R HHAO Tt Y O A =it 00 LY QNN P~ NN O NN O
-t OO - NNMMPOIODNNNOHDI O v NN POON DO O - GOV HH DO OO M0 0N

WONONW O O eftvt L O 00000 MOMPNIO © M~ W HOUOM=O N_m n M~ N
HHORMO MO MM WOOOOOW NNO o OYHNOMOVOHOOWWOOWLY M OOWONMUOVNLING 000 © MNOOW O O
AOOHHANINMMY OO MDD O OO MO0 vLD I NI P F DD) = =N 194717486884600511.2233459258551313814066579167
m1.1.11111.1.1.0261122333“455”“7””%”94&111111022334455“6“8891011__1.1.11106111n2%%44455m5m777sam

-

o ot} o} o} o} wG LN (X mmm m M MEMEMEMOLLLLLLLL L DLLL LLLLLLL NG G o Gl
A___-_______._.____.B.__BB_BBBB.B______.__._____C_C.___C_______ Il 1l) § 1 | i) ||| |-)
1 OO00000000OGOOEO0000 10001 101 11 101 0000000000000 10| 00 | 0000000« <} | €) | of | «f | el |
OGGGGGGGGGGGGGGGGGGGLau.u..uCCGCCCCGCGGGGGGGGGGKGGGGCCCEGGGCGGGGGGG_ gy)]t
[T 0000800800000.uC.LCGG.LGCGGCGCCCCCCCCCCCCCCCGCGLLCCGCCCCCFUA m mm m m
IO D2 B B s Do Do Do D D2 De e D e B e B 2. O O A0 OO OO0 Ol B D D D O O A B A AL AL 8. O B O l’\—)?\u??))’f,—

[A, [Y- W . Vg -Gy [W

CHUAMNMOFOMDONAWO ORI ID O - N PHFONMAIONIDOMM I WOMMN (NOONMMY “4.1.1. [MO W) MO
4.6607182933445676788599035214265507122336788880071.9334.580611.293 LD OO MM O N MM OO —H NN
9221212121111111111131125627788291211111111.1112252622229121112141111112211112426222228

76

QOOOOW O W OWOWWO O wnwoo
NN AN W 1= N N H OO NN
wn w_ wu w0 U] w N Wt wn un wn [T.1T.17,]
OOQOOWVUONOOOOOOODN AOHOOHOOOWOOOHHOWHO ™ _ LHONOWOLOWDIOW LOOHOOOOHOOOOOHOO vvivrONN
NN =IO (NN vt [V} AN NN NN NN Nt N O v v et e OO NN (NONONONON . NN e
o O [Ts] [T:] (=] W o o Q o [elalT.]
NGO QWO O HOD M- NEHOHONHMHOH NI HNGU O™ OODMONONNO OLD LD (MO M4 DWW WO OO N O I
At O P P vt rded i Q it et vl vivtel - 0692591583“02111 wdetrivd vt e Cal*2al
OO [T o oMo Wu D w Q WO WMOOHr-ONONNMPFN w0 © w0 OOWNOO
M OO O vt =LY MO O vt vd O NP I HHOLO DD O ML HO H ettt ririvririri QONOOMOL OISR OM O 4t ririet
OO OOLOO M vif~ OO0 v NOHM+1HOLO MM 000D+ Pt HONHDOPHHLIOLD - PN OND D
OOMONVOOO ™ OW N OO (N MM IO _ O~ 0 RN LOOWMPONMOWYY vvivl MMPH OO ON MO owwn
S ONOORD 0 oN - O O (= (=] Q M OOFHVHINOMMNO O Y2} L4) [elelelal o=
OO =Y NN vt =t =D N 013748067004561543593700111222341851597798581235267603001
OO YWt vt rt - RO OLD vivd - AHONOMMNHBLONN NN OO ONHAN Hririvd vt i v RO —HNMONIDH DRI TR D viv
OOr~0 e LHOOW N v (NM P DO~ O 00 @ v NN UOOO M0
ol et -d g QLN < - - o et ettt el i OM m m m elelelaeliele]
et]))) | et) et)) i1 o | et) el | et)t} L) P A D DTLDLDTLD | e L Ml mmmmm t ey 310
DO N R N - 0O« IDI IOIT IO IOI00 I 00000O0c00omMMO L 101 11101111 101 1 000000
“EEEKK S Erfae £adn, Layfay ay 1Y | GOWOOOOOWUWOOOOWIIOIIIILILICIILIIICS | | BOOVOOOOWYOOOOOLWOOIIIIIY
DO D ===l MEE 2] ™ 0000GOGGOGGGOGGGOGUOGOOOOOOUOOUODQOOGGOGGGGOGGGGGOGGDU0000
PPt e Do e R2s Do mu u PPGPOPOOP000?00OPOPPOPPPPPPPPPPPPGGPOOPUUOOPOOUOOPODPPPPPP
[- 211 T~ Y O A A SRR, AARe 0 B 00 AR AAAN QPR ARy
LOCNOD 00D (=4 N [3) oNAY O 0 uw o O IO ON-MOMARN (=] - N WONHE N
QOMM-O NP OMONONOON D O OO NNNWNHNMNA M FDUOLDOM b 00 0N v OG- O N O D O NN UINFNNO OO
AOOO B vt vt vt eI O+ (NGO N vtvd v 00 v =1 N O v O H H LA M NI NN NN NN O H O N O (U v H - H N M H A HLOLD O O IN- 00 NN NN v et

w w
O WO WO WL OO OW OLOW OO
QO™ vied A N NN ONI(Nv OONN™W
0 w0 W W VN w U] w0 wu LOOW N [T}
WDHOOOHHOOHHOMHOMN (N HODHHOOWWDHOOWYD wHHOOOOO0OOOOOOOOOWOOWNHOHHHOOO WOoOVOo [elelelelele ol VMO ©_ OO0
- VNN ($19] o~ N O NN OO QVONONOIOTONONON NN NN NN v v vt et vt vt NANNNHAHHRAONNNNNN _ NHR-NODONNN
(=] [e1e) OO0 OO Ww [=4 Ue) O LW -t o~ o ®_«N
LONPOH AL NHON v MOOONOMPDO OO HNMHNOWY NN MHF OO NLOHUMOMN O N RNHOOL) OHIOOND ROOIFO ON
L e] ivd -t - OMONOMMrirt LARNON At e = e - O MO 0 MO DM OMHM i rtrdvivivd OO OO rivivd
[o]=] o0 0 MO NN WOOOONY O OrrtNMMtFE OO MO N © ONONNMFHDO
N ALOO NP~ =D D00 v+ 00 O v -+ v+ O O D MY QO) v v4 v w4 MO H I P = OO YOI QL) v v = OB HO O O v v NG D O vttt OO
NONNIOHO L DO M- AN O D1 +O DN Tt ML) =IO HO D 000 O OLO 00 v DN~ ~ OOOND
g -1 ~ -] L ON MW [elelele] NN HHLO O N 00 00N OO NN NN H M~ MOPDNMWDON O OFMD ONvILOW
Tole] o0 o MO VOWOMNNN DI - NHOLD QRNONDONY W OO0 LD+ Q OO v
N O ONHD O O O O DO PN M H O NMM- OO NM NN DO - OLIMIA M LI HO O AN HHLO N OO DN NNMM MDDV NNMMOO MO
NOIH IO QPO O vt OO OV DN ririvd = HOLIMOMPMD MM vyt it - S H D O M DV O H - H AN O OV VPO O Trivrri(NHOWOW
[l) (1] 4 no - NN PN OO M0 OD OO vt HOANMMDOON O W
-{- -fad -fag g il mmm Qv <t g Lt mmmm ¢ e e) v
) |) L) leapt It | ettt |) |) L0} OO]| dadaadda |
(2121210101 AR SRNNUY i1 IR 1)
tal::

h
~ ®
| | ettt | | adal | |« | |
L T DL I DD
VVNNNTHINNVINY, %]
QOIVNINNOO0ONIN0LLNILILUIL
ARACOMMOOMMO m

m@am «m M M|
e 0w O W
OM-NOYBODNO T
HHOINM N PO IO,

VNN N NNINNNNINY) -
000OONNOO0000OmMHHHOOOOOO0O0COOOHH OO Ok«
e la bt e e S M MR e T T T D TR T T T e i NE PR NG PG N N N6 1 . PR C T Tt P B B R
m mm] N NG N M6 . T 1 TR, . 1 MR | [Sh IS I 1S) {1] (T}
Q DN VOHON=HN-IMNO P HOMN OO0 NN Lo s L5
LD OO 0NMHD OO IOV LMWL HOIN D O LID O OMMOHO rHOORNRNHOND M ORNTR
B H IO HOH N NN NN NN O H 44 H N NI DD O M ORI NI N v+ N O 000 B NN v (NILOLD

7

WO OO [liele] WO WD 0w oW OoOOw QoW
51.221.12 W e NN 5111121511 15215221 221.
Lol WWOWW W WO DWW _ 7] LW WL WD
04.4.0030 QOWYMm 51111510111151111.0 OWNoOOVO 00 010100000001110 0 HO 460111111011501560
01111412529211 WD v OO HHANHH O =NON NN AINANNNONN NOMN) D v N N et
N Wit OOO0O o 0000 Loielele] N W O oo N WNOOWWL O o

136078644 594.1. 522125251111512224.1055880550 WO OIS P HOIO PP NOD 00005794715411423551550

OWOWVOOO _+ODNO

(=11 DO HONMMOPDWD A v vrivririvivivet HOPMNHPOOO P - (NUOO

HOHHHNMSE O MNP -O O OWWNO 000555005 QOOHHANNMMESR- O © O OvONNNMPFHOWO OO 205 OONN

01111117471111

00 ENGD MO I Lt~ DN U OO Vv v v vyt v v i OMNON NAHNDM OLOMOD LD v vi vt riviviri IR v NO NP O NV O v vivt

vt LOOIO = NOIM M < (UD DO O~ 000 0D OWONNDM DD HNDHNMMM0ON-BP OO N DO~ O D
1920751 ® _OWr-iMmON '] RAOVOCONNOONOV (N MIUOODON DHRHOLNDOOMMY © »n _OMO

QUOUBORN W OVM

LOWOWOO OOOKOOOOW) OIM-HOMANNMDN « 0 ® [T fele] NNOMORAAANDOWOL N0 O

BOO HHNM O MDD NMMO NOM OONFND OV OMONOMNNMM-O OO N NMM MWL N HO NMONLN MO DL O =N NM H O M DM FROUNONN
D riv vt v v OO I v —H ML O I MM PP LD DO O M- 0 0 O M- v vt viviviviy YO O w400 (M -00 (00 M v MO LO O v v vl vt 74 vt v et NN D LD OO 0 O v vivd

18

xxxxxxx -1 KKKKIIIIIIIIII] IIIIIIIII [} IIIIIIIIIISA . _ ! SSQ. _ _ C-C N 17217 .C NN | NN,

o o et S S R = S o mmmmmmmmmmmmmmmmmmmm

CCCCCCCOCOCCCCIIIIIIIIII ot bt b et g end i B4

OO

HOOPNWID N OHNNHDOROMNROND 934530275 97064.516919R
DO O 00 NI WO HDO DM YOI DOMN 000NN HANNNM HH NN OMNONOOO I ™M
P I B S It e R T T R D R R DR DT R D D DR T T T T 19 Ta 1o Ta o [o [Ta- 1o [alTa [a T kol T Top Top g ek o

0 » Ot (N PO R o
AAA AAAAAAAABBBBBB BBB BBBB
S ey | _AA._____ L1 imeiimli |t

B 8

ViViVav.
VIV
o000

. C c NINNNURINNNVINY
IV ccr JIVILS A0 rcr cr LIOIVILIIL
omm CFB: M| M e QMmO M
QMMM mm m
B0 WOROMAHENMIN0 O MOMN-
O OMONMHI M~ DM 0 HNHODMMN DO O NNHOOND
I R T T e Yo Tt [q Do la Ta Dol o lop Dol ot o alat[a IVe 19 T 1o [efa Lol ol]

:C_

34
0

Pt S bt bt = = b 4 4 lm

B

175
24
184
35
44

QOO0 WOOO OO wn ow O
[(o 2aia 1y] N - NN NN e v 21521
D AW WD D] D U 0 0 D vivd DIDNLD OO A0 OO DUOWLD

OHO D O v QO O O v+ O W O MM OO LD v OO =N O LI OO O MO O L 111101110245 30 101115111100
rtvivieit oN N NN lrd et OO Nyt NN =N N SN —=HW0OW e~ W o N A N NN

oUW OWWW W LW et O o OO0 wn Q (=4 WHOWWWD OO © wn o0 5055
IO 214.11116161641075040 4.1_I52511067551555538670055091 211.4.624.4.4.1804850451115211366
DVNOOVW - v vt OM OO~ MOMNOI-OMLY _ O -l — HONOLONNNN v
12233135 OGO W O OHNNMM vt LD 50005 00 ow 005001222233025055 OO MOwHANMm O 05555055

irivieirt MMM OMM O TN HD rirtvirivied DONDONLON O DN PN HO vt vrirtviviriririrt O i IIMOWNNO v I HNONMONORO ONIM

WOMROM _ N w0
PO OO0 WOOO O
HHOONNM O NN O NN i
ritrtviei QNMMYPOL

N DM ANNMM MM O VLD D~ DR ONNNMAOMNO HON OO~ - M
O~ O rit-FMv1 N L 0 (] NHFO OO OO m OO (2] (21
OWPONOS w0 OOLOLW WY OQ WILNNNNMOANEHH WVWVOO OLWW MO OO0 OO
DOM OM O rCNMM OO NI CND 00 90 00 =N O HO DM OO HH-NNNMM OHAFON OO HO=ANNMMUIM NN IO NR 00N
9199911111136211223339545777599911111111103112375577911111 113445556751

Q. W0 NN o< © m (o1}
BBBBBCQC VOVL O CCCCCCCCAA A AAAAA e <fieg AAAAAAAAAAAABBBBB AA AAAAAAAAA
| 1O1 1 110D1IOVOT I .___A_A___-_AA__A__A___ . (K- B_.___ _A________AA
OOUOOOCO 1000010t 11 00000 UQO AA | | gt . - | Qe [g egalied | et hddeddeth haided |
LIILIIVILT | LIOIIIIOIO OO LIITICIIITIRD AM A A ! OKOODDODDOKK
0000000OI0000IOWIIVOD000000 MOOOO000000000
PPPPPPFOGP”D a,0.0 ”P” ”"D P W W WY mcwccccccccwm
MHOWORD DM VOMG © 0000 RN 00000 00 LN 07 b 2961120728237354.98 NOO W HHOON D He1OHNND
HONRANMD ON DD DO N I~ FLI OO M QO MM LY OO 00 00 N 000 LD (M DL HLOON- 00 0NNV O QO HOWOM M O HAN MDD OMOND ONNO IO =NNMION
A O v P Pt vt =t et v O O LD DB NN O v (NN v ved 7t v vt O vt vt e T = D NN O NN O NN NN N H NN N N) 74 vl vt vt vt OO NN O D OV O N =S O S OI I TN I O O

78

OQOOWOOOW VOO OO OO (=]
LOONONON NN (N A NN N
] OO+ o W] 0 w WL WL
01001000101005000011 MO OYUNO VW oooo1101001000000050557267 101015010100110111104
5 =Ny 22 N N NN Ovivirivirivtriei™ 102222 N NN NN -t -0l 8 N N O NN o~ N

n w o QL v B N (= 0 i) W O] OO WWOO
054142647151365381512 DA RHOO Y M ON NI e ON O HMIND O OLOLON vl () 30161571547211“312135

OCNvivt vivt vivded v vivt ededyivd 548571819“ 4.4.1111. - vt 11111125738595205 - - -
N T G Q ® Q D OO O+ (NINMMID

ww o OOOHHNNMYHMO M NO W W OO0 WIoO

NN OOV ML DHOM DO OOHN N NNM Orivivirivdrivivirivil) 29630360 1209406111111.111.1 430492501287935148201
W= OM NG O DY OLOMLO M O O MO DR v ONONMMFHIMOIROOUODOD 5017272374. ON-LOWO M0 0000 00N

M et NN W 66 M~P-0000 Q=IO PN OO v H NN L T) 67889905502491629 - N Cel o

3
0
0

91636159001122334 QO WML =HAND
69991.,1,.............11....06588%.u <
L]
]

o ©
0000 o
-

76

~ N N (2] 4. 0o
AAAAAAAAAAAABBi
11111 P11t 1 _mm
] 000000000000003_]
OQOIIIVILIIIIIINIIY | OO0
IO 0000000000000RICIIL
OOPPPPPPPPPPPPPPG 200
Be B¢ ARy AR B
w0 w0 - 6390618624.5634.? hy
OO et NMOMAHRO OO OO NO M) LW
PO LD O O~ O NN I Nt D D e D NN D v

(A
o
” =

! B___ 1TI1IOIO1 10101 cc
(=} .]

[-W-% XT3~ 1 CO-Y)
OHOWHOHOWPDOMM © O
v P O P B 00 = =N M PO O MO NI~

196

ow OO0 WO CWOoWNIOW OWo [olelele] [elolale]
Nt =S#ONNNO O vletvd 21.211.21.521.2 w AN NN
0w _w o N D N - -~ Wy wn
QOOWOO OO HHOONOIOM O et 1O 000000000004550050 o O000O0 FHHIVWOOHOOHOOOOLLON
121.22201020224.2111950520552“2142222222219121120111 m22222_4b.1114.22022022221.11.1.
DO LI P LD MO O PV O NN HMHMM OO O OMUIN O v=OLONM D OVO O MYIN ORNOIO O~ NHNNOWONNLO
P ittt " et FOHHO MHOOHO - r it =i OHOOYN FAHNN _ rietv it D NONO edrd vtvt 1111884.“
el ~NOO O HOONMYLO O O viviMep QONONNMMMDONM (= M vriei N [] Lals 24
OO NI OO IR trtviviriert OONNH MO v MDD M P O v vl vt vt vl vt v v v 4 = = LOO LA O NO N O v vt vt e-d DI NN M CILO) v400 vt vt vt ¥4
OOLNMMP IO LY OO HLOCO vivd ONHRO-D [«] T RPDH M MMM-MOMMO0
P rt NN W ONHOHIFOMN M QO NMYULI OO RNILOVOINN O WOON0 NHNOIN_ MY OO
O MNOO O N 0 O00 NIOOY DOONOANWLIM=-MNONO O LN (=4 w L a2 434
NOMD RN ROY OO =NMOORBDR N OO OMMOKDMMOUDN DO HNNNMMNONMMN I IO OO v NMMO O (N DLW NI S
4O BAMNOMMY —HD OO vt v vt vt v N O MM HOO QO vt it IO O M v v it vt et P vl it MM () T v v = NN I NN i P v d v i vt

e U1 1 " [33 IO IO OND AN LOOWON0 NN Mg OO
mmg feaget AAAAABBB mem mmm) o o o} <A v 00 < < et il - - O L L
1] | efaged)) | o))) ImMI) OM) |) ettt |) | alatadad | | | | | e | e | Wefuted | |} |
17207 JONONO_] O T L R OOt ottt 4 ot ottt A B G IO 5o T o O VR I < PR N I D <71 < 91 Lo
SSOIIIOOOIOIIIOOOOOOOOHOOO!HOOOHHMHMHHHAAAAAAAAAA 1) SGeairadEadfadfaling el D dedfaofay e, fa, FH Kaq
QOO0 OO OO Ot it it - O - GO i o ab e e e D D DD DD DD DD s et Dt et D = Efpad sl
[~ 1 T = NN | LIIILLLLLLLLILLLIILLLUUUUUUUUGGGGGGGGGGG L i K- W V. W mu

deded w ededid =1 d (T[T T{TITITITIT) L - %" ¥
00 v om0 -0 MONM ORvi NOLW O OO I MO OARN OO ~ () OOMO
HOVOM-ARBONNOIOPO MU =HOOHODMO OOV AMNME-HONNODMOMNONM M Hr1DM 1O I NM +IN00M O I e v (NI
13112211242899211111113222992331223567912122132121361566782111112134257781111

~ ®ri

w o QOWMP=MNOOMNOMN Ot WO O MO NN NI PO 0 95 o O OO0 O00O0 «
84.045954.50001.1.2234.55038881896315821836170
4.941111111111516152353 O FHOM-LON 0 O Dt

~ >y

BBBBBBBBBCCC O VL D VO VOLL O

Day 4

79

w ADOWILOWDLIO O WWOWO O oW
- W vt O N0 111121252 ol Lol
[T 1%, %] 0 W W WL LD IO _ 0wt L) w _ ww wnw w0 w
il 5151511115111.510111101 OWUIONOMMNO 010001.01011500005506 4. RO OO HOIO 500050110
O WDt e - N N DO NN i ON NN NN O At O v AN NN 00N —NNN-N N
WWOoOPWv O W OOoWNO 000 O 0000 O N O Q O OO0 oW o o w [Te]e]
it -t 0254.51.222521152512226150005057944.01. O NDNNMEM NN LI OO O L NI M0 O O vHO D PO v+ 051545654224
W0 Ow - ONWNOOMOOWDNGHN W vivived vt A HORNHRHONM - rded Q0w Nvdvdtet
WO v 55550550500550 OOOM 900022233344 W M~ QO N OO0 OOOHANNMMYP oW I~ WY w0 55
(23 s QMO MO it O P DO O AN O v v vi-t0 OO+ 1 I YOI LA DD v vt v v v A O O PO N O - vt LMD ND
O RN 1O MO i ONM MM PO I~ M O OB OO O OWNWY MO N DM 00000 HOHFINODO N L MO NN MNP0
MO~ M~ O OO AN PP _ W _ © AOLOWVVOI M 0 O O v-IONN < ©
0000 HOOOOWOOOOOWOO OOOW MNYOOMUINIOMO vt I © (N OO ANNONONOMO WO [elel 1] O _ O
DOVBOMOOONONHBLIOND NV RO OMMOWONOOOHNNNNMMNHN O 2799914.1754.890001223344028609564330039052405
899935911.233334.555586”88894.91111111111148%%2 M..“_bws“788w1111111114644”63878111926”
men BBAAAAAAAAAAAAA‘ALA AAAA AA‘AAAAAAAAASAI - A -t AAA AAAAAAAAA?B m M
U UL U 1=t | | ol | el | | <) _A_._ 1 M g
K.J‘ L IIIT. 1 IIIIT.IIT.T.T.IIASA 1l L1l Ny NY ..::.F.: 172

mmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmme_..wc_.ﬁ A NONOOONG cc&uu&uuv
8327“2198125628362043 B DNNONND O BN~ 24P owa® e npTNRODO
DD OHODDD 0 DD N OO HHNNDDHODIDI - ORROMMrIT 0 _rI~OVMOIMFIIIIEOHONIH DO
NN rri—iriy NN NN D NN BN NN NN NN 0 M0 HONHOOH DN O NNND NN HOHO NN

A
-G
[}

OC r:
/mm -1
(=] OO N N~

NN) 1 HO OO DY
QO NN 40D v vt IO D i P

222 LION-A 6
66 LION-A 67

W OO OO =] A OO WDOBOLOLD OUNOO
et CIONONCN OMNLND (Nt OO et 521122
W W _ WWW W N wivt WD LOWWLY et o] 0o WL W WD
D OWMM 5005151010111110150 o LOMOLW OO OHHHLIOO-NOWWWIWIIW OWOTiririr+iO-ID 55564 vt et
4111111551221 - NN oN 1.251554.41115 - NN ~IONON NN ettt =N N Oyt rdvrivt
© W O OOOWW Ww O OO0O o ow WOoWWO O ¢ OO
5553020 0575254.111221114757 10050055 25121171411543114.0050000545411131635 MNOOOOOWN I vive
WM+ OO v vt HI-NNAMNDHIHO i et HHAOHRONDN v~ WM~NOOHNN
eSO N it WO 0 05000 55 PO =N HH-HOOWNOW WL ORNOHHHANNMM) v 30050 55301234. WIWOW
ettt ettt W~ OMMORAOOMO MM NN HMO rivdetriririvried O MO OLNANDO OO DMNOLIP O v v vt yiv=d v (IO O M ALY O OO O v vt vt v (P v QO
QOO HONNNM NN IO OO M DD 01223333266788190 e NOMIONS DO NN OO
QOOMDNI- P il < w0 00 O OMNOOMDOM® 0 WA ~HMUNOWWLD N m [+.] QI HO
O OVO HeOW © OO OO ANMNOMANMOM OO [Te{elele] O NOWOMOWAD ® 00O WOOWOHDNHNOOOO
1122334505293594992816034.54630112234.4.04.24848956822625400122336675974884927901224629376
v vdvtrd i NN 00! 9911111 NI

AAAAAAAA.BBBBB

K. L 1N Pl 1<) gl L)L) [N - B

B SR

[
CCCCCCCAAA AAA_AA_A g AA AAAAAAA_AABBW
-5

00Oy
(L
- -
LTLLE]
OMO0000000 | OOOQQ
0000000000MOOD00
Cccoccccccccmccccc

M“ 74833751033776
O NFOLIDOVOVDNY M~NOTIN
CNOIOIONO0 NN N H NN 4) vt =IONENCN

Vel -]
e
e
QO
[=]=]

PP-MOMFRAROO Mt (N OONM 00 PO OO RO HNNOON v NOOLD v
W OARNNMMLUILIO MO 0000 000 00 vt =N I O LN DO VRN O MO LD DN~ 000 DI~ P v NI
U rtrt vt vty vt et vt ot vt et v DN P OIS NN R NN NN O M v et et D POV

80

LOROIOIOWNO OOOWOOOWOL OO

AN AN NN WO OO N v WO N

0 w V.17 S W0 _ DWW _ W W w0 - [T RV IV, TV, TV,) V.17, 1V
QOO +IRMNOOVLOVLOD OOOOHOOOOWOOOOOOHO OUMOMEMIINO HOFHHHHHHOHOHOO OO OPNOLOW O O O v vivd
NN vivtrtrted v N vt OO (NN N IO NN NO vttt v rivivivive N N N NN NNO v I N NN

0 - P aial o oW W WWOWOW v O w (2] O OWNO o000
NN O rADOWMN OO OO WL IO D MO YD PO O HOM vt v DO NN OO O HNTHHHOHO O TIDM OVRMHO OO N vt =D v N
Hrtvd (NOIN-ONONDON N vivivrivd vtvdeied edvrdriviviet ~SOMODMOODOWOMN _ v - v et e e O POONDOMO - e

QO OHHHANMMPO 22 m O OOOHHNNMNMG Y O VWO W M o QO NMMIFNW OO [Y:]ele]
OO D rirtri ririvivtviri O 131780“4532229954926011111111117247493697988845920111111 MO AN =DM
OYOWPDOFTNORDIMMN D IO MY P QOONNMMO MO
ONMN WBOOOWHDOOOO WwwriritNIN_ ML) LODOWOND D OrHONMOOLND M~ OO ONOMOWWMNS N e

1

65
6
2
6
8
2
6
1

P R iy vty v O DR N O NI DO 00U 00 D 0 M ORI vvd viviv il OONMMI

[.-1- .] w0 SO NS DNOOND] N~

oo o} o} o <]l o YA m (-] mm MMMMEMMARAMAOL OLOLLO
1] ..BBBB.BBBB.%%* [} 111 [L] 1O 1 1i

m) 11

1 00 | 00000000000
DI OWILIIIRIIIIOD
VOOVOO0000000000
L0090, 0. 0. 0. 0. 0.0.0.0.0.0

8
D v 00 v HO) v v v v = =IO v QO NN M MO LD
~ OO -t M
[&) (& VOLVLLVV A e e el
QIO L Lt L1y) lata] ||
191 1 0000000 | getatia | | el

C
_ AA
0 D OOGUOGGGGGGG A AA L
GODOUUUG GGOGGOOOUUOO
OPPPPPPDPOPOOPOOPPPPPPP
[=N-Y A R A _RP
M=ONMRA0 ANOWNG O (2] PE-MILORMRNOY O N
HONONOMO OMOONNAN HNMNOMFOMUIWD +NOMO IO 0NN ODRNOO
=t v v O =4 TD v vt vt vt vt v=d vt = LD (N D O (N OO DY NN T4 v N v) v v vt v vt vt e D CN NN EN

GO-C 480 4

[T [=] BB BePiBePe PRy B
M-NO MO BLONMAMD o ® O O (=]

OO O SSNONDMN LIV —DOMMOVOVRNONDN-NHOPOOO

00O I HOICIOI TN HO v v Pt vt -t = NN O D P DD OO O NN D N v v v

w U]

OO0 DO OO -Ow W [o]o]e]=] 000
O et N it W+ vt v - NN ONONON

7. 0 o 0w -1 w00 0 10) 0 v D LW
HOOOHMM OOYNOHHOO OVOLNOOOCOHOFDOOOOVOHOOOQONOHM OrHOOQ MM OrHOOOOOOHO OO
02220119211125522%21252222252112222120222221111“0202220111 m02522222202050522
NONINONVOONDONNNY OrOLONWVHLLHOOHOWOOWI- LN HPHOHO I NHNONONLON 0 © (NN ON MO N v gD
vt S NDHOMA - ONDM rivrivirivi NP0 vt OAHMO v i OO S I e b e e it
« WOOHHHNNMY) MM) MM Nt 10 OriMYNDY O OvNM - O O QoW
YOOI vt vt vt vt vt vt O B O LI O v v+ O P 400 v IO O HH O FIIO DM v vied ~ODDONM vHvivt N 10 OM DMLY+ D HDH D
P OND D R vt DOV HOD vt MNONOONNO O _rNOMO® -1 LN OM NOMLONOONMNON
MNO® MONONNOOS M OWOOHNMON MUHNOMNOO™ UV DONNN-NIHON _ 000 NN MO NONMWGLD O ~00
b WOONNOVO— O QWO O WO ©ON 0 WONN « O (=300 m O W O OWWO
ODDOMNOO HrNNIM IR 0 =D OHMMALONMOFOEONMOONMMYE DO NI O NN O OOV +NM H0D DDV HRNONMHIN-O ML
P I Y DO vt ot vt vt =t v—d vt v LD P (I O v v=4 4+ 0O COLOLO N OO A v D O v LN HILO DO v vivd N DD D viv-dvd W) MO0 O HLD vHOOMN MMt
1] (13 OO & N® OO el HO0 - e NN © 0
-y o e o o o o of { ODY DM C e L 1] mm - gl -t ;M < < Qe
Vet) 0 £ 00 10 1 11 1Pl ||)) ettt =S| | tOM) | | Cadatatag | | | | | €|t | |} |) ettt | L] | | | el
l__.lllllllllll..‘llll_.___H_HHH__HH_E.____EEEEHA_F__.FFF «€O<LI0O1L 1111 1010000 1
OEEROOCO00000000mMROOCCOO N HHHAHAAAH“AA“KEEBEEKKK ! b F““ [T 189 | OUOOOOOORIOMIIIO0
PO Ot ettt et A 4 O O i i St g D (DO DD R DD IKKKKKIIIIEFE MM 1 900U0VBLIBLLILIOVOOO0LY
Il et 33T T 3T 3] 3T 3e 3D D IS D O I D D LIS A, k= =i A0 A 2] uu WALIOA.000000AO0AAAAO 0
(S) [N | [TITILIT 1L Ry (L1] . AQ.A.0.a, “ & O O, paaAe.a A AR
[=] O YOO THOM D LHOMWOM © MO0 O © OLIPOWE 0 NN S AR © M N
OO DD OO HRDNHHLI I D OO = RPN NO MDD O - OO HOO N OM DONLG v Q ¢ ONOHHOI- O = DNNMMOD
I~ 00 00N 44 = v I N B I I MO O NN TN N M 4 = DD OM et rirt P T LY O N vt IO IR HORON IO

81

w
ww WO O [elelelell o] [T 0000 O QOO OOOWw
il v et NN w0 NN~ -4 NN NN CNONON v

et = W W W~ OO W WO - WO w w Ve
oo OO0OWO ¢ HHOHOOOO OOMUMNO® T HEHOOOHMIHO WOOCOOHHMHOOOO MM FHrirrHrHONOLONOOOHOO O OMIO O
O vt v+t OO LD N NN NN~ O NGy © HAONNONNN CNONONNO v vt riviiD v NHONOONN (NN NN vt N
~“Owo W oo NOROW [=le1"] [elele] © [elolele] o [+)
CWVWVRDMOPOOT NHNO MM HHNOHRAOOM —HNHHHRON™ _QOMHOUINNNMMM MMMNOHONFMPFOWIHOONHO HHOFTNAF O
AOMP O AE R N~ ettt +HONSNMOW O vl ONNN vt vdvet it Yt 1O MO O HOPDBD D vt -t OONN
OOOHNNNMMMPHPYOO O MO OvNMEF —=OO0O oo Wwow NOHANNG'Y O00 OONd'Y o OO
vy Hrivrivivtriet HORLO RO I OO) i vt MO MO ML~ 0O OL) OO 0 MO NN O vyt vivd vl OO MO vt vt it wd vt - Q0 4O P vttt vt
@ HONMIOIO - HOND 0O H PO O v I (0 vt o= v v+ D v OO LN OO 0 F v OO ONRM-LOMM
QO ONMOMOLIN- MO M 0O RO HYMONON ADO© OIS OMORN _ OOVMMIOM WOOLIORNO™ MY _ ONRHOIHOO
SOROVOMONO OO W W) WO HHOM OO QOO woLw QWMOONM OOQ MPMOM o NOHNON
QOO HNNNMMMYM MM AM-NRNOWHOOHNMMY 27286065793031013170559960112340“627001234267663500123
vt vt o o™ 1213“962675111111523344505789 AOWNWBINID OO N Tt vt O 4t HH DN OO N vt v it
o m <0 i OO O QNMmm OO
wgg gttt LNl agel ddddgD-OMOMM MmO et
b __A_AdAA__A__________.BJu ﬂﬂ
s L}
\

9

=t = = =t NN | D) 1 1) | NNNNNNIIRANINNY,
[o S S A e ¢
Sl =TS =4 [-s1¢p Ba-u 1€ [[w]se]
O 0

SUODONROOHNOOMNY D m
DOOMOMOMARNS S OM 0000 N
NN NI OO e A A N = DO N

<
NN | ANY
tulalalalsl:

OO OO OO0 QOO I i

1 Il

e

Ammac BRO AR IHHRE I IR 333SReRE
o

i~ gt

Labalye il

m

S

Uoa

=
omi
-2 X e dedh-td 33 =]

P - ONLOM O vt DOONWIRN 0~ LOLOHDDO IO RN NM=NON
HOHNMDENH 0ODNOHOROMPL] WRNOHNOHHLIND O HHNOHDNONMOVI-NRO
O v v O v O = CILOLD O N N N 4 vt NN O H IO O I 00 N vt v v) v vt vt (NN 0O N NN

0o WO WwOoo w0 W 717 Jo Bt e] o

O HOUMD HOD NN W Lol alaiteloliTs] ~N D
W oW W W N vt -t Y11,]) AOLOWOL) WMDY v AL i o A0 W WD O DWW WNDw
OO THOO WM WM OWDO HHOOOHOHHMHHWMMH © © wrArrrir—lOOOWWN _ ~wON WO v IO 4O +itD il vl vl vl v ilD v
- NN N NI v NN N - O vt HONNNHHAHOHO O WL N vl N vt -t - O
O W W Ww o w0 WOOW WOON OO [T 1] it [oTe] OO0 O WO o000 ON
OEHOMWOND SN0 NWNONHD A O HHN =MD M NN OO v v vt =D HO MO O~ HOM OO OO O N ONLD =N = NN
- AP P MO el QO ML et OO0 OO0 - -t (=]
WO © O w—wOOH—H—HNNNMMMMOLW O OWOOOOOOHNNMDOWLILIOO ONNNMOOONMHHHOO OWOWOW OOWOLOOOOOWY
OMONOOFIO rHririvd v v vivivird _ FANOONNGDOHHONTHE-OOrivt O OONMOLD OO v vAviviMI-Dviv A HOONLOD MO DO M+ DM O RO
DOD MDA vt QO MMAHOLNOOMNM00MD v LONONOOHFHOLOWONN N~ MO 4 +400 NN M MM HLOLOLO O 0000 00D R

~ M O AHOOOLMOBMND MMM W QOO WOROOHLID W OM Cal L
WOO W) 1) ONO-MWOMUOWN WO) OO ORMNY LOOCOOOOW +4{NLO O OLONM O W OWWOOW OWOOOOOOOWNO
93583592000111222333528925093736175991230583982744020122362823300361383577504791037039
565"7%8%m4 alals v F ﬂxm.34m556677889111722334.5569“%11111288115811%.222333“455557888999
g « < ol o o o e} o} < OOV 0 AQCOA A A AAAQ AN «ff «<f ot ol f G Bt o dagadsmumumaddada dddtdda gt ALt
| gl | | || it immmicr st LLTd DRGSO RO OO NN A N R N UV U R U U L e L
| <ot o ot} ecxd ot ot vt o o 2 0 0t D Dt vt DI MR v_nu.n MKKKKKKKKIIII Ul Ll I m L e o [ma L Lm am Ln n]

Q9

] LI D 1 [D] (]
I) (I} o af af 11t b4
ety 000C0O0C000 0000000000, - =4
mmm m m mmmmmmmmmmmwmm < m H e e R S RS e e e e Senacoenanos
oY ~ O WO ND OO v~ HOOLOM vivIlD M~ 704738488003527410686 NN MONMOM MO HOM M~ N—=ORANNO NN
1221..31479507671882395665948701.12334.4.589957789001284.6672837448355565667888890013334.4555

2227282992122212211.211122314.2222222222221111122227892212112221111111111113122222222222

K-A 7

82

NOOINOC OO QUOOWWO O WO Oow O OO
AN O e IO IO N AN N N = NN HLWON (s Lalalal
D Vo1V R Te1Vs) WD DWW w0 D DD OWWOWWOUD) vt v L o] - WL O DO D
OMMIUNNOOHPYH WNHOOTHHOTHHOO OO ri-OONMOWW WOHOHOOHHN O 10 WOW <O W O v O H - O N OO
Tt vt t vt vt il ed ONCN N (33] NN Hrelrrreeen) @O N NN A\l NO LD =N LD ==L WO N Nt O vt
- O oW W wn O wuo 0 o O WO OWOooWwoO «N -=OO Ow WL
DROUOLOODNID ONH OO v O =MD N v I O N OO OO DN Hririvrieivild MMOOONLOW LD N O F e I L) MLOLOLD
DBMNODRLOHMONNN it - vt - - MMM NO e v *+4O D00 (VO =LY 00 O FLOLD - - - W v
QO HH-HNNMMYM O ouw W NO W BWrHH-NMMOMYEN _ O O WOWWOOOWO HOOHHANNMNMAF-HNOO OO MV HHONM
vt rtrtetri vt OWNMO P ODSHMNM I ODNAHrtrdrivivivivt ANOFHOMMMVRNNW =AM O vivdvivd vl ydrdvd =it ONDNM NG O i O vavdvivd

L) vt =t = M M+ PP MO O DO DD O NN NHHLNO NN 0000) WILHNNO M- PO 0T DD
WVONOOIHRMMP- (N < 717 N~ DOOWNNOWIMHLO N MW O _ 00OCOWNUONI0 2] < [} OO
WO M- =D v (=3 o0 OO0 MO W HONDOON GO~ o O O QOOWOOO0O O =P OHANNON OO O OO0 WOMWOON
0011122334.0039836938781724.818111233340024351985825408478900112233440092360781057580022
- - 1491”%33”44“&66”8%991.&11.1.1.11391”.2”3%“4.45567788“91111.1111113612”34%4568”99111.1
MeMMEMMMEMMOLO VO VO VL LV LVVLLLLLLVLLVVDd et < < ettt dddd gL d LGS MMME MM MMM MEDAMOQ
-.._.____..Cc._c__cc__c_c________..___A_A_AA_________An_______________B__B____B______
CO000OO00CO00 ! 1001021 100101 0000000000 w<« | <« | <! | dCataataa | < o ot] o) et} e o o} | et} | Kot} | L LT
I BIII DI QOIIOIG O ONIOI ORI IIII D o] o ..uU._ - - <€
0000000000000 WMYOOIOOLIVOOLIOWOO00000000 m
PPPD.PPPPPPPPPmmPPmPPmmPPumPPPPPPPPPP B - 1] =]

YN DG ONDHNO O Mt O -0 v OMOMNOMMO-NDO b o “HLONOLONOW ONWHNHO-HNOHO M O HONN v+ v+
500362223445680788891811634.34.16712884456665760990012233350566173894.4.566788590130440577
211.221111.1111.1311311552272822122112211111121341122222229212221212211111211412229221222
o o [Te]olelall.] O O OOWOoWOoWw
N Nt OO DAL AN o
w0 [¥.) Lol W _w W _ W (T T 17+] N
N QOOOOOOWO [olelol=lolal 1o lile) ONOO0O0OOOOO00OOQOHOM D MILNOWOO OrHOHONHO HHO OO O OO
51. 222222212.—& ONONONONON N v vt et 21222222222222225215151121111 m25202102502220255225w
SPHOOBNNHFNONO OOIOHOONNDLD OO LROOWD OO O O F M - MMOOMNLOOINO M OO vt HOUD O O et
S vt A A A D N O N v vt O NN OM Nt ettt eyt v et =IO N DN -t eied e M
Owt PN N He < D OOHHEHENNMMNYE w O O W Wu W W [Tela]
WDt et =1 OO S vrtet OO HOND vt vtv-ivivd D HHOW OH OO OO DN OO N v et ririvd edret =0 OO VMVUHMOON M- DOLNEN~O
@ ASONO DN Qvit=-RMMM HOHON M I =i =DM -0V THOM NN MM HHN MO N 0D NI~
0 +MNOONNSNOM HOORAROOYL - OGO ON00 DO HHHOOOTON vt N M Lo WO M [se]e.}
LND vt QO —NRAN 0 O © AHFOMMHWEHGN D 0 O i vl [== O~
OO DD TP HONOH OO NMMY OO O HHAHOLIO NN NMO OO i —HINNMMMID MO PLIONLIW0 O IO FNIHDO
et (NOHDIDD vtvivt OO O v v vd vt OO OO LON 00+ v410 O 00 v+ vt vt v vt vt v vt et~ ONLO—HONOINM N HH O KO N~ 0 NP O
P HNOWD OO P OOON O HOINNMPHOWNOON00 O MmO~ N ™ H [Yo1Vo1 o I (el 3R o
[--1--Tq] - el g g <t N~ - <« ddddddagtttdN N M MM mm Mm _me m
|| wdwatat] | | defeteta] | |]| < | gttt P))TN D L Mmimiml imMmi immalml i ;oml;
E 3T NN NN 22 [P U I I < 7t < < <A A_D_______.______0_0000000000033_0_0_00_00___0_00__0_
o g | LR RaIE RaINGNGEn] | faofrebeofrofr (BRI L) 1 OG000000000OOO0CUOTVOBTVUOVLVY | | ODOLOLIBOIRYOCOBLOVLLIOOLO
UUEKKKKKKKII“FEE EE“““ [OUOTTUOOTUBHOBLBUOBLOOODOO0000000VOBOLOOVOOBBIVOVOOVLOL
[e e e e “u ﬂ BVOLOO0O0O0000O000COAO MRSl M i i Al I 000D /MALOCOMOMLOO/O
0,00 AR Ry o O AAARARAAAAARARA Ay o0, A Ay A B.A0 Qe o.n. A
mon. N ML 3 A O © OvigihwibdOWNWN~AA, N M MO (N L % oo
@ OMMNIROHOF MO0 NOHMMNO <) OO P HLOR F DL OMNNANPL O OLD vt (NN SO =N O DDA NHONNM DD
OO DO P+ MDD O R DN vivi v €O vt v v vd NI D HHLO D O I 0 NP HO H N H N =N H LD By H (N () H e O O N NN 0N DD

83

o [=loll] OOLWW DO QOO W o0 200

~N 221. OMNNvI+ AN 222151 NN NN
~N ww (=] w0 (=] WL
601101070 000100000 (=] 655011002002050100025610 W OQ00OvH 000000V N L) vy et e =t
N N0 NN 222220201111 NN OvrivrivirdiN NN A= ONW0O NN v NI OO N vt [TV]
05 [T - =] N 0o w [« () NGO e OOQOWWNO
4.22164.830 PO OO ™M 4.505325410730052545107504 NO MR OO RO O P O LD ADNAM it
- QOO it 11111911222“4. tet 911“4.1. Hried HOOD O vivivt O DN vt vt vt i O™ (a7]
4. QO ONY Y i m NN RN O—NMMOND (2 1] M et QOUNAOO
HORDNMNM it 137860761140011110213011110852890111133159771114053055111 WHONMTIDMWO
ANODVORN N OHMMF NN vtvdrt WOMHO QOMM—=OOO vt QOO +HROHMOOO QUIQ NN MY
W © WOPODVONNM <OV MNMOA ROV ORHOMHO N HNWDIMIO DO OPL) AN ONORNHOW M-t
O oW WM O m =HOOM ~“OOMm o NP0 RO 0N OO O
PP O DO MG N4 Q0 M LD G B DD LR T NP HI OO D v N O M M- it e = OINIMLH 00 v DN IO 00D O 0RO D v () <F OONN PN
HADOYP O i) OMNMNNHHOON O vt HHF O = NN v - DN MDD RN rivivviND) OMMMvivi NP M 1000 D vivied OB NN
w L] DNG OO 0000 v NORN NN OPOP-0 QNN O
- _mm BBBBAS - AAA.ABB MMMt <« g L RO D AA4. AAA] ot} o} oy ot} G R K
1| it AAA.AAAAAAAA.... _BBB_____A.AAAA.__.._ AAAA_ AAAAAAA._ LN LN I I A
S_SS.SSSS]A_ LB NSO _ll']ll_ | mmomimpn) 3G)| _HMHHHHA _EEA_ (L 0000000000
VINY, .c::U.l'lOl"llIIIOOODOOlllOUOOAHAHHHHA e} ! | EKK_FFFFP.F LILJLHTHBILBIBIIRYD
ONOOWNDO0OHIEDODOHDODOODODOHMHIFHFOOQO - UAUAAAA“UUUUUUE KIIF m m ~ 9000000000
mo BBOBBBBLQIIT.LIT.IT.IIIILLLLLLIIILLLLGUGUUUUGGGGGGKIIIIPPE AR A By e A A D
- o edehd | ededdndnds e ~dded [CRTITITIT] Houanen, u o
O M OItM-DM] [OOPFNOM QNN O R v (N~ Be [Telied N W MW HOM ML
HOOOQOWMAMMLY NN NM IO NW OO M O N DO MIDONMN0NFONMPOON M oteiNm 3333975134 Q HLHLD OO O~ 0N 0
OO O O = O v LY O P - P 00 B 4 =N O+ N 00 00 Y NN N v N w400 FILO D) vt -4 w4 N v N QO KO- 00 w4 v (M) 4N HD O Q0 i v vt ettt eyt
D
o wNOOOW oL o] WO {Foi¥} wnO OO
et W) et QNN N W v 51111125511 QNN =N
WWIOWLD OO~ WD v [Te WL WD OO KD i mn N 4
o 51011111511 WO Ovivt OO 01151111111551115115 005506 005001100001101 ot HOOO0O
~-m W N [Teiatalol 2o lo s) WONHN waN - O v NN P DL N NN NN N OO et
- QO OOO0OWo 004. o W - OO0 0050000 050 00 o ou) OO Ow
WO 52631122534. OLNANPODVOH=HNHWOW O HANNIHU NN - NMFONNL OOWNQ OO OFUNHNHHO LD rivie DN OO O
PN O OMDOMN it NOwt WD O P v N NRDWD v vt it OMMWONONY
m 305 WIHOQ OGO N 1O <Mt WOO NOW v OWWOOOOWOOOOWNO OO O = INANNM M [+:12] OO0 WMOHHHNNNMM
et MOMNODORNOMMODMMO et vir-LIRARNMOWMrivt o NNNOMOME MO EONFOUON- OO0 O v vivd vd vt iyt vd v = N O P NILOLO P vt MNP v D O vedrd vt vt e vd i !
TMONNS I FNLOMN DN v —“ONRODY WA NN MO HHHLOLOO D O M- 0 0N DR~ O MHDHD IO DM D~
wo o ™ WOMON™ ™ OWON vl OOOOONNMMMNO vviN <UD =) HHOHOO O
M WD OO OUILINNNNDNN OO N © OLN OO OLIOLIOUNNLIO O OO H DN MO v M- < o QO DOMDNLON D M
MPONO NP M LD O M PO D O v NOI M ML 00 4 I N OO v00 v40 QALY LI LA N =MD O D VN RO O N ANM MM Y DUNO HO DO VW OO FHO eI (NONMM
vivs 4.22234.4.5578891111117&357%11228m223334455566678889991.11111111143934%&%”68”9011111111
]
ST DODDDDDDDDDDODI GO OGS DODDDDDDHDDDDDDODHDDDDDHDDIDN T DNe PP e NI
A“WW v_n MWKKMMMMMW“W““MDW v_n “M“ u.n WWIAI.T.IIT.IIIIT.IIT.IT.IIT.IIIIIIIT.IIIIIS_ _SQ. IR 212 AR ARIID1 012121919]
VIVINIUVIUIV IV IV VIV AU IV IV IV VU)WV AV
%8 oS 08a0 e 0eae e co oS o e B e R R R e B e e R R S O OB O CEE00C
Cccocccccccccccccccomcccwcc.l IIIIIIIIIIIIIIIIIIIIIIIIIIT.IIW.L-RmnB QOOC Emn E-R:.: 1+l m
4.6C968 MOMOMNND-ORONOMMNU Py DL HAOOL) O M HOD MM 0 H N DM O N DM MNOOWN ~N O 0 NOWMAIGN-M

9
VN FYOHOARAOONMNYNOAHMMA ~ORANEHENY ONOM M0N0 O O v v (NN P HLOLN WD O M (N) 0000 LD vD I 000 D LO = N DN OO v~ N
(a3l alalabel Do to bl 1Ty [alaTa [aUS ittt e [a [y Do le o T [o ot Dol ol o laRatatabalalaatiale o (o 1o (9 Ia (oo [a [[aTaTal [ST RolattaTal ol ol o lath o bl Ve Vo Toly [o [oeTo To Tarialatl pla [l o)

84

QIO WO OO OWWOWO 0o LW
NN D vt vt vt =i Nt i (Nt N vt NN N W) vt

[Y.1F. 17,] wn 4 Lol gl WLOWMILOLOW LW OO W W W W w0 it
HHEOWWO-OOO WO WOOWW OOHHHH™HEHHOMOWWIWOW OOCOLIOWO PP HriviritDP O) HH OO O IO [=1=]
vivtrt ONONNO vt = =D O v = O NN NN NN N vririet HAWON L N NN AONOW N

Wwoo (=] -t o OLOWUID wo WO N _ 0O WO O (=K~ -l
OO MG BIRAMOWWWIVOOW WON =N ML) OO OLD O O MNILDLOD =LAWL DR BMNMM O O ONNNW G -NM OO
et O N - DO DD LD vt vt NOOWWNWMMINN v vt Wi t-OON OO v N OO
WOWWDWVO QOO v vt i =N vt QOMIINOO OO Ivivi(NM<Y N W) VDO HNMMPNOO riefivive OooWWO O O 0000 OO0«
RBOOMDANHODOOQ iviviviviy ONMNOHHBOM N v vdvd Tt i PO OO GHO LD vt vt T vivd D O vivd LD QM- OIS LOP- LD LD 4 (D 7400 O v vivd

PULOW OO O M1 +100 LoD O WO 00 MW MMM (=11 OO MMM Yt =1 v RO N VO O~
MO® SFNDOOOWOWOLINS APOOWOWOW (NN 1 O HOOOWOW LOPORNN W _© M~ > WO
LMD v D100 =N OWVWOOWL) OFANI-ONNM M~ O OWMNOMUNMDOWONN QOO0 O W OwWoWw MM
ONRMDBHONDD OO vivtrt = ONNMMM LD I~ DN O OO vriNNM OM O M DO H DO HNNM N DPO PO MUOOMM- OOV OO NN OB O OO

WPLOLYOWD O LOO OO vt it v v v vt v+ DO OO O O M- O M v eyt v iv i vt et PO O DD v vt v v v v v=LO M B v+ QO LD v M M F H OO OO v400 0000 DD O v w4 vt
~OG MNP »n AANNM w0 O N w0 O M N

ot e] o} o} oa o of ol o o ol 4 MMMMMAM MMM MAEMA S - e g o o e w00 OO PO 0 <K g} o o dai el

P R R it l LU DRV b bt et bbbt tt@ml bl etedegladiadt)l bt L bbbl)Gl ||} [)agia] |l talli]lfl

[N k Amu [ot} o} i} | g - dv.nv.nv_nMv_nMv_nummmMW“MW“W““MIIPPIIIII.._..IT...IT_..IIIIPIIT.I

-, m mm m m xooagooggggoogoommmmmmmmmmmmmm mmm mmmm

m mwwwCmCWCCCCCCCCCCCCCCIIIT.IIIIIIIIIIIIIIIIIII

WNANDO BONADO RO ONHD O HO ONOMMONDMO O M OWYIIOID LI RNON SOONON I D OMMD MHNINRO

OO OHNLINBDMONODOONOM OO PONDO HviNOI O PO ON (NN OO 0000 O e OLO O (N HO N OO v 2= -0 00 I N O D O NN M P PO LOLD

122222277921212222222192311.222229.12222122212214.28221222121.22221.11111111142527222292222

WWOWNO OO WO [ilelelell] olole] OO OOOWOW

AN A OO O it HONNNHHNNN WO N

W0 _w_ U] 0o LOLWOLOLOLOWOWD w_ w0 wn_ O WOLOOLWOWOLD LD U] [T.]
HAOHOHOWHO O =HEIDOMOOMDONDOO Hrirtvrir OO O O OO O N OO MM O HHHH-O OO Ovird MOHIOMOMLD LOHOWOWOO O
N O Nt NN vt vt vl et i NN N NN AN st v tvtfiv et rded NV L) wdrd v vt vt A WO NN, N
w W o 0 wo OV OIDOW w tn © WVOOW oY e O w
S OIY A i O DO H DN NHOL) vHrirt i D +HO TP OO DM NI LY = I H M= NONOUINIH _ OO Bt vadinht OO N
- - vied MNDOO ND O -1 HO NI el e OO0 O It wdrdriet OiDAFOMOBNOO Y v et wied !
W O M 0o PO O v NN AP MO COUNOO o O O OQOHHANMMY OWOLOLW QONTHHEHANNMMMPN~ O W) I N
S OMONOOLD +HOO riviviviy v OO L v w4 O MO NN vh- v (N v v vd vl vl vl vt = LD O LD M) O DL M DO MO Hrd v v vt rd v v el OMM-I-DOIOLD
OOV OOMSORNRNO O NM IO DO VRN LIMD A0 AN HHO DO PDORI— OO MO PO
WD OO —RADN OO N0 © MO DHHORDUIRNOO OON FONORNVOTIDOM=vI_vi (NN _ P

ow © NGO LRMP =M WDWDOWW - W L0 NOHIOFO OO0 O RH 00 (ND ~HHOO o O N [+
00)00 HYP IO O O v - NN MM LY v i DM OO QO NHOL) T = D OF O O v NI M F OO F WP 00 MW vt O~ O H - NN M MFOLNON TN - N NM
7”9”1111.1.111111131112344““6“7“&%8%%11111.111912234.5“““%8891111111113691”2”2&%3“
- o o o o o OO A A D m_m m QEEAMMEMMLOOLVLOL VOLOLLLLLLLL A « « -
-t | - | L L. il rl1iemigmigmmmimml |4 1013111 tTITIOOOOT LTt it Ell |«)odag|

b
6
17

OO0 I 1011 1 101 | HO00CO0OO00000C0 | | | 1000000000000« |
mmmmmmmmmmmmmmmmwanvﬂuﬂurﬂc CITITITITITIT I (o elele [TITITIT I ILIT Gccxmm -
.0 00,00 JJPJPJJJPJJ:ODOWMWWU.nuWuVLMuHuWDCDCFLxMMMT.V bW v oot v e mmmmm
Y- - [R - - APy
-t N e OO RNONPW -0 OMORNOM © 0 w MNOOMNWFNONNMNYHO O 0O G100 v 00 4 O NI DO D
0.0 O OO O O O v N O N DD D DO RHNNODO M ONM NP YO v (N O O M DA OMN DM MH O NN MR HHLOLDNO NI (N0
O N 0D G0N O OO v O CN v v =4 (Nt CNON v w4 et vt vt v = L0 (O O 00 00 (NI O (Nt vt vt (N vt vt vt vt et et et MO OO - NN H O vt et A N O v v e e (N O

-t ba

196 P0§0-A 500

85

ooo 00 00

2225 NN NN
OOMITHO OO0V QOOOOM
WINVONOOM YOO HONHMUON
P Ot O OO v et O

QNMLD NN+ i
LD vt et 1 DN OO PO v vt NNOLOM vt

OMNONOR O~
QOO v v v vMIIO DO I v v O MO NP O v v

WLHOWOWNLD WO W oo OO0 QO W
v\ et tedet vt ed L) it NN NN WANNLD v
0w W w W0 -4 w0 O w) W 0 w -t
WNOOOOO OO DO OOOHOWririv OO OOHOOOHONMD COHOWOWH HOOOHMOONWNOD Q000D Wk O O0000000
Pttt Ot O OO _ (N ONHAINN NN N v ONN NN O NOIN N = NN N O NN
(3] o o OoON [« N [«] oNO (=] o N Lo

o -

OLNMOVNG MWD HDHIONOYWHID v OWQ OOV NDHOWO —HOMNVMWON _ NOHNOOMNAONM WONMWOY WNOO OUIMND Y
DO RN~ NI ONLD v al viydvivd WLNNWVOMMvdvivt v OORNNMrted vl v O vivivt FOHDAFHOMM) rdvtrivivd ORI MO v vivd v od viv=t
O 1 MO WOV O OO OrNMPP AN MM O O) < O NN PN © wOwMIm
et rtr i v N ORI OO N0 HH O MO FY Hr A O DD O Hv+D LN AN DN D =N Hririvivirie! OHNOOHMOrivrivivt L b i amd el

THON- NN D O ON I O OO -O M NNOMM M OHHD (2 L Al od s el QOODYNOND
WONMOURD N m QU0 O AOOWLNOWIMIOD N0 MriN_M M © 00® MOMOPONIMUNMGWNS O OOWORNMMIYWDD0
QOO riD«= VO OO O WOOO NrOR N OO O ¢ O QNN OWMMNN O OMOv

At gDV Gt g o waiate cdCgttmM m

LI UL |] |t | €) | 1 1)))51 1M@OMIMM) | <ad

==ttt 1 NN LN || |) | NNV N | NNNNNNINL | N1 | NN | |

mmmmmg I 1 Y RATINNNNNNY I NVINNUINVNIY, NN, AR
NNNOONOONNNNONCOOONOOO00CONNINONNOOMEMOO

=) Om.u HBBmBBmmmmBRRB B“B: MMOMNOO0 r Hu mnuuLuLuLLuLuuuLLLLLLvuLLuuuuuLuLLLL

NOM-OUMM NO MO O AN O MMORN w OM1d W 0 0 M~ 00 v 4= L O O OLMOYN

O~ 00D i I v 00 00 © O P v=i < v (NN (MDD I~ 00 B OO TN O M- M M MNMWO MM ORI O MO NN DL MO FNNNOHO A O~ O M

O v+ OO OIN 100 (v 7407 vt vt G H LD O O I D I NN NN = LD IO O v v P et vt w4 O 940D vt = D O - O DN H O H HH N AN M PO O N NN = N M oW 0

o e, o o X (Y m _mmmmme
wagg | |)}

B
B
B
B
=B

ON
10N

=
(=]

86

10.

11.

12.

13.

14.

Bibliography

. Arbabi, Mansur and John A. Garate. “Interactive Real Time Scheduling and Control.”

Proceedings of the 1985 Summer Simulation Conference. 271 -277. 1985.

. Baker, Bruce N. Introduction to Sequencing and Scheduling. John Wiley & Sons,

1974.

. Blanton Jr., Joe L. and Roger L. Wainwright. “Multiple Vehicle Routing with Time

and Capacity Constraints using Genetic Algorithms.” Proceedings of 5th International
Conference on Genetic Algorithms, edited by S. Forrest. San Mateo, CA: Morgan
Kauffman, 1993.

Bruns, Ralf. “Direct Chromosome Representation and Advanced Genetic Operators
for Production Scheduling.” Proceedings of 5th International Conference on Genetic
Algorithms, edited by S. Forrest. San Mateo, CA: Morgan Kauffman, 1993.

. Davis, Lawerence. The Handbook of Genetic Algorithms. New York: Van Nostrand

Reinhold, 1991.

. Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. San Francisco: W.H. Freeman, 1979.

Goldberg, David. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Reading, Mass.: Addison-Wesley, 1989.

Gooley, Capt Timothy. Automating the Satellite Range Scheduling Process. MS thesis,
AFIT/GOR/ENS/93M-06, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1993. (AAK-1926).

. Grefenstette, John, Rajeev Gopal, Brian Rosmaita, and Dirk Van Gucht. “Genetic

Algorithms for the Traveling Salesman Problem.” Proceedings of an International
Conference on Genetic Algorithms and their Applications, edited by John Grefen-
stette. Hillsdale, NJ: Lawrence Erlbaum Associates, 1985.

Holland, John. Adaptation in Natural and Artificial Systems. Ann Arbor: University
of Michigan Press, 1975. reprinted by MIT Press, Cambridge, MA, 1992.

Kennedy, Capt Dale J. A Protolype Ezpert System Advisor for Satellite Support
Scheduling. MS thesis, AFIT/GOR/0S/86D-5, School of Engineering, Air Force In-
stitute of Technology (AU), Wright-Patterson AFB OH, March 1986. (AD-A179 425).

Lawler, E.L., editor. The Traveling Salesman Problem. UK: John Wiley and Sons,
1985.

Michalewicz, Zbigniew. Genetic Algorithms + Data Structure = Evolution Programs.
New York: Springer-Verlag, 1992.

Schalck, Capt Stanley Michael. Automating Satellite Range Scheduling. MS thesis,
AFIT/GSO/ENS/93D-14, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1993. (AD-A273 829).

87

15.

16.

17.

18.

19.

Starkweather, T. and Darryl Whitley. “A Comparison of Genetic Sequencing Opera-
tors.” Proceedings of 4th International Conference on Genetic Algorithms, edited by
R.K. Belew and L.B. Booker. Los Altos, CA: Morgan Kaufmann, 1991.

Syswerda, Gilbert. The Handbook of Genetic Algorithms, chapter 21. New York: Van
Nostrand Reinhold, 1991. Schedule Optimization Using Genetic Algorithms.

Whitley, Darrell. “GENITOR: a different genetic algorithm.” Proceedings of the Recky
Mountain Conference on Artificial Intelligence. 118-130. 1988.

Whitley, Darrell, Timothy Starkweather, and Daniel Shaner. The Handbook of Ge-
netic Algorithms, chapter 22. New York: Van Nostrand Reinhold, 1991. The Traveling
Salesman and Sequence Scheduling: Quality Solutions using Genetic Edge Recombi-
nation.

Whitley, Darryl, Timothy Starkweather, and D‘Ann Fuquay. “Scheduling Problems
and Traveling Salesman: The Genetic Edge Recombination Operator.” Proceedings
of 3rd International Conference on Genetic Algorithms, edited by J.D. Schaffer. Los
Altos, CA: Morgan Kaufmann, 1989.

88

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

Y IR TSRS

colsction »*

e e 2T oA gt

AtCEMAtAr A L E g Sug sty Ur IRQLIINg This Dy gen

IR ALMAAG 1D AVErATe T NOUr DO7 RSDOrIe N7 LA the 1M TOF BV 8w NG INSTILCTITNY SeATCMING €a sTir g dald sources
Jather~3 3r¢ M Aty fir s the 3312 re2deS ANd IOMDIUING ARG ey AaIng The (2IeCUIN 5t atarmation Send (omments regatging this burden 2stimate Of any Jther aspect of this
£ MNashingion -ieagauarters Ser.ices. Cirectarate for ntormation Operations ana Reperts 1214 jetterson
Davia H graa, Sude 228 Arurgton, (A 02272-3307 +r@ T tne Ofte e 2* Management ard Sugge? Paperwork Reduction Project (0704-0188), washington TC 205C3

1. AGENCY USE ONLY (Leave biank)

AND DATES COVERED

arch 1994 * "Master's Theais

4. TITLE AND SUBTITLE

S. FUNDING NUMBERS
A GENETIC ALGORITHM APPROACH TO
AUTOMATING SATELLITE RANGE SCHEDULING

‘ 6. AUTHOR(S)

Donald A. Parish, Capt, USAF

, 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

1

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

3
H

‘ 11. SUPPLEMENTARY NOTES

i

8. PERFORMING ORGANIZATION
REPORT NUMBER

Ai i PAFB OH 45433-
ir Force Institute of Technology, W OH 45433-6583 AFIT/GOR/ENS/94M-10

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

B

“12a. DISTRIBUTION / AVAILABILITY STATEMENT

> [Rt by A 12b. DISTRIBUTION CODE
Distribution Unlimited

. e v = rer——

13. ABSTRACT (Maximum 200 words)

Satellite range scheduling involves scheduling satellite supports in which a satellite and a specific remote
tracking station communicate with each other within a specified time window. As the number of satellite
supports continue to increase, more pressure is placed on the current manual system to generate schedules
efficiently. Previous research efforts focused on heuristic and mixed-integer programming approaches which
may not produce the best results. The objective of this research was to determine if a genetic algorithm
approach to automating the generation of 24 hour schedules was competitive with other methods. The goal
was to schedule as many supports as possible without conflict. The genetic algorithm approach attempted
to find the best priority ordering of support requests, and then used a schedule builder program to build
schedules based on simple rules. A schedule was produced for seven days of representative satellite range
data with slightly better results compared to earlier results using a mixed-integer programming formulation.
Based on the reported results, the genetic algorithm approach presented in this research appears to be a
competitive approach for generating 24-hour satellite range schedules.

.

14. SUBJECT TERMS

15. NiJMBER OF PAGES
Genetic Algorithms, Scheduling, Satellite range scheduling

16. PRICE CODE

[

18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION

17. SECURITY CLASSIFICATION

% RELRSSIFIED

YN LSSIFIED

BN ATFIED

20. LIMITATION OF ABSTRACT 1
UL !
4

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Pregcr:pag Dy ANS Sta Z39-'8
PELE P

	A Genetic Algorithm Approach to Automating Satellite Range Scheduling
	Recommended Citation

	tmp.1709578562.pdf.l9BB_

