
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

12-1993

Design of a Parallel Discrete Event Simulation Coprocessor Design of a Parallel Discrete Event Simulation Coprocessor

Jacob L. Berlin

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Hardware Systems Commons

Recommended Citation Recommended Citation
Berlin, Jacob L., "Design of a Parallel Discrete Event Simulation Coprocessor" (1993). Theses and
Dissertations. 6663.
https://scholar.afit.edu/etd/6663

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=scholar.afit.edu%2Fetd%2F6663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6663?utm_source=scholar.afit.edu%2Fetd%2F6663&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AD-A274 135 o il

AFIT/GCS/ENG/93D-02

DTIC
DEC 2 3 1993 '. ' ,

DESIGN OF A PARALLEL e. FLECTE

DISCRETE EVENT SIMULATION COPROCESSOR

THESIS
Jacob Lanier Berlin

Captain, USA

AFIT/GCS/ENG/93D-02

93-30925

93 12 22 038
Approved for public release; distribution unlimited

AFIT/GCS/ENG/93D-02

DESIGN OF A PARALLEL DISCRETE EVENT SIMULATION COPROCESSOR

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the
DTIC

Requirements for the Degree of COPY
0NSfPFCTEO

Master of Science in Computer Engineering

"Accesion For

NTIS CRA&I
DTIC TAB

Jacob Lanier Berlin, B.S. Ur,announced 0
Justification

Captain, USA
By

DiAt ib itio; I

AvedatDility Codes

Avai' u 'd °or
December, 1993 Dist 3pcial

Approved for public release; distribution unlimited

Table of Contents

Page

List of Figures ix

List of Tables x

Abstract xii

I. Introduction ... 1

1.1 Background 1

1.2 Problem ... 2

1.3 Summary of Current Knowledge 2

1.4 Assumptions 4

1.5 Scope 4

1.6 Approach 5

1.7 Overview 5

II. Literature Review 7

2.1 Introduction 7

2.2 Parallel Discrete Event Simulation 7

2.2.1 PDES Explained 7

2.2.2 PDES Synchronization 8

2.3 PDES Algorithms 8

2.3.1 The Chandy-Misra Approach 9

2.3.2 Performance of the Chandy-Misra Approach 9

2.3.3 The Virtual Time Approach 10

2.3.4 Performance of the Virtual Time Approach 11

2.3.5 A Spectrum of Options 11

2.3.6 SPECTRUM Testbed 12

ii

Page

2.4 PDES Hardware Acceleration 13

2.4.1 The Rollback Chip 13

2.4.2 Parallel Reduction Network 15

2.5 Conclusion 16

III. Methodology 18

3.1 Introduction 18

3.2 Analysis of Baseline Design 18

3.2.1 Analysis of Predicted Speedup 18

3.2.2 Analysis of VHDL Behavioral Description 19

3.3 Initial Requirements Analysis 21

3.3.1 Schematic Capture 21

3.3.2 Validation of Coprocessor Output 21

3.3.3 Microcode Preprocessor 21

3.3.4 ESAM Upgrade 22

3.3.5 Interface Requirements 22

3.3.6 Design Cycle 23

3.4 Initial Findings 23

3.4.1 Design Synthesis 23

3.4.2 Testbench Results 24

3.4.3 Microcode Routines 25

3.4.4 Coprocessor Interface Unit 25

3.4.5 ESAM 26

3.5 Revised Requirements Analysis 26

3.6 Conclusion 27

1"ii"

Page

IV. Implementation 28

4.1 Introduction 28

4.2 Top-Level Circuit 28

4.3 Internal Coprocessor Architecture 29

4.4 NEQ Component 30

4.4.1 NEQ Control Unit 32

4.4.2 Extreme Search Associative Memory 34

4.4.3 Adjacent SRAM 38

4.5 Microcode Control Engine 38

4.5.1 Control Engine Execution Unit 38

4.5.2 Control Engine Control Unit 42

4.6 SRAM Component 44

4.7 Interface Unit 45

4.8 Mapping of Design into Physical Circuits 46

4.9 Implementation of Subcomponents 47

4.9.1 Field Programmable Gate Arrays 47

4.9.2 Commercial Memories 47

4.9.3 Fabricated Components 48

4.10 Conclusion 49

V. Findings 50

5.1 Introduction 50

5.2 ESAM Array 50

5.2.1 Functionality Test 50

5.2.2 Extreme Search Test 50

5.2.3 Write-Read Test 53

5.3 ESAM Word Select Circuit 54

5.3.1 Functionality Test 54

iv

Page

5.3.2 Performance Test 55

5.4 NEQ Control Unit 55

5.5 Corrected ESAM Array 56

5.6 Coprocessor Critical Timing Analysis 58

5.7 Coprocessor Performance 59

5.8 Comparative Performance Analysis 60

5.8.1 Pitfalls of Comparison 60

5.8.2 Valid Comparisons 62

5.8.3 Data 62

5.8.4 Partial Speedup Analysis 64

5.9 Conclusion 65

VI. Conclusion 67

6.1 Introduction 67

6.2 Conclusions 67

6.2.1 NEQ Acceleration 67

6.2.2 Synchronization Acceleration 68

6.3 Recommendations 69

6.3.1 NEQ Component 69

6.3.2 Target Architecture 69

6.4 Summary 70

Appendix A. Testbench-Coprocessor Interface 71

A.1 Interface Signals 71

A.2 Macroinstruction Set 71

A.2.1 Initialize Coprocessor 71

A.2.2 Initialize Simulation 71

A.2.3 Post Message 73

V

Page

A.2.4 Get Event 74

A.2.5 Post Event 75

A.3 Interrupt Vectors 75

A.4 Error Vectors 77

A.5 Sample VHDL Simulation Input File 78

A.6 Sample VHDL Simulation Output File 79

Appendix B. NEQ Component 80

B.1 ESAM .. 80

B.2 NEQ Control Unit 80

B.2.1 State Algorithms 80

B.2.2 Detailed State Descriptions 84

Appendix C. Microcode Control Engine 89

C.A Introduction 89

C.2 Execution Unit 89

C.2.1 Register File 89

C.2.2 ALU 89

C.2.3 Shifter 90

C.2.4 MBR 90

C.3 Control Unit 90

C.3.1 Microinstruction Decode Unit 90

C.3.2 Micro-sequencing Logic 91

C.3.3 Flag Register 91

C.3.4 Clock 91

C.3.5 Micro-program Counter 92

vi

Page

Appendix D. DES Coprocessor Microcode 93

D.1 Microinstruction Set 93

D.2 Microcode Algorithms 93

D.2.1 Coprocessor Initialization 93

D.2.2 Fetch-Decode 95

D.2.3 Initialize Simulation 95

D.2.4 Post Message 95

D.2.5 Get Event 96

D.2.6 Post Event 96

D.3 Microcode Preprocessor 96

D.3.1 Preprocessor Rules 96

D.3.2 Sample Microcode Input File 98

Appendix E. SRAM Memory Map 99

Appendix F. DES Coprocessor Interface Unit 100

F.1 Status Register 100

F.2 Pario Buffer 101

F.3 Interrupt Register 101

Appendix G. Pin Assignments of Integrated Circuits 102

Appendix H. Testing of Integrated Circuits 107

H.1 Introduction 107

H.2 ESAM Array 107

H.2.1 Validation of Associative Operations 107

H.2.2 Worst-Case Performance of Associative Operations . . . 108

H.2.3 Validation of I/O Operations 108

H.3 ESAM Word Select Circuit 109

vii

Page

H.3.1 Validation 109

H.3.2 Performance 110

H.4 NEQ Control Unit 110

H.5 Corrected ESAM Array 111

11.5.1 Validation 111

H.5.2 Performance of I/O Operations 112

H.5.3 Worst-Case Performance of Associative Operations . . . 112

Appendix I. DES Coprocessor Project Directory 114

Bibliography 116

Vita 118

viii

List of Figures

Figure Page

1. Simplified DES Coprocessor Architecture 3

2. Simplified Rollback Chip Architecture 14

3. Simplified Four Node Parallel Reduction Network 16

4. DES Coprocessor Design Cycle 24

5. Top-Level VHDL Description 28

6. Internal Coprocessor Architecture 30

7. Next Event Queue Component 31

8. Simplified State Diagram of NEQ Component 33

9. Extreme Search Associative Memory 35

10. Initial ESAM Write Circuit 36

11. Corrected ESAM Write Circuit 37

12. Microcode Control Engine 39

13. Execution Unit of Microcode Control Engine 40

14. Control Unit of Microcode Control Engine 43

15. DES Coprocessor Interface Unit 45

16. Worst-Case ESAM Search Operations 51

17. Simplified ESAM Array Floor Plan 52

18. Standard Deviation of Worst-Case ESAM Search Operations 54

19. NEQ Control Unit Cycle 55

20. Worst-Case ESAM Search Operations for Corrected ESAM Array 57

21. Simulation Configuration for Wallace Tree Parallel Simulation 63

22. Microcode Control Engine Control Clock Waveform 91

23. SRAM Memory Map for DES Coprocessor 99

ix

List of Tables

Table Page

1. Mapping of Coprocessor into Physical Circuits 46

2. Four-Bit Extreme Search 53

3. NEQ Control Unit Cycle 56

4. Write-Read Performance of Corrected ESAM Array 57

5. Application Specific Variables for Coprocessor Performance 59

6. Cycles Required for Fetch-Decode 60

7. SPECTRUM NEQ Data 63

8. Coprocessor NEQ Data 64

9. Coprocessor NEQ Performance 65

10. Partial Speedup Analysis 65

11. Copr~cessor Interface Signals 72

12. Truth Table of Coprocessor Interface Signals 72

13. Register Initialization Data 72

14. Initialize Simulation Opcode Format 73

15. Initialize Simulation Operands 73

16. Post Message Opcode Format 74

17. Post Message Operands 74

18. Get Event Opcode Format 74

19. Post Event Opcode Format 75

20. Interrupt Vectors 76

21. Interrupt Operand Format 76

22. Error Vectors 77

23. ESAM Control Stimuli For Associative Operations 81

24. ESAM Control Stimuli For I/O Operations 82

25. Format of ESAM Word 82

x

Table Page

26. Initialize ESAM States 85

27. Reserve Arc States 85

28. Write Word States 86

29. Search States 86

30. Find Minimum States 87

31. Idle and Error States 87

32. State Encoding 88

33. ALU Operations .. 89

34. Shifter Operations 90

35. MBR Operations 90

36. MSL Operations .. 91

37. DES Coprocessor Microinstruction Set 94

38. Interface Unit Status Register 100

39. Pin Assignments for 132-Pin PGA ESAM Array 102

40. Mapping of Pin Inputs to Memory Inputs for 132-Pin PGA ESAM Array. 103

41. Pin Assignments for 132-Pin PGA Word Select Circuit 104

42. Pin Assignments for 40-Pin DIP NEQ Control Unit 105

43. Pin Assignments for 40-Pin DIP Corrected ESAM Array 105

44. Pin Assignments for 84-Pin PGA Execution Unit 106

xi

AFIT/GCS/ENG/93D-02

Abstract

A Parallel Discrete Event Simulation Coprocessor was designed to off-load the syn-

chronization overhead from the processors executing the application. In a multiprocessor

architecture, one coprocessor executes the synchronization routines for each host proces-

sor. Speedup can be achieved when the host processor executes the application and the

coprocessor concurrently executes synchronization routines. The coprocessor uses a pro-

grammable microcode control store to guarantee flexibility in the synchronization routines.

The coprocessor uses an Extreme Search Associative Memory to support fast Next

Event Queue (NEQ) management. This associative memory uses bit-serial word-parallel

search logic to provide 0(1) insert and retrieval time of events in the NEQ.

The coprocessor was completely described in the VHSIC Hardware Description Lan-

guage (VHDL), and several components were fabricated and tested. Timing measurements

of the fabricated components were back-annotated into the VHDL description to improve

model accuracy.

Synchronization overhead of a parallel VHDL simulation was measured using the

AFIT Algorithm Animation Research Facility, and this data was used for a conceptual

performance analysis of the coprocessor. A four-fold speedup was achieved for the NEQ

management of the simulation; however, the total speedup was only 1.02 since less than

2% of the application was accelerated.

Although the coprocessor is designed as an I/O board consisting of multiple integrated-

circuit packages, this research provides proof-of-concept for on-chip synchronization hard-

ware of future processors.

xii

DESIGN OF A PARALLEL DISCRETE EVENT SIMULATION COPROCESSOR

L Introduction

1.1 Background

Computer simulations play an important role in a diverse range of applications.

For example, due to the high cost and complexity of Very High Speed Integrated Cir-

cuits (VHSICs), they must be thoroughly simulated prior to fabrication. Unfortunately,

simulations in engineering, computer science, economics, and military applications require

unacceptable amounts of time to execute on sequential machines. Consequently, these

simulations have become a significant bottleneck within their application domain (8:19).

For example, some simulations may require months of computer time to produce accurate

results (7:449).

Because of the importance of simulations and their increasingly complex nature,

speedup has become a vital issue in simulation research. The three basic ted aiques for

simulation speedup involve technology, ingenuity, and architecture. Technology improve-

ments consist predominantly of using a faster logic family. Ingenuity improvements include

the development of more efficient algorithms and data structures. Finally, architectural

improvements include hardware specialization and exploitation of concurrency through

parallelism and pipelining (7:449-450).

Achieving several orders of magnitude speed increases in simulations will require the

use of one or more algorithmic or architectural improvements (7:450). Furthermore, as

computational requirements of simulations increase, even the fastest sequential processors

cannot adequately fulfill the requirements (19:8). These realizations have provided the

motivation for extensive research in the area of parallel simulations.

Parallel simulations are executed on multiprocessor architectures. Portions of the

simulation are executed in parallel on different processors of the multicomputer network.

The portions that are executing in parallel interact with each other by passing messages

1

across the network. Amdahl showed that the potential speedup from exploiting the par-

allelism of an application is limited by the serial fraction of the application (11:532). For

example, an application with a serial fraction of fifty percent can at best receive a two-fold

speedup from parallel execution.

1.2 Problem

The use of parallel architectures for simulation speedup has several inherent problems

which must be overcome in order to realize a performance increase. These problems include

the communications overhead between the logical processes of the simulation and the

synchronization delays to insure that the simulation proceeds in the correct time order

(6:2-3).

Another significant simulation problem is the overhead of event-list management.

Many simulations must maintain event data in long lists. As the size of these lists grows,

the amount of time required to search for and insert or remove events from the list also

increases. For example, some versions of the AFRT Carwash simulation can spend over

fifty percent of their execution time managing the NEQ data structure.

The objective of this research was to complete the design and implementation of a co-

processor which would reduce the communication and synchronization overhead associated

with parallel simulations. The design also incorporated an associative memory to support

fast list management. Although the target architecture was the Intel iPSC/2 Hypercube,

this research is relevant to the design of any future processor which may have similar

on-chip features to support parallel processor synchronization and simulation event-list

management.

1.3 Summary of Current Knowledge

Taylor proposed that a Discrete Event Simulation (DES) Coprocessor could provide

significant speedup to parallel simulations. His thesis work included a top-level design

of this coprocessor and calculations which indicated that the coprocessor could provide

speedup ranging from 1 to 20 depending on the number of logical processes running on

2

Backpan Procesor Unk (NEO)

Figure 1. Simplified DES Coprocessor Architecture (DES portion in box)

a node (24). Daniel followed Taylor's thesis work and implemented the high-level design

as a behavioral circuit in the VHSIC Hardware Description Language (VHDL). Daniel

conducted an analysis which indicated that the coprocessor could achieve speedup ranging

from 1.2 to 60 depending on the granularity of the simulation (6:86).

The four major components of the DES coprocessor are the microcode control en-

gine, an SRAM, a Content Addressable Memory (CAM), and an interface unit (Figure 1).

The microcode control engine has a programmable control store and executes all of the

synchronization tasks of the simulation. The SRAM stores the simulation-specific data

which is required to synchronize the simulation. The CAM was provided by Banton from

his doctoral research (1:50-81). This component uses parallel-search logic to provide 0(1)

insert and retrieval time of events in the Next Event Queue. Finally, the interface unit

transfers data between the host and the coprocessor. In a multiprocessor architecture,

each DES Coprocessor supports only one host processor.

3

1.4 Assumptions

Significant -ssumptions which were made at the start of this research are listed below.

Several of these assumptions were invalid and delayed the progress of this research. The

impact of these failed assumptions will be discussed in greater detail in Chapter 3.

"* Daniel's behavioral description of the coprocessor was functionally correct.

"* Banton's Extreme Search Associative Memory (ESAM) was ready for fabrication and

could be incorporated into the DES Coprocessor without modification to the ESAM

architecture.

"* The documentation on the current design was sufficient and correct.

"* Automated Computer-Aided Design (CAD) tools could successfully generate tran-

sistor layouts and require a minimum of full-custom design.

"* Intel would release sufficient proprietary information on the interface requirements for

the iPSC/2 Hypercube. The physical interface, logic design, and timing requirements

were required so that the coprocessor could be properly interfaced.

"* All fabricated circuits would be in a 2.0 pm process.

1.5 Scope

This research effort was limited to completing the coprocessor design of Taylor and

Daniel (24, 6). Daniel's VHDL behavioral description of the coprocessor was partially

implemented as a physical circuit using a mixture of custom designed devices, commercial

programmable logic devices, and commercial memory devices. For ease of implementation,

the design was targeted as an I/O board which could be wire-wrapped. A performance

analysis was conducted based on data extracted from the partially completed design.

Although the DES coprocessor was designed to support a wide range of simulation

paradigms, only the Chandy-Misra approach was implemented and analyzed. A parallel

VHDL simulation taken from Breeden's research was used as performance benchmark (2).

4

1.6 Approach

A four step approach was taken in this research:

"* Analysis of Baseline Design - The first step was to analyze Daniel's DES Coprocessor

design. This step included a review of the design documentation, the VHDL source

code, the test cases to validate performance, and the speedup predictions.

"* Requirements Analysis - The next step was to determine the procedures that would be

necessary in order to successfully complete this research. Since research assumptions

were proven to be invalid, it was necessary to modify both the requirements and the

scope of this research.

"* Implementation - This step consisted of redesigning the coprocessor architecture in

accordance with the requirements analysis. This step also consisted of decomposing

the completed VHDL description of the coprocessor into a viable physical circuit.

Field Programmable Gate Arrays, commercial memories, and custom-fabricated cir-

cuits were necessary to complete the design. The structurally decomposed circuit

was implemented only partially due to time and resource constraints.

"* Testing and Performance Analysis - The fabricated components were tested for func-

tionality and parametric performance. A performance analysis of the coprocessor

was conducted based on data collected from implemented components and CAD

simulation.

1.7 Overview

The remainder of this document is divided into five sections: Literature Review,

Methodology, Imple'. n.-ation, Findings, and Conclusions. The Literature Review takes a

brief look at current Parallel Discrete Event Simulation algorithms and hardware support.

The Methodology chapter explaiuti the aialysis of Daniel's coprocessor design and the

requirements analysis. The Implementation chapter explains the finalized design of the

coprocessor and important design decisions that were made to arrive at that design. The

Findings chapter explains the testing and performance analysis of fabricated components

and the top-level coprocessor design. The Conclus;ons cbapie" discusses the impact of the

5

findings and makes recommendations for follow-on research. The appendices elaborate on

technical design information and appear in the order that they are referenced.

6

II. Literature Review

2.1 Introduction

A broad range of issues must be considered in the design of a parallel discrete event

simulation hardware accelerator. For the accelerator to be general purpose, it must support

the spectrum of algorithms which implement parallel discrete event simulations. Further-

more, current hardware accelerator designs for parallel discrete event simulations should

be considered to determine potential pitfalls within the proposed design.

This chapter provides a brief description of parallel discrete event simulation followed

by a review of the algorithms which support this type of simulation. The final portion of

the chapter covers some current hardware accelerator designs for parallel discrete event

simulation.

2.2 Parallel Discrete Event Simulation

Discrete event simulations are used across a broad domain of applications including

engineering, economics, computer science, and military planning. These applications often

require large simulations which use an unacceptable amount of time to execute on sequen-

tial machines (7:449). Parallel Discrete Event Simulation (PDES) is being researched as a

viable technique to accelerate these large applications.

2.2.1 PDES Explained. A discrete event simulation is a program that models

objects which change state only at discrete points in simulated time. A change in state is

associated with the occurrence of an event at the object being simulated. The simulation

time advances and an object's state changes only when events occur (8:19). Simulation

time does not progress continuously but "jumps" based on the occurrence of events.

A discrete event simulation can be executed in parallel by decomposing the system

to be simulated into Logical Processes (LPs). Each LP represents a Physical Process (PP)

which is an actual component within the system being simulated. A CPU inside a computer

is an example of a physical process within a physical system (the computer). A description

language model of a CPU is an example of a logical process within a logical system (the

7

computer model) (17:54). A physical system can be simulated as a set of physical processes

that operate autonomously and interact with each other by passing messages. In general,

an event at one physical process that causes events at other physical processes can be

simulated by message communication (17:54).

To implement PDES, the LPs are mapped to different processors and execute sequen-

tial code in parallel. Communication arcs are established between LPs which interact. Each

LP can send and receive messages on its communication arcs. An event at one LP that

causes events at other LPs is simulated by messages that are passed on the communication

arcs (17:42-45). Each LP maintains its own event list and simulation time. Since the

distributed LPs are executing asynchronously and in parallel across multiple processors, it

is unlikely that LPs will have the same current simulation time.

2.2.2 PDES Synchronization. Valid simulations must process calculations in a

correct time order. These calculations are distributed across all the LPs and processors

being used. The correct order of these calculations is data dependent and not known

until runtime (8:19-20). PDES algorithms use synchronization mechanisms to insure that

calculations are executed in the correct order while achieving optimal performance.

2.3 PDES Algorithms

PDES algorithms have typically been categorized into two approaches: conservative

and optimistic. The basic premise of the conservative approach is that no LP within the

simulation will receive a message out of the past (i.e., with a lower time stamp than the

local simulation time of the LP). The basic premise of the optimistic approach is that any

LP within the simulation can restore its state to a time prior to any time-stamped message

that is received. Reynolds defined these rules as the endpoints of an entire spectrum of

possibilities for parallel discrete event simulation algorithms (20:325-327). The Chandy-

Misra approach is the most notable conservative approach, and Jefferson's Virtual Time

approach is the most notable optimistic approach.

8

2.3.1 The Chandy-Misra Approach. The Chandy-Misra approach uses null mes-

sages to prevent LPs from receiving out of order time-stamped messages and to prevent

deadlock of the simulation. Deadlock can occur if an LP is waiting to receive a message

from another LP which does not have a message to send. This problem can occur in both

acyclic and cyclic networks (17:55-56).

A real message that is sent by LP, to LPj indicates that an event has occurred at

LP, which may affect the state of LP,. In contrast, a null message that is sent by LP, to

LPj indicates that LP, will not send another message to LPj any sooner than the time

specified in the null message. There is no equivalent to null messages in a physical system,

so this method introduces simulation overhead (4:201-202). Null messages are sent from

one LP to another to indicate that it is safe for the "downstream" LP to proceed to the

time indicated in the message.

The basic algorithm is that an LP receives messages allowing it to advance in time.

The LP can then alter its internal state, update its local clock, and generate real messages

for the appropriate outgoing arcs. Then the LP generates and sends null messages for the

arcs which did not receive real messages. The fundamental principle of this algorithm is

that an LP will never receive a message out of the past (17:57).

2.3.2 Performance of the Chandy-Misra Approach. The use of null messages

to synchronize computations and avoid deadlock introduces a significant overhead. For

example, the number of null messages required to synchronize a simulation is directly

proportional to the number of LP communication arcs (16:128). A large proportion of null

messages will cause a bottleneck in the communication network and slow the simulation

down. Reed determined that significant parallelism is required in order to regain the losses

from the null message overhead. The communication overhead can only be amortized when

the LPs interact infrequently, which is a rare case (19:11).

Another shortcoming of the Chandy-Misra approach is that LPs must block until

they are guaranteed that it is safe to proceed. This inactivity in the simulation can be

viewed as another form of overhead in the protocol (15:86).

9

Other major shortcomings of the Chandy-Misra approach are that it does not fully

exploit parallelism, it requires static configurations, and it usually requires the programmer

to be involved with the synchronization mechanism (8:24). Because of these limitations, the

Chandy-Misra approach would be optimal for a simulation that can be easily decomposed

into a static network with regular message traffic (15:84-86).

2.3.3 The Virtual Time Approach. Jefferson proposed the virtual time paradigm

and the Time Warp mechanism used to implement that paradigm (13). Lookahead-rollback

is the fundamental synchronization feature of this paradigm. Each LP is allowed to run

as fast as possible without regard to synchronization conflicts with other LPs. When a

conflict occurs (for example, a message is received out of the past), the offending LPs are

rolled back in time to a point prior to the conflicting time. Jefferson justifies this optimistic

approach based on the following arguments (13:405):

"* Distributed rollback can be implemented easily and efficiently.

"* Other conservative methods would have simply blocked for a time equal to the

amount of wasted computation when rollback occurs.

"* Rollback should occur infrequently.

Local Virtual Time (LVT) is defined as the simulation time of a particular LP. This

time generally progresses forward, but will jump backward when a rollback operation

occurs. Global Virtual Time (GVT) is defined as the minimum of all the LVTs within

the system. While LVT may occasionally go backwards, GVT always progresses forward.

Irrevocable operations such as I/O are executed according to the GVT (13:410-412).

Rollback is accomplished through the use of state queues and anti-messages. The

state queue is used to save the current state of the process. When a process needs to

roll back, the old state is recovered from the queue. The frequency of state saving can

impact on the efficiency of the simulation. In general, the frequency of state saving can be

based on the amount of elapsed time (simulation or wall-clock) or the number of events

occurring (13:412).

10

Anti-messages are used to cancel messages that must be undone whenever there is a

rollback. These messages are created at the same time as the real messages and are held

in an output queue in case they are needed. When an LP must roll back, it sends the

anti-messages corresponding to the real messages that have already been sent. If the anti-

message is received while the actual message is still in the receiver's queue, the two messages

annihilate each other and the receiver does not hae to roll back. If an anti-message is

received after the original message has already been executed, then the LP must roll back

and send anti-messages to undo any messages it may have sent (13:412-416).

2.3.4 Performance of the Virtual Time Approach. The major shortcomings of

Jefferson's approach are the state saving overhead, the excessive use of memory, and an

increase in design complexity (8:26). The state saving overhead is incurred whenever an

LP must archive a copy of its state to a protected memory location. State saving may

be required as frequently as the occurrence of every event at the LP. This state saving

requires time and also consumes excessive amounts of memory. It has been shown that

optimistic algorithms in general require several times as much memory as conservative

approaches (8:26).

Because of these shortcomings, Jefferson introduced the Cancelback Protocol as an

extension of the Time Warp Operating system. This protocol reduces the state saving

overhead by limiting the amount of lookahead that is allowed (14). Although this protocol

guarantees that the simulation will require no more memory than a sequential algorithm,

it does so at the expense of time performance. As the degree of space is optimized, the

simulation behavior reduces to a sequential algorithm with the event list spread over many

processors (14:2).

Based on its strengths and weaknesses, Jefferson's approach would work best in a

simulation in which numerous processes communicate infrequently with each other or in a

network that changes dynamically (15:84-86).

2.3.5 A Spectrum of Options. Reynolds claims that the dichotomy of PDES into

conservative or optimistic approaches is incorrect. There exists a spectrum of options for

11

PDES implementations, and the conservative and optimistic approaches are only a subset

of the entire spectrum (20). He gives a set of design variables which define the design space

of PDES approaches. These design variables are (20:327-329):

* Partitioning - LPs may be partitioned into clusters that employ different synchro-

nization strategies.

* Adaptability - LPs may dynamically change design variables such as the amount of

lookahead allowed.

* Aggressiveness - LPs may process messages based only on conditional knowledge.

e Accuracy - The requirement that a simulation ultimately process events in the correct

sequence.

e Risk - LPs may pass messages which have been processed based only on conditional

knowledge.

* Knowledge Embedding - LPs may have knowledge of other LPs behavioral attributes.

* Knowledge Acquisition - LPs may request knowledge from other LPs

e Synchrony - The degree of temporal binding among LPs.

Based on these design variables, there is essentially an infinite design space for PDES

in which some alternatives will be optimal for particular applications.

2.3.6 SPECTRUM Testbed. The SPECTRUM (Simulation Protocol Evalua-

tion and Concurrent Testbed with ReUsable Modules) testbed was designed to provide

a common environment for testing and comparing a variety of PDES algorithms across

these eight design variables (21). The testbed is composed of an application component,

a process manager, and a node manager per LP. If there are multiple LPs running on one

node there is only one node manager. The application component has access to several

operations within the process manager. These operations are:

* Initialization, a one-time operation at simulation start-up to put each LP in an initial

state.

12

"* Post-event, an operation to send out messages from an LP.

"* Get-next-event, an operation to get the next time-ordered message from the Next

Event Queue.

"* Time advance, an operation to update the local simulation time.

The node manager has access to a post-message operation in the process manager.

This operation allows incoming messages to be placed in the Next Event Queue (NEQ). The

SPECTRUM testbed was designed to support the entire range of PDES algorithms so that

they could be tested and compared in a common environment. Unfortunately, Reynolds

found that the dependence between protocols and applications was greater than expected.

Therefore, the testbed requires some reconfiguration for different applications (21:671).

2.4 PDES Hardware Acceleration

PDES algorithms attempt to overcome inherent synchronization problems, and each

algorithm has both strengths and weaknesses. To compensate for the weaknesses of these

algorithms, specialized hardware has been designed. The most notable hardware designs

are Fujimoto's Rollback Chip and Reynold's Parallel Reduction Network.

2.4.1 The Rollback Chip. Fujimoto designed the Rollback Chip to compensate for

the overheads incurred in Jefferson's Time Warp mechanism (9). The significant overheads

of the Time Warp mechanism are state saving and rollback. For example, a state save

after each event may occur every 100 microseconds, and each state save may require one

megabyte of memory (10:69-70).

A hardware accelerator for Time Warp must optimize both state-saving and rollback.

This is a difficult task since these two features are mutually exclusive parameters for

optimization (9:401).

The Rollback Chip (RBC) is a specialized Memory Management Unit and data cache

combined into one component (Figure 2). The word "chip" is somewhat misleading since

the design contains too much circuitry to fit in one integrated circuit (10:77). The RBC

uses large stack frames (4 Mb) of state history which are implemented as a circular buffer

13

Con Clon trl

HMSIM" Unit
Cache

uMU

Figure 2. Simplified Rollback Chip Architecture (RBC portion in box)

in memory. While the stack is maintained in bulk memory, the RBC also has a high speed

data cache which maintains the most recent version of each data line. The RBC also has

a buffer unit (RB History) which maintains the top of the stack and allows faster rollback

updates.

Fujimoto conducted a conceptual performance analysis of the Rollback Chip. He

compared a two node PDES without RBC to a two node PDFO with RBC (3). The

performance of the non-RBC implementation was affected by several factors. The state

copying required by the simulation could approach ninety percent of the total execution

time. The memory usage was inefficient and could quickly consume all of the available

memory. The operating system overhead of memory allocation/deallocation and garbage

collection hindered the simulation performance. On the other hand, the cost of rollback

was inexpensive because a rollback simply consisted of changing a memory pointer to the

correct state in memory (3:153-154).

Fujimoto also examined the performance of the RBC implementation. The overhead

of state copying was completely eliminated since the RBC did this transparently. The

memory usage was reduced since the RBC only copied data that was modified. The

memory management was handled entirely by the RBC which reduced the operating system

14

overhead. Finally, the rollback overhead increased slightly since the RBC had to do extra

work to find the location of the most recent data.

Fine grain simulations showed the most potential for speedup (from 1.21 to 62.4)

while coarse grain simulations had the worst potential for speedup (from 1 to 2.6). The

large variance in speedup was due mostly to the state sizes and frequency of message pass-

ing. Simulations with larger state sizes and more message passing had better speedup (3:155-

156).

The Rollback Chip is an example of decentralized hardware accelerator for the Vir-

tual Time paradigm. Like the RBC, the AFIT DES Coprocessor is also a decentralized

accelerator. Furthermore, the RBC design provides insight as to how the DES Coprocessor

could be configured to support optimistic PDES algorithms.

2.4.2 Parallel Reduction Network. Reynolds proposes a Parallel Reduction Net-

work (PRN) to support the rapid dissemination of global synchronization information for

PDES (22). The PRN consists of a pipelined binary tree of ALUs which execute associa-

tive operations on data provided from each host processor (Figure 3). The PRN is capable

of providing global information very rapidly and is capable of supporting both conser-

vative and optimistic approaches (22). In support of conservative approaches, the PRN

can rapidly disseminate minimum look-ahead values to each host processor. In support of

optimistic approaches, the PRN can rapidly disseminate the GVT.

The primary objective of the PRN design was to separate the processors that execute

the application from those that synchronize the application. Other design goals were to

make the PRN architecture:

"* Transparent to the application.

"* Capable of retro-fitting to existing architectures.

"* Cost much less than the cost of the host architecture.

"• Independent of the host architecture network.

Reynolds predicts that his design will be able to calculate and disseminate global

information across a 32 processor machine in 750 nanoseconds (22:2). Although this pre-

15

HOst Host Host Host
P.oeso Processor Processeor Procassot

Processor P1o=1so Poabr Processor

Interface Interface nrle Itrac

Figure 3. Simplified Four Node Parallel Reduction Network

diction implies potential speedup in simulations, Reynolds has yet to do a comparative

performance analysis between his proposed design and a typical parallel architecture.

The PRN is an example of a centralized general purpose PDES hardware accelerator

which is based on the dissemination of global information. Although the PRN is different

from the AFIT DES Coprocessor in terms of architectur-, both designs attempt to achieve

general purpose PDES acceleration. The PRN implementation provides some insight into

different ways the DES Coprocessor can be configured as a general purpose accelerator.

Furthermore, the design goals of the PRN also serve as a good foundation of design goals

for the DES coprocessor.

2.5 Conclusion

This chapter presented a brief look at Parallel Discrete Event Simulation algorithms

and special purpose hardware which supports these algorithms. In order for the DES

Coprocessor to be general purpose, it must support the entire range of PDES algorithms.

Reyinolds designed the SPECTRUM testbed to support the entire range of algorithms

across eight design variables; however, he found that some reconfiguration was required

based on the application. Since the AFIT DES Coprocessor has a programmable control

16

store, it will be able to support a flexible testbed and still provide hardware acceleration

of synchronization tasks. Finally, both Fujimoto's Rollback Chip and Reynold's Parallel

Reduction Network were examined and compared with the AFIT DES Coprocessor.

17

III. Methodology

3.1 Introduction

As discussed in chapter one, a four-step approach was used in this research: analysis

of baseline design, requirements analysis, implementation, and testing/performance analy-

sis. This chapter provides a detailed explanation of the analysis of the baseline design and

the requirements analysis.

3.2 Analysis of Baseline Design

The baseline design was provided by Daniel as his master's thesis and is documented

in (6). The analysis of his design consisted of a review of his speedup predictions and

VHDL behavioral description of the circuit.

3.2.1 Analysis of Predicted Speedup. A review of Daniel's performance analysis

revealed that the speedup potential of the coprocessor had been overstated. Daniel deter-

mined that the speedup provided by the DES coprocessor for the SPECTRUM Get Event

routine was 1575 while the speedup provided for the SPECTRUM Post Message routine

was only 297. This is a contradictory result because the SPECTRUM Get Event rou-

tine occurs in 0(1) time complexity while the SPECTRUM Post Message routine occurs

in O(n) time complexity. Since the CAM provides both 0(1) insert and retrieval time of

events from the NEQ, the speedup of the Post Message should be greater than the speedup

of the Get Event.

Based on this anomaly, a more detailed analysis was conducted with a focus on

the speedup provided by the CAM implementation of the NEQ over the SPECTRUM

software implementation (a prioritized, doubly-linked list). The analysis revealed that the

amount of applicatioa-i time spent managing the NEQ was insignificant for parallel VHDL

simulations and only '.ccame noticeable in Carwash simulations when the processor loads

were intentionally unbalanced to create bottlenecks in event processing. For example, the

average NEQ size for the Wallace Tree multiplier was four events and queue management

required an unmeasurable amount of execution time. For the severely unbalanced Carwash

18

simulations, the average NEQ size approached eight hundred events and queue management

consumed up to thirty percent of the application time.

Although this initial analysis raised doubt as to the true speedup potential of the

coprocessor, the research continued based on the following realizations:

"* The actual speedup would probably be less than originally predicted.

"* The potential speedup could be increased by using the coprocessor for application

event-list management instead of SPECTRUM event-list management.

"* The potential speedup could be increased by interfacing the DES coprocessor between

each host processor and the multiprocessor backplane, thus off-loading all of the

message passing overhead from the host processor.

3.2.2 Analysis of VHDL Behavioral Description. An analysis of the VHDL

behavioral description of the coprocessor revealed several significant problems which are

discussed below.

3.2.2.1 Documentation Errors. The functionality of the coprocessor was

impussible to determine because of a lack of accurate, detailed schematics. In particular,

the following documentation errors were observed:

"* Schematic names for components and signal lines were different than the actual names

used in the VHDL behavioral description.

"* Schematics reflected incorrect connectivity of components.

"* Schematics did not represent all of the connectivity between components.

"* The design contained behavioral components which were not shown in any schemat-

ics.

3.2.2.2 Inaccurate Component Models. Behavioral descriptions did not

accurately model the components. For example, sensitivity lists of components did not

include all of the appropriate signals for process activation. For a combinational circuit,

19

all inputs should be in the sensitivity list. This fundamental rule was frequently violated.

As a result, the timing of signals in the design was haphazard and functionality was based

more on chance than design. Furthermore, predefined attributes such as 'TRANSACTION

were used improperly and further distorted the accuracy of the component models.

3.2.2.3 Validation of Output. The coprocessor output could only be ob-

served through the Synopsys Interactive Waveform Viewer as binary, octal, decimal, or

hexadecimal values on signal lines. The coprocessor output consists of interrupt sig-

nals/vectors, error signals/vectors, and data packets. Validation of this quantity of output

using the Waveform Viewer was very difficult and time-consuming for the designer. Fur-

thermore, extensive Waveform Viewer output caused slower simulations due to increased

I/O requirements. Validation of output by this method was prone to error.

3.2-.2.4 Microcode Routines. The programmable control store of the DES

coprocessor is loaded from a microcode input file. The following observations were made

while reviewing this input file:

"* The microcode input file was in decimal format and uncommented. This made it im-

possible for the programmer to read and understand the input file without extensive

cross-referencing to other documentation.

"* The pseudo-code documentation of the microcode contradicted the microcode input

file.

"* The microcode input file specified an absolute address for each microinstruction and

each branch target. This made it difficult to insert, delete, or move blocks of code.

"* The microcode contained undocumented microinstructions.

3.2.2.5 Timing Analysis. The propagation delays for the behavioral com-

ponents were based on a four-phased non-overlapping clock running at 25 MHz. The

master clock cycle was 40ns, so the non-overlapping pulses had to be less than 10ns. Wire

wrapping and off-chip capacitive loading would require slower speeds.

20

3.3 Initial Requirements Analysis

The requirements analysis consisted of determining what needed to be done based

on the results of the baseline analysis. The following procedures were determined to be

necessary for the successful completion of this research.

3.3.1 Schematic Capture. The behavioral description of the coprocessor needed

to be accurately represented with detailed schematics to determine circuit connectivity and

functionality. The Synopsys Graphical Environment (SGE) CAD tool would be used to

create schematics of the existing circuit. Schematic capture would insure that the schemat-

ics accurately represented the behavioral design. All behavioral descriptions of components

from the baseline design would initially be re-used so that an accurate hierarchy of schemat-

ics which represented the baseline design could be created. All design changes would also

be made with SGE so the final product would be accurately represented by schematics.

3.3.2 Validation of Coprocessor Output. Waveforms were inadequate for vali-

dating the coprocessor performance. The testbench needed to be modified to capture the

coprocessor output, convert it into a readable format, and write it to a file. The Waveform

Viewer would be used for debugging, and text output would be used for validation. Dif-

ferent design versions could then be quickly validated by using the Unix "diff" command

between previously validated results and new design results.

Multiple testbenches would be used to validate performance. Simple, fast tests would

be used during the initial stages of a design modification when errors were most likely. More

thorough, time consuming tests would be used at the end of a design modification to catch

any subtle errors in the design.

The testbench would also have to be rewritten to be more modular. Repetitive

sequences of stimuli would be called from procedures, thus reducing the amount of code,

making it more readable, and also making it easier to validate performance.

3.3.3 Microcode Preprocessor. A preprocessor needed to be written for the mi-

crocode input file so that the file could be commented and easier to modify. The ability

to have comments in the file was essential. Due to the complexity of the code, it would be

21

necessary to have one comment per line of microcode. The addressing scheme of the mi-

crocode would also have to be modified. A relative addressing scheme for branching would

be developed to make it easier to modify the code. Finally, the preprocessor would have

to determine the absolute addresses of instructions at run-time and free the programmer

of that burden.

3.3.4 ESAM Upgrade. The extreme search capability of the CAM was very

cumbersome and required extensive peripheral logic in order to work properly. For example,

Daniel had to design a front-end driver to do a bit-wise search of the memory to locate

the minimum time-stamped next event. The CAM would be replaced by the ESAM which

would do this search internally. A small finite state machine would be designed to control

the peripheral logic and offload the complexity of ESAM control from the coprocessor

control engine. This finite state machine would also allow for concurrency between the

ESAM and coprocessor control engine, thus increasing the potential for acceleration.

Both the CAM and ESAM VHDL descriptions placed the most-significant data bit

in the lowest-numbered bit. The remainder of the coprocessor description placed the most-

significant data bit in the highest-numbered bit. The initial coprocessor design required

extra circuitry in order to compensate for this conflict. The ESAM bit-ordering would be

converted in order to simplify the interface to the remainder of the coprocessor.

3.3.5 Interface Requirements. The design of the interface from the coprocessor

to a host processor was based on standard Intel 80386 signals. Actual bus signals and the

physical design of the bus interface were unresolved due to a lack of information about the

iPSC/2. The following issues would have to be resolved in order to successfully interface

the coprocessor:

"* Address decoding, which was chosen arbitrarily, would have to be deconflicted with

all other I/O devices on the Hypercube.

"* Interrupt vector addresses, which were chosen arbitrarily, would have to be decon-

flicted with other interrupt addresses on the Hypercube.

"* The actual hardware interface would have to be determined.

22

* The bus timing parameters would need to be incorporated into the design of the

interface unit.

Since documentation on the Hypercube was limited, these issues would have to be

resolved through Intel technical support and customer assistance. Furthermore, although

the target architecture was the Hypercube, the interface would have to be designed so that

it was flexible enough to support other architectures.

3.3.6 Design Cycle. Figure 4 depicts the design cycle that would be used for

this research. Using Daniel's behavioral description of the coprocessor as a starting point,

subcomponent descriptions would be modified for the following reasons:

"* To convert a behavioral description to a structural description.

"* To upgrade a subcomponent (i.e. ESAM)

"* To map a description to fit into an FPGA, commercial product, or custom-fabricated

circuit.

"* To correct an inaccurate description.

After validation of the modified subcomponent, it would be incorporated into the

coprocessor description, and the coprocessor would be tested. If the coprocessor worked

properly, the cycle would be continued by modifying another component that met the

above criteria; otherwise, the same component would be modified until the coprocessor

returned correct results.

Validated subcomponents would be implemented as FPGAs, commercial products, or

custom-fabricated circuits. Fabricated components and FPGAs would require functional

and parametric testing. Finally, the actual timing of the subcomponent would be back-

annotated into the coprocessor description.

3.4 Initial Findings

3.4.1 Design Synthesis. Many of the components in the coprocessor could not

be fabricated with automated CAD tools and could not be replaced with commercially

23

BEHAVIORAL MODEL
OF COPROCESSORI

MODIFY SUBCOMPONENT
AND VALIDATE-I

VALIDATEPEFRAC COPROCESSOR

FABRICATE]COMMERCIAL

OR FPGA PROOCT

"TEST FOR FUNCTIONAL
AND PARAMETRIC EXTRACT TIMING

PERFORMANCE FROM SPECIFICATION

I 1ACK-ANNOTATE TIMING

Figure 4. DES Coprocessor Design Cycle

available products without extensive modification to the existing design. For example, the

64 by 32-bit register file could not be synthesized. An attempt was made to synthesize the

entire register file; however, this required days of machine time and eventually exceeded

the capacity of the available computers. As a test case, a 4 by 32-bit register file with two

output port latches required 5172 by 2488 sq pm of area. Therefore, a full-sized register file

with additional decode circuitry would easily exceed the maximum size chip area available

for fabrication (10,000 by 10,000 sq pm). Furthermore, no three port register files were

available in packaging that was suitable for wire wrapping. The use of FPGAs was also

not feasible since the most powerful Xilinx FPGA (Xilinx 4020) only had 1,800 flip-flops

available in Configurable Logic Blocks and the register file would require 2,048 flip-flops

(25:1).

3-4.2 Testbench Results. It initially was not possible to capture all of the copro-

cessor output because of a lack of documentation on the structure and timing of the output

data packets. Once limited coprocessor output was captured, formatted, and written to

24

file, it became apparent that not all of the results were correct. In some cases, the lowest

time stamped message was not being retrieved from the CAM during a Get Event routine.

Furthermore, the coprocessor would raise an error condition during a Get Event routine

even though it was safe for the LP to process an event. Further analysis revealed that these

problems were being caused because data was incorrectly written to the CAM. If data was

being written to a reserved word in the CAM, then the write was successful. However,

if data was being written to an unreserved word in the CAM, then the message recipient

field of the word was being corrupted.

3.4.3 Microcode Routines. Once the microcode preprocessor was written, in-line

comments and relative addressing were added to the microcode input file. As a result of

this effort, the following errors were detected:

* The Post Event routine was incorrectly identifying the sending LP for null messages.

e The Get Event routine was not functioning properly when a null message was re-

trieved.

e The microcode did not contain a routine for register file initialization. Further analy-

sis revealed that the register file was being initialized by using VHDL default values.

Finally, the microcode implementation of the SPECTRUM filters did not completely

match the current versions being used on the Hypercube. For example, the Time Advance

function was incorporated into the Get Event routine; however, time was not updated

during the Post Event routine.

3.4.4 Coprocessor Interface Unit. The testbench was rewritten so that it was

easier to determine what stimuli were being applied to the coprocessor. As a result, it

became apparent that the interface logic between the coprocessor and the host was faulty.

In particular, consecutive accesses between the host and coprocessor would cause the two

components to deadlock. After each access to the coprocessor, the host would have to

access some other device (such as memory) to cause the coprocessor decode circuitry to

de-select. The coprocessor would then be ready for another access.

25

Proprietary documentation on the iPSC/2 Hypercube was obtained from Intel. This

documentation indicated that there was available I/O address space for the coprocessor to

operate.

3.4.5 ESAM. HSPICE simulations and automated design rule checking revealed

the following problems with the Extreme Search Associative Memory:

"* Well contacts were incorrectly placed; therefore, VSB would not equal 0 volts.

"* The control circuitry incorrectly selected multiple words during single word opera-

tions (i.e. read operations and single-word writes)

"* Data could not be read from the ESAM. The data output was stuck at 5 volts.

"• Equivalence-search operations returned incorrect results.

The first two errors were corrected early in the research; however, the remaining

errors were not detected until after the initial design was submitted for fabrication.

3.5 Revised Requirements Analysis

The initial findings caused changes to the requirements and scope of this research.

The most significant impact of the initial findings was that none of the previous design work

could be treated as a "black-box" since there were so many errors. Implementation of the

coprocessor design was not possible since the design was faulty. The scope of the research

was changed from implementation to redesign. Partial implementation of the corrected

VHDL description would be used to do a performance analysis of the coprocessor.

The following redesign would be required:

"* Component descriptions would have to be modified so that they could be mapped

into an FPGA, commercial product, or custom-fabricated circuit. Emphasis would

be placed on minimizing the chip-count of the coprocessor during this redesign.

"* The CAM errors could be ignored since that component was being replaced with the

ESAM; however, all of the ESAM errors would need to be corrected.

26

e The microcode would have to be rewritten in accordance with the architectural

changes, and the microcode bugs discussed in the initia! findings would need to

be corrected.

e The coprocessor interface unit would have to be fixed so that it would allow consec-

utive accesses from the host. The interface unit would also be modified so that it

was not constrained to a particular architecture.

3.6 Conclusion

A thorough analysis of the baseline design was necessary before the initial require-

ments analysis could be done. Once the initial requirements analysis was done, the first

steps were taken towards implementation; however, these steps uncovered numerous prob-

lems with the coprocessor design. Once several significant problems were uncovered, a

revised requirements analysis was done. The progress of this research was constrained

by the problems that were detected with the baseline design. Most, but not all, of these

problems would have to be fixed. The scope of the research was changed to redesign the

coprocessor so that the VHDL description was correct and feasible. Only partial imple-

mentation would be possible; however, a performance analysis could be done based on data

collected from the partially implemented design.

27

IV. Implementation

4.1 Introduction

This chapter explains the completed structural description of the DES Coprocessor

using a top-down approach. The intent of this discussion is to give a general understand-

ing of the architecture while explaining design objectives and justifying significant design

decisions. Detailed technical data has been intentionally omitted from this chapter and is

contained in the appendices.

This chapter also discusses the mapping of the structural description into a phys-

ical circuit. Commercial memories, Programmable Logic Devices (PLDs), and custom-

fabricated circuits were required in order to map the coprocessor design into a feasible

circuit.

Finally, this chapter concludes by discusing the implementation of these subconipo-

nents. Due to time and resource limitations, only portions of the design could be imple-

mented.

4.2 Top-Level Circuit

The top-level design in the structural description of the coprocessor is shown in

Figure 5. This level of the design consists of the DES Coprocessor interfaced to a testbench

program. The testbench represents a single node on a multiprocessor computer. The

testbench provides the stimulus to the coprocessor in order to execute a single-Aode portion

of a parallel discrete event simulation using the Chandy-Misra null-message protocol.

DES TESTBENCH COPROCESSOR
WR CS ATAwf

•SADATA A STA hS OLATA
cSTSTATAUS CS-STATUW

RESET RESET
CLK C"- CLK

INTA rTA INTA

DATA(3I m SYSTEM DATA BUII. M DATAPI*.-%

Figure 5. Top-Level VHDL Description

28

The testbench from the baseline design generated Intel 80386 signals since the target

architecture for the coprocessor was the Hypercube. These Intel-specific signals have been

eliminated in order to support a more flexible interface. The chip select signals (CSData

and CS-.Status) are generated directly from the testbench. This configuration allows the

coprocessor to be interfaced with varying architectures; however, the logic interface must

be completed once a host architecture has been identified. Any additional logic which is

required to interface to a particular architecture can be implemented with PLDs.

The testbench provides the coprocessor with opcodes and operands and retrieves re-

sults from the coprocessor when appropriate. More detailed information on the testbench-

coprocessor interface is in Appendix A. The following opcodes were derived from Reynold's

SPECTRUM testbed and are supported by the current design:

"* Initialize Simulation - Executed once for each LP that will be simulated on the node.

Sets up the internal coprocessor architecture so that the simulation can be success-

fully synchronized. Processes null messages for each output arc of the initialized

LP.

"* Post Message - Stores an event for an LP being simulated on the node. Generates a

recoverable error condition if the storage capacity of the coprocessor is exceeded.

"* Get Event - Retrieves the minimum time-tagged event for an LP being simulated on

the node and updates the simulation time of the LP. Generates a recoverable error

condition if there is not a valid message on each input arc of the LP.

"* Post Event - Processes null messages for the output arcs of the specified LP.

4.3 Internal Coprocessor Architecture

The internal coprocessor architecture is shown in Figure 6. The four major compo-

nents of the coprocessor are the microcode control engine, an NEQ component, an SRAM,

and an interface unit.

The microcode control engine is a 32-bit vertical processor with a programmable

control store. The microcode routines are responsible for executing the simulation synchro-

nization routines. The NEQ component is a 32-bit by 32-word Extreme Search Associative

29

uinone. CIrL
NOWi

*Isqou~vp'mG• Uf..J c ira -,l-

iOLT, nL M wiimLcmi

SPADO WDl -

OW LOCAL.AOTIIA) - -- _ k
WAlIMU IMMUCmjSSO

Figre6.Intrnl oprcesouArhiec ure u t

WAVUU_ pui~ U7*TN

-_Ov NSCTU

r4 CLOCM-DATC0O"

MLWH

Figure 6. Internal Coprocessor Architecture

Memory with a finite state machine controller and I/O port latches. This component main-

tains the next event queue for each logical process being supported by the coprocessor. The

SRAM is a 64k by 32-bit memory which is used to store the LP specific information required

to synchronize the simulation. Finally, the interface unit provides a general purpose I/O

interface for the coprocessor. This component allows the host to control the coprocessor

and also allows for data transfer between the host and coprocessor.

4.4 NEQ Component

The NEQ Component is shown in Figure 7. This component was included in the

DES Coprocessor design to provide 0(1) insert and retrieval time of events in the NEQ. As

discussed in the requirements analysis, the initial coprocessor design used a CAM within

the NEQ component. The CAM was replaced with an ESAM to provide more efficient

extreme search capability. Despite the extensive redesign of the component, an effort was

made to keep the component interface to the coprocessor the same as the initial interface

to minimize the amount of architectural changes that would be required.

30

Fiue7 NextEvntQuueCopoen

NUM&

MrA-GW dJ opa

=1•

Figure 7. Next Event Queue Component

The NEQ Component consists of the following major subcomponents:

* An Extreme Search Associative Memory (ESAM) which can read and write data based

on the results of minimum, maximum, and equal searches across the entire memory

or subsets of the memory.

* An NEQ control unit (NEQCTRLUNIT) which consists of a finite state machine (FSM)

with registered outputs.

* An address encoder to convert an ESAM word address to an SRAM address.

* I/O port latches (ESAMDATAIN, ESAMDATAOUT, and ESAMADDROUT) to transfer

data and address information.

e A clock filter (CLKFILTER) to synchronize the NEQ Component with the multi-

phased clock of the control engine.

31

* Components to provide the FSM with feedback results from the previous operation.

The NATCHSTATUS and D._SEL,_STATUS feedbacks are the "or" of the corresponding

32 signal lines.

The NEQ component does not store all of the event data on-chip. The component

maintains the identification of the sender and receiver of the message, the time stamp of

the message, and a 32-bit memory pointer to the event. The memory pointer gives the

location of the event data which is stored in the main memory of the host processor. This

design is based on a distributed memory architecture.

4.4.1 NEQ Control Unit. The NEQ Control Unit controls the I/O port latches,

the reading and writing of data in the ESAM, and all search operations. The NEQ Control

Unit was designed with the following intentions:

"* Off-load the complexity of ESAM control from the DES Coprocessor control engine.

"* Allow for concurrency between the control engine and the NEQ Component.

"* Allow the capability for the NEQ Component to work as a stand-alone I/O device

separate from the DES Coprocessor. This capability would allow the NEQ Compo-

nent to support both sequential and parallel discrete event simulations.

"* Maintain enough flexibility to support both conservative and optimistic parallel sim-

ulation paradigms.

The NEQ Control Unit has 42 unique states. A simplified state diagram is in Fig-

ure 8. The top portion of the diagram represents start-up states which must be executed to

guarantee successful operation. The bottom portion of the diagram represents states which

are regularly executed once start-up is complete. Each state in the diagram represents be-

tween three to twenty actual states. The control stimulus that causes a transition between

top-level states is shown on the arcs. This stimulus is applied to the NEQCtrl (2:0) input

port shown in Figure 7. More detailed state information is in Appendix B.

A short description of each of the top-level states is listed below:

32

------)--

UAMI
00 0

001

Figure 8. Simplified State Diagram of NEQ Component

* Idle1 - Waiting to begin initialization upon assertion of a Synchronous Reset. This

state was necessary because the host (the control engine in this case) may not be

immediately ready to begin initialization after a reset.

* Init Esam - Initializes all of the words in the ESAM to a user-defined value which

is input through the ESAILDATLIN port. This state is used to clear all of the valid

bits before beginning normal operation.

* Reserve Arcs - Allows words to be reserved for each LP that is being simulated. If

multiple LPs are being simulated, this feature guarantees that each LP may have a

valid event posted on each input arc. Goes to the Error1 state if an attempt is made

to reserve more words than are available in the ESAM.

* Write Word - Writes a word to the ESAM and sets the valid bit. Goes to the Error2

state if the ESAM is full when trying to write. Routine operations begin the first

time this state is entered.

33

"* Find Min - Finds, retrieves, and invalidates the minimum time-tagged event for an

LP. Goes to the Error2 state if there are no valid events for the LP.

"* Search - Searches the ESAM to determine if there is a valid event for the specified

LP input arc. Goes to the Error2 state if there is not a valid event on the input arc.

"* Idle2 - Waiting to execute another routine operation. May also output data and

address information from the I/O ports.

"• Errorl - Signals that a non-recoverable error has occurred because an attempt is

being made to reserve more words than are available.

"• Error2 - Signals that a recoverable error has occurred.

This design will support both optimistic and conservative parallel simulation proto-

cols. For conservative protocols, status registers must be maintained (outside of the NEQ

Component) to determine when it is safe to retrieve an event from the NEQ. If it is safe to

retrieve a message, the "Find Min" state is entered and the minimum time-tagged event is

retrieved. Finally, the "Search" state is entered to determine if there is another valid event

on the input arc from which a message was just retrieved. If there is another valid event

on this input arc, ther the status register does not need to be updated. Otherwise, the

status register must be updated to reflect that it is not safe to retrieve another message

for this LP.

For optimistic protocols, an attempt to retrieve an event can be made without knowl-

edge of the status of the input arcs; therefore, status registers are not needed. The "Find

Min" state is entered to retrieve the minimum time-tagged event for the LP. If there are no

valid messages for that LP, then the recoverable error state is entered. The "Search" state

is not immediately necessary for optimistic protocols; however, this state may be used for

less optimistic approaches which aim to limit aggressiveness or incorporate adaptability.

4.4.2 Extreme Search Associative Memory. The ESAM is shown in Figure 9.

This schematic represents the topology of the Magic layout that was provided by Banton

from his doctoral research (1). More detailed information on this portion of the design is

also in Appendix B. The primary components of the ESAM are:

34

5~ Umm~m~t~ ___________

C!

Figure 9. Extreme Search Associative Memory

* A write circuit (VRITLCKTYORD) which controls the data and mask inputs to the

memory.

* A 32-word by 32-bit array of memory cells (EXTRENE..ARUAY).

* A read circuit (REAtD..CII•cUIT_.VORD) which is used to output data that is stored in

the array.

* A control circuit (W0ORD_.SEkCKTf) which generates the control signals for all write,

read, and search operations in the memory array.

The ESAM uses bit-serial word-parallel search logic to execute equivalence, maxi-

mum, or minimum searches across all words or subsets of words in the memory. The ESAM

can also execute write-all, write-subset, write-word, and read-word operations. Further-

more, all operations can be performed across an entire word or selected parts of a word by

using the mask input. Only the search-all-equal and search-subset-minimum associative

operations were required for this application, so some of the signal lines in the VHDL

35

* .

Figure 10. Initial ESAM Write Circuit

description have been tied low. This was not done for the fabricated ESAM components,

however, so that these features could still be tested.

Several errors in the initial ESAM design were detected and corrected. These errors

are discussed in the following sections.

4.4.2.1 Data Write Circuit. The initial ESAM write circuit for one bit slice

is shown in Figure 10. During a write operation, the Write signal is held at 5V, and the

precharge portion of the circuit is cut-off. During a read operation, the Write signal is

held at OV, and the precharge is held on for the entire operation. This design allowed data

to be written to memory; however, the memory cells could not over-power the precharge

drivers sufficiently to allow data to be read from memory.

The write circuit was replaced with the design shown in Figure 11 to correct this

problem. This design executes a write operation in the same fashion as the initial design;

however, the read operation has been broken into two phases. In the first phase, the

precharge signal is held at 5V, and the ESAM bit and bit-not lines charge to approximately

2.5V. Since the bit and bit-not lines are shorted together during this phase, they will

precharge to the same voltage. This short reduces the possibility of reading an incorrect

value. During the second phase of the read, the precharge line is disabled and the selected

memory cells can drive the data lines to the correct voltage levels. To minimize the impact

of this change, the precharge signal was derived from an already-existing signal within

36

T T

Figure 11. Corrected ESAM Write Circuit

the ESAM design. Therefore, no additional external signals were required because of this

modification.

4.4.2.2 Data Read Circuit. The Data Read Circuit is a differential sense

amplifier which detects small voltage differences between the bit and bit-not lines and

outputs the correct logic value from this information. The initial read circuit of the ESAM

was functional; however, it had a small logic swing (less than 1V). To increase the logic

swing of the memory, the initial read circuit was replaced with the read circuit used in

SanGregory's dual-ported SRAM (23). This modification provided a full five-volt logic

swing from the output of the differential sense amplifier and also gave better drive capability

for off-memory parasitic capacitances. The new read circuit also has an output-enable

control in order to minimize current drain. Since the initial circuit did not have an output-

enable, this signal was wired to Vdd to remain asserted. Future research may improve on

this; however, a detailed analysis on current drain should first be conducted. Furthermore,

the impact on the circuit speed should be analyzed before incorporating the output-enable

into the design.

4.4.2.3 Word Select Circuit. The initial word select circuit had several

errors which caused multiple words to be selected during single-word operations. The

37

initial design was correct; however, it was implemented incorrectly. Several subcomponents

of the control circuitry were either wired together incorrectly or had dangling wires. These

errors were detected and corrected.

4.4.3 Adjacent SRAM. Not all of the NEQ data is used for associative search

operations. For example, the memory pointer to the event data is not searched. Since

the ESAM memory cell requires 26 transistors, it would be inefficient to use this type of

memory cell for the sole purpose of storing data. It would be much more efficient to use

an SRAM cell composed of only six transistors to store data that is not part of the search.

Ideally, this Adjacent SRAM would be included on the same integrated circuit (IC)

as the ESAM. For ease of implementation, an address encoder and address port register

were included in the NEQ Component so that a separate commercial SRAM could be used

to store this adjacent data. Refer to Figure 7. The 32 ESAM words are encoded into a

5-bit address field; however, the NEQ Component outputs a 16-bit address in order to

conform to the SRAM memory map. This simplified design will result in a slower over-all

execution time to account for the address encoding and driving of chip-to-chip capacitance.

4.5 Microcode Control Engine

The microcode control engine is shown in Figure 12. The control engine is composed

of two major components: an execution unit and a control unit. The execution unit

manipulates data. The control unit controls the execution unit, NEQ Component, SRAM,

and Coprocessor Interface Unit. Detailed information on the Microcode Control Engine is

in Appendix C and Appendix D.

4.5.1 Control Engine Ezecution Unit. The execution unit is shown in Figure 13.

The Execution Unit consists of the following major components:

9 A 16 by 32-bit general-purpose register file (GPR-File) with two register address

decoders (RIDECODER and R2_DECODER) to select registers for read/write operations.

@ A 32-bit ALU and shifter for manipulating data.

* A 32-bit bidirectional memory buffer register (NBR).

38

MO

41OUULOAD

Figure 12. Microcode Control Engine

e A 16-bit output memory address register (MAR).

* Two data path latches (A-LATCH and BLATCH) and a multiplexer (BMUX) to control

the internal data path of the execution unit.

4.5.1.1 General Purpose Register File. The initial coprocessor design re-

quired a 64 by 32-bit general purpose register file. A register file of this size could not

be purchased or fabricated; therefore, architectural and microcode changes were necessary

in order to reduce the number of required registers. This reduction was accomplished by

trading off speed for size.

An encoding scheme was used to eliminate the need for twenty of the general purpose

registers. In the initial design, an SRAM pointer for each LP was kept in the register file.

Since the coprocessor can accommodate up to twenty logical processes, twenty dedicated

registers were required to maintain pointers to the respective LP partition in the SRAM.

The SRAM pointer for each LP is simply the five-bit LP identifier shifted left five times

to allow an LP partition of thirty-two words. Since the LP identifier is provided in every

opcode to the coprocessor, the LP SRAM pointers could be decoded from the opcodes thus

eliminating the need for dedicated registers.

The size of the register file was further reduced by moving data to the SRAM. The

initial design used registers to maintain the status of the input arcs for each LP. Twenty

dedicated status registers were required for this initial scheme. The LP status information

39

* S

Figure 13. Execution Unit of Microcode Control Engine

was moved to storage in the respective LP partition in the SR{AM. When the LP status

needs to be updated, it is transferred from SRAM to register, updated, and then written

back to SRAM. This modification eliminated the need for twenty registers.

Of the remaining twenty-four registers, less than sixteen were required to execute

the current microcode routines. The size of the register file was chosen to be sixteen to

conform with a power-of-two multiple.

The primary trade-off with the redesign of the register file was between speed and size.

Since the LP SRAM address would need to be decoded and status information maintained

in SRAM, execution time would be slower, but fewer registers would be required. The

impact of this trade-off could be minimized by modifying the format of the user-defined

macroinstructions; however, the initial format was not modified due to time limitations.

The impact on the microcode performance is listed below.

* Decoding of the SRAM address added 24 clock cycles to each microcode routine.

* Maintenance of the LP status in the SRAM added 20 clock cycles to the Post Message

routine.

40

* Maintenance of the LP status in the SRAM added 32 clock cycles to the update

function within the Get Event routine.

The average time increase of the microcode routines is dependent on siaitilation

specific variables which are not discussed until Chapter V. Typical microcode routines

should require several hundred clock cycles to execute. The over-all impact of the smaller

register file should be a time increase of less than 10 percent.

The utility of the architecture was not sacrificed by reducing the size of the regis-

ter file. In comparison to other microcode control processors, both the Intel 80486 and

Motorola 68030 have only eight general purpose data registers (12, 18). Sixteen general

purpose registers cc mbined with the coprocessor SRAM should be sufficient for the DES

Coprocessor to execute potential synchronization tasks.

4.5.1.2 ALU. The functionality of the ALU was improved from the initial

design to compensate for a smaller register file and to increase the utility of the coprocessor.

The following functions were added:

"* Increment and Decrement - These functions eliminated the need to use registers to

store values of ± 1.

"* Pass-through of Source Register - This function allowed for register-to-register moves.

The initial ALU could only pass the destination register, so a register-to-register move

required two cycles:

1. "and" the target register with zero to clear it.

2. "or" the target register with the source register.

This ALU modification cut the execution time of the most common instruction in

half and eliminated the need for a zero-register.

" Subtract - Although not immediately needed, the ability to subtract two numbers

was added to the ALU to improve the utility of the coprocessor. This was a low-cost

improvement to the ALU since the the subtracter was already in place to support

the Decrement function.

41

The current implementation of the adder/subtracter portion of the ALU is a carry-

ripple. This implementation was selected since it could be easily synthesized in the Syn-

opsys Design Analyzer.

4.5.2 Control Engine Control Unit. The Control Unit is shown in Figure 14 and

consists of the following major components:

"* An EPROM control store which outputs 16-bit microinstructions.

"* A microinstruction decoder with registered output (MICROINSTRUCTION-DECODEUNIT).

"* A mapping multiplexer (MMTUX), microsequencing logic (MSL), and a carry-ripple adder

(INCRE•ENTER) for generating the address of the next microinstruction.

"* A branch target latch (BRANCHTGTLATCH) which stores the absolute address of a

branch target specified by the microinstruction. If a branch is not specified, this

latch stores the encoded R1/R2 fields from the microinstruction.

"* A microprogram counter (HPC) that holds the address of the next microinstruction.

"CLK4" is used to load the MPC, and "CLK1" is used for a synchronous reset.

"* A four-phased non-overlapping clock generator (CLOCK) to control the engine data

path and prevent race conditions.

"* A flag register (FLAG-REG) to store the results of the ALU operation from the previous

instruction.

4.5.2.1 Programmable Control Store. The initial design used an SRAM for

the programmable control store and required a boot strap ROM to control the loading of

microcode. The control store was moved to an EPROM in order to decrease the complexity

of the design. The major benefits of using an EPROM control store are:

"* Simplified data path and control circuitry since the need for a run-time load of the

control store was eliminated.

"* Reduced frequency of control store programming since reprogramming would be re-

quired only when there was a change in the microcode.

42

cm

Figure 14. Control Unit of Mlicrocode Control Engine

* Faster VHDL simulation time since the control store load did not need to be simulated

before testing the design. The simulation time was reduced by over 5 minutes. This

reduction resulted in faster design iterations.

The only major cost of this redesign is that the control store could not easily be

placed on the same IC with other components of the coprocessor. Therefore, the over-all

IC count of the coprocessor would be higher.

4.5.2.2 Macroinstruction Decoding. The initial design also had a Mapping

SRAM so that the instruction register in the general purpose register file could be used

to select a branch target in the microprogram. This allowed for a fast decode time during

the fetch/decode cycle in the microcode; however, it required complex data path and

control circuitry since the Mapping SRAM had to be loaded at start-up. Furthermore, the

Instruction Register had to be hard-wired to the mapping-mufltiplexer which would limit

the flexibility of the register file and also further complicate the data path. To reduce

this complexity, the design was modified to decode instructions by shifting the instruction

43

* .

and passing it through the ALU. This modification added an average of 16 clock cycles to

the fetch/decode routine and increased the average microcode execution time by less than

5 percent.

4.6 SRAM Component

The initial coprocessor design had a 4k by 32-bit SRAM which was used for holding

LP specific information needed to synchronize the simulation. This initial design had a

predefined memory map in which the microinstruction decoder was used to select one of

four 1k by 32-bit memory partitions. The address within the 1k partition was then selected

by the 10-bit Memory Address Register (MAR).

To improve the utility of the coprocessor, this addressing scheme was changed so

that the memory map could be completely defined by the user. Rather than specifying

part of the address from the microinstruction decoder, the entire address is now specified

from the MAR.

The size of the SRAM was also increased to improve the utility of the coprocessor.

The permissible SRAM size was increased from 4k to 64k. This was accomplished by

increasing the MAR size to 16 bits. This increase in memory size was not based on a

particular need, but was aimed at increasing the flexibility of the coprocessor.

Another change from the initial design was to share the SRAM between the Control

Engine and the NEQ Component. The Control Engine uses the SRAM to maintain parti-

tions of LP specific information which is required to synchronize the simulation. The NEQ

Component uses the SRAM to store the memory pointer to event data. In the current

design, the NEQ Component and Control Engine do not simultaneously access the SRAM,

so a single-port memory is sufficient. The sharing of the SRAM between the Control En-

gine and the NEQ Component was done to minimize the IC count of the coprocessor. The

memory map for the current implementation is given in Appendix E.

44

TO/FROM HOST TOIFROM COPROCSOR

Figure 15. DES Coprocessor Interface Unit

.7 Interface Unit

The interface unit is shown in Figure 15. Detailed information on this component is

in Appendix F. The Interface Unit consists of the following major components:

* A Signal Generator which is used to interpret the control stimulus from the host

processor and generate the correct internal signals.

* A 32-bit parallel I/O buffer (PARIO0_BUFFER) which is used to transfer data between

the host and the DES coprocessor.

* A four-bit status register (STATUS_.WORD) which is used by both the host and copro-

cessor to transfer status information.

* An eight-bit interrupt register (INTERRUPTREG) which is used by the coprocessor to

provide interrupt vectors to the host.

* A clock filter (CLKFILTER) to synchronize the status register with the multi-phased

control clock of the control engine.

45

Table 1. Mapping of Coprocessor into Physical Circuits

Component Method of Implementation

NEQ Component Custom-fabricated
Ctrl Engine Execution Unit Custom-fabricated
Ctrl Engine Ctrl Store Commercial EPROM
Ctrl Engine Ctrl Unit FPGA
(less Ctrl Store)
SRAM Commercial SRAM
Interface Unit FPGA

The Interface Unit in the initial coprocessor design was based on Intel 80386 signals.

The design was modified so that the coprocessor could be used as a general-purpose I/O

device for any 32-bit host processor. Two chip select signals (CSData and CSStatus) in

conjunction with a Write/Read (WR) signal allow the host to modify or read data in the

Parallel I/O Buffer and Status Register, respectively.

4.8 Mapping of Design into Physical Circuits

Table 1 shows the mapping of the structural description of the coprocessor into actual

components. The following criteria were used to complete this mapping:

"* Use FPGAs to the maximum extent possible to maintain flexibility in the design

while reducing risk and -. st.

"* Use other commercial products if they are readily available and can be used without

extensive modification to the design.

"* Use custom-fabricated circuits only as a last-resort because of high risk and cost.

The only aberration from the mapping criteria is the Control Engine Execution

Unit. Although this component may possibly be implemented on an FPGA, the required

equipment was not available. Furthermore, this portion of the coprocessor is the least likely

to change. Because of these considerations, this portion of the design was implemented on

a fully-synthesized custom-fabricated circuit. Once the required equipment does arrive, an

attempt can be made to fit this portion of the design on a single FPGA. If the design fits

46

on a single FPGA, the custom-fabricated design and the FPGA design can be compared

to choose the fastest implementation.

4.9 Implementation of Subcomponents

Due to time and resource constraints, the design was only partially implemented.

The following subsections discuss the different categories of implementation.

4.9.1 Field Programmable Gate Arrays. The Xilinx FPGA family was chosen

because of its compatibility with the Synopsys CAD tools. The Synopsys Design Analyzer

could be used to convert either behavioral or structural VHDL descriptions to the initial

format that is used by the Xilinx software. Unfortunately, Synopsys only supports the

Xilinx 4000 family, and the PC-based Xilinx software that was available only supports

the Xilinx 2000/3000 families. The PC-based software could not be used because there

was no automated process to translate the VHDL descriptions to the correct format for

the Xilinx software. Manual translation was not feasible because of time constraints. The

Sparc-based Xilinx software which supports the 4000 family was ordered; however, this

software was not available in time to support this research.

4.9.2 Commercial Memories. Commercial memories were chosen for the SRAM

and the Control Engine Control Store. The following criteria were used to select the correct

memory:

"* The memory packaging must be suitable for wire-wrapping. Many of the high-

performance memories on the market come in packaging which is only suitable for

printed circuit board designs. Pin spacing of the package was the primary factor.

"* The memory speed should be as fast as possible, and the memories should be readily

available.

"* The memory size (on one package) should meet the VHDL description in order to

minimize the coprocessor IC count.

"* The EPROM must be programmable with equipment available in the AFIT Advanced

Processor Lab.

47

The Cypress CY7C261 was selected for the EPROM. Although a 16-bit EPROM is

required to place the control store on a single IC, the available equipment is not capable

of programming such an EPROM. An 8-bit EPROM was chosen, so two packages will be

required to implement the control store.

The Cypress CY7C198 was selected for the SRAM. Four packages will be required

since this SRAM is only 8 bits wide. Furthermore, the Cypress SRAM has only 32k

of words, so it is not possible to use the full address range of the coprocessor without

additional logic. The coprocessor can accommodate up to 64k; however, 32k is sufficient

for the current implementation.

4.9.3 Fabricated Components. The NEQ Component and Control Engine Execu-

tion Unit were the only two components of the coprocessor selected for custom fabrication.

Since the NEQ Component could not be simulated with a switch-level simulator, it was

necessary to fabricate subcomponents before attempting to fabricate the entire component

on one IC. Fabricating the subcomponents provided sufficient controllability and observ-

ability to identify design errors. Once all of the fabricated subcomponents were validated,

they could be incorporated into a single IC. Pin assignments of all fabricated circuits are

listed in Appendix G. The following parts of the NEQ Component were fabricated:

" Memory Array - A 32-word by 32-bit ESAM array with write and read circuitry was

fabricated in a 132-pin Pin Grid Array (PGA). The control portion of the ESAM

was omitted from this circuit, so all control signals to the array were brought in from

off-chip. Furthermore, the result signals from search operations were sent off-chip.

As discussed in Section 3.4.5, several errors were detected with this IC after it was

submitted for fabrication. Despite these errors, the extreme-search functions could

still be tested.

" Word Select Circuit - A 32-word ESAM word select circuit was fabricated in a 132-

pin PGA. The ESAM memory array was not included in this package, so the memory

array control signals were sent off-chip and the search result signals were brought in

from off-chip.

48

"* NEQ Control Unit - The NEQ Control Unit was fabricated as a MOSIS TinyChip

in a 40-pin Dual In-Line Package (DIP).

"* Corrected ESAM Array - A 4-word by 6-bit ESAM memory array with corrected

read/write circuitry was fabricated as a MOSIS TinyChip in a 40-pin DIP.

The execution unit of the control engine was fabricated in an 84-pin PGA. The

Magic layout was generated from the VHDL structural description by using the Synopsys

Design Analyzer and the Octools/Lager software package. Furthermore, limited switch-

level simulation of this circuit was possible prior to fabrication. Because of these factors,

subcomponent fabrication was not necessary prior to fabricating the entire execution unit.

4. 10 Conclusion

This chapter provided an overview of the completed structural description of the

DES Coprocessor using a top-down approach. The intent of this discussion was to give a

general understanding of the architecture while explaining design objectives and justifying

significant design decisions. This chapter also provided an explanation of the criteria used

for mapping the structural description of the coprocessor into physical circuits.

The final portion of the chapter explained the partial fabrication of the coproces-

sor. Since the NEQ Component could not be simulated with a switch-level simulator,

subcomponents were fabricated on separate ICs to provide sufficient controllability and

observability for design validation. These fabricated ICs would also provide enough timing

data for a partial performance analysis of the coprocessor.

49

V. Findings

5.1 Introduction

This chapter reviews the test results of the custom-fabricated components of the DES

Coprocessor. More detailed information on the testing of the circuits is in Appendix H.

Timing measurements from these tests were back-annotated into the VHDL description of

the coprocessor. The critical path and maximum operating frequency of the coprocessor

were determined from this analysis.

Equations are derived to determine the coprocessor performance based on application

specific variables. Finally, a partial performance analysis of the coprocessor is done using

data extracted from Hypercube simulations with the AFIT Algorithm Animation Research

Facility (AAARF).

5.2 ESAM Array

5.2.1 Functionality Test. The memory array I/O functions and associative op-

erations were tested in order to validate the design. With one exception, the results of

this testing were consistent with the predicted functionality from HSPICE simulations.

As expected, data could be written to the array and extreme search operations could be

executed. Equivalence operations returned incorrect results because an inverter on the

comparand data path was not connected to the power line. In some cases, data could be

read from the array, and this observation was a departure from the HSPICE predictions.

Based on the discussion in Section 3.4.5, the failure of the equivalence search operations

and the read operations can be attributed to design errors and not fabrication errors. Thus,

the fabrication yield was 100 percent for the 32 ICs that were fabricated.

5.2.2 Extreme Search Test. Worst-case maximum and minimum searches were

executed across all 32 words using search fields of 32, 31, 28, 24, 20, 16, 12, 8, and 4

bits (Figure 16). The size of the search field was constrained by the number of pins on

the package. In order to place the array in a 132-pin PGA, one mask input on the IC

corresponds to a 4-bit field. Although the maximum search is not required for the DES

50

62 0 n s ..

580ne

54 0 n s

500 s Min Search

460ns....................... *Max Search

4ý 8 12 16 20 24 28 32

Number of Bits

Figure 16. Worst-Case ESAM Operations using a 32-bit by 32-word memory. The
searches were executed across all 32 words, and the width of the search field
was varied. Time is measured from the assertion of search select until the
return of word match as shown in Figure 9.

Coprocessor design, this function was measured in order to provide a comparison with the

minimum search function. These functions should have near-identical performance, and

any differences might identify flaws in the design.

All 32 ICs were tested for functionality; however, only 10 ICs were tested for worst-

case performance due to the complexity and time requirements of the testing. This testing

is discussed in greater detail in Appendix H. The worst-case minimum (maximum) test

was executed as follows:

1. Write FFFFFFFF (00000000) to all words in the memory.

2. Write 00000000 (FFFFFFFF) to a single word in the memory.

3. Search all words in the array for the minimum (maximum) value.

This test was the worst-case scenario for extreme searches since only one memory

cell must drive each slice of the extreme search data path. The searches were executed

51

* *

PAD FRAME

VDO
ESAM ARRAY

VDO

VV0

voo

WOO
vam

Von

C3NO

Figure 17. Simplified ESAM Array Floor Plan

across all 32 words; however, the results are the same for subset searches. The capacitive

loading of the search path is not affected by the number of words selected.

Figure 16 reflects the linear relationship between the width of the search field and

the time required to execute an extreme search. The minimum and maximum searches are

executed in equivalent time (+3ns) except when the width of the search field is less than

12 bits. Further analysis revealed that this difference may be caused by the poor power

and ground routing of the circuit. Figure 17 shows a simplified floor plan of the fabricated

circuit. Primary power and ground rails are used on the side of the circuit which represents

the high-order bits. Memory cells in the low-order bits must rely on the power and ground

rails on the opposite end of the layout.

The poor power and ground distribution probably has a more significant impact

on the minimum search data path and causes the difference in execution times between

minimum and maximum searches. When the worst-case extreme search was executed on

a 4-bit field using the high-order bits of the ESAM words, the search times decreased,

52

Table 2. Worst-Case ESAM Operations across a 4-bit search field. When the high-order
bits are searched, the maximum and minimum search times are reduced and
become comparable. Units are in nanoseconds; a is the standard deviation.
Times are mean values taken from the same 10 ICs used in Figure 16.

Search Bits 27-24 a o Bits 3-07 a

flMaximum 291.7 5.3 312.1 I6.6 f
Minimum 297.6 6.0 343.5 6.2

and the difference in execution time between the minimum and maximum searches was

reduced (Table 2).

The standard deviation of the worst-case maximum and minimum searches is plot-

ted in Figure 18. As the width of the search field is increased, the standard deviation

also increases; however, the standard deviation divided by the mean remains constant at

2 percent.

5.2.3 Write-Read Test. The I/O performance of the ESAM array did not com-

pletely match the predictions from HSPICE simulations. In general, the data output of

the memory array was stuck at a high logic value; however, in a few cases, the correct data

could be read from the array.

If the same data was written to two words and both words were simultaneously read,

then the correct data was output for 69 percent of the ICs. This result indicates that the

simultaneous selection of two memory cells on the same data line will lower the resistance

path to ground sufficiently to pull the precharged line down.

Read operations for single words were successful for 19 percent of the ICs. Timing

data for these ICs was not collected because the results were inconsistent. For example,

the read access time for the same IC could fluctuate by 200ns while running the same test.

Differences between the HSPICE simulations and the actual circuit performance

can be attributed to two factors. First, the accuracy of the HSPICE simulations was

53

16ns

15 n s ..

14ns

13ns

12ns

-Min Search
6 s....* M ax Search

11ns

4 8 12 16 20 24 28 32
Number of Bits

Figure 18. Standard Deviation of Worst-Case ESAM Search Operations shown in Fig-
ure 16. o, increases with the number of bits; however, alpt is constant at 2
percent.

intentionally sacrificed in order to decrease the execution time of the simulation. The

HSPICE f ast option was used to reduce the simulation time to 8 hours at the expense

of accuracy. Furthermore, the noise margin of the differential sense amplifier was small

enough that an accurate prediction of performance was not possible. For 81 percent of the

circuits, HSPICE simulations predicted the actual behavior (data output stuck at a high

logic value).

5.3 ESAM Word Select Circuit

5.3.1 Functionality Test. Not all of the Word Select circuit functions are required

in the DES Coprocessor design. For example, the search-not-pnin/max/equal and the write

subset functions are not used. These functions and the required functions were tested in

order to validate the circuit design.

54

CYCLE ni CYCLE n+1

CLOCK

TI T2• T3 T5

T4

Figure 19. NEQ Control Unit Cycle. The pulse represents the clock input to the NEQ
Control Unit. Events T1-T5 are explained in Table 3.

This testing revealed a subtle difference between the VHDL model and the fabricated

circuit. Refer to Figure 9. The correct CTRL(3) input for the fabricated circuit is the inverse

of the signal for the VHDL model. This difference occurred because an inverting buffer

was used to drive the parasitic capacitance on this signal line in the fabricated circuit.

After the CTRL(3) input to this circuit was inverted, all of the func, ans worked correctly.

The fabrication yield was 100 percent.

5.3.2 Performance Test. The most time consuming functions of the Word Select

circuit are the Search-All and Write-All functions. The mean minimum cycle time of the

control inputs was 25.9 ns (38.6 MHz) with a standaM'd deviation of 0.49 ns. The sample

size was 32 ICs.

5.4 NEQ Control Unit

The functional and parametric tests for the NEQ Control unit were executed si-

multaneously. The test consisted of traversing all of the arcs in the finite state machine.

Figure 19 and Table 3 explain the performance of this circuit. The NEQ Control Unit op-

erates successfully with a maximum clock rate of 27.6 MHz and a duty cycle of 70 percent.

55

Table 3. NEQ Control Unit Cycle. Time is relative to the start of a cycle.

D Event I Description I Time]]

TI Start of cycle. Ons
Control stimulus applied to
NEQ Control Unit inputs.

T2 Falling edge of clock input. 10.5ns
Registered outputs are latched.

T3 NEQ Control Unit transitions to 21.3ns
the next state.

T4 NEQ Control outputs become valid. 24.2ns
T5 Start of next cycle. 36.2ns

5.5 Corrected ESAM Array

The corrected ESAM Array is a 4-word by 6-bit memory. This circuit was fabricated

to validate the improved write/read components of the memory and the corrected Equal-

Search function.

The worst-case performance of the associative operations for this IC is shown in

Figure 20. The worst-case extreme searches were executed as described in Appendix H.

The worst-case Equal Search was executed by generating a simultaneous match on all

words in the memory.

As can be seen in Figure 20, the Equal-Search operation always performed faster

than the extreme searches. Furthermore, as the width of the search field was increased,

the difference in execution time between the extreme and equal searches increased. This

result is expected since the Equal-Search path has less parasitic capacitance per gate than

the Extreme-Search path.

The write and read test of the corrected array consisted of writing and reading pat-

terns of zeroes and ones to each word in tue array. Table 4 shows the timing measurements

for this test. The cycle time refers to the rate at which the data, mask, write, precharge,

and word select inputs were applied to the memory, and the read access time refers to the

56

95AS
8 n8n90ns

75Ansra..ng.ef3 p 5 t Max Se arch
70ns ua ea c

65ns s

60ns.ns ...

55ns
23 4 5 6

Number of Bits

Figure 20. Worst-Case ESAM Search Operations for Corrected ESAM Array. Data
points are mean values taken from a sample size of 4 ICs. The standard
deviation ranged from 3AS up to 5AS as the width of the search was increased.

Table 4. Write-Read Performance of Corrected ESAM Array

IICycle Trime Read Access I
50AS

10.75A~S
15ns 8.50nsI

time measured from when the word select line was asserted until the output data became

valid.

As the cycle time of the control and data inputs was reduced, the read access time

became faster. A prolonged precharge phase during a read operation slowed down the read

access time because the data lines become over-charged. As the cycle time was reduced, the

57

precharge duration was reduced and approached the optimal value for a 4-word memory.

For larger memories, both the optimal precharge time and the read access time would

increase in proportion to the parasitic capacitance of the data lines.

5.6 Coprocessor Critical Timing Analysis

The potential critical path of the DES Coprocessor is based on the timing data from

the fabricated components and the timing specifications of the commercial memory devices.

The Control Engine Execution Unit and FPGA components were not considered in this

analysis.

All timing measurements of the fabricated components include the pad delays. Since

several of the tested components may be included on a single IC, the actual timing could

be faster since the off-chip parasitic capacitance would be eliminated. Including the pad

delays into the timing measurements allows for a conservative estimate of true performance.

Based on this partial analysis, the critical path of the DES Coprocessor is the mini-

mum search path across the 17-bit time field of words in the ESAM. From Figure 16, this

operation will require 460ns for a worst-case search. A clock filter is used to synchronize

the NEQ Component with the remainder of the coprocessor (Figure 7). Thus, four clock

pulses into the coprocessor correspond to one NEQ Component cycle. The minimum clock

cycle of the coprocessor is calculated in Equation 1.

460ns '(1 NEQ Component Cycle' 115ns()(NEQ Component Cycle) 4 Coprocessor Cycles Coprocessor Cycle (1)

Despite the reduction of the coprocessor clock cycle through the use of a clock filter

in the NEQ Component, the critical path remains the extreme search path in the ESAM.

Thus, the maximum clock rate of the coprocessor is 8.7 MHz.

58

Table 5. Application Specific Variables for Coprocessor Performance

Variable Description

Fetch Fetch-Decode time of instruction (Table 6).
Arcs,, Number of input arcs.
Arcso~t Number of output arcs.
%WriteR Percentage of writes to reserved words in the ESAM.
%Writeu Percentage of writes to unreserved words in the ESAM. (1 - %WriteR)
%Null Percentage of messages that are null messages.
%Real Percentage of messages that are real messages. (1 - %Null)
%Update Percentage of times that LP status must be updated after Get Event.

5.7 Coprocessor Performance

The average number of clock cycles required for the coprocessor to execute the syn-

chronization routines for an LP is given by Equations 2 through 5. These equations give

the average number of clock cycles measured from when the coprocessor receives an opcode

until the result data is returned to the host (if required) or the coprocessor signals that it

is ready for another opcode. The equation variables are defined in Table 5.

lnit Sim = Fetch + 200 + 92(Arcsin) + 128(Arcsout) (2)

Post Msg = Fetch + 196(%WriteR) + 208(%Writeu) + 40(Arcsi./2) -

4(%Null) (3)

Get Event = Fetch + 376(%Real) + (320 + 96(Arcsout))%Null +

40(Arcs j/ /2)(% Update) (4)

Post Event = Fetch + 44 + 92(Arcsot) (5)

59

Table 6. Cycles Required for Fetch-Decode

Routine I Cycles Required

Initialize Simulation 104
Post Message 80
Get Event 92
Post Event 104

Two simplifying assumptions were made to arrive at these performance equations.

Assumption #1 The message traffic on the input arcs of the LP is uniform.

Assumption #2 The host is always ready for result data from the coprocessor.

The first assumption impacts on the performance of the Post Message and Get Event

routines. The microcode routine to update the status of an input arc for an LP is executed

in O(n) time complexity. Assuming uniform message traffic on all of the input arcs, the

average performance of this part of the routine is a factor of n/2.

The second assumption impacts on operations which return data to the host (Initial-

ize Simulation, Get Event, and Post Event). If the host is not ready to receive the data, the

coprocessor must remain idle until the host is ready. The average idle time while waiting

to return results to the host may be added against the execution time of the routines. This

time has been ignored because it would be unfair to penalize the coprocessor execution

time because the host is doing other useful work.

5.8 Comparative Performance Analysis

5.8.1 Pitfalls of Comparison. An accurate comparison between a coprocessor

supported simulation and a non-coprocessor supported simulation is difficult to achieve.

The pitfalls in trying to make a fair comparison are discussed in the following sections.

5.8.1.1 Design Differences. The microcode synchronization routines and

the SPECTRUM routines accomplish different design objectives. The microcode routines

60

were designed to provide a testbed to build a general-purpose architecture that could ex-

ecute user-defined synchronization routines. The SPECTRUM routines were designed to

provide a testbed for comparing different parallel simulation protocols in a common en-

vironment. Because of the different design objectives, the synchronization tasks of each

implementation are different, and the performance of these synchronization tasks are dif-

ficult to compare.

5.8.1.2 Interdependence. Not all of the synchronization overhead has been

off-loaded to the coprocessor. For example, the coprocessor implementation requires that

the host format and transmit real messages. Furthermore, the coprocessor currently op-

erates in the I/O space of the host; therefore, all synchronization tasks will require some

work by the host. The interdependence between the host and the coprocessor makes it

difficult to determine the true performance of the coprocessor.

5.8.1.3 Data Collection Overhead. The AFIT Algorithm Animation Re-

search Facility (AAARF) was used to collect data on a parallel simulation executed on

the Hypercube. The AAARF is documented in (5). The AA.%&F accurately measures

performance within un-nested blocks of interest; however, the AAARF instrumentation

requires that binary data be written to file once a temporary buffer in RAM has reached

its capacity. This file I/O occurs outside of the measured blocks; therefore, the measured

blocks are accurate. However, the total simulation time is distorted, and the amount of

distortion is dependent on the size of the temporary buffer and the amount of data points

that is collected.

Because of the AAARF overhead, interesting blocks could not be measured within

the same execution of the simulation. Multiple iterations had to be executed to measure the

different blocks of interest. Finally, measurements had to be taken with AAARF disabled

to determine the correct application time.

61

5.8.2 Valid Comparison&. The coprocessor Post Message routine closely resem-

bles the LPNQEVUNT routine in the SPECTRUM code. The only difference is that the

coprocessor Post Message routine also updates the status of the input arcs. The equation

for the coprocessor Post Message routine can be modified to compensate for this difference

and is shown in Equation 6.

Post Msg = Fetch + 196(%WriteR) + 208(%Writeu) - 4(%Null) (6)

This modified equation is similar to Equation 3 except the time required to update

the status of the input arc is not considered in the modified equation. This new equation

allows for a fair comparison of the time required to insert events into the NEQ.

The coprocessor Get Event routine closely resembles the SPECTRUM Get Event

routine. The major difference is that the coprocessor returns an error message if an event

is not ready (thus ending the operation), and the SPECTRUM routine blocks until it is

safe to proceed. Furthermore, the coprocessor Get Event routine updates the output arcs

when a null message is retrieved, and the SPECTRUM routine updates the output arcs

prior to the Li' blocking (if the LP must block). Assuming that the difference in the way

the output arc is updated is negligible, a comparison can be made between the two routines

if the SPECTRUM block time can be accounted for.

The coprocessor Post Event routine cannot be compared with its counterpart in the

SPECTRUM implementation. The coprocessor implementation only handles null mes-

sages which result from the real messages that are sent by the host. The SPECTRUM

implementationt handles both real and null messages.

5.8.3 Data.

5.8.3.1 Simulation Configuration. The performance of the SPECTRUM

routines was measured by using a parallel VHDL simulation taken from (2). The appli-

cation was a four-node, four-LP, randomly-partitioned Wallace Tree Multiplier. Although

62

Figure 21. Simulation Configuration for Wallace Tree Parallel Simulation. Each LP is
executed on a separate Hypercube node. Communication arcs are shown as
bidirectional for clarity.

Table 7. SPECTRUM NEQ Data. All quantities are mean values based on data collected
from 5 iterations of the Wallace Tree simulation. FE is the fraction of the
application that can be enhanced by accelerating the insertion of events into
the NEQ. Application Time is measured with AAARF disabled.

LP [Avg Insert Time] #Calls I Total Insert Time [Application Time I FE

LPO 128.6us 3907 502.44ms 25.67s 0.02
LP1 127.8us 4300 549.54ms 25.67s 0.02
LP2 130.2us 4819 627.43ms 25.48s 0.02
LP3 113.4us 5122 580.83ms 25.41s 0.02

the multiplier is a combinational circuit, feedback was introduced into the simulation be-

cause of the random partitioning strategy. The configuration of the simulation is shown in

Figure 21.

5.8.3.2 AAARF Data. Table 7 shows the relevant measurements for the

LPNQEVENT procedure in SPECTRUM. The queue size never exceeded 10 messages, and

the average insertion point was at the tail of a list of two messages. These observations are

63

Table 8. Coprocessor NEQ Data

LP I %Null I %Real I %WriteRn %Writeu 11
LPO 94 6 50 50
LP1 84 16 so 50
LP2 74 26 50 50
LP3 64 36 50 50

reflected in Table 7 by the small percentage of total application time that can be enhanced

through acceleration of the LPlQ.-.EVENT procedure.

The AAARF could not be used to collect reliable data on the Get Event function in

SPECTRUM because of the strong interdependence of the LPs in the simulation. While

LP, is blocking and waiting for LPj to send a message, LPj is writing AAARF data out to

file. The measured times were distorted so that the total block time was longer than the

total Get Event time, and the total Get Event time was longer than the total simulation

time. Because of this distortion, reliable data could not be collected on the SPECTRUM

Get Event function.

5.8.3.3 Coprocessor Data. Table 8 shows the relevant data that is used

for the coprocessor NEQ performance. The percentage of real and null messages was

determined by using the -DCOUNTS option while running the Wallace Tree simulation on

the Hypercube. The percentage of writes to reserved and unreserved ESAM words is based

on the typically small NEQ size. As the size of the NEQ increases, the percentage of writes

to unreserved words would increase.

The Coprocessor NEQ performance is shown in Table 9. The average insert time

is based on Equation 6 and the data in Table 8. A clock period of 115ns is assumed as

discussed in Section 5.6.

5.8.4 Partial Speedup Analysis. The speedup of the LP.NQEVENT procedure and

the application are shown in Table 10. Equation 7 was used to calculate the speedup.

64

Table 9. Coprocessor NEQ Performance

LP [Avg Insert Time I #Calls Total Insert Time

LPO 32.09us 3907 125.38ms
LP 1 32.09us 4300 137.99ms
LP2 32.20us 4819 155.17ms
LP3 32.20us 5122 164.93ms

Table 10. Partial Speedup Analysis

1 LP I LP-NQ-EVENT J Application

LPO 4.00 1.02
LP1 3.98 1.02
LP2 4.04 1.02
LP3 3.52 1.01

Speedup Execution TimeoLD 1 1
Execution TimeNEw (1 - FE) + FR (7)

Speedupg

FE is the fraction of the application that is enhanced as shown in Table 7, and

SpeedupE is the speedup of the enhanced portion of the application as shown in column

2 of Table 10. As expected, the application speedup is insignificant because of the small

fraction of the application that can be enhanced.

5.9 Conclusion

A partial performance analysis of the coprocessor was done using the following data

that was described in this chapter:

e Timing measurements of actual circuits.

65

e Coprocessor performance characteristic equations.

a Performance measurements extracted from a parallel simulation on a Hypercube.

The critical path of the coprocessor was determined to be the extreme search data

path of the ESAM since the worst-case search for the minimum time-stamped event could

require 460ns. Based on this time requirement and the use of a clock filter, the maxi-

mum operating frequency of the coprocessor was determined to be 8.7 MHz. The NEQ

performance of the coprocessor was calculated by using characteristic equations for the

coprocessor performance and data collected from a parallel Wallace Tree simulation. Al-

though the coprocessor could provide a four-fold speedup for NEQ management, the total

speedup was only 1.02 since less than 2% of the application was accelerated.

The results of this analysis were unfavorable towards the use of the Extreme Search

Associative Memory for NEQ management because of the small fraction of the application

that could be enhanced. Furthermore, no conclusions were made regarding the accelera-

tion of other synchronization tasks because of the data collection overhead and interference

with the simulation. Differences between the coprocessor synchronization tasks and the

SPECTRUM synchronization tasks also prevented accurate conclusions regarding the ac-

celeration of synchronization tasks.

The performance analysis in this chapter does not necessarily discredit the use of

the ESAM for NEQ management. Only one simulation was used for performance mea-

surements, and that simulation used random partitioning coupled with the conservative

Chandy-Misra protocol. Based on these limited observations, the ESAM is not advanta-

geous for synchronization-level NEQ management of randomly-partitioned, conservative

parallel simulations. Other types of partitioning strategies and simulation protocols which

allow for greater parallelism may produce more favorable results. Furthermore, application-

level NEQ management may provide more favorable results than synchronization-level

NEQ management.

66

VI. Conclusion

6.1 Introduction

This chapter explains the conclusions that can be made from this research and makes

recommendations for follow-on research. The conclusions and recommendations cover the

areas of NEQ acceleration and synchronization acceleration.

6.2 Conclusions

6.2.1 NEQ Acceleration. The Extreme Search Associative Memory was included

in the DES Coprocessor to provide 0(1) insert and retrieval time of events in the NEQ. The

speedup that can be achieved by replacing a software NEQ with the ESAM is dependent

on several factors:

1. The average size of the queue.

2. The efficiency of the software algorithm which maintains the queue.

3. The frequency of queue accesses.

4. The size and performance of the associative memory which is replacing the software
queue.

The first three factors determine the fraction of the application that can be enhanced.

For the Wallace Tree simulation that was analyzed in Chapter V, the software algorithm is a

doubly-linked list which has only O(n) time efficiency for inserting events. This is generally

an inefficient algorithm; however, the average size of the queue and the frequency of queue

accesses were small enough that the efficiency of the algorithm was irrelevant.

The fourth factor in the above list determines the speedup of the fraction that can be

enhanced. A 32-word associative memory was used for this research; therefore, this design

would only be sufficient for applications which have queue sizes no larger than 32 words.

Although the average queue size is small, speedup can still be achieved if the frequency

of queue accesses is high. Furthermore, the size of the ESAM can be increased to allow

for larger queue sizes; however, this increase will impact the performance of the memory.

67

Banton determined that an increase in the number of words causes a linear increase in the

execution time of the extreme search (1:137).

Although a four-fold speedtip was achieved for the NEQ management of the Wallace

Tree simulation, the total speedup was only 1.02 since less than 2% of the application

was accelerated. These results indicate that the ESAM is not advantageous for NEQ

management of randomly-partitioned, conservative, parallel simulations. Other types of

partitioning strategies and simulation protocols may yield different results. Furthermore,

only synchronization-level NEQ management was considered. Application-level NEQ man-

agement may also yield different results.

6.2.2 Synchronization Acceleration. Acceleration of the synchronization routines

is achieved by the use of specialized microcode-control hardware. Although the coprocessor

performance can be characterized by equations, the actual speedup was not determined.

The speedup that can be achieved by the coprocessor is dependent on several factors:

1. The fraction of simulation time that is used for parallel synchronization.

2. The performance of the microcode synchronization routines.

3. The amount of concurrency that can be achieved between the application and syn-
chronization tasks.

The switching speed of the coprocessor will likely be less than that of the current

commercial host processors because of the amount of resources used to optimize the design.

Because of the longer propagation delays in the AFIT DES Coprocessor, the clock speed

will also be less. For example, the results of this research indicate that the maximum

operating frequency of the coprocessor will only be 8.7MHz. Although this clock speed

is slow when compared to current commercial processors, the coprocessor should provide

acceleration since the synchronization is executed in user-defined microcode.

Further potential for speedup exists when the synchronization routines can be ex-

ecuted concurrently with the application. In order for this potential to be realized, the

coprocessor needs access to the same resources as the host. For example, if the coprocessor

68

has access to the multiprocessor communications resources, then the coprocessor can send

and receive messages without involvement from the host. The host would then be free to

concurrently execute the application while the coprocessor executes the synchronization.

6.3 Recommendations

6.3.1 NEQ Component. Future research concerning the ESAM and the NEQ

Component should concentrate on the following topics:

"* Identification of applications that can benefit from the design. Both parallel and

sequential simulations should be explored. Synchronization-level and application-

level NEQ management should be considered for parallel simulations.

"* Fabrication of a single-ch , NEQ Component using the subcircuits which were val-

idated in this research. The entire design can fit on a large-frame IC using a 2'jm

process, or a 1.2Mm process can be used to achieve faster speeds.

"* Design of an optimized memory array. The current design uses extreme search mem-

ory cells for all 32 bits of each word. Extreme searches are executed across the lower

17 bits, and equivalence searches are executed on the upper 15 bits. Circuit area and

power consumption can be minimized by tailoring the memory cells to the type of

associative operation that is required. Furthermore, SRAM cells could be added to

the memory array to eliminate the need for a separate IC to store adjacent data.

"* Scalability to support larger queues. Alternatives should be researched which mini-

mize the impact on performance as the number of words in the array are increased.

One option may be to use multiple ESAM arrays on the same IC.

6.3.2 Target Architecture. The DES Coprocessor was designed as a general-

purpose I/O device to insure flexibility in choosing the target architecture. Once a target

architecture is chosen, the coprocessor needs to be wire-wrapped on a board that meets

the physical interface specifications. Additional logic design will also be reqdired to insure

69

that the coprocessor meets the timing and control specification of the architecture. The

i/PSC2 Hypercube has always been the target architecture for this research; however, other

alternatives should be considered. The two primary alternatives can be classified by risk:

e A low-risk option is to interface the DES Coprocessor board to the VME bus prior to

the Hypercube. The VME bus is well-documented, and all of the required hardware

and test equipment is already co-located in the AFIT Advanced Digital Design Lab.

The primary benefit of this approach is that the internal coprocessor architecture

can be easily debugged. The primary cost of this approach is that the impact on

parallel performance cannot be measured. Furthermore, the overhead of designing

the VME interface will delay the progress of this research.

* A high-risk option is to interface the DES Coprocessor board to the Hypercube which

uses a modified Multibus II architecture. The primary benefit of this approach is

that meaningful performance comparisons can be made sooner. The primary cost

of this option is the increased design complexity since both the internal coprocessor

architecture and the interface must be resolved simultaneously.

A more detailed analysis needs to be conducted before committing to either option.

6.4 Summary

This research began with a detailed analysis of the initial DES Coprocessor design

that was provided from previous research at AFIT. Based on that analysis, modifications

to the design were required to make the coprocessor a viable circuit. Several of the copro-

cessor components were fabricated and tested for performance. Finally, a partial speedup

analysis of the coprocessor was done using the timing data of actual circuits, characteristic

performance equations of the coprocessor, and performance measurements from Hypercube

parallel simulations.

70

Appendix A. Testbench-Coprocessor Interface

A.1 Interface Signals

Table 11 explains the signals which interface the DES Coprocessor to the VHDL

testbench as shown in Figure 5. Table 12 is the truth table for data transfer between

the host and coprocessor. Since the interrupt register, status register, and PARIO buffer

all share the coprocessor bidirectional data port, simultaneous operations with these com-

ponents will result in corrupted data. For example, if the status register is being read

during an interrupt acknowledge, the status data and the interrupt vector will collide on

the coprocessor data port.

A.2 Macroinstruction Set

A.2.1 Initialize Coprocessor. The register file and NEQ Component must be

initialized prior to executing the first fetch/decode routine. After a system reset, the

coprocessor waits for a 32-bit opcode which equals zero (decimal). This opcode starts the

initialization of the register file and NEQ Component. Initialization operands are read

from the host and written to the register file. The initial values of the registers are read

from an ASCII file and are shown in Table 13. All of the initialized registers are dedicated

to storing these values for the duration of the simulation. The only exception is Register 9

which holds the NEQ initialization value. Once the NEQ Component is initialized, this

register can be used to store other values.

A.2.2 Initialize Simulation. The format for the Initialize Simulation instruction

is shown in Table 14. The "To Node" and "To LP" fields identify the LP that is being

initialized.

The format of the operands for this instruction is shown in Table 15. The fourth

operand for this instruction specifies the Node/LP identifier for each I/O arc of the LP

that is being initialized. The input arcs are specified before the output arcs.

71

Table 11. Coprocessor Interface Signals

Signal Description

WR Specifies a write or read of status register
or PARIO buffer in interface unit.

CS-DATA Selects the PARIO buffer for write/read.
CS.STATUS Selects the status register for write/read.
RESET Resets the coprocessor.
CLK Provides the master clk signal for coprocessor.
INTA Interrupt acknowledge from host. Causes the

interrupt vector to be output to data bus.

INTR Interrupt request from the coprocessor.
DATA(31:0) Bidirectional data transfer between the

host and coprocessor.

Table 12. Truth Table of Coprocessor Interface Signals

U WR I CSDATA I CS.STATUS IOperation I
1 1 0 Write data to PARIO buffer.

0 1 0 Read data from PARIO buffer.
1 0 1 Write to status register.
0 0 1 Read status register.

Table 13. Register Initializatior. Data

I Reg # Value IPurpose
3 1 00000000000000000000000000000001 Maintain Arcs Status
5 00000000000000000000001111111111 Count Mask
6 00000011111111000000000000000000 To Node/LP Mask
7 00000000000000111111110000000000 From Node/LP Mask
9 000000000000000000000000000000001 NEQ Initialization

72

Table 14. Initialize Simulation Opcode Format

Bits Opcode Field

31-26 Opcode Identifier (000100)
25-23 To Node
22-18 To LP
17-10 Unused
9-0 Count of Operands

Table 15. Initialize Simulation Operands

[Operand Number IBits JField
1 31-0 LP Delay
2 31-0 Initial Sim Time
3 31-16 Number of LP Output Arcs

15-0 Number of LP Input Arcs
4 until complete 31-18 Unused

17-15 I/O Arc Node Identifier
14-10 I/O Arc LP Identifier
9-0 Unused

At the completion of this instruction, the coprocessor will output a null message on

each output arc of the LP that is being initialized. The time stamp of the null message is

the LP delay added to the initial simulation time. The coprocessor generates an interrupt

to the host for each null message that is output.

A.2.3 Post Message. The format for the Post Message instruction is shown in

Table 16. The format of the operands for this instruction is shown in Table 17. If the

opcode specifies that the count of operands is two, then both operands are required and a

real message is posted. If the opcode specifies that the count of operands is only one, then

only the first operand is required and a null message is posted.

73

Table 16. Post Message Opcode Format

Bits J Opcode Field

31-26 Opcode Identifier (100000)
25-23 To Node
22-18 To LP

17-15 From Node
14-10 From LP
9-0 Count of Operands

Table 17. Post Message Operands

0 Operand Number [Bits I Field

1 31-17 Unused
16-0 Time Tag

2 31-0 Memory Pointer

A.2.-4 Get Event. The format for the Get Event instruction is shown in Table 18.

The "To Node" and "To LP" fields identify the LP for which an event is being retrieved.

No operands are used for this instruction. If a real message is retrieved, the coprocessor

interrupts the host and provides the updated simulation time and the 32-bit memory

pointer to the event data. If a null message is retrieved, the coprocessor processes null

Table 18. Get Event Opcode Format

Bits I Opcode Field jJ
31-26 Opcode Identifier (010000)
25-23 To Node
22-18 To LP
17-0 Unused

74

Table 19. Post Event Opcode Format

Bits Opcode Field

31-26 Opcode Identifier (001000)
25-23 To Node
22-18 To LP
17-15 From Node
14-10 From LP
9-0 Unused

messages for the output arcs of this LP. The coprocessor interrupts the host for each null

message that is output.

A.2.5 Post Event. The format for the Post Event opcode is shown in Table 19.

This instruction is used to process null messages for all of the output arcs of the specified

LP except the output arc that received the real message. The host is responsible for

formatting and sending the real message. The "To Node" and "To LP" fields specify the

recipient of the real message. The "From Node" and "From LP" fields identify the sender

of the real message. This opcode uses one operand to specify the time tag of the real

message that was sent by the host. The coprocessor uses this time tag for each of the null

messages that is processed. The coprocessor interrupts the host for each null message that

is output.

A.3 Interrupt Vectors

The coprocessor uses interrupts to signal that the results of an operation are available.

Three interrupt vectors are used (Table 20). The interrupt vectors are derived from the

values of the dedicated registers which are loaded at initialization (Table 13).

The assertion of INTA from the host causes the 8-bit interrupt vector to be output

on the coprocessor data port. Each interrupt has at least one operand that must be read

from the PARIO buffer after the interrupt vector has been read. The format of the first

75

Table 20. Interrupt Vectors (decimal values)

Vector Purpose

3 Null message from Post Event
254 Real Message from Get Event
255 Null Message from Init Sim or Get Event

Table 21. Interrupt Operand Format

II Bits J Interrupt Operand Field

31-26 Unused
25-23 To Node
22-18 To LP
17-15 From Node
14-10 From LP
9-0 Count of Remaining Operands

interrupt operand is in Table 21. For null messages, the count of remaining operands is

always one. This final operand is used to provide the time tag of the null message. For

real messages, the count of remaining operands is always two. These two operands specify

the time tag and memory pointer of the real message.

76

Table 22. Error Vectors (decimal values)

Vector Purpose

1 ESAM full, Post Message failed
255 Unsafe to retrieve message for specified LP,

Get Event failed

A.4 Error Vectors

The coprocessor uses error vectors to specify the type of error that occurred during

an operation (Table 22). The error vectors are derived from the values of the dedicated

registers which are loaded at initialization (Table 13). Errors are signaled through the

status register, and error vectors are read from the PARIO buffer. Error vectors can also

be used to specify an operand count mismatch or an illegal operand value; however, these

error conditions were not tested.

77

A.5 Sample VHDL Simulation Input File

VHDL simulations of the coprocessor are executed by reading an ASCII instruction

file. All of the instructions which are read from this file are in decimal format. This sample

instruction file executes the following five instructions:

"* Initialize Simulation for Node 2/LP 2.

"* Post Message for Node 2/LP 2, from Node O/LP 0.

"* Post Message for Node 2/LP 2, from Node 1/LP 1.

"* Post Message for Node 2/LP 2, from Node 2/LP 2.

"* Get Event for Node 2/LP 2.

INSTR8 TO-NODE TOLP FROMNODE FROMLP COUNT
4 2 2 0 0 9 ; Init Sim Opcode

OPERANDS
5 ; LP Delay

0 ; Initial LP Sim Time
3 3 ;Count of Output/Input Arcs
0 0 ; 1st Input Arc Identifier
1 1 ; 2nd Input Arc Identifier
2 2 ; 3rd Input Arc Identifier
2 2 ; 1st Output Arc Identifier
3 3 ;2nd Output Arc Identifier
4 4 , 3rd Output Arc Identifier

INSTR* TO-NODE TOLP FROM-NODE FRDMLP COUNT
32 2 2 0 0 1 ; Post Message Opcode

OPERANDS
5 ; Null Message Time Stamp

INSTR* TO-NODE TOLP FROM-NODE FROMLP COUNT
32 2 2 1 1 2 ; Post Message Opcode

OPERANDS
7 ; Real Message Time Stamp

15 ; Real Message Mem Ptr
INSTRI TO-NODE T0_LP FROM-NODE FROMLP COUNT

32 2 2 2 2 2 ; Post Message Opcode
OPERANDS

8 ; Real Message Time Stamp
31 ; Real Message Mem Ptr

INSTR* TONODE TOLP FROM-NODE FROMLP COUNT
16 2 2 0 0 0 ; Get Event Opcode

78

A.6 Sample VHDL Simulation Output File

Results from a VHDL simulation are formatted and output to an ASCII file. This

section contains a sample output file. This output file is based on the input file of the

previous section. The first three interrupts are generated from the Initialize Simulation

instruction. The next three interrupts are generated from the Get Event instruction. Since

a null message was retrieved during the Get Event, the coprocessor processes null messages

for all of the output arcs of the LP.

INT VECTOR TO-NODE TOLP FROM-NODE FROMLP PACKET COUNT PACKET DATA
255 2 2 2 2 1 5

INT VECTOR TO-NODE TOLP FROM-NODE FROM.LP PACKET COUNT PACKET DATA

255 3 3 2 2 1 5

INT VECTOR T0_NODE TO0LP FROM-NODE FRONLP PACKET COUNT PACKET DATA

255 4 4 2 2 1 5

INT VECTOR TO-NODE TOLP FROMNODE FROMLP PACKET COUNT PACKET DATA

255 2 2 2 2 1 10

INT VECTOR T0_NODE TO0LP FROM-NODE FROMLP PACKET COUNT PACKET DATA
255 3 3 2 2 1 10

INT VECTOR T0_NODE T0_LP FROM-NODE FROMLP PACKET COUNT PACKET DATA
255 4 4 2 2 1 10

79

Appendix B. NEQ Component

B.1 ESAM

The ESAM is documented in (1); however, several changes were made to the design.

The most significant change is that all of the control signals have been changed.

Refer to Figure 9. All ESAM operations require a sequence of three control stimuli

applied to the CTRL(7: 1), CTRLO, ARRAYCTRL(1:0), and WRITE ports. The VHDL model

control signals required for each type of associative operation are shown in Table 23, and

the control signals required for each type of I/O operation are shown in Table 24.

Read and write operations are executed based on the results of associative opera-

tions. A Write-Word or Read-Word can be executed consecutively until the results of the

associative operation have been exhausted. Once the results of an associative operation

have been exhausted, another associative operation must be executed prior to the next

I/O operation.

B.2 NEQ Control Unit

Refer to Figure 7. The NEQ Control Unit controls the ESAM and the I/O port

latches of the NEQ Component. The NEQ Control Unit has registered outputs in order

to guarantee stable control signals. The following sections provide detailed information on

the states shown in Figure 8. Table 25 shows the format of ESAM words which are used

in these algorithms.

B.2.1 State Algorithms.

B.2.1.1 lnit ESAM. The "Init ESAM" state initializes all of the words in

the ESAM to a user-defined value and is executed as follows:

0. Signal not ready.
1. Latch the 32-bit initialization value from the coprocessor

internal data path into the ESAMDATAIN register.

80

Table 23. ESAM Control Stimuli For Associative Operations

Operation I CTRL(7:1) 1 CTRLO ARRAYCTRL(1:0) 1 WRITEJ

Search-All 0101000 1 00 1
Equal 0111010 1 00 1

0101000 1 00 1
Search-Subset 0101000 0 00 1
Equal 0111010 0 00 1

0101000 0 00 1
Search-All 1101000 1 00 1
Not Equal 1111010 1 00 1

1101000 1 00 1
Search-Subset 1101000 0 00 1
Not Equal 0111010 0 00 1

1101000 0 00 1
Search-All 0101000 1 10 0
Minimum 0111010 1 10 0

0101000 1 10 0
Search-Subset 0101000 0 10 0
Minimum 0111010 0 10 0

0101000 0 10 0

Search-All 1101000 1 10 0
Not Minimum 1111010 1 10 0

1101000 1 10 0
Search-Subset 1101000 0 10 0
Not Minimum 1111010 0 10 0

1101000 0 10 0
Search-All 0101000 1 11 0
Maximum 0001110 1 11 0

0101000 1 11 0
Search-Subset 0101000 0 11 0
Maximum 0111010 0 11 0

0101000 0 11 0

Search-All 1101000 1 11 0
Not Maximum 1111010 1 11 0

1101000 1 11 0
Search-Subset 1101000 0 11 0
Not Maximum 1111010 0 11 0

1101000 0 11 0

81

Table 24. ESAM Control Stimuli For I/O Operations

Operation CTRL(7:1) CTRLO J ARRAYCTRL(1:0) WRITE I
Write-All 0001100 1 00 1

0001110 1 00 1

0001100 1 00 1
Write-Subset 0001100 0 00 1

0001110 0 00 1

0001100 0 00 1
Write-Word 0000101 1 00 1

0010111 1 00 1

0000101 1 00 1
Read-Word 0000101 1 00 0

0010111 1 00 0
0000101 1 00 0

Table 25. Format of ESAM Word

Bits Field Controlled By

31 Valid Bit NEQ Control Unit

30-26 To LP, message recipient Host
25-23 From Node, message sender Host
22-18 From LP, message sender Host

17 Reserved flit NEQ Control Unit

16-0 Time tag of message Host

82

2. Write-All. Valid Bit - 0, Reserve Bit = 0.
3. Search-All Equal for initialization value.
4. Signal ready.

B.2.1.2 Reserve Arcs. The "Reserve Arcs" state writes one word at a time

to the ESAM. The write operation is based on the results of the Search-All Equal operation

which ended the "Init ESAM" state. The Reserve Arcs state can be executed as many

times as there are words in the ESAM. For example, if the ESAM has 32 words, then 32

Reserve Arcs can be executed. An attempt to reserve more than 32 arcs will result in an

error condition.

This state executes the following algorithm:

0. Signal not ready.
1. Latch the 32-bit ESAM word from the coprocessor

internal data path into the ESAMDATAIN register.
2. Write-Word. Valid Bit = 0, Reserve Bit = 1.
3. If word not written, signal error.
4. Signal ready.

B.2.1.3 Write Word. The "Write Word" state executes the following algo-

rithm:

0. Signal not ready.
1. Latch the 32-bit ESAM word from the coprocessor

internal data path into the ESAMDATAIN register.
2. Search-All Equal for invalid-reserved word for this arc.
3. If match, Write-Word (routine complete).

Valid Bit = 1, Reserve Bit not written.
4. If not match, Search-All Equal for invalid-unreserved word.
5. If match, Write-Word (routine complete).

Valid Bit = 1, Reserve Bit not written.
6. If not match, signal error (ESAM full).
7. Signal ready.

83

B.2.1.4 Find Min. The "Find Min" state executes the following algorithm:

0. Signal not ready.
1. Latch the 32-bit ESAN word from the coprocessor

internal data path into the ESAMDATAIN register.
This word is used to identify the LP for which a message
is being retrieved.

2. Search-All Equal for valid messages for this LP.
If not match, signal error (Event not ready).

3. Search-Subset Minimum to find the minimum valid time-tagged
message for this LP.

4. Read-Word to read the minimum time tagged event.
If there is more than one minimum time-tagged event,
the word "closest to the top'' is read.

S. Latch the ESAM word into the 32-bit ESAMDATAOUT register.
Latch the encoded ESAN address into the S-bit ESAMADDROUT register.

6. Search-All Equal for messages for this LP.
7. Search-Subset Minimum to find the minimum time-tagged

message for this LP.
8. Write-Word to invalidate the minimum time-tagged message.

Valid Bit = 0, Reserve Bit not written.
9. Signal ready.

B.2.1.5 Search. The "Search" state executes the following algorithm:

0. Signal not ready.
1. Latch the 32-bit ESAM word from the coprocessor

internal data path into the ESAMDATAIN register.
This word is used to identify the arc which is being searched.

2. Search-All Equal for valid messages for the specified arc.
3. If not match, signal error. (Status register must be updated).
4. Signal ready.

B.2.2 Detailed State Descriptions. Tables 26 through 31 provide the detailed

state information for the Finite State Machine (FSM) which is included in the NEQ Con-

trol Unit. Table 32 provides the binary encoding of the state labels which are used in

the state tables. The input columns of the state tables correspond respectively to the

FSMCTRL(2:0), MATCHSTAT, and WDSELSTAT ports as shown in Figure 7. The out-

put columns correspond respectively to the ARRAYCTRL(1), WRITE, CTRL(6:0), RD-DATA,

84

Table 26. Initialize ESAM States. "x" is a don't care value.

Inputs Present State Next State Outputs

xxOxx idlel idlel OOOOOOOOOOOOOOxxxxxxxO1
xxlxx idlel initl 01001100110000001111100
xxxxx initl init2 01001110100000001111100
xxxxx init2 init3 01001100100000001111100
xxxxx init3 init4 01101000100000001111100
xxxxx init4 init5 0111010100000001111100
xxxxx init5 reservel 01101000100000001111100

Table 27. Reserve Arc States

Inputs J Present State] Next State Outputs

xOOxx reservel reservel OOOOOOOOOOOOOOxxxxxxxO1
xOlxx reservel reserve2 01000101110000010111000
xxxxx reserve2 reserve3 01010111100000010111000
xxxO1 reserve3 reserve4 01010111100000010111000
xxxxx reserve4 reservel 01000101100000010111000
xxxOO reserve3 error1 01000101100000010111000
xxOxx errorl errorl OOOOOOOOOOOOOOxxxxxxx10
xxlxx errorl idlel 0000000000000xxxxxxxOO

WRDATA, OEDATA, WRADDR, OEADDR, DATAIN(31), DATAIN(17), MASK(5:0), ERROR,

and READY ports.

The mask field which is output from the Finite State Machine (FSM) is only 5 bits;

however, the NEQ Control Unit outputs a 6-bit mask field. Each of the mask bits which

are output from the FSM correspond to the ESAM-word fields which are listed in Table 25.

The most-significant mask bit corresponds to the valid-bit field, and the least significant

mask bit corresponds to the time-tag field. The least-significant bit of the mask field from

the FSM drives the two least-significant bits from the NEQ Control Unit. This fanout was

85

Table 28. Write Word States

Inputs Present State Next State Outputs

xlOxx reservel writel 01101000110000011111000
xxxxx writel write2 01111010100000011111000
xxxlx write2 write3 01101000100000011111000
xxxxx write3 write4 01000101100000101110100
xxxxx write4 write5 01010111100000101110100
xxxxx write5 write6 01010111100010101110100
xxxxx write6 idle2 01000101100000101110100
xxxOx write2 write7_0 01101000100000001001000
xxxxx write7_0 write7_1 01101000100000001001000
xxxxx write7_1 write8 01111010100000001001000
xxxIx write8 write3 01101010100000001001000
xxxOx write8 error2 01101000100000001001000
01Oxx idle2 writel 01101000110000011111000

Table 29. Search States

I[Inputs J Present State Next State Outputs

001xx idle2 searchl 01111000110000101110000
xxxxx search1 search2 ' 11010100000101110000
xxxlO search2 idle2 31000100000101110000
xxxOO search2 error2 .1010000100000101110000

introduced into the NEQ Control Unit design in order to reduce the load on the time-tag

mask bit.

86

Table 30. Find Minimum States

~[Inputs [Present State [Next State JOutputs I
Olixx idle2 mini 01i0l0001lOOO0i0llOOOOO
xxxxx mini min2 011110i1010000i101100000
xxxflx min2 error2 01 101000100000101 1000001
xxxix min2 min3 011010001000001011000OO
xxxxx min3 min4 101010000000000000001OO
xxxxx min4 min5 101110100000000000001OO
xxxxx min5 min6 101010000000000000001OO
xxxxx min6 min7 000001011000000011111OO
xxxxx min7 min8 00010111100000001111100
xxxxx nun8 min9 00010111101010001111100
xxxxx min9 minlO 0000010110O00000011111OO
xxxxx mini0 minli 011010001O00Oi010iOOOOO
xxxxx minli minl2 01111010100000101100000
xxxxx mini2 min13 011010O0iO00Oi010iOOOOO
xxxxx mini3 mini4 101010OOOO0000000100O
xxxxx min14 min15 1011101000O00000000001OO
xxxxx mini5 min16 10101000000000000000100
xxxxx mini6 min17 0100010110O0000001000000

xxxxx mini7 miiniS 01010liiOO000000O0000001
xxxxx mini8 idle2 0100010110O0000001220000

Table 31. Idle and Error States

inputs -Present State [Next State I Outputs

00O0xx idle2 idle2 OOOOOOO0OOOOxxxxxxx01
i00xx idlle2 idle2 OOOOOOO01OOiOXXXXXXX0i I
i0ixx idle2 idle2 OOOOOOOOOOOO0ixxxxxxx0l I
xx~xx -error2 error2 OOOOOOO0OOOOxxxxxxxiO j
xxixx I error2 Iidle2 - OOOOOOOOOOOOxxxxxxxxolij

87

Table 32. State Encoding

Label Encoding II Label Encoding J1 Label Encoding

idlel 001110 initl 010000 init2 010100
init3 000000 init4 000001 init5 000100
reservel 000101 reserve2 011101 reserve3 001101
reserve4 001100 errori 111111 writel 010101
write2 010111 write3 001010 write4 011111
write5 001001 write6 001111 idle2 000111
write7T0 100110 write7A 010010 write8 000110
error2 101111 search1 010001 search2 000011
minl 010011 min2 000010 min3 100101
min4 100011 min5 100000 min6 011100
min7 011000 min8 011001 min9 001000
minlO 010110 min11 001011 min12 100111
min13 100010 min14 100001 min15 100100
min16 011010 min17 011011 min18 011110

88

Appendix C. Microcode Control Engine

C.1 Introduction

This appendix provides a detailed description of the components of the Microcode

Control Engine. Refer to Figure 13 for the Execution Unit schematic and Figure 14 for

the Control Unit schematic.

C.2 Execution Unit

C.2.1 Register File. The GPRFile outputs the contents of the registers which

are selected by the register decoders. The R1.DECODER selects one of sixteen registers, and

the contents of the selected register are output on A(31:0). Likewise, the R2_DECODER

selects one of sixteen registers, and the contents of the selected register are output on

B(31:0). The RIDECODER also selects a register for write operations. When CLK4 and

ANDCTRL are asserted, the output of the shifter is written to the selected register.

C. 2.2 ALU. The ALU supports eight operations as shown in Table 33. The

ZOUT signal is high when the result of the ALU operation is zero. The NLOUT signal is

high when the most significant bit of the ALU result is high. Two's complement notation

is used.

Table 33. ALU Operations

Control Signal Operation
000 Add

001 Increment
010 XOR
011 OR

100 Subtract
101 AND
110 Decrement
111 Pass-B

89

Table 34. Shifter Operations

Control Signal Operation
000 No Shift
001 Shift Left One Bit
010 Shift Right One Bit
011 Shift Left Eight Bits
100 Shift Right Eight Bits

101-111 No Shift

Table 35. MBR Operations

Control Signal J Operation

00 No-op
01 Load data from shifter and output data
10 Read data from coprocessor internal data path
11 Output data

C.2.3 Shifter. The shifter supports five operations as shown in Table 34. The

shifted-out data is not retained, and the shifted-in data is all zeroes.

C.2.4 MBR. The Memory Buffer Register supports four operations as shown in

Table 35.

C.3 Control Unit

C.3.1 Microinstruction Decode Unit. This component decodes the 6-bit microin-

structions which are discussed in Appendix D. The decoded instruction is latched on CLK1.

Registered output was necessary in order to guarantee stable control signals.

90

Table 36. MSL Operations

Control Signal] Operation

000 if Negative jump
001 if ESAM Error jump
010 if Zero jump
011 if not Status(1) jump
100 if Status(O) jump
101 jump
110 if not ESAM Ready jump
111 no jump (select incrementer)

__ _ _ _ _ _ _ _ " . . I . . . I I . .. i . . . I . . I

CLEI

cuo

CLK3

Figure 22. Microcode Control Engine Control Clock Waveform

C.3.2 Micro-sequencing Logic. This component determines the address of the

next microinstruction in accordance with Table 36. The jump address and the incremented

address are multiplexed through the Mapping Mux (9KMX).

C.3.3 Flag Register. This component latches the results of an ALU instruction

when CLK3 and CTRL are asserted.

C.3.-4 Clock. This component is used to generate a four-phased non-overlapping

clock signal to prevent race conditions in the microcode control engine (Figure 22). The

91

CLIl signal pulses with the master clock signal for the duration of a reset. Once the reset

is complete, the clock begins normal operation.

C.3.5 Micro-program Counter. This component latches the address of the next

microinstruction on the rising edge of CLK4. The CLK1 port is used for a synchronous reset.

The MPC is reset on the rising edge of CLK1 when the reset signal is asserted. If the reset

signal does not overlap with the rising edge of CLK1, the MPC will not be reset.

92

Appendix D. DES Coprocessor Microcode

D. 1 Microinstruction Set

This DES Coprocessor has 64 microinstructions (Table 37). The following rules are

used for these microinstructions:

* For microinstructions with two register operands, the first operand is also the desti-

nation register.

e Only microinstructions which operate on registers affect the NZ flag register.

* Instructions eight through fifteen affect the NZ flag but the arithmetic result is not

written to a register.

e Instructions sixteen through nineteen shift R2 and store the results in R1. In order

to shift the contents of a register and store the results in the same register, R1 and

R2 must address the same register.

* For Adjacent RAM operations, the address is specified from the NEQ Component.

For SRAM operations, the address is specified from the Microcode Control Engine.

For both operations, data is read and written through the MBR of the Microcode

Control Engine.

D.2 Microcode Algorithms

D.2.1 Coprocessor Initialization.

1. Signal ready to host.
2. Wait for initialization opcode from host.
3. Wait for initialization operand from host.
4. Write initialization operand to register file.
5. Repeat 3 and 4 until complete.
6. Initialize NEQ Component.
7. Goto Fetch-Decode Routine

93

Table 37. DES Coprocessor Microinstruction Set (Decimal Base)

HInstr # [Operation Instr #[Operation
0 Adj RAM Write 32 mov(MAR,R1)
1 and(R1,R2) 33 NEQ Output Addr
2 xor(R1,R2) 34 lshift8(or(R1,R2))
3 or(R1,R2) 35 Interrupt Request
4 add(R1,R2) 36 SRAM Read
5 sub(R1,R2) 37 SRAM Write
6 incr(R1) 38 NEQ Init
7 decr(RI) 39 NEQ Clear Error
8 nz:=RI and R2 40 NEQ Reserve Arc
9 nz:=R1 xor R2 41 NEQ Output Addr; Output MBR
10 nz:=R1 or R2 42 NEQ Read
11 nz:=R1 + R2 43 NEQ Write
12 nz:=RI - R2 44 NEQ Find Min
13 nz:=R1 + 1 45 NEQ Search
14 nz:=PI. - 1 46 inov(MBR,PARIO)

15 nz:= R2 47 mov(PARIO,MBR)
16 lshift(R1,R2) 48 mov(MAR,R1); mov(MBR,R2)
17 rshift(R1,R2) 49 mov(R1,MBR)
18 lshift8(R1,R2) 50 mov(MBR,R2)
19 rshift8(R1,R2) 51 mov(R1,R2)
20 lshift(and(R1,R2)) 52 toggle(status(2),status(O)
21 lshift(xor(Ri,R2)) 53 toggle(status(3))
22 lshift(or(R1,R2)) 54 toggle(status(2))
23 lshift(add(R1 ,R2)) 55 toggle(status(1))
24 lshift(sub(RL,R2)) 56 toggle(status(0))
25 lshift(incr(R1)) 57 if zero jmp R1/R2
26 lshift(decr(R1)) 58 if neg jmp R1/R2
27 rshift(and(R1,R2)) 59 if (status(1)=O) jmp R1/R2
28 rshift(xor(R1,R2)) 60 if (status(0)=1) jmp R1/R2
29 rshift(or(R1,R2)) 61 if NEQ not complete jmp Rl/R2
30 rshift(add(R1,R2)) 62 if NEQ error imp R1/R2
31_ý Adj RAM Read 6__3 jmp R1/R2

94

D.2.2 Fetch-Decode.

1. Wait for opcode from host.
2. Signal not ready to host.
3. If NEQ Component error, clear NEQ Component Error.
4. R2 : opcode
5. R8 : "Count of Operands" field from opcode.
6. R9 := "To Node/LP" field from opcode.
7. RO LP SRAM partition pointer,

(decoded from "To Node/LP" field of opcode).
8. Decode opcode field and branch to correct microroutine.

D.2.3 Initialize Simulation.

1. Read LP Delay from host; RIO LP Delay.
2. Read Sim Time from host; R11 Sim Time.
3. Read S Arcs Out/In from host; R12 := # Arcs Out/In.
4. Format LP input arcs status word.
S. Write LP input arcs status word to SRAM.
6. Write LP Delay to SRAM.
7. Write Sim Time to SRAM.
8. Write * Arcs Out/In to SRAM.
9. Read input arc identifier from host.
10. Write input arc identifier tD SRAM and reserve arc in NEQ.
11. Repeat 9-10 for count of input arcs.
12. Read output arc identifier from host.
13. Write output arc identifier to SRAM.
14. Repeat 12-13 for count of output arcs.
15. Send null messages on all output arcs.
16. Signal ready to host and jump to start of Fetch-Decode.

D.2.4 Post Message.

1. Read time tag from host; R9 := time tag.
2. If real message, read memory pointer from host; RIO := memory pointer.

If null message, RIO := all O's.
3. Format message for NEQ Component.
4. Write message to NEQ Component.
5. If NEQ Error, signal ESAM full error (exit this routine).
6. Write memory pointer to Adjacent SRAM.
7. Update LP input arcs status word.
8. Signal ready to host and jump to start of Fetch-Decode.

95

D.2.5 Get Event.

1. Check if valid events on all input arcs.
2. If not all input arcs have a valid event,

signal error (exit this routine).
3. Find minimum event in NEQ Component.
4. Read minimum event from NEQ Component.
5. Read memory pointer from Adjacent SRAM.
6. Update LP Simulation time in SRAI.
7. Check if a null message was retrieved (mem ptr equal all O's).

a. If null message retrieved, output null messages on all output arcs.
b. If real message retrieved, output updated simr time and memory pointer.

8. Signal ready to host and jump to start of Fetch-Decode.

D.2.6 Post Event.

1. Decode SRAM pointer from "From Node/LP" field of opcode; RO := SRAM ptr.
2. Read Sim Time from host; R10 := Sim Time.
3. Read an output arc identifier from LP SRAM partition.
4. Compare output arc identifier with "To Node/LP" field of opcode.

a. If not equal, send null message on output arc.
b. If equal, do not send null message (arc that got the real message).

5. Repeat 3-4 for all output arcs of the LP.
6. Signal ready to host and jump to start of Fetch-Decode.

D.3 Microcode Preprocessor

D.3.1 Preprocessor Rules. The microcode preprocessor is used to convert the

microcode input file into the correct format to be used in the behavioral description of the

control store EPROM. The preprocessor is written in VHDL. The following fields are used

in the microcode input file:

@ Instr - This field gives the decimal value of the microinstruction.

e * Reg - This field gives the remaining number of fields (0, 1, or 2).

* RI - This field gives the Ri encoded value for the microinstruction.

* R2 - This field gives the R2 encoded value for the microinstruction.

* REL JMP - This field gives the relative branch address for the microinstruction.

96

The following rules must be followed when writing or modifying the microcode input

file:

"* Full-line and end-of-line comments are permitted.

"* Comments can begin with any non-numerical character.

"* Branch targets are relative to the branch instruction.

"* Full-line comments are not counted in relative branches.

"* The microinstruction fields are decimal-based.

97

D.3.2 Sample Microcode Input File. This section shows the fetch-decode portion

of the microcode input file. The actual input file has an additional "Comment" field after

the "Pseudocode field." The comment field is not shown because a wide-carriage printer

would be required.

* This is the fetch/decode routine.

Instr #Reg RI R2 REL JNP * Pseudocode

59 1 0 if (Status(i) = 0) jmp 0
53 0 toggle Status(3)
62 1 2 if NEQ.error jmp 2
63 1 2 jmp 2
39 1 0 NEQ-clear.error
51 2 8 5 mov(R8,RS)
51 2 9 6 mov(R9,R6)
46 0 mov(MBR,ParioData_ In)
49 2 2 0 mov(R2,MBR)

1 2 8 2 and(R8,R2)
1 2 9 2 and(R9,R2)

55 0 toggle Status(I)
51 2 0 9 mov(RO,R9)
19 2 0 0 rshift8(RO)
19 2 0 0 rshift8(RO)
16 2 0 0 lshift(RO)
16 2 0 0 ishift (RO)
16 2 0 0 lshift(RO)
51 2 10 2 mov(R1O, R2)
58 1 123 if negative jmp 123
16 2 10 10 lshift(R1O)
15 2 0 10 nz := RIO
58 1 241 if negative jmp 241
16 2 10 10 lshift(RIO)
15 2 0 10 nz := R1O
58 1 191 if negative imp 191

98

Appendix E. SRAM Memory Map

The SRAM memory map for the DES Coprocessor is shown in Figure 23. The SRAM

is used by the Microcode Control Engine to store LP specific information which is required

to synchronize the simulation. Furthermore, the SRAM is used by the NEQ Component

to store memory pointers. These memory pointers provide the addresses to the next-event

data which is stored in the main memory of the host.

0

MEM PTR
MEM PTR

1000000000zOzzzz

BASE + 32

0

OUTPUT ARC ID

0

INPUT ARC ID

ARCS OUT/IN
SIM TIME

LP DELAY

LP STATUS
OOOxxxyyyyy00000

Figure 23. SRAM Memory Map for DES Coprocessor

Each LP is allowed a partition of 32 words in the low address space of the SRAM.

The base pointer of the LP partition is calculated from the Node/LP identification. In

Figure 23, the xxx and yyyyy bits of the 16-bit base address correspond to the "To Node"

and "To LP" fields of the opcodes that are discussed in Appendix A.

Each ESAM word is mapped to one SRAM word. The zzzzz bits of the ESAM

address space correspond to the 5-bit encoded ESAM address.

99

Appendix F. DES Coprocessor Interface Unit

F. I Status Register

The Status Register in the DES Coprocessor Interface Unit stores a 4-bit value. The

significance of the status bits is shown in Table 38.

Refer to Figure 15. In order to toggle a particular bit, the HOST-TOGGLE or COPRO-

CESSORTOGGLE port is asserted, and a "1" is placed on the data line that corresponds

to the bit that is to be toggled. A "0" signifies that the corresponding bit is not to be

toggled. The Status Register is tied to the lowest four bits on the coprocessor data port to

the host, and the lower two bits are used as feedback for the Microcode Control Engine.

The host waits until the Ready Bit is set and the Data-In Bit is clear before writing

an Opcode to the Pario Buffer; however, the host only waits on a clear Data-In Bit before

writing operands to the buffer.

The host toggles Bit 1 high after writing data to the Pario Buffer, and the coprocessor

toggles the bit low after reading the data. The coprocessor toggles Bit 0 high after writing

data to the Pario Buffer, and the host toggles the bit low after reading the data.

A clock filter synchronizes the host and coprocessor interface to the status register.

Since four clock inputs to the coprocessor correspond to a full cycle of the four-phased non-

Table 38. Interface Unit Status Register

Bit I Use Value Toggled By

3 Ready Bit 1 = Ready Coprocessor
0 = Not Ready

2 Error Bit 1 = Error Coprocessor
0 = No Error

1 Data-In Bit 1 = Data-In Buffer Full Coprocessor and Host
0 = Data-In Buffer Empty

0 Data-Out Bit 1 = Data-Out Buffer Full Coprocessor and Host
0 = Data-Out Buffer Empty

100

overlapping clock of the control engine, the host is allowed to modify the Status Register

only once every four input clock pulses.

F.2 Pario Buffer

The Pario Buffer is composed of two 32-bit registers. One register is a data input

buffer, the other register is a data output buffer. The host writes data to the input buffer

and reads data from the output buffer. The coprocessor writes data to the output buffer

and reads data from the input buffer. Bits 1 and 0 of the Status Register are used to

prevent data from being over-written before the recipient has read the data.

F.3 Interrupt Register

The Interrupt Register stores an 8-bit interrupt vector. When the coprocessor asserts

ITR, the interrupt vector is latched into the register from the lower eight bits of internal

coprocessor data path. When the host asserts INTA, the interrupt vector is output on the

lower eight bits of the coprocessor data port.

101

Appendix G. Pin Assignments of Integrated Circuits

Table 39. Pin Assignments for 132-Pin PGA ESAM Array. The following abbreviations
are used for pin names: s = search select, w = word select, m = word match,
di = data in, do = data out, v = vdd, g = gnd, nc = no connection.

Pin JUse II Pin JUse 11 Pin lUse Pin JUse IIPin]Use

N3 s16 P5 w16 K3 di8 M2 maskO Nll do18
Hi s15 C2 w15 L2 di7 M6 ctrlO M10 dol7
H2 s14 C3 w14 Ml di6 N6 ctrli N12 dol6
H3 s13 B2 w13 K2 dis N5 write Mil do15
G3 s12 C4 w12 Li di4 P7 do3l N13 dol4
G2 sll B3 wll Ki di3 N7 do3O M12 dol3
Gi slO C5 wlO D3 di2 M7 do29 M13 do12
Fl s9 B4 w9 J2 dil M8 do28 L12 doll
F2 s8 A3 w8 J1 diO N8 do27 M14 dolO
F3 s7 B5 w7 M5 mask8 P8 do26 L13 do9
El s6 A4 w6 P4 mask7 P9 do25 L14 do8
E2 s5 A5 w5 N4 mask6 N9 do24 K12 do7
E3 s4 C6 w4 P3 mask5 M9 do23 K13 do6
Dl s3 B6 w3 M4 mask4 P10 do22 K14 do5
D2 s2 A6 w2 M3 mask3 Pll do21 J12 do4
Cl sl A7 wl N2 mask2 N10 do20 J13 do3
D3 sO B7 wO L3 mask1 P12 do19 J14 do2
H14 dol B10 m23 C13 m13 G14 m3 B1 gl
H113 doO C10 m22 E12 m12 G13 m2 A13 g2
C7 m31 All m21 D13 mll G12 ml B14 g3
C8 m30 Bll m20 C14 mlO H12 mO N14 g4
B8 m29 A12 m19 E13 m9 P1 vl P2 g5
A8 m28 Cll m18 D14 m8 Al v2 N1 g6
A9 m27 B12 m17 E14 m7 A2 v3 P6 nc
B9 m26 C12 m16 F12 m6 A14 v4
C9 m25 B13 m15 F13 m5 P14 v5
A10 m24 D12 m14 F14 m4 P13 v6

102

Table 40. Mapping of Pin Inputs to Memory Inputs for 132-Pin PGA ESAM Array. In
order to fit the chip on a 132-pin PGA, pin inputs were hard-wired to multiple
memory inputs. This wiring scheme was used for the data, mask, search select,
and word select inputs. The following abbreviations are used for pin names:
s = search select, w = word select, di = data in.

Pin Input [Memory Input IIPin Input J Memory Input -[Fin Input (Memory input

mask8 mask3l mask7 mask3O. .28 mask6 mask27. .24
mask5 mask23..20 mask4 maskl9.. 16 mask3 maskl5.. 12
mask2 maskll..8 maskl mask7..4 maskO mask3..O
di8 di3l di7 di30..28 di6 di27..24
di5 di23..20 di4 dil9..16 di3 dil5..12
di2 dill..8 dii di7..4 diO di3..0

s16/w16 word 31 s15/w15 word 30 s14/w14 word 29..28

s13/w13 word 27..26 s12/w12 word 25..24 sll/w11 word 23..22

slO/wlO word 21..20 s9/w9 word 19.. 18 s8/w8 word 17.. 16
s7/w7 Iword 15..14 1[s6/w6 word 11..12 s5/w5 word 1L..10

s4/w4 word 9..8 s3/w3 word 7..6 s2/w2 word 5. .4
-si/wi word 3..2 sO/wO word 1..0___________

103

Table 41. Pin Assignments for 132-Pin PGA Word Select Circuit. The following abbre-
viations are used for pin names: s = search select, w = word select, m = word
match, c = control, v = vdd, g - gnd, nc = no connection.

Pin J Use 11 Pin Use 11 Pin J Pin Use Pin Use

N2 mO D3 m27 M11 w14 N9 s9 A2 v3
L3 ml C2 m28 M13 w15 P10 slO A14 v4
M2 m2 C3 m29 M14 w16 N10 sll P14 v5
K3 m3 B2 m30 L14 w17 Nl1 s12 P13 v6
L2 m4 C4 m31 K13 w18 N12 s13 Bi gl
M1 m5 B3 c7 J12 w19 M12 s14 A13 g2
K2 m6 C5 c6 J14 w20 L12 s15 B14 g3
Li m7 B4 c5 H13 w21 L13 s16 N14 g4
K1 m8 B5 c4 G12 w22 K12 s17 P2 g5
J3 m9 A4 cO G14 w23 K14 s18 N1 g6
J2 mlO C6 c3 F13 w24 J13 s19 N13 nc
J1 mll A5 c2 E14 w25 H14 s20 C14 nc
HI m12 A3 cl E13 w26 H12 s21 A10 nc
H2 m13 M3 wO E12 w27 G13 s22 C9 nc
H3 m14 M4 wl D12 w28 F14 s23 B9 nc
G3 m15 N4 w2 C12 w29 F12 s24 A9 nc
G2 m16 M5 w3 Cll w30 D14 s25 A8 nc
G1 m17 P5 w4 B11 w31 D13 s26 B8 nc
F1 m18 N6 w5 N3 sO C13 s27 C8 nc
F2 m19 P7 w6 P3 sl B13 s28 C7 nc
F3 m20 M7 w7 P4 s2 B12 s29 B7 nc
EI m21 N8 w8 N5 s3 A12 s30 A7 nc
E2 m22 P9 w9 M6 s4 All s31 A6 nc
E3 m23 M9 wlO P6 s5 B10 c.out B6 nc
D1 m24 P11 wll N7 s6 Clo flag
D2 m25 P12 w12 M8 s7 P1 vl
CI m26 M10 w13 P8 s8 Al v2

104

Table 42. Pin Assignments for 40-Pin DIP NEQ Control Unit. The following abbrevi-
ations are used for pin names: fsm = fsm control, m - mask, ctrl = ESAM
control, v = vdd, g = gnd, nc = no connection.

flPin Use llPin Use]] Pin Use]Pin Use IPi-n iU-se
27 fsm2 9 ctrl5 40 v.bit 21 rd-d 35 v2
31 fsml 14 ctrl4 39 r.bit 19 wr.d 5 gl
29 fsmO 7 ctrl3 37 m5 23 oe-d 25 g2
32 wdsel 11 ctrl2 38 m4 18 wr.a 8 nc
33 match 6 ctrll 36 m3 22 oea 16 nc
26 clock 12 ctrl0 3 m2 24 rdy 20 nc
30 reset 10 write 1 ml 17 error 28 nc
13 ctrl6 2 array 34 m0 15 v1 4 nc

Table 43. Pin Assignments for 40-Pin DIP Corrected ESAM Array. The following abbre-
viations are used for pin names: din = data in, wd = word select, srch = search
select, mat = word match, dout = data out, nc = no connection.

ILPin Use il Pin Use IPin Use IIPin]Use Pin]Use i
30 din5 36 mask3 23 ctrll 20 dout5 12 mat1
32 din4 38 mask2 22 ctrl0 19 dout4 13 matO
34 din3 40 maski 3 write 18 dout3 15 vddl
37 din2 2 maskO 4 prech 17 dout2 35 vdd2
39 din1 29 srch3 6 wd3 16 doutl 5 gndl
1 din0 28 srch2 7 wd2 14 doutO 25 gnd2
31 mask5 27 srchl 8 wdl 10 mat3 24 nc
33 mask4 26 srch0 9 wd0 11 mat2 21 nc

105

Table 44. Pin Assignments for 84-Pin PGA Execution Unit. The following abbreviations
are used for pin names: a = address, d - bidirectional data, nc = no connection.

if Pin [Use Pin [Use 11 Pin Use [Pin IUse 11 Pin IUse

Li vdd J2 mbrl KI mbrO J1 d3 H2 a2
Hi a4 G3 a5 G2 a6 G1 a3 Fi all
F3 al E3 vdd Ei alO E2 a8 F2 a7
Di a12 D2 d5 C1 d4 Bi gnd C2 d6
B2 dll Ai vdd B3 d15 A2 dO A3 d12
B4 d13 A4 d7 A6 d24 B5 dlO A5 d8
C5 d9 C6 d14 B6 aO A7 d28 B7 d2
C7 nout A8 zout B8 di A9 d3i A10 gnd
B9 d26 B10 d27 All vdd C10 d19 Bll d23
ClI d16 D10 d22 Dll d20 FII d25 Elo d17
Ell d29 E9 d2l F9 d18 F10 a13 Gll a14
G10 a9 G9 a15 Hil d30 H10 nc Jill n
Kll gnd J10 bmux K10 mar-oe Lll vdd K9 alul
L10 alu2 L9 aluO K8 clk4 L8 clk2 J7 and
K7 shiftO L7 shiftl L6 shift2 J6 r2(0) J5 r2(3)
L5 ri(2) K5 rl(i) K6 r2(2) L4 r2(1) K4 mar.ctrl
L3 r1(3) L2 gnd K3 clk3 K2 rl(O)

106

Appendix H. Testing of Integrated Circuits

H.I Introduction

This appendix explains the testing of the integrated circuits that were fabricated. The

testing for the initial ESAM Array, ESAM Word Select Circuit, NEQ Control Unit, and

corrected ESAM Array are discussed. Unless otherwise stated, all vectors are hexadecimal.

H.2 ESAM Array

. Three separate tests were created for the 32-word by 32-bit ESAM Array. These

tests were designed to:

"* Validate the execution of associative operations.

"* Measure the worst-case timing performance of associative operations.

"* Validate the execution of I/O operations.

H.2.1 Validation of Associative Operations. The following test was used to

validate the functionality of the associative operations:

1. Write 00000000 to all words (31 down to 0).
2. Write FFFFFFFF to words 15 down to 8.
3. Write OFOFOFOF to words 23 down to 16.
4. Search-All maximum; match on words 15 down to 8.
5. Search-Subset maximum (subset = 23-16 and 7-0), match 23 down to 16.
6. Search-All minimum; match on words 31 down to 24 and words 7 down to 0.
7. Search-Subset minimum (subset = 15-0), match on words 7 down to 0.
8. Search-All equal to 00000000; match on words 15 down to 8.

All bits of the mask input to the memory were set to a high logic value so that all

bit slices were tested. The equivalence search operation in step 8 shows that this function

was not returning correct results. The Search-All equal operation should have returned

matches on words 31 down to 24 and words 7 down to 0. Since the comparand data path

was stuck at a high logic value, the operation incorrectly returned matches on words 15

down to 8.

107

H.2.2 Worst-Case Performance of Associative Operations. The following test

was used to measure the worst-case performance of the extreme-search associative oper-

ations. The equivalence search was not evaluated in this test since this search operation

failed the functional test.

1. Write FFFFFFFF to all words.
2. Write 00000000 to word 31.

3. Search-All minimum; match on word 31.
4. Write 00000000 to all words.
5. Write FFFFFFFF to word 31.
6. Search-All maximum; match on word 31.
7. Goto 1.

By running the test in an infinite loop, the polling time for the expected result

(match) could be lowered until errors were detected. The minimum polling time at which

errors were not detected was the minimum execution time of the search operation. The

Search-All minimum typically failed before the Search-All maximum. When one of the

extreme searches began to fail before the other, the expected result from the failing search

was no longer polled. This technique allowed the polling time to be decreased until the

other extreme search began to generate i'rors. Thus, the same test was used to measure

the performance of both the maximum and minimum searches.

The above test was executed across search fields of 32, 31, 28, 24, 20, 16, 12, 8, and

4 bits. The size of the search field was controlled by setting the mask input to the desired

value.

H.2.3 Validation of I/0 Operations. The following test was used to validate

the execution of 1/O operations. The majority of the ICs (81%) failed this test since

single-word reads were stuck at a high logic value.

1. Write FFFFFFFF to word x.
2. Read FFFFFFFF from word x.
3. Write 8FOFOFOF to word x.
4. Read 8FOFOFOF from word x.
5. Write 00000000 to word x.
6. Read 00000000 from wird x.

108

7. Write 70FOFOFO to word x.
8. Read 70FOFOFO from word x.
9. Repeat for each word, x (x = 31 down to 0).

11.3 ESAM Word Select Circuit

Eight separate tests were created for the Word Select Circuit. The first seven tests

were designed to validate the functionality of the circuit. These tests included the valida-

tion of functions that are not used in the NEQ Component but are available in the circuit.

The eighth test was designed to measure the timing performance of the required functions

within the NEQ Component.

H. 3.1 Validation. The following tests were used for validation of the Word Select

Circuit. These tests revealed that the correct CTRL(3) input for the fabricated circuit is

the inverse of the CTRL(3) input for the VHDL model (as listed in Tables 23 and 24).

Test 1: Write-All.

Test 2: 1. Search-All (match on all).
2. Write (read) one word at a time for all 32 words.

Test 3: 1. Search-All (match on subset).
2. Write (read) one word at a time for all matches.

Test 4: 1. Search-All (match on subset).
2. Write subset.

Test 5: 1. Search-All (match on subset).
2. Search-Subset (match on smaller subset).
3. Write subset.

Test 6: 1. Search-All (match on all).
2. Search-Subset (match on all).
3. Write subset (all words).

Test 7: 1. Search-All-Not (match on subset).
2. Search-Subset (match on smaller subset).
3. Write subset.

109

H.3.2 Performance. The critical path of the Word Select Circuit was the as-

sertion of the search select outputs during a Search-All operation. The following test was

used for the performance measurement of the Word Select Circuit:

1. Write-All.
2. Search-All (match on all).
3. Search-Subset (match on all).
4. Write (read) one word at a time for all 32 words.
5. Goto 1.

By running the test in an infinite loop, the polling time for the expected results (word

selects and search selects) could be lowered until errors were detected. The minimum

polling time at which errors were not detected was the minimum execution time of the

circuit.

H.4 NEQ Control Unit

Only one test was created for the NEQ Control Unit. This test was designed to

validate the performance of the circuit while simultaneously measuring the maximum op-

erating frequency. The test was executed as follows:

1. Reset.
2. Initialize ESAM.
3. Reserve arc (memory full error).
4. Clear error.
5. Initialize ESAM.
6. Reserve arc.
7. Reserve arc.
8. Write to reserved word.
9. Write to reserved word.
10. Write to unreserved word.
11. Write to unreserved word.
12. Write to unreserved word (memory full error).
13. Clear error.
14. Find min.
15. Find min.
16. Find min (event not ready error).
17. Clear Error.
18. Output Data.
19. Output address.

110

20. Search.
21. Search (no-valid-event error).
22. Clear error.
23. Goto 1.

This test provided functional validation of the circuit since all states were entered

and the correct control outputs were observed. By running the test in an infinite loop, the

polling time for the expected results (control outputs) could be lowered until errors were

detected. The minimum polling time at which errors were not detected was the minimum

execution time of the circuit.

H.5 Corrected ESAM Array

The corrected ESAM array was a 4-word by 6-bit memory which had improved write

and read circuitry. The stuck-at fault on the comparand data path was also corrected so

that equivalence search operations could be executed. Three tests were designed for the

corrected ESAM Array. These tests were designed to:

"* Validate the execution of associative and I/O operations.

"* Measure the cycle speed for I/O operations.

"* Measure the worst-case timing performance of the associative operations.

H.5.1 Validation. The following test was used to validate the execution of both

the associative and I/O operations in the corrected ESAM Array. All vectors are binary.

1. Write 111111 to all words (3 down to 0).
2. Write 000000 to word 3.
3. Search-All minimum (match on word 3).
4. Search-All maximum (match on words 2 down to 0).
5. Search-All equal to 000000 (match on word 3).
6. Search-All equal to 111111 (match on words 2 down to 0).
7. Read word 3 (output 000000).
8. Read word 2 (output 111111).

This test demonstrated the improvements over the initial ESAM Array. The read

operation was no longer stuck at a high logic value, and the equivalence search operation

returned correct results.

111

H.5.2 Performance of I/0 Operations. The following test was used to measure

the cycle speed of I/O operations:

1. Write 111111 to word x.
2. Read 111111 from word x.
3. Write 101010 to word x.
4. Read 101010 from word x.
5. Write 010101 to word x.
6. Read 010101 from word x.
7. Write 000000 to word x.
8. Read 000000 from word x.
9. Repeat for each word, x (x = 3 down to 0).
10. Goto 1.

Both the test cycle time and polling time for expected results (data output) were

lowered until errors were generated. The minimum cycle time and polling time at which

errors were not detected was the minimum execution time of the circuit.

H.5.3 Worst-Case Performance of Associative Operations. The following test

was used to measure the worst-case timing performance of the associative operations:

1. Write 111111 to all words (3 down to 0).
2. Write 000000 to word 2.
3. Search-All minimum (match on word 2).
4. Write 000000 to all words.
5. Write 111111 to word 1.
6. Search-All maximum (match on word 1).
7. Write 000000 to all words.
8. Search-All equal to 000000 (match on all words).
9. Write 111111 to all words.
10. Search-All equal to 111111 (match on all words).
11. Goto 1.

This test is similar to the test that was used to measure the performance of the

associative operations of the initial ESAM Array. The primary difference is that this test

also measures the performance of the equivalence search. The polling time for the expected

result (match) was lowered until errors were detected. The minimum polling time at which

errors were not detected was the minimum execution time of the search operation. The

112

Search-All minimum typically failed before the Search-All maximum, and the Search-All

equal was always the fastest.

When one of the searches (max, min, or equal) began to fail, the expected result

from the failing search was no longer polled. This technique allowed the polling time to

be decreased until the faster searches began to generate errors. In this manner, the same

test was used to measure the performance of all of the associative operations.

The above test was executed across search fields of 6, 5, 4, 3, 2, and 1 bit(s). The

size of the search field was controlled by setting the mask input to the desired value.

113

Appendix L DES Coprocessor Project Directory

This appendix explains the hierarchy of the DES Coprocessor project directory which

is located on the AFIT VLSI network file server. "README" files are placed throughout

the directory to further explain the contents of files.

\des - This is the root of the project directory.
\esam - Contains all of the VHDL, Magic, and HSPICE files for

the ESAM and NEQ Component.

\extrema-array-fab\extrema.arrayfab2 - Contains the Magic and
HSPICE files for the 32-word by 32-bit ESAM array that was
fabricated in a 132-pin PGA.

\extrema-array-fab\extrema.array-fab3 - Contains the Magic and
HSPICE files for the corrected ESAM Array that was fabricated
in a TinyChip.

\wd_sel_fab\wdsel_fab2 - Contains the Magic and HSPICE files
for the ESAM Word Select Circuit that was fabricated in a
132-pin PGA.

\vhdl - Contains the complete VHDL description of the NEQ Component.

\ims - Contains all of the INS test files for the fabricated circuits.

\extremaarraybig - Contains the INS test files for the
132-pin PGA ESAM Array.

\extrema-array.small - Contains the INS test files for the
TinyChip corrected ESAM Array.

\neq-ctrl - Contains the test files for the TinyChip NEQ Control Unit.

\word-sel-ckt - Contains the test files for the 132-pin PGA
ESAM Word Select Circuit.

\synthesis - Contains all of the synthesized chips that were fabricated.

\des-execu-i:.-._unit\layout - Contains the Magic layout of the
coprocessor execution unit that was fabricated in an 84-pin PGA.

\des-execution.unit\layout\esim-test - Contains all of the ESIM
switch-level simulations that were run on the execution unit.

114

\neq-control.unit\layout - Contains the Kagic layout of the
IEQ Control Unit that was fabricated in a TinyChip.

\ver5 - Contains a predominantly behavioral description of
the DES Coprocessor.

\ver6 - Contains a predominantly structural description of
the DES Coprocessor.

For information on obtaining a copy of the DES Coprocessor files, send correspon-
dence or call LtCol William Hobart at:

Air Force Institute of Technology
AFIT/ENG

Wright-Patterson AFB, OH 45433-7765
com. (513) 255-3636 ext. 4622

av. 785-3636 ext. 4622

115

Bibliography

1. Banton, David W. A Decision Criteria to Select an Associative-Memory Organization
that Minimizes the Execution Time of a Mir of Associative Search Operations. PhD
dissertation, AFIT/DS/ENG/93-02, Air Force Institute of Technology (AU), June
1993.

2. Breeden, Thomas A. Parallel Simulation of Structural Circuits on Intel Hypercubes.
MS thesis, AFIT/GCE/ENG/92D-01, Air Force Institute of Technology (AU), 1992.

3. Buzzell, Calvin A. and others. "Modular VME Rollback Hardware for Time Warp."
Proceedings of the SCS Multiconference on Distributed Simulation. 153-156. IEEE,
1990.

4. Chandy, K. M. and J. Misra. "Asynchronous Distributed Simulation via a Sequence
of Parallel Computations," Communications of the ACM, 24:198-206 (April 1981).

5. Chase, Paul W. and others. "Visualization of Parallel Discrete Event Simulations."
Unpublished Article, September 1993.

6. Daniel, David W. Design of a Hardware Discrete Event Simulation Coprocessor. MS
thesis, AFIT/GCE/ENG/93M-01, Air Force Institute of Technology (AU), 1992.

7. Franklin, M.A. and others. "Parallel Machines and Algorithms for Discrete-Event
Simulation." International Conference on Parallel Processing. 449-458. Columbus,
OH: IEEE, 1984.

8. Fujimoto, Richard M. "Parallel Discrete Event Simulation." 1989 Winter Simulation
Conference. 19-28. IEEE, 1989.

9. Fujimoto, Richard M. and others. "Design and Performance of Special Purpose Hard-
ware for Time Warp." International Symposium on Computer Architecture. 401-408.
IEEE, 1988.

10. Fujimoto, Richard M. and others. "Design and Evaluation of the Rollback Chip:
Special Purpose Hardware for Time Warp," IEEE Transactions on Computers, 41:68-
82 (January 1992).

11. Gustafson, John L. "Reevaluating Amdahl's Law," Communications of the ACM,
31:532-533 (May 1988).

12. Intel Corporation. Microprocessors, Volume II, 1991.

13. Jefferson, David. "Virtual Time," ACM Transactions on Programming Languages
and Systems, 7:404-425 (July 1985).

14. Jefferson, David. "Virtual Time II: Storage Management in Distributed Simulation."
Unpublished Article, December 1989.

15. Jefferson, David and others. "Distributed Simulation and the Time Warp Operating
System," ACM Operating Systems Review, 77-93 (November 1987).

16. Kapp, Kevin L. Partitioning Structural VhIDL Circuits for Parallel Execution on
Hypercubes. MS thesis, AFIT/GCE/ENG/93D-14, Air Force Institute of Technology
(AU), 1993.

116

17. Misra, Jayadev. "Distribated Discrete-Event Simulation," ACM Computing Surveys,
18:39-65 (March 1986).

18. Motorola, Inc. MC68ECO30 32-Bit Embedded Controller User's Manual, 1990.

19. Reed, Daniel A. and Allen D. Malony. "Parallel Discrete Event Simulation: The
Chandy-Misra Approach." Distributed Simulation. 8-13. La Jolla CA: SCS, 1988.

20. Reynolds, Jr. Paul F. "A Spectrum of Options for Parallel Simulation." 1988 Winter
Simulation Conference. 325-332. IEEE, 1988.

21. Reynolds, Jr. Paul F. "Comparative Analyses of Parallel Simulation Protocols." 1989
Winter Simulation Conference. 671-679. IEEE, 1989.

22. Reynolds, Paul F. and Carmen M. Pancerella. Hardware Support for Parallel Discrete
Event Simulations. Technical Report TR-92-08, University of Virginia, 1992.

23. SanGregory, Sam L. A Single-Chip 2K z 8-Bit Pipelined Digital RF Memory Us-
ing 2pm CMOS VLSI Technology. MS thesis, AFIT/GCE/ENG/92D-10, Air Force
Institute of Technology (AU), 1992.

24. Taylor, Paul J. Requirements Analysis for a Hardware, Discrete-Event Simulation En-
gine Accelerator. MS thesis, AFIT/GCE/ENG/91D-11, Air Force Institute of Tech-
nology (AU), 1991.

25. Xilinx, Inc. The XC4000 Data Book, 1991.

117

REPORT DOCUMENTATION PAGE o_________

PYK reortiig bwn flo• tho c•,lsatm of ,manataon ib ai•ma to avoumge I hi ' t, aniaing Ume tna* foravnusg an . etw cr Wasstmg data toGts ~C
gathrg ad ma~mfnlg tme da1otaneed, adMO C(meetmg ad Ne • ,the cedcNuoa mamtman land oumauI reqga.tng the buaen estimate or any other apect of ths
€ollectio ot ko, i m.t' ,dg -me for reduig li . Wdaght mee,,rat Smci, Ow*Cot•,vt for information Ometation and Report 1215 jefem
DOais higtsway. SeW 1204. A"6 gton. 3A222 02. ad o the Office o h•tm•saqn aik d Ssge' PaMrwot. t dUo'Pfo• tO-0S1). *,aingtol. DC 20S03.

1. AGENCY USE ONLY (Leave bWnk) 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

IDecember 1993 Master's Thesis
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

DESIGN OF A PARALLEL DISCRETE
EVENT SIMULATION COPROCESSOR

6. AUTHOR(S)
Jacob L. Berlin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

Air Force Institute of Technology, WPAFB OH 45433-7765 REPORT NUMBER

AFIT/GCS/ENG/93D-02

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING /MONITORING

ARPA/CSTO AGENCY REPORT NUMBER

Dr Robert Parker
3701 N. Fairfax Dr
Arlington, VA 22203

11. SUPPLEMENTARY NOTES

12a. D!STRIBUTION ;AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. AESTRAC7 (Maximurru200 words)

A Parallel Discrete Event Simulation Coprocessor was designed to off-load the synchronization overhead from the!
processors executing the application. In a multiprocessor architecture, one coprocessor executes the synchronizationl
routines for each host processor. Speedup can be achieved when the host processor executes the application and
the coprocessor concurrently executes synchronization routines. The coprocessor uses a programmable microcode'
control store to guarantee flexibility in the synchronization routines.
The coprocessor uses an Extreme Search Associative Memory to support fast Next Event Queue (NEQ) management.:
This associative memory uses bit-serial word-parallel search logic to provide O(1) insert and retrieval time of events
in the NEQ.
The coprocessor was completely described in the VHSIC Hardware Description Language (VHDL), and several,
components were fabricated and tested. Timing measurements of the fabricated components were back-annotated
into the VHDL description to improve model accuracy.
Synchronization overhead of a parallel VHDL simulation was measured using the AFIT Algorithm Animation Re-!
search Facility, and this data was used for a conceptual performance analysis of the coprocessor. A four-fold speedup!
was achieved for the NEQ management of the simulation; however, the total speedup was only 1.02 since less thani
2% of the application was accelerated.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Parallel Discrete Event Simulation, Parallel Architecture, VLSI Architecture, Asso- xxx
ciative Memory 16. PRICE CODE

17. SECURITY CLSIIAIN 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

IUNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

PrnescraOe by ANN, ,tc Z3S-18
296-102

	Design of a Parallel Discrete Event Simulation Coprocessor
	Recommended Citation

	tmp.1708548143.pdf.Nu11y

