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SUMMARY In the last 2 decades, renewed attention to neglected tropical diseases
(NTDs) has spurred the development of antiparasitic agents, especially in light of
emerging drug resistance. The need for new drugs has required in vitro screening
methods using parasite culture. Furthermore, clinical laboratories sought to correlate
in vitro susceptibility methods with treatment outcomes, most notably with malaria.
Parasites with their various life cycles present greater complexity than bacteria, for
which standardized susceptibility methods exist. This review catalogs the state-of-
the-art methodologies used to evaluate the effects of drugs on key human parasites
from the point of view of drug discovery as well as the need for laboratory methods
that correlate with clinical outcomes.

KEYWORDS parasites, resistance, susceptibility tests

INTRODUCTION

The methods employed to test the activity of either established or novel medicines
against parasites remain largely within the research domain. However, the devel-

opment of public-private partnership consortia to align biological and parasitological
testing platforms against the various parasite stages has started to pay off by strength-
ening and rationalizing the drug discovery and development pipeline. To give an
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example, with malaria now, there is a renewed effort to identify drugs that target liver
stages and gametocytes in efforts not only to treat patients with acute infection but
also to kill dormant liver stages (hypnozoites) and prevent transmission (gametocytes).
Therefore, different assays have emerged in the research arena to address these
pressing needs to identify compounds that serve as chemical starting points for drug
development. Ultimately, from a clinical point of view, interpretive breakpoints (drug
concentrations above which infectious agents are killed or growth is inhibited in
patients) would be of immense use for treating patients. Here again, difficulty arises
because parasites are difficult to culture from human specimens (so-called ex vivo
testing), and in some cases, polyclonal infections may occur; thus, testing may select for
certain strains and not others present in that human infection. Further confounding
attempts to standardize testing is the fact that certain drugs act at a particular stage of
the parasite life cycle, thus affecting the results of the assay. Standardized methods are
also essential to drug discovery efforts so that promising leads do not fall by the
wayside in preclinical testing and that “false-positive” leads do not progress too far in
the development pipeline.

This review attempts to conduct an impartial environmental scan of the labo-
ratory testing methods available to perform susceptibility testing against medically
important parasites and to provide a critical appraisal from a clinical perspective (Table
1). Organisms covered in this review include Plasmodium, Leishmania, Trypanosoma,
enteric protozoa (Giardia, Entamoeba, and Cryptosporidium), Schistosoma, and filariae. In
the realm of bacteria and viruses, organizations like the Clinical and Laboratory Stan-
dards Institute (CLSI) (http://clsi.org/) in North America and the European Committee
on Antimicrobial Susceptibility Testing (EUCAST) (http://www.eucast.org/) in Europe
deal directly with the standardization of phenotypic methods and also the interpreta-
tion of clinical breakpoints based on in vitro testing methods. While the CLSI and
EUCAST do not always agree on breakpoints for certain bug-drug combinations, the
decision of clinical breakpoints is based on evidence in the literature. This includes
primarily pharmacokinetic and pharmacodynamic data from clinical trials, supported by
in vitro growth and resistance data based on specified testing methods. In certain
instances, there is a paucity of clinical evidence to guide the interpretation of in
vitro data, and here epidemiological cutoffs (ECOFFs) are used to give a sense of the
wild-type distribution of inhibitory concentrations in the population. The EUCAST
also guides clinical interpretation of breakpoints for regulatory agencies such as the
European Medicines Agency, whereas in the United States, it is not uncommon
to have the Food and Drug Administration espouse different breakpoints to the
CLSI (http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/
CDER/ucm275763.htm). However, for patient management, most clinical laboratories
that test patient samples adhere to CLSI guidelines on testing methods for bacteria,
viruses, and fungi and participate in rigorous quality assurance programs such as the
College of American Pathology (CAP) in the United States (http://www.cap.org/).

In this vein, nascent groups such as the Worldwide Antimalarial Resistance Network
(http://www.wwarn.org/) have made a similar attempt to provide standardization
of testing methods for malaria, quality control of reagents used, interpretation of
data (graphing 50% inhibitory concentration [IC50] data), and epidemiologically
relevant updates on molecular markers of resistance emerging throughout the
endemic world (1). From a microbiological and clinical perspective, the science and
medicine of antimalarial susceptibility testing lag far behind those for bacteria,
fungi, and viruses. This review attempts to catalog the current state of affairs of
testing methods, clinical validation studies, and molecular data available for sus-
ceptibility testing of parasites. Additionally, this review considers further develop-
ments, driven in large part by the stimulus to the new antimalarial clinical trial
funding space, that may allow clinical interpretation of laboratory testing to guide
patient management.
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MALARIA

Malaria is one of the major causes of death and illness by an infectious disease.
The World Health Organization (WHO) estimates that 3.2 billion people are at risk of
acquiring malaria, with 214 million cases occurring worldwide, resulting in 438,000

TABLE 1 Summary of susceptibility testing assays of medically important human parasites

Parasite Parasite stages Type(s) of assaya Measure(s) Reference(s)

Plasmodium Liver stages (sporozoites,
schizonts, hypnozoites)

High-content imaging P. berghei/P. yoelii liver schizont
development

161

Bioluminescence imaging P. berghei/P. yoelii liver schizont
development

27, 162

Immunofluorescence Development of P. chabaudi liver
small (hypnozoites) and large
(schizonts) forms

33

Immunofluorescence P. falciparum/P. vivax sporozoite
invasion and development

28, 29

Asexual blood stages (rings,
trophozoites, schizonts)

Microscopic P. falciparum/P. vivax schizont
maturation

163

P. falciparum ring-stage survival 164
Isotopic P. falciparum intraerythrocytic growth 4

P. falciparum intraerythrocytic growth 5
Colorimetric P. falciparum intraerythrocytic growth 7
ELISA P. falciparum intraerythrocytic growth 6
Fluorescent DNA dye based P. falciparum intraerythrocytic growth 9, 165, 166

Transmission stages
(gametocytes, gametes,
zygotes, ookinetes, oocysts,
sporozoites)

ATP bioluminescence P. falciparum gametocyte viability 167
Flow cytometry P. falciparum gametocyte viability 168
Microscopic-immunofluorescence P. falciparum male (exflagellation)

and female (fluorescence, shape,
size) gamete formation

23

Microscopic P. falciparum presence/no. of oocysts 169

Leishmania Amastigotes, promastigotes Macrophage infection model Increase in no. of amastigotes 40, 41
Colorimetric Promastigote viability 39
Flow cytometry No. of parasites 42

Trypanosoma cruzi Epimastigotes, trypomastigotes,
amastigotes

Murine models of Chagas
disease

Parasite burden measured using
PCR, immunofluorescence,
bioluminescence

43, 44, 46,
47, 56

Trypanosoma brucei Trypomastigotes, epimastigotes PCR-RFLP with SfaNI Detection of mutated parasite
transporter and drug-resistant
parasites

69

Giardia lamblia Trophozoites, cysts Parasite culture No. of parasites 78
Colorimetric Color change due to parasite growth 76
Imaging Parasite viability 78
Bioluminescence Luminescence signal 80

Entamoeba histolytica Trophozoites, cysts Bioluminescence ATP-dependent luciferase
bioluminescence signal

86

Cryptosporidium Oocysts, gametocytes Microscopy, qRT-PCR Parasite invasion and growth 100, 102–105

Schistosoma Eggs, miracidiae, cercariae,
schistosomulae, adult worms

Real-time parasite mobility Worm viability and motility 100, 101
Isothermal microcalorimetry Motility 102
Image-based high-content

screening
Enzymatic and metabolic activity 103

Fluorescence Viability and cytotoxicity 104, 105
Luminescence Viability 106

Filaria Microfilariae, L3 larvae, adult
worms

Microscopy Motility 132–135
Colorimetry Viability 154, 155
Worm fecundity Microfilaria release 134, 138
Embryogenesis No. of embryos and stage 134, 153, 157
Trypan blue exclusion Viability 151, 152
Third larval stage (L3) to

fourth (L4)
Molting 137, 141

Histology and electron
microscopy

Anatomical changes 142, 143

WormAssay (software) Motility scoring 156
aqRT-PCR, quantitative reverse transcription-PCR; ELISA, enzyme-linked immunosorbent assay; PCR-RFLP, PCR-restriction fragment length polymorphism.
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deaths. Ninety percent of the deaths occurred in the WHO African region. Plasmodium
falciparum and Plasmodium vivax are the main etiological agents. One area of concern
is the rise in the incidence of artemisinin-resistant P. falciparum infection in Southeast
Asian countries, with the consequent risk of further spread to sub-Saharan Africa (2).

Plasmodium falciparum Susceptibility Testing Assays

Trager and Jensen were the first to culture the intraerythrocytic stage of P. falcip-
arum in human erythrocytes supplemented with human serum and other nutrients
essential for parasite survival (3). The advent of this culture method permitted the
laboratory investigation of this stage of the parasite life cycle. Soon after, in 1979, a
susceptibility testing method was developed by Desjardins et al. using radioactive
hypoxanthine incorporation into nucleic acids as the assay readout in the presence or
absence of drugs (4). Others then developed a method using ethanolamine incorpo-
ration into membrane lipids (5). With both approaches, the presence of radioactivity
was directly related to parasitemia, and thus, microscopy-based counting of Giemsa-
stained parasites was not required. This enabled testing to be done in a microwell
format with serial dilutions of the drug. Typically, parasites are exposed for a full 48-h
life cycle in standard assays using unsynchronized cultures. More recently, enzyme-
linked immunosorbent assays (ELISAs) relying on antibodies to detect malaria antigens
have been used. These antigens include histidine-rich protein 2 (HRP2) (6) and lactate
dehydrogenase (LDH) (7). Both proteins are expressed proportionally to the amount of
viable parasites left after drug treatment (Fig. 1). Unlike LDH, HRP2 is secreted by the
parasite and very stable. A fortunate consequence of intraerythrocytic survival is that
the majority of DNA present in infected red blood cells is parasite derived. Thus, others
developed an assay relying on a nucleic acid stain (SYBR green) to determine parasite
levels (8, 9). This stain can be applied to flow cytometry-based susceptibility tests that
monitor the drug effect by gating the red blood cell fraction after incubation with the
drug. Taken together, these assays enable researchers to establish the IC50 or IC90, at
which one-half or 90% of the parasites are killed by the drug being tested, respectively.
However, Wein et al. showed that these tests are not all equal and in fact may be
influenced by the mechanism of action of the drug (10). For example, when pyrimeth-
amine was tested by the LDH and SYBR green methods, the parasites appeared
resistant to the drug, whereas by radiolabeled hypoxanthine release and HRP2 meth-

FIG 1 Typical in vitro susceptibility testing workflow for Plasmodium falciparum. Synchronization of ring-stage
intraerythrocytic parasites is required, followed by the addition of drugs to a microtiter plate. There are assays for
culture-adapted laboratory strains as well as direct testing from patient blood. Parasitemia can be assessed in
several ways, including by an ELISA or fluorescence via flow cytometry. There are several modifications of this basic
format, including the RSA.
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ods, the parasites were sensitive, with IC50s below 10 nM. It has been proposed that
hemoglobin may affect fluorescence-based assays relying on SYBR green (11). These
experiments were conducted with exposure to the parasites to one full life cycle of 48
h. When the investigators repeated the assays with 72 h of exposure, all test methods
displayed similar results (susceptible at IC50s of less than 10 nM). The question arises as
to whether DNA replication, which is a function of the metabolic activity of the parasite,
needs more than 48 h to reflect true parasite survival after drug exposure. The mechanism
of action of the compound may also be stage specific, such as in the ring stage (e.g.,
artemisinins [12, 13]) or in the mature stages (e.g., mefloquine [10]), and thus, a 48- or
72-h exposure may mask the effects of the drug.

In the context of antimicrobial susceptibility for bacteria or viruses, there are no
obvious analogies to find. In general, testing methods for viruses or bacteria may
change by antimicrobial, not because of the mechanism of action per se but because
drugs may interact with certain media or incubation conditions specific to the organ-
ism. Typically, bacterial testing is done by broth microdilution or by use of strips
impregnated with an antibiotic. Bacterial proliferation is usually exponential, and thus,
retardation of growth is easy to identify either on agar plates or in broth by the use of
turbidity as a readout. Certain antibiotics are cidal, causing permanent effects on
viability, whereas others may be static, implying that if the drug is removed, the
microbe may recover. On the other hand, malaria may be similar in that dormant but
not dead forms of the parasite have been noted by several investigators upon drug
exposure, most notably with the artemisinins. Dormancy may in fact be analogous to
the static effect of certain antibiotics on clinically relevant bacteria.

The discordance between in vitro testing results (IC50) and clinical treatment out-
comes confounded researchers and prompted clinicians to use an in vivo surrogate.
Here parasitemia is monitored on an hourly and then a daily basis to determine if there
is a delay in parasite clearance. This led to the development of drug-specific assays such
as the “ring-stage survival assay” (RSA) for artemisinin (14). The RSA is the first assay to
correlate strongly with antimalarial clinical treatment outcomes when conducted on
isolates derived from patients who failed artemisinin therapy (14, 15). An interesting
feature of the RSA is that the parasites have to be very tightly synchronous in the phase
of growth, and drug exposure is focused on one part of the life cycle stages (very early
rings).

The significance of this is that researchers applied the drug at the stage of the life
cycle where the drug is purported to act (14). This raises the question of whether all
susceptibility testing should be stage specific in such a way. Unfortunately, the mech-
anism of action and stage specificity of all antimalarials are not known. Furthermore,
genetic mutations were identified in a protein (kelch 13), which presaged the resistance
phenotype in both cultured laboratory strains and patient isolates (16). While there are
no clinical breakpoints, clinicians began to use in vivo data such as day 3-positive
parasitemia or delayed parasite clearance in patients as an indicator of resistance (16,
17). The assay readout is therefore relative to parasites not exposed to the drug.
Researchers have suggested that parasite survival of �1%, when exposed to 700 nM
dihydroartemisinin for 6 h at the ring stage, correlates with in vivo treatment failure
(14). The association is arbitrary but seems to hold true, especially in Cambodia, where
artemisinin resistance is on the rise. One cannot rule out that the RSA is a measure of
dormancy of the ring stage in response to artemisinins and thus a propensity for clinical
treatment failure in patients who cannot clear the dormant stages.

A further confounding issue is the testing of parasites either after in vitro culture
adaptation or directly from the patient (so-called ex vivo testing). The former approach
requires a long-term culture system to be set up and for the isolate to adapt to the
artificial system. The risk here is that culture may select for a certain genotype when an
infection is often polygenic (so-called multiplicity of infection), especially in regions
of hyperendemicity such as Africa (18). Selection may occur for the fitter clone or
genotype, which may not reflect the situation in the patient. Direct testing of patient
blood via the ex vivo method may also be problematic in the situation where there are
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multiple clones. In general, ex vivo testing is more difficult to conduct in resource-
limited settings and is time sensitive.

Transmission-Blocking Drug Tests

An important stage in the life cycle of malaria in humans is the production of
gametocytes, which are taken up in a blood meal by anopheline mosquitoes. Therefore,
drugs that are able to kill the gametocyte stage may prevent transmission. Culturing of
gametocytes at the exclusion of asexual stages requires special culture conditions. In
1986, Ponnudurai et al. were able to demonstrate that culture of gametocytes alone
was possible (19). The addition of N-acetylglucosamine to the culture medium likely
blocks the entry of merozoites into uninfected red blood cells, which ultimately
depletes the asexual stages that require this invasion step. Other methods, such as the
addition of heparin and depletion of nutrients in parasite-oversaturated medium, can
result in gametocyte differentiation. Gametocytogenesis, whose triggers are poorly
understood, occurs at a low rate of 0.2 to 1% from sexually committed merozoites (20,
21). Mature gametocytes form over a period of 12 to 14 days and have five distinct
stages (stages I to V), with the latter two stages being insensitive to many current
antimalarials (22, 23). Mature gametocytes are relatively quiescent from a metabolic
perspective and remain so until gamete formation is triggered upon mosquito feeding
and the subsequent change of the milieu. It is the most mature gametocyte stage (the
so-called stage V gametocyte) that is responsible for transmission once taken up in a
mosquito blood meal.

Therefore, researchers have developed assays to factor in transmission-blocking
properties in drug discovery programs. A sex bias ratio has been cited in the literature,
whereby more female than male gametocytes (female-over-male gametocyte ratio of
up to 4:1) are produced, and concerns that drugs may affect each sex differentially have
been raised, although it is worth noting that both male and female gametocytes are
required in a mosquito blood meal for propagation (22). This emphasized the need for
assays with sex-specific readouts to account for differences in both drug sensitivity and
thresholds of detection. The process by which male gametocytes emerge from the red
blood cell is called exflagellation. Certain groups have used the percentage or rate
of exflagellation as a measure of drug activity, whereas others may use metabolic
readouts or reporter-driven transgenic parasites. The relative clinical merits of these
assays are not well established, specifically whether they translate into better patient
outcomes. The theoretical benefit of preventing gametocytogenesis is clear from a
transmission-blocking perspective and, at the population level, may help promote
disease control and eradication. Ultimately, the value of transmission-blocking activity
will have to be assessed from clinical studies and correlated back to these in vitro assays
to determine if there is an association between gametocytocidal concentrations in vitro,
drug exposure at the patient level (or cohort of patients), and benefit at the population
level.

Antihypnozoite Drug Tests

In addition to blocking transmission, another major pursuit in the drug devel-
opment arena has been to target the liver stages for the use of new antimalarials
for both prophylaxis and treatment. Currently, atovaquone and primaquine (and
related 8-aminoquinolines) are the only approved drugs that retain activity against
the liver stage of malaria. The 8-aminoquinolines but not atovaquone are able to kill
the hypnozoite stage of P. vivax and Plasmodium ovale. The approved drug here is
primaquine, which requires 14 days of treatment and carries a risk of hemolysis in
patients with severe glucose-6-phosphate dehydrogenase (G6PD) deficiency (24, 25).
Other drugs in this class in clinical development include tafenoquine, which is com-
pleting phase III studies and kills hypnozoites effectively after a single dose, but there
are concerns about G6PD deficiency, and an accompanying diagnostic test may be
required to rule out this potential toxicity (26). More drugs with activity against
liver-stage parasites through new modes of action and lacking G6PD liability are
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needed. Recently, this gap in the portfolio of new antimalarials encouraged the malaria
community to develop assays to measure drug activity at this specific stage of the life
cycle.

Significant progress has been made in developing stable in vitro human hepatocyte
assays using specific spatial control in three-dimensional arrays or with the specifically
selected HC04 cell line (27–29). Certain groups have used the P. berghei liver-stage
assay in murine models to good effect (30). Others took advantage of the fact that the
primate malaria agent Plasmodium cynomolgi forms liver-stage hypnozoites, thus po-
tentially making it a useful surrogate for P. vivax or P. ovale. However, early attempts
relied on in vivo inoculation of rhesus macaques (31). An in vitro liver-stage model has
remained elusive because primary hepatocytes dedifferentiate after 1 week of culture,
making them refractory to hypnozoite formation, and also, infection of hepatocytes by
sporozoites results in host cell demise. Recent laboratory studies were able to show the
persistence of hypnozoite stages of P. cynomolgi in Macaca fascicularis hepatocytes
up to 40 days under modified growth conditions (32, 33). Mikolajczak and colleagues
successfully used a humanized mouse model to accommodate P. vivax infection, which
shows promise (34). Persistence beyond 8 to 15 days in hepatocytes is essential for the
study of the hypnozoite stage, as it forms only after this point. From a translational
perspective, there are no direct diagnostic tests for the identification of latent malaria
in the liver stage to enroll patients in a radical-cure trial. Detection of P. vivax relapse,
as opposed to reinfection, is also difficult to assess in areas of endemicity, where both
phenomena may occur.

KINETOPLASTIDS
Leishmania

Leishmania is a digenetic parasite that alternates between a flagellated promastig-
ote form in the gastrointestinal tract of female phlebotomine sandflies and an intra-
cellular amastigote form in mammalian host macrophages. Macrophages engulf pro-
mastigotes into the phagosome, where differentiation to the amastigote form occurs.
Fibroblasts and dendritic cells can also serve as host cells for amastigotes in an infected
patient. Disease manifestations of leishmania infection vary by species type and the
geographic location where these species reside. Immune responses by the host may
also affect clinical manifestations, which range from cutaneous disease to mucosal and
even visceral (organ) infection.

Antimonial drugs and miltefosine treatment failure were reported for both visceral
and cutaneous leishmaniases (35–38). Assessment of susceptibilities of different clinical
strains of Leishmania to drugs has been limited by a lack of consensus on testing
methodology, especially as it relates to the different life cycle stages. The intracellular
amastigote stage is the target of treatment for leishmaniasis. Drug susceptibility testing
against amastigotes is considered the “gold standard” for antimonial drugs (Fig. 2).
Susceptibility testing against promastigotes shows results different from those for
amastigotes (39). However, several factors influence the testing of clinical strains
against amastigotes, making it a low-throughput assay (40). Traditional Leishmania
drug susceptibility testing relies on the determination of the 50% effective dose (ED50)
using either mouse peritoneal macrophages or other macrophage cell lines. These tests
are conducted under diverse conditions with different concentrations of drugs, drug
exposure times, and readout specifications. Since these variables affect the final results
(41), drug susceptibility assay outcomes have not always been uniform. Fernández et al.
(40) found that the determination of the reduction of the parasite load at a single
predefined drug concentration at 34°C provided a better method for susceptibility
assessment. However, this measurement depended on microscopic reading. Combin-
ing this approach with the detection of parasite RNA may provide a method to be
routinely used to monitor clinical strains of Leishmania (40).

A simplified colorimetric resazurin assay was developed for measuring Leishmania
donovani susceptibility to miltefosine using promastigotes. Miltefosine susceptibility for
clinical isolates correlated strongly by using the assay with intracellular amastigotes and
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the resazurin-based assay for promastigotes (39). However, further study is necessary to
examine the usefulness of this assay as a surveillance tool for susceptibility testing with
other drugs in clinical isolates.

Flow cytometry has been used to assess viability and cellular changes in Leishma-
nia and is a promising tool for examining the sensitivity and resistance of Leish-
mania promastigotes to different drugs. The effect of the drug on the proliferation
of promastigotes at different time intervals was determined by using 5 (and 6)-
carboxyfluorescein diacetate succinimidyl ester (CFSE). The combination of SYBR-14
and propidium iodide (PI) stains was an efficient way to concurrently visualize both live
and dead promastigotes of Leishmania. This staining method has the advantage of
being rapid, without requiring extra processing before staining. Since promastigotes
are easy to cultivate in vitro, this assay was performed with promastigotes to measure
the activity of drugs on this parasitic form (42). Future research should be directed
toward understanding the applicability of similar techniques in clinical isolates and the
amastigote stage of the parasite and increasing the throughput of testing modalities to
screen a large number of compounds.

Trypanosoma
Chagas disease. Chagas disease, caused by an intracellular protozoan parasite,

Trypanosoma cruzi, is the leading form of infectious heart disease in Central and South
America. There are distinct stages of the clinical forms of Chagas disease (43). The acute
phase remains asymptomatic in several cases, but this can be severe, typically charac-
terized by high parasitemia fever and lymphadenopathy, causing death in up to 5% of
diagnosed cases. Chronic infections result cardiomyopathy in 20 to 30% of cases and
digestive megasyndromes in about 10% of cases (44, 45). Treatment is indicated for
patients in the acute phase and in the early chronic phase, immunosuppressed patients
with reactivation of infection, and children with congenital infection. Treatment of
patients in the acute phase and in the indeterminate or asymptomatic period relies on
nifurtimox and benznidazole. Variation in drug susceptibilities of T. cruzi was observed
in a study by Filardi and Brener (46), and about 30% of the parasite populations led to
infections that were resistant to both or either drug. A simple drug susceptibility assay
can provide a routine, reproducible surveillance tool for measuring the worldwide
development of drug resistance. Drug susceptibility testing in T. cruzi is particularly
challenging because most Chagas disease patients are diagnosed only in the chronic
stage or when tests are performed during blood donation or surgery (47). Drug
susceptibility of T. cruzi has been evaluated in animal models of acute and chronic

FIG 2 Leishmania susceptibility testing can be performed by using either amastigotes within macro-
phages (A) or promastigotes (B). Endpoints can include microscopy or measurement of promastigote
survival using colorimetric or fluorescent readouts.
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Chagas disease. Information on the effect of drugs on the dissemination of parasites in
specific tissues after infection required the sacrifice of animals and enumeration of the
parasite burden in organs and whole animals. Techniques such as PCR amplification or
in situ hybridization of parasite-specific genes (48–51), parasite antigen-specific immu-
nofluorescence (52–54), and quantification of amastigotes or trypomastigotes present
in tissue sections or blood (55–58) have been cumbersome and inconsistent and
suffered from significant limitations. There are no definitive cure criteria available for
Chagas disease, and in the absence of a predictive treatment model, several diagnostic
methods are frequently used, including fresh blood cultures and examination, parasite-
specific gene PCR from blood and tissue DNA, and serological assays. Tissue PCR is
arguably the most sensitive method and can identify several noncured mice (59). The
inconsistency of PCR-based methodologies was due to the lack of knowledge of
the locations of parasite persistence. This makes real-time assessment of the parasite
burden difficult (47). In a recent clinical trial study with a new drug, posaconazole,
identification of T. cruzi DNA was used in a PCR assay. Instead of using it as a marker
of cure, those researchers used it to measure treatment failure. A negative PCR result,
therefore, may indicate the absence of circulating DNA in fresh blood drawn for testing
(60). A new, more sensitive, bioluminescence-based mouse model has been developed
to monitor the progress of T. cruzi infection and to interrogate the activities of different
drugs. This imaging method allowed the quantification of the parasite burden in
specific tissue and minimized bias in tissue sampling (61) (Fig. 3). This shows the
limitation of tissue PCR, especially the misclassification of treatment failures as cures,
because of the localized distribution of parasites. An immunosuppressive drug, cyclo-
phosphamide, has been used to increase the sensitivity of detection of parasites after
drug treatment (62–64). Integrating bioluminescence imaging and posttreatment im-
munosuppression methods may provide a maximally sensitive way to estimate the true
dynamics of T. cruzi reactivation and cure (65). Whether these methods can be utilized
in human clinical specimens remains to be seen.

Human African trypanosomiasis. “Sleeping sickness,” or human African trypanoso-
miasis (HAT), causes morbidity and mortality in sub-Saharan Africa. Two protozoan
parasites of the genus Trypanosoma, Trypanosoma brucei gambiense and Trypanosoma
brucei rhodesiense, are responsible for HAT, and both parasites are transmitted by tsetse
flies. According to the World Health Organization, in 2014, 3,796 actual cases were
reported, with �15,000 estimated cases of HAT. The first stage of the disease is treated
with pentamidine, whereas the second neurological stage can be treated with melar-
soprol, eflornithine, or nifurtimox-eflornithine combination therapy (NECT). A promising
compound in the pipeline at the Drugs for Neglected Diseases Initiative (DNDi) (Ge-
neva, Switzerland) is fexinidazole. Fexinidazole is an oral agent used primarily for stage
2 of HAT but potentially stage 1 in children.

There has been an increasing incidence of melarsoprol treatment failure because
of drug resistance. For example, 20 to 30% treatment failure rates were reported in
Uganda, the Democratic Republic of Congo, and the Sudan (66). This rise in drug
resistance underscores the need for the development of drug susceptibility testing

FIG 3 Drug susceptibility in T. cruzi evaluated in animal models of acute and chronic Chagas disease. The
mouse model for Trypanosoma cruzi depicted here is used for testing the preclinical efficacy of candidate
drugs, followed by evaluation of tissue by molecular or imaging methods.
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against HAT. Fortunately, in 2009, the WHO Essential Medicines List (EML) added NECT
to treat the neurological stage of HAT caused by T. brucei gambiense. NECT is effica-
cious, relatively safe, and easy to administer (67).

In a previous study to analyze the melarsoprol treatment failure rate among
late-stage HAT patients in Aura, northern Uganda, a glandular puncture and a lumbar
puncture were performed, and the number of trypanosomes was counted in cerebro-
spinal fluid (CSF) or lymph node fluid (68). The invasive nature and some false-positive
diagnoses associated with testing emphasize the need for the development of new
techniques accessible for routine use.

To determine the susceptibility of T. brucei gambiense in northwestern Uganda to
drugs, PCR and SfaNI restriction digestion of the adenosine transporter gene were
employed (69). It should be mentioned that out of 11 mutations described by Mäser et
al. (70), SfaNI restriction fragment length polymorphism (RFLP) analysis examined only
1. It is also possible that other factors, such as ABC transporters, may play a role in
reduced drug susceptibility in African trypanosomes (71). Moreover, T. brucei gambiense
parasites isolated from patients adapt poorly to culture conditions, and the parasites
underwent infection in rodent and adaptation in culture medium before they were
ready for propagation. It is unclear if the adapted parasites retain characteristics similar
to those of parasites originally isolated from patients and if rodent infection and culture
conditions imposed selection pressures on the parasites before susceptibility to drugs
could be ascertained (69).

Recently, genome-scale RNA interference (RNAi) screening linked two closely related
aquaglyceroporins, AQP2 and AQP3, to melarsoprol-pentamidine cross-resistance
(MPXR) (72), suggesting that aquaglyceroporins have an important role in influencing
susceptibility to these drugs. In a follow-up paper, Baker et al. (73) showed that the loss
of function of one of these proteins, AQP2, renders MPXR in a laboratory-selected MPXR
strain. It will be important to understand the status of AQP2 in drug-resistant clinical
isolates and to check if there is a relation between the clinical outcome and the status
of AQP2 (73, 74).

STOOL PROTOZOA

Diarrheal infections are considered one of the top four contributors to the global
burden of disease. Intestinal parasites are leading causes of morbidity and mortality
associated with diarrheal diseases in both the developed and developing worlds.
Infections by two anaerobic protozoan parasites, Entamoeba histolytica and Giardia
lamblia, result in more than 300 million cases annually. In the absence of vaccines or
prophylactic drugs, treatment of amebiasis and giardiasis depends on nitroimidazoles,
with metronidazole being the most commonly used drug worldwide. Despite the
efficacy of nitroimidazole drugs, treatment failures in giardiasis happen in up to 20% of
cases (75). The clinical resistance of G. lamblia to metronidazole is evident, and
cross-resistance to commonly used antigiardial drugs is a major concern (76). The
potential resistance of E. histolytica to metronidazole is also an increasing concern, as
in vitro, E. histolytica trophozoites adapt to therapeutically relevant levels of metroni-
dazole (77). Global surveillance of drug resistance in these organisms requires a simple,
reproducible drug susceptibility testing method for these anaerobic protozoa.

Giardia

Traditionally, susceptibility testing in Giardia has been performed with closed tubes,
which requires more compounds and depends on tedious and labor-intensive manual
counting of parasites, with few replicates available. The development of an assay in
multiwell microtiter plates has been hindered due to the sensitivity of Giardia to
oxygen. Several methods have been developed to form a low-oxygen intestinal atmo-
sphere. These methods include a 24-h assay using 2-ml cultures in 24-well plates in a
CO2 atmosphere; 96-well plates incubated at 35°C for 48 h in the presence of 3% O2,
4% CO2, and 93% N2; 96-well plates flushed with nitrogen; 96-well airtight plates
incubated for 72 h; and 384-well plates under 5% CO2 in air for 24 h. However, all these
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methods resulted in unequal growth of parasites in different wells of the microtiter
plates. To overcome these challenges, several changes of culture conditions were made
by Gut et al. (78) and led to better growth of G. lamblia. Those researchers removed
nonadherent and dead G. lamblia parasites from cultures and limited the presence of
O2 to less than 1% in special incubation bags or 3% O2–5% CO2 without the use of
incubation bags.

Giardia drug susceptibility testing was performed by microscopy, which included
parasite counting and evaluation of motility, morphology, or adherence. Radioactive
incorporation assays have also been used, but these assays require associated equip-
ment and radioactive waste disposal. The accessibility and higher cost of radioactive
compounds make these assays less user friendly. Both fluorescence-based assays using
SYBR green and colorimetric tests with formazan dyes {e.g., MTT [3-(4,5 dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium bromide] assays} and synthetic substrates of purine
salvage pathway enzymes (79) were used, but the assays required an ELISA reader and
multiple washes, which affected signal intensity and reproducibility.

Recently, Gut et al. (78) developed an image-based high-throughput screen using
4=,6-diamidino-2-phenylindole (DAPI) nuclear stain and successfully identified 12 com-
pounds that inhibited the growth of G. lamblia at low-micromolar or submicromolar
concentrations. The disadvantages of this assay included the requirement for expensive
automated cell imaging equipment and the storage of large electronic files.

A bioluminescence-based high-throughput screen was also developed to identify
compounds that kill G. lamblia trophozoites (80). This assay monitors the viability of the
trophozoites based on the ATP content of G. lamblia trophozoites.

The metabolic activity of trophozoites is inhibited due to the effect of a compound,
and the corresponding ATP-dependent luciferase bioluminescence signal is also dimin-
ished (Fig. 4). These organisms may remain viable and resume growth after the
completion of treatment. Moreover, the morphological changes of trophozoites due to
treatment with compounds cannot be detected by this method. Therefore, a follow-up
microscopic study and proliferation assay would be a reliable procedure for examining
the effect of compounds on G. lamblia trophozoite viability. A target-based screen was
developed by using Giardia carbamate kinase, and this luminescence-based enzyme

FIG 4 In vitro susceptibility testing workflow using a luminescence assay of cultured Giardia or Entamoeba
parasites under microaerophilic conditions in a 96-well-microtiter-plate format. RT, room temperature.

Parasite Susceptibility Testing Clinical Microbiology Reviews

July 2017 Volume 30 Issue 3 cmr.asm.org 657

http://cmr.asm.org


assay can be a useful tool for drug screening (81). Recently, a microfluidic device was
developed to culture G. lamblia, and two currently used drugs were tested with an
on-chip drug susceptibility assay using an imaging method (82). This assay holds the
possibility of using the microfluidic platform for future high-throughput drug suscep-
tibility testing.

Entamoeba histolytica

Drug susceptibility testing in E. histolytica has been challenged by the absence of
competent screening methods, with available assays being exhaustive, depending
mostly on microscopy (83), radioisotopes (84), and a complex staining method (85). Like
Giardia, E. histolytica is an anaerobe and cannot survive in an oxygen-rich environment
present in the wells of microtiter plates, and this posed a challenge for developing a
testing method with microtiter plates, and above all, there was no rapid readout assay
available. Debnath et al. (86) developed a microtiter plate-based screen that could be
performed under anaerobic conditions, imitating the ameba’s natural growth environ-
ment. This robotic-driven assay used the CellTiter-Glo luminescent cell viability assay
(Promega) technology that measures ATP bioluminescence and represents a speedy,
sensitive, and labor-saving assay to identify potent compounds against E. histolytica
(86) (Fig. 4). The assay was developed by using an inoculum of E. histolytica in the
logarithmic phase of growth, which led to confluence but not excessive growth. This
high-throughput screen is performed with 96-well and 384-well microtiter plates with
50,000 parasites/ml and 30,000 parasites/ml, respectively (87). Similarly to Giardia, the effect
of compounds on trophozoite morphology cannot be determined by this assay. Combining
a microscopic study with this method would provide a better testing method.

Cryptosporidium

Cryptosporidium species are sporozoans that infect small intestinal epithelial cells,
within which they replicate asexually for several rounds prior to differentiation into
male and female gametocytes, fertilization, and the production of oocysts. The oocysts
sporulate rapidly, thus becoming infectious and enabling both spread into the envi-
ronment and autoinfection characterized by additional rounds of asexual replication
within the same host. Cryptosporidiosis was discovered in the 1970s but first came to
attention as a major human pathogen in immunocompromised patients, especially
those with AIDS, in whom it is a prominent cause of chronic diarrhea (88, 89). However,
young children suffer the preponderance of morbidity due to cryptosporidiosis. The
recently reported Global Enterics Multicenter Study (GEMS), a large molecular epide-
miological study of life-threatening childhood diarrhea conducted at sites in Africa and
the Indian subcontinent, highlighted the importance of Cryptosporidium, which ranked
second to rotavirus as an etiological agent among children �1 year of age (90). In the
MAL-ED study, which investigated causes of less severe diarrhea, cryptosporidium
ranked lower on the list of causative agents (91). Nitazoxanide, which is effective in
immunocompetent adults, is the only drug known to have any efficacy. Unfortunately,
nitazoxanide is not effective in immunocompromised people and is unreliable for the
treatment of malnourished infants with cryptosporidiosis (92–94).

In the absence of reliably efficacious drugs for the treatment of human cryptospo-
ridiosis, correlations of the results of in vitro drug susceptibility testing and clinical
efficacy are not possible. Furthermore, it is not yet clear if Cryptosporidium spp. will
become resistant to drugs under drug pressure, as drugs have not been used in large-
enough groups of humans or livestock, and standardized methods to evaluate drug
sensitivity have yet to be developed. Nevertheless, a number of investigators working
on drug development have optimized methods to measure in vitro drug susceptibility.
All of the approaches to date rely upon inducing oocyst excystation by simulating entry
into the small intestine (95–98). The freed sporozoites then invade mammalian tissue
culture cells, within which the asexual forms of the parasite replicate for several rounds.
The efficiency of host cell infection is highly dependent on the cell type used, with the
human colonic carcinoma cell line HCT-8 being among the most efficient (98, 99). This
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method does not enable continual parasite culture, but replication and expansion of
the asexual forms can be quantified by using a number of methods. Cai et al. (100)
developed a quantitative real-time reverse transcription-PCR method to quantify par-
asite mRNA levels, using the abundance of host mRNA for normalization. This method
takes advantage of the short half-life of mRNA following parasite death and thus
provides a reliable means of measuring parasite elimination. However, this method is
limited by its relatively low throughput and high cost. By using commercially available
reagents, this assay was made amenable to high-throughput screening (101). Gut and
Nelson first noted that Vicia villosa lectin specifically labels Cryptosporidium parasites,
providing a simple method for microscopy-based assays (102). Bessoff et al. (103, 104)
subsequently used this approach to develop a high-content imaging assay that has
proven useful to screen small-molecule libraries. Recently, Vinayak et al. (105) suc-
ceeded at modifying the genome of Cryptosporidium parvum using CRISPR-Cas9 tech-
nology, which lays the groundwork for simpler screening assays using parasite lines
modified to express reporter genes (105). Several groups are using luciferase-tagged
parasites to measure the expansion of C. parvum. Another method of note is the use of
multiplexed recombinase polymerase amplification (RPA) to detect Cryptosporidium,
which may have useful applications for susceptibility testing (106). Each of these
systems provides an in vitro method to assess the effects of drugs and drug-like
compounds on Cryptosporidium invasion of and growth within host cells. At present,
however, there are no methods to assess drug effects on the sexual forms of Crypto-
sporidium parasites and on Cryptosporidium transmission. Developing such methods is
an active area of investigation.

SCHISTOSOMA

Schistosomiasis is an important neglected tropical disease and causes 3.3 million
disability-adjusted life years (DALYs) (107). For over 30 years, praziquantel has been the
only drug available to treat and control this disease. There are several advantages of
praziquantel, such as good safety, tolerability, efficacy, and low cost, although the latter
may no longer be the case in the United States. However, its limitations include its
inability to protect individuals from reinfection and its inactivity against the schis-
tosomula, preadult, and juvenile-adult stages of the worm (108, 109). Moreover, the
emergence of praziquantel-resistant strains of Schistosoma is looming, since praziqu-
antel is estimated to cover 235 million people by 2018 (110, 111). There are variations
among individual Schistosoma mansoni isolates in susceptibility to praziquantel in mice.
Protocols have been developed to quantify the praziquantel ED50s of S. mansoni
isolates to monitor the susceptibility of parasite isolates obtained from areas of
endemicity to drugs. This will help to determine if variation in susceptibility to prazi-
quantel in S. mansoni is a natural phenomenon or due to the effect of mass treatment
(112). It has been noted that mass drug administration can reduce the efficacy of drugs
like praziquantel (113).

Previously, drug susceptibility testing was performed with adult worms after incu-
bating them with different drugs for 72 h, and parasite viability was monitored by using
a microscope (114, 115). Viability testing and determination of worm motility by
microscopic readout are slow, laborious, and subjective. Recently, a range of automated
technologies has emerged, and different readouts are available. These methods include
the impedance-based real-time measurement of parasite mobility (116, 117), isothermal
microcalorimetry (118), image-based high-content screening (119), and fluorescence-
based (120, 121) and luminescence-based (122) assays (Fig. 5).

Dye-based assays have several advantages, including being cheap, simple, and
able to be read by an automated plate reader (123). The alamarBlue viability assay
(resazurin), the fluorescein diacetate-propidium iodide bioassay, and a fluorometric
L-lactate assay have been used as fluorescence assays. alamarBlue was able to discrim-
inate only live and dead newly transformed schistosomulae (NTS) after a week of
incubation with reference drugs but not at earlier time points, and this assay could not
measure the dose-response of drugs (124). The fluorescein diacetate-propidium iodide
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fluorescence-based bioassay can detect viability and differentiate live and dead S.
mansoni adults and NTS. With this method, fluorescein diacetate stains live NTS, and
propidium iodide stains dead NTS (120). Practical issues, such as a low signal to
discriminate between live and dead NTS, the requirement for a high number of NTS, the
involvement of a rinsing step, and the potential to calculate the dose-response for all
standard drugs, are major concerns for this assay (123). The fluorescence-based lactate
assay was used to measure the viability of NTS and adult S. mansoni worms, and
dose-dependent effects could be obtained for some but not all standard drugs (121).
The limitation of this assay is that it requires a specific number of worms, and the
supernatant needs to be removed to obtain high and consistent signals (123). The
search for a simple, cheap, and specific dye without the requirement for additional
equipment or analysis is still continuing.

Recently, a luminescence assay using CellTiter-Glo has been conducted on S.
mansoni NTS and adult worms (122). This assay required a multidrop sorter to distribute
a precise number of worms into each well. Panic et al. (123) tested and compared 11
fluorescence or luminescence viability and cytotoxicity marker assays and dyes to
standardize assay conditions and to examine if they correlated with S. mansoni NTS
viability. This study demonstrated that it was not easy to develop a simple, inexpensive,
“just-add” colorimetric marker-based drug screening assay for the larval stage of S.
mansoni. Those authors, however, confirmed that CellTiter-Glo could be used for
differentiating live and dead NTS in a test with a single drug concentration and
potentially also in dose-response studies (123). An important computational tool
developed recently is the quantal dose-response calculator (QDREC), which can calcu-
late the dose-response characteristics for helminths and possibly other parasites (125).

FILARIAE

Filariae are tissue-invasive roundworms transmitted by arthropods. Pathogenic
human filariae include Wuchereria bancrofti, Brugia malayi, and Brugia timori, which
cause lymphatic filariasis, and Onchocerca volvulus, the cause of river blindness. Other
filarial pathogens of humans include Loa loa, the cause of African eyeworm, and several
species of Mansonella. Filarial parasites cause substantial morbidity worldwide. Lym-
phatic filariasis infects over 67 million people and causes hydrocele in 20 million and
lymphedema in 17 million people (126). Onchocerca volvulus infects 16 million to 37
million people and is a leading cause of skin disease and blindness (127, 128).

Filariae pass through several life cycle stages in the human host, and susceptibility of
one stage to a medication does not guarantee susceptibility of the other stages. For
example, ivermectin has potent activity against microfilarial stages but does not readily kill
adult filarial worms (129). Thus, in vitro drug testing is often performed on several stages of
the worm, including microfilariae, adult worms, and third-larval-stage (L3) larvae.

The infective form of the parasite that is transmitted from the vector to humans is
the L3 stage. Once in their host, L3 larvae migrate over a period of a few days to their
preferred niche in the human host. These sites include the lymphatic vessels for W.
bancrofti and Brugia species, subcutaneous tissues and skin nodules for O. volvulus,
subcutaneous tissues for L. loa, and the peritoneal cavity for Mansonella perstans
(130). Over a period of several weeks to months, depending on the species of filarial

FIG 5 Schistosoma in vitro testing relies on the use of culture-adapted schistosomula-stage parasites
followed by the addition of drugs. Readouts include luminescence, colorimetry, and fluorometry.
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nematode (reviewed in reference 131), L3 larvae molt twice and become mature adult
worms, which mate and release microfilariae. Microfilariae are L1-stage larvae, which
are acquired by the arthropod vector. Microfilariae of most species circulate in the
bloodstream, although those of O. volvulus and Mansonella streptocerca reside in the
skin (130). L3 larvae, adult worms, and microfilariae have all been used for in vitro
susceptibility testing.

Because the Brugia malayi life cycle can be maintained in small mammals, this
species is the one used most often for in vitro drug screening studies (132–143). Other
filariae used for in vitro drug testing include Brugia pahangi (153), O. volvulus and other
Onchocerca species (141, 144), L. loa (145), Litomosoides sigmodontis and Acanthochei-
lonema viteae (filarial nematodes of rodents) (146–148), and Setaria species (filarial
nematodes of sheep, cattle, and other ruminant mammals) (149–152). Even though it
is the most common filarial pathogen of humans, Wuchereria bancrofti is rarely used in
screening assays because it cannot be maintained in animal models (147).

Traditionally, the primary endpoint used to determine filarial susceptibility during in
vitro testing has been changes in motility as determined by observation by microscopy
(132). For most studies evaluating the effects of potential antifilarial agents, microfi-
lariae are observed on a regular basis for a period of 1 to 7 days, and adult filarial worms
are observed for a period of days to weeks (132–136, 138, 140–144, 148, 153). While
worms can be identified as simply motile or nonmotile (136, 139, 140, 142, 145), in
many studies, scoring systems have been applied to characterize the degree of motility
observed at different time points (132–135, 138, 143, 144, 148, 151–153).

A complementary approach to determine the viability of microfilariae is MTT-
formazan colorimetry (154, 155). In this assay, microfilariae are incubated for 1 to 4 h
with 0.5 mg/ml of the tetrazolium salt MTT. Viable filarial worms take up the colorless
salt and reduce it to formazan, which is blue. Filariae can then be transferred manually
into microtiter wells containing dimethyl sulfoxide (DMSO). Next, usually after 1 h of
gentle agitation, absorbance is measured to obtain a semiquantitative measurement of
filarial viability (155). This approach has been used successfully to evaluate compounds
for activity against adult worms, L3 larvae, and microfilariae (132, 134, 135, 140, 144,
147–149, 151, 153).

When monitoring adult worm cultures, some studies also evaluate effects of poten-
tial antifilarial agents on worm fecundity by measuring the number of microfilariae
released by adult female worms on a daily basis (134, 138, 146, 148, 153). Adult worms
can also be dissected at the study endpoint to enable microscopic assessment of effects
on embryogenesis with regard to both numbers of embryos and stages of embryo
development (134, 153, 157).

Other tests that are done for drug susceptibility studies include trypan blue exclu-
sion with microfilariae (151, 152), assessment of L3 to L4 molting (137, 141), and
histology and electron microscopy to detect anatomical changes (134, 141–143, 147).

A major drawback of most filaria susceptibility assays is that they are highly
labor-intensive, greatly limiting their potential use in high-throughput screening sys-
tems. To overcome this, Marcellino and colleagues developed a software program
(WormAssay) that can be used with a video camera to measure movements of adult
filarial worms in 24-well culture plates (156). Visualization and motility scoring can be
automated and integrated with a robotic plate manipulation system (156). Recently,
this system was used successfully to identify auranofin as having macrofilaricidal
activity (141). An adaptation of the WormAssay software has been made, which enables
its use for screening microfilaria and L3 stages using microscopy and multiple worms
per well (158).

Another limitation of current screening assays is that in vitro culture puts substantial
physiological stress on filariae. Microfilariae fail to develop substantially in vitro, and
adult worms neither mate nor produce new oocytes in vitro (131). However, it is
noteworthy that microfilariae do not develop substantially in the mammalian host
either. Indeed, a recent transcriptomics study showed that adult B. malayi female
worms exhibit marked changes in gene expression upon transfer into cell culture
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medium (159). Coculture with insect or mammalian cell lines often improves microfi-
laria and adult worm survival in vitro but does not overcome these developmental
blocks (131).

Thus, the development of in vitro systems that better model the usual environment
of filarial worms is an ongoing research goal. To date, the most advanced in vitro system
developed is likely that of Kassis and colleagues (160). Using a motorized microscope
and a polydimethylsiloxane microchannel lined with dermal lymphatic endothelial cells
and human dermal fibroblasts, those researchers developed a highly advanced in vitro
imaging platform that can continuously measure adult filarial worm speed, thrashing,
and migration patterns (160). While it has not yet been used for drug screening, it has
the ability to evaluate subtle changes in worm activity and behavior.
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