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Vertical field effect transistor (VFET), in which the semiconductor is sand-

wiched between source/drain electrodes and the channel length is simply
determined by the semiconductor thickness, has demonstrated promising

potential for short channel devices. However, despite extensive efforts over
the past decade, scalable methods to fabricate ultra-short channel VFETs
remain challenging. Here, we demonstrate a layer-by-layer transfer process of
large-scale indium gallium zinc oxide (IGZO) semiconductor arrays and metal
electrodes, and realize large-scale VFETs with ultra-short channel length and
high device performance. Within this process, the oxide semiconductor could
be pre-deposited on a sacrificial wafer, and then physically released and
sandwiched between metals, maintaining the intrinsic properties of ultra-
scaled vertical channel. Based on this lamination process, we realize 2 inch-
scale VFETs with channel length down to 4 nm, on-current over 800 A/cm?, and
highest on-off ratio up to 2 x 10°, which is over two orders of magnitude higher
compared to control samples without laminating process. Our study not only
represents the optimization of VFETs performance and scalability at the same
time, but also offers a method of transfer large-scale oxide arrays, providing

interesting implication for ultra-thin vertical devices.

Vertical field effect transistors (VFETs), where the semiconductor
channel is sandwiched between source and drain electrodes, have
demonstrated promising potential for ultra-scaled transistors, wear-
able electronics, photoelectric devices and high-density devices'™.
Within the vertical geometry, the top metal and bottom graphene
electrodes are integrated at two sides of the semiconductor channel
with a sandwich structure. Here, the bottom electrode is graphene and
is essential due to its low density of states and weak electrostatics
screening, where the gate electrical field could effectively penetrate
and modulate the vertical carrier transport efficiency>®. Based on this
unique device structure, the channel length of VFET is simply deter-
mined by the semiconductor thickness and thus can be scaled down to

sub-5 nm regime®”®, This is in great contrast to conventional planar
transistors, where the source and drain electrodes are laterally pat-
terned on two ends of the semiconductor channel’™, and the device
channel length is largely limited by the resolution of fabrication pro-
cesses (e.g., ultra-violet lithography, implantation), yielding a longer
channel length >10 nm (ref. 7).

However, despite extensive efforts over the past decade, the
absence of a scalable method to fabricate short channel VFETs remains
a critical challenge. Previous approaches to realizing VFETs were often
limited by the trade-offs between device scalability and its channel
length®. For example, two-dimensional (2D) semiconductors (such as
MoS,, WSe,) have been widely used as the channel materials for VFETSs,
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because they can be easily stacked on top of the bottom graphene
electrode with atomic clean van der Waals (vdW) interfaces .
Therefore, these proof-of-concept devices have demonstrated high
device performance with current density over 1000 A/cm?, short
channel length down to 1 nm (as determined by 2D layer thickness), on-
off ratio over 10°, and ultra-scaled vertical pitch size of 20 nm>”>1¢,
However, the synthesis of large-scale 2D channel remains
challenging", particularly for VFETs that need multilayer channel with
desired thickness (rather than monolayer channel used in planar
devices), limiting the scalability of 2D based VFETs for practical
application. To improve scalability, organic semiconductors and oxide
thin films have been used as the channel materials of VFETs, owing
to their wafer-scale processing capability with well-controlled
thickness'® . However, applying these scalable materials often lead
to inferior device performance and larger channel length. For example,
organic VFET shows a much lower current density <5A/cm? which
could be largely attributed to the longer channel length and low carrier
mobility in vertical direction'. On the other hand, oxide semi-
conductors did exhibit improved carrier mobility, however, the
deposition of high-quality oxide films usually involves high energy
process or chemical reaction (such as sputtering or chemical vapor
deposition), which could easily damage the bottom graphene
electrode?”. Hence, current oxide VFET typically involves a more
complicated top-gate structure (inverted structure) at the sacrifice of
channel length, output current and gate dielectric performance®**%,
Therefore, up to date, the simultaneous achievement of large-scale
VFETSs and ultra-short channel remains challenging, greatly limiting its
practical application and further development.

Here, we demonstrate a layer-by-layer transfer process of large-
scale oxide semiconductor arrays and metal electrodes, and realize
large-scale VFETs with ultra-short channel length and high device
performance. Within this process, indium gallium zinc oxide (IGZO)
layer could be pre-deposited on a sacrificial wafer via high-energy
magnetron sputtering, and then physically released and transferred on
top of the graphene, avoiding conventional fabrication-induced
damages to bottom graphene electrode. In the meantime, vdW
metal integration approach is also applied as the top electrode,
maintaining the intrinsic properties of ultra-scaled vertical channel and
reducing its vertical leakage current. Together, we realize 2 inch-scale
IGZO VFETs with channel length down to 4nm, on-current over
800 A/cm?, and on-off ratio up to 2 x 10°, representing the optimiza-
tion of VFET performance and scalability at the same time. Detailed
thickness-dependent measurements are further conducted, confirm-
ing the optimized performance are originated from the ultra-clean
vdW interfaces within both top and bottom metal-semiconductor
contacts. Our study not only optimizes the VFET performance and
scalability at the same time, but also provides a large-scale layer-by-
layer transfer process of oxide semiconductors, which could provide
interesting implication for construct other ultra-thin vertical devices
that are previously limited by fabrication difficulties.

Results

Fabrication processes of large-scale oxide VFETs

Figure 1a-f schematically shows the device structure and fabrication
processes of large-scale IGZO VFETs, and the corresponding optical
images are also included. To fabricate the devices, thin layer poly-
methyl methacrylate (PMMA, ~200 nm thickness) and polyvinyl alco-
hol (PVA, -9 nm thickness) are first spin-coated on a SiO, wafer as a
bilayer buffer. Next, IGZO films are directly sputtered on top of the
polymer buffers via radio-frequency sputtering in large-scale (Fig. 1c),
and the thickness of oxide film could be well controlled through the
sputtering time and speed, as detailed in Supplementary Fig. 1 and
“Methods” section. Furthermore, the IGZO film (with underlayer PVA
buffer layer) could be mechanically peeled-off from the sacrificial
substrate using a designed polydimethylsiloxane (PDMS) stamp

(Fig. 1d), and the exposed bottom PVA layer could be dry-etched
through gentle nitrogen plasma treatment (60 W, 90 seconds), as
schematics illustrated in Fig. le and Supplementary Fig. 2. The
mechanical-peeling and dry-etching processes here are important to
avoid solution-induced strains during wet-etching process®*¥, and is
essential to ensure an ultra-thin and uniform oxide semiconductor
layer in large-scale without any cracks and residues, as shown in the
control sample in Supplementary Fig. 3. Finally, the released IGZO film
could be laminated onto graphene monolayer arrays using optical
microscopy with customized designed transfer platform and align-
ment process is detailed in “Methods” section, leading to the forma-
tion of graphene/IGZO bottom contact in large scale (Fig. 1f and
Supplementary Fig. 4).

We note the PMMA/PVA bilayer buffer is essential here for
transferring ultra-thin IGZO layer with large-scale uniformity, due to
following reasons®. First, PVA layer is spin-coated with ultra-thin
thickness (<10 nm), hence could be easily dry-etched using gentle
plasma treatment. Second, the thin PVA layer still demonstrate
atomic flat surface (-0.36 nm roughness), which is essential to
deposit ultra-thin and flat IGZO layer. For other polymer buffer layers
such as polyimide (PI) or polypropylene carbonate (PPC), achieving
sub-10 nm thickness with atomic flat surface is challenging. Third,
strain is unavoidable during transfer process during the bending of
the holding substrate, especially for large-scale transfer of IGZO film
with brittle lattice. Using 9 nm thin PVA layer here, the applied strain
during the dry-transfer process could also be minimized since strain
is proportional to the substrate thickness, leading to uniform and
large-scale oxide layer without any cracks. Finally, although PVA
shows desired properties for transferring IGZO film, it exhibits strong
adhesion force with the SiO, substrate (after IGZO sputtering), and
cannot be mechanically peeled-off, leading to the failure of IGZO film
transfer (Supplementary Fig. 5). To overcome this challenge, we
deposited another PMMA layer prior to PVA to realize a PMMA/PVA
bilayer buffer, where the top PVA layer demonstrates low adhesion
force with bottom PMMA layer and can be easily mechanically
peeled-off (with IGZO films) from the sacrificial PMMA/SiO,
substrate.

Furthermore, the yield of IGZO transfer process is important for
scalable vdW integration and further construction of VFETs. To cal-
culate device yield, we have batch-fabricated 9216 graphene/IGZO
devices (64 x 144 arrays) and examine the IGZO transfer rate through
optical images. Among all devices, 8842 patterned IGZO films are
successfully transferred (Figs. 1g-i), representing a high process yield
~96%. We note the failed devices largely originated from devices loss
during the IGZO patterning process, due to the relatively weak adhe-
sion between 1GZO and PVA buffer layer (compared with the strong
interaction force between IGZO and conventional SiO, substrate), as
shown in Supplementary Fig. 6. In the meantime, we also note the air
bubbles, wrinkles and IGZO cracks are not observed across the whole
wafer, indicating the high uniformity and reliability of our oxide
transfer process.

Fabrication and switching mechanism study of VFETs

To further highlight the importance of the IGZO transfer process. We
have also fabricated control samples by directly sputtering 1GZO
channels on graphene bottom electrode, and examined the graphene
quality through both optical and electrical measurement. As shown in
Fig. 2a, the intrinsic graphene (before IGZO sputtering) exhibits G and
2D peaks at 1583 cm™ and 2697 cm™, respectively, consistent with
previous literature and indicating its monolayer nature®. After directly
sputtering IGZO on top, the graphene 2D peak disappears, while the
defects D peak emerges and dominates the whole spectrum (Fig. 2a),
suggesting the monolayer graphene lattice is largely destroyed during
the IGZO sputtering process®**°. The sputtering induced damages can
be further verified through electrical measurement of graphene.
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Fig. 1| Device structure and fabrication processes. a, b Schematical illustration
of a graphene-based vertical field effect transistor (FET) (a) and conventional
planar FET (b). c-f, Schematical fabrication processes of the vdW indium gallium
zinc oxide (IGZO)/graphene arrays, including four steps: (c) pre-fabrication of
IGZO arrays, (d) physical peeling of IGZO through polymer encapsulation, (e)
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alignment of IGZO with graphene under optical microscope, (f) van der Waals
(vdW) lamination of IGZO arrays on the graphene arrays. g-i The corresponding
optical images and the photos of the large-scale lamination processes for pre-
fabricated IGZO (g), physically released IGZO (h), as well as IGZO transferred on
graphene (i). The scale bar is 50 pm. L.y, channel length.

As shown in Fig. 2b, the intrinsic graphene exhibits clear bipolar
transfer behavior with a low sheet resistance of -500 Q sq’; while after
sputtering IGZO on top, graphene device is totally open circuit with
only noise signal measured (<107 A). This behavior is in great contrast
to our vdW integrated 1GZO/graphene junction. As shown in Fig. 2c,
the 2D and G peaks of graphene remain unchanged before and after
transferring IGZO on top, indicating the graphene lattice is well
retained during the IGZO integration process. In the meantime, the
graphene transistor also exhibits identical transfer curve after IGZO
integration (Supplementary Fig. 7), suggesting the IGZO vdW inte-
gration won't alter its electrical properties.

With the ability to construct large-scale IGZO/graphene bottom
contacts, we could further build up large-scale VFETs by depositing

Ti/Au or Ag/Au metal (20/30 nm thick) on IGZO as the top electrode.
As shown in Figs. 2d-f, 9000 IGZO VFETs are realized across a 2-inch
wafer, exhibiting a well retained sandwich structure. We note the lat-
eral device footprint could be further reduced using cross-bar struc-
ture, as demonstrated in Supplementary Fig. 8.

Electrical measurements of IGZO VFETs are further conducted at
room temperature within a vacuum probe-station. For all electrical
measurements, the bottom graphene contact is always grounded as
source electrode, the top Ti/Au metal is biased as drain, back-gate
voltage is applied on the highly doped silicon, and the gate dielectric is
300 nm thick SiO,, as labeled in the schematic in Fig. 2g. In general, a
negative gate voltage p-dopes graphene, leading to large Schottky
barrier with n-type IGZO channel, and the device is at off-state with a
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Fig. 2| Characterization of vdW IGZO vertical transistors. Raman spectra (a) and
la4s"Vgs transfer curves (b) of intrinsic graphene as well as the graphene device after
directly sputtering IGZO film on top. After directly IGZO sputtering, the graphene
2D peak disappears and the transistor lost electrical conductivity, indicating the
high-energy sputtering process is not compatible with graphene lattice. ¢ Raman
spectra of intrinsic graphene and graphene after transferring IGZO film, where the
unchanged Raman signal suggest the transfer process won’t impact the intrinsic
properties of monolayer graphene. d-f Photo picture and zoomed-in optical
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images of large scale IGZO-VFETs. The white dashed box and blue rectangles are
graphene and IGZO, respectively. g Schematic of the device structure and the
current transport of a standard IGZO VFET. h, i /4s-V4s output curve (h) and /g5 Vs
transfer curve (i) of a typical IGZO-VFET with channel length of 50 nm. The inset is
corresponding log plot of /ys-V4s output curve. The current is normalized by the
overlap area between top contact and bottom contact. /s, drain-source current;
Vgs, gate-source voltage; Vg, drain-source voltage.

clear rectifier behavior, as shown in Fig. 2h (black line). On the other
hand, a positive gate voltage reduces the 1GZO/graphene Schottky
barrier, leading to much-enhanced carrier transport efficiency and a
more linear output curve, and the device is at on-state’. The /ys-Vgs
transfer characteristics of VFET (Fig. 2i) show clearly that the current
density increases with increasing positive gate potential, demonstrat-
ing that the electrons are the majority charge carriers. We need to note
the switch of VFET is realized by changing the Schottky barrier height
between graphene and channel material, hence the conventional
pinch-off effect and /4s-Vys current saturation could not occur. This
device working mechanism is consistent with previous VFETs using
graphene electrode’?. Despite the absence of output saturation, VFET
structures could still be used in various circuit applications such as
wearable electronics, logic circuits, photoelectric device and high-
density transistors>>'*¢,

To further reduce the power consumption, we have fabricated
additional IGZO VFET with thinner high-k dielectric (10 nm thick Al,O5
vs. 300 nm thick SiO, previously), as shown in Supplementary Fig. 9.
We note that the device shows low gate voltage range down to 2V and
small gate leakage current <10™A, indicating that thinner high-k
dielectric could greatly reduce the device overall power consumption.
Furthermore, to analyze the driving capability of the short channel
VFET, we have normalized measured current by the overlapping area
of the top metal electrode and the bottom graphene’®. As shown in
Figs. 2h, i, the highest on-state current density is 42 A/cm? for devices
with 50 nm channel length (50 nm thick IGZO), which is over one order
of magnitude higher compared to organic-based VFETs with similar
thickness'®", and could be largely attributed to the better conductivity
of oxide semiconductors and higher carrier mobility within vertical
direction.
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Fig. 3 | Electrical characteristics of IGZO-VFETs with different channel length.
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thickness, the scale bar for optical images is 10 um, for AFM images is 3 pum.
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b Optical image of VFETs with channel lengths of 4 nm. ¢, d, /4s-V,s transfer curves
of VFETs with channel length of 10 nm (c) and 4 nm (d).

Channel length dependent electrical properties

To further improve the device on-state current, we have fabricated
IGZO VFETs with shorter channel length, by vdW integrating thinner
IGZO films of 10 nm and 4 nm thick, as shown in Figs. 3a, b and
Supplementary Fig. 10. In general, n-type l4s-Vgs transfer char-
acteristics is consistently observed for all devices with different
channel length, indicating the n-type Schottky junction is well
retained even at 4 nm channel length, as shown in Figs. 3¢, d. Within
a 10 nm channel length, the average on-state current is 840 A/cm?
and the highest on-state current could reach 979 A/cm?, which is
comparable to non-scalable 2D-based VFETs with similar channel
length>*%'>1>55_ With further reducing the channel length to 4 nm,
the average on-state current gradually saturated with similar cur-
rent density of 820 A/cm?, as shown in Fig. 3d and Supplementary
Fig. 11. Such current saturation behavior has also been observed in
ultra-scaled planar transistors, and could be largely attributed to
dominated contact resistance rather than the channel resistance®.
On the other hand, although current density is not improving at sub-
10 nm channel length, further channel length scaling of VFETs could
still be important because it increases ‘out-of-plane’ integration
density, where vertical transistors can be integrated by stacking
different devices layer-by-layer in the vertical direction, as pre-
dicted by International Roadmap for Devices and Systems (IRDS)*.
This is similar with scaling of conventional planar silicon transistor,
where the primary motivation is increasing ‘in-plane’ device density,
since the performance improvement of a single device is gradually
saturated below 20 nm physical channel length®. Take one step
further, planarization is also important if multiple devices are
stacked in vertical direction, and the planarization layer thickness is
also important for VFET scaling. Currently, the optimized total
device thickness would be ~20 nm based on 4 nm channel length
and 7 nm hybrid contact in our previous studies'®* (as schemati-
cally illustrated in Supplementary Fig. 12), hence developing a

planarization layer with similar thickness would be an interesting
topic for further investigation.

Besides on-state current density, on-off ratio is another important
device parameter related to VFETs. As shown in Fig. 3c, VFET with
10 nm channel length shows highest on-off ratio of ~10°, much higher
than the VFETs with 2D channels®*'>", and could be largely attributed
to the larger band gap of oxide semiconductor (e.g., 3.3 eV for IGZO,
ref. 34) With decreasing the channel length, the on-off ratio of the
VFETs decreases, eventually reaching -10° for devices with 4 nm
channel length (Fig. 3d). As shown in Figs. 3¢, d and Supplementary
Fig. 11, the decreased on-off ratio is directly related to the increased
off-state current, and could be largely attributed to two reasons. First,
with decreasing channel thickness, the potential of the entire channel
becomes more and more dominated by the electric field of top metal
electrode, which could reduce the graphene-IGZO Schottky barrier
height, resulting in the increase of field emission carrier transport
(rather than pure thermionic carrier in thicker device)’. As the channel
length is reduced to sub-10 nm regime, direct quantum tunneling
current starts to emerge between the top drain and bottom graphene
source, which will gradually dominate the carrier transport®. Second,
the high energy drain deposition processes usually lead to consider-
able interface damage and reduce the effective channel thickness.
Such highly disordered interface can lead to leakage current paths
occurring underneath the top metal contact region that cannot be
controlled by a gate voltage, leading to reduce on-off ratio and even-
tually device failure by short circuit between source and drain, as
observed in 2D based VFETs (refs. 3,7).

All van der Waals VFETs using metal transfer technique

To further improve the on-off ratio of the 4 nm VFETs, large-scale vdW
metal integration technique is applied, where the device structure
remains unchanged and the only difference is the integration of top
metal electrode. Within vdW metal integration, large-scale metal
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Fig. 4 | All vdW IGZO-VFETs with top metal lamination. a, b Schematical fabri-
cation processes of all vdW IGZO-VFETs by vdW laminating the top contact metal,
including two steps: (a) physical peeling of pre-fabricated metal arrays, (b) vdW
lamination of metal arrays on the IGZO/graphene arrays. ¢, d, /4s-Vgs transfer curves
of all vdW VFETs with channel length of 10 nm (c¢) and 4 nm (d). e Device schematics

of all vdW VFETs by laminating the top metal, exhibiting an atomic sharp top
contact interfaces and is essential for ultimate channel length scaling.

f Corresponding band diagrams for VFETs with conventional evaporated top
electrode and vdW top electrode. The blue and red arrows represent the carriers
cross the barrier at on-state and off-state, respectively. E¢, Fermi level.

electrode (Ag/Au, 20/30 nm thick) is pre-fabricated on a silicon sacri-
ficial wafer, and then physically released and laminated on the surface
IGZO as top contact (detailed in our previous work®), as shown in
Fig. 4a-b and Supplementary Fig. 13. By applying vdW metal integra-
tion, both IGZO semiconducting channel and the top metallic drain are
layer-by-layer transferred with weak vdW interactions in between, thus
could maintain the intrinsic properties of ultra-thin IGZO channel
within the sandwiched structures.

Figure 4c, d shows the /4s-Vg transfer characteristics of the result-
ing all vdW IGZO-VFETs with channel length of 10 nm and 4 nm,
respectively. The on-off ratio of sub-10 nm vdW device could reach over
104, which is over one order of magnitude higher than the control device
which using thermally deposited drain electrode (Fig. 4c). By further
scaling the channel length to 4 nm, high on-off ratio of 2 x 10° is realized,
two orders of magnitude higher compared with the deposited device
with same channel length (Fig. 4d). The on-off ratio improvement of
vdW devices is a direct result of overcoming two previous limitations.
First, the intrinsic thickness of IGZO channel is largely retained by using
vdW metal electrode (Figs. 4¢, ), and the direct tunneling current and
deposition induced metal atom diffusion can be minimized. Second,
vdW metal-IGZO interface with minimized surface states could greatly
reduce the fermi-level pinning effect’. As a result, the gate electrical
field could efficiently modulate the carrier concentration of 1GZO,
leading to higher on-off ratio. In addition, the on-state current density of
10 and 4 nm-VFTEs with vdW metal electrodes are -870 A/cm* and
~840 A/cm? (Supplementary Fig. 14), respectively, indicating the ohmic
contact between IGZO and vdW top drain electrode.

Discussion

In summary, we developed a mechanical peeling method of large-scale
IGZO with high processing yield, leading to the realization of all-vdW
VFETs through a layer-by-layer lamination process. Based on this
structure, we demonstrated large-scale IGZO VFETs with channel

length down to 4 nm, on-current over 800 A/cm?, and on-off ratio up
to 2 x10°, overcoming the trade-off limitation between VFET perfor-
mance and scalability. In the future, our VFET could be suitable for
thin-film-transistor (TFT) for display applications. To reduce the cost in
large-area fabrication, planar oxide TFT technologies usually adopt
lower resolution lithography, with the resulting devices typically
exhibiting low delivering current. With the design of VFETs, the ultra-
short oxide channel transistors (<10 nm) are created by using low
resolution lithography to afford a delivering current greatly exceeding
that of planar TFTs. Our study not only optimizes the VFET perfor-
mance and scalability at the same time, but also provides a large-scale
layer-by-layer transfer process of oxide semiconductors, which could
provide interesting implication for construct other ultra-thin vertical
devices that are previously limited by fabrication difficulties.

Methods

Material synthesis and device fabrication process

For preparation of sacrifice substrate, PMMA (495 A8, purchased from
Kayaku Advanced Materials) is spin-coated (speed 4000 rpm) on SiO,
substrate first, followed by baking at 150 °C for 5 mins. Subsequently,
PVA (1wt%) is spin-coated on top the PMMA layer (speed 6000 rpm),
and followed by baking at 120 °C for 1 min.

To fabricate IGZO arrays, patterned IGZO (20 x 30 um for each
flake) arrays with different thickness is deposited on the PVA sacrifice
layer via radio-frequency sputtering and the patterning process is
assisted by either e-beam lithography or stencil lithography. The
atom ratios of In to Ga to Zn to O for the pellet target are 1:1:1:4.
The reaction pressure during sputtering is 0.7 Pa, the power is 100 W,
the temperature is 300 K and the Ar is selected as shielding gas with
gas flow of 15 sccm. After deposition, the IGZO array is encapsulated
by a PMMA (495 A8) layer. Post annealing is used for 10 nm and 4 nm
VFETs (200 °C for 10 min) to avoid the reduced film quality of ultra-
thin IGZO.
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The graphene was grown by chemical vapor deposition (CVD) on
copper foil at 1050 °C with methane as carbon source. After growth,
the graphene was transferred onto SiO, substrate and patterned into
20 x 30 um strips by oxygen plasma etching with 100 W power.

Layer-by-layer alignment transfer process

The transfer process is achieved using optical microscopy with a cus-
tomized designed transfer platform. To better clarify the alignment
accuracy, we have schematically illustrated the layer-by-layer align-
ment processes. As shown in supplementary Fig. 15, the top layer is first
picked up by a PDMS stamp, and aligned with the bottom layer under
optical microscope. At this stage, the top layer and bottom layers are
not physically contacted. By moving their relative positions using x-y
stage, all alignment markers on both layers can be accurately fitted
with each other, suggesting all component within top circuits are well
aligned with the bottom contact. Finally, the top layer is gradually
pushed towards bottom target layer using a motor-controlled manip-
ulator in z-axis, leading to the contact of the top layer with
bottom layer.

The alignment resolution between different layer is ~0.5 um in our
lab system, and is mainly limited by optical microscope resolution®.
We note our alignment process essentially mimics the alignment
between photo-masks and wafers within photo-lithography process,
and the alignment resolution could be pushed to sub-micron scale by
learning from the mature photo-lithography system.

Material characterization and electrical measurement

Atomic force microscopy (Dimension Icon made by Bruker) is
applied to investigate thickness as well as surface roughness of the
IGZ0. Raman measurements of the IGZO/graphene heterostructures
are performed via a confocal Raman imaging system (Renishaw in
Via-Reflex Raman Microscope), where 532 nm laser with 1800 lines
mm grating is used. Optical images are acquired by optical micro-
scopy (Olympus, BX53M). All electrical characteristic measurements
are characterized in a Lakeshore PS-100 cryogenic probe station at
room temperature in vacuum, using Agilent B1500 source
measurement unit.

Data availability

Relevant data supporting the key findings of this study are available
within the article and the Supplementary Information file. All raw data
generated during the current study are available from the corre-
sponding authors upon request.
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