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ABSTRACT: The application of electromagnetic (EM) waves to measure the electrical 
properties (dielectric constant and loss tangent) of materials is a well-known approach. 
The electrical properties can be used to indirectly measure several physical properties of 
solutions in water such as the concentration and chemical composition of contaminants in 
water, as a representative of the liquid phase in soil. A capacitive method of measuring 
dielectric properties of solutions is proposed to detect and determine low-concentration 
chemical and biological contaminations in water. The primary objective of this project is 
to design a low-cost sensor that would require small volumes of samples to detect low 
concentrations of dissolved contaminants in water. A forward model was developed using 
a finite-element method (FEM) to simulate the experimental setup (EXP). A calibration 
function was also developed to minimize deviations between FEM and EXP results for 
benchmark/reference solutions with known dielectric properties. The validated, calibrated 
forward model was then inverted to calculate the electrical properties of unknown 
solutions using the corresponding EXP results. 

INTRODUCTION  

Water quality is a growing concern among state and federal agencies in the nation and 
among the public. Contamination of groundwater is also a subject of national importance 
because groundwater is used for drinking water by about 50% of the nation’s population 
(U.S.G.S., 2012). An example of possible contaminants in water is salts in groundwater 
and surface-water reservoirs near roads. These water resources are threatened by deicing 
agents such as sodium or magnesium chloride during winter snow-storm seasons as well 
as being a major constituent of waste water produced during oil and gas production. The 
waste water or brine needs to be treated and/or disposed of, providing a daily challenge 
for operators and resource managers. Some elements of salts are regulated, with water-
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quality criteria established for the protection of aquatic wildlife. For instance, chloride 
(Cl ) has an acute standard of 860 mg/L or 0.024 Molar (Farag and Harper, 2014). 

Each solution has a unique set of electrical characteristics governed by its electrical 
(dielectric constant and electrical conductivity) properties. Thus, the knowledge of the 
dielectric constant and electrical conductivity of solutions enables tracing changes in the 
concentration of contaminants to discriminate water from contaminated water. To 
measure the dielectric constant of a medium, a reflectometric method can be applied. The 
reflectometric method is described as measuring the reflection response of a medium over 
the microwave frequency (915 MHz to 2450 MHz) at the interface of the medium and a 
wave port (Komarov et al., 2005). The results are then linked to the dielectric properties 
of the medium.  

The dielectric property of a material is an expression of the material’s interaction with 
electromagnetic fields. Complex-relative dielectric permittivity ( ) is the complex 
dielectric permittivity ( ) normalized to that of free space ( = 8.8541878176 × 10 12 
F/m) defined as: 

         (1) 
where ;  is the real part of the complex relative dielectric permittivity (also 
known as the dielectric constant), and  is the imaginary part of the complex relative 
dielectric permittivity (referred to as the loss factor). The ratio between the dielectric 
constant ( ) and the loss factor ( ) corresponds to the dissipation factor or loss tangent 
( ). Electrical conductivity ( ) is another important electrical property, which 
measures the ability of materials to conduct an electric current.  

Dielectric-measurement methods depend on both physical and electrical natures of the 
dielectric material being measured, the frequency of interest, and the required degree of 
accuracy. Referring to a comparison among common dielectric-measuring techniques 
table in Jilani et al., 2012, for the purpose of this work, the parallel-plate (capacitive) 
method is determined to be the suitable technique because of the ability of the method to 
preserve the sensitivity and reduce the setup dimensions. 

In this method, the metallic plates are coated with a dielectric material to prevent any 
electrical contact between the sample and the measurement conductive plates. Parallel-
plate systems use a parallel-plate capacitor as a sample holder, with the material under 
testing (MUT) sandwiched between the plates of the capacitor. After placing a sample 
into the parallel-plate sample holder, a capacitor is formed. This method requires an 
impedance analyzer or LCR-meter (inductor, capacitor, resistor meter). The MUT is 
stimulated by an alternating current (AC) source, and the actual voltage across the 
material is monitored. The MUT’s test parameters are derived from the dimensions of the 
material and measuring its capacitance and dissipation factor. The measured capacitance 
is then used to calculate the MUT’s dielectric permittivity. This method is common at a 
wide frequency range, typically below 1 GHz and has high  measurement accuracy, 
usually ±1%. However, air gaps between the sample and capacitor plates can cause 
significant errors, if not accounted for and calibrated for (Tereshchenko, 2011). In 
addition, due to the electrode-polarization effect, spurious measurements lead to poor 
results. This can be mitigated using electrodes with a large surface area compared to their 
thickness or at higher frequencies, as the effect is reduced rapidly with increasing 
frequency (Jilani et al., 2012). 
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Figure 1. Parallel-plate (capacitive) method (Agilent, 2008) 

A transmission line (T-line) is an electrical-circuit element, i.e., a coaxial cable 
designed to carry electromagnetic waves with minimum loss. The load itself is 
considered a lumped element (i.e., small compared to a wavelength), and the wires 
connecting the T-line to the load are considered to be negligibly short. Wentworth (2005) 
states that, at z = 0, 

        (2) 

where  is the load impedance,  is the T-line impedance, and  and  are the value 
of the +z and –z directed voltage waves, respectively at z= 0+ and z = 0-. Equation 2 
states that if the characteristic impedance of the load is unequal to that of the line, then a 
portion of the EM wave’s energy must be reflected at the load. The degree of the 
impedance mismatch is represented by the reflection coefficient at the load given by: 

        (3) 

In the past 90 years, dielectric-measurement techniques have been developed as a tool 
for low-frequency characterization of samples to methods for extremely broadband 
spectroscopy and high-frequency imaging of materials (Kaatze, 2013). One concern in 
the history of dielectric-measurement techniques is the problem of measuring the liquid 
dielectric properties, which has practical applications in industrial and environmental 
fields. Blackham and Pollard (1997) presented an enhanced computational model for an 
open-ended coaxial probe used for dielectric permittivity measurement. Xie et al. (2004) 
estimated the electrical conductivity of brine water by measuring the electrical 
conductivity and dielectric permittivity of a mixture of brine water and other substances 
such as oil and gas. Jouyban et al. (2004) proposed a computational method for 
calculating dielectric constants of 30% to 70% volume fractions of solvents such as 
ethanol and propanol in water mixtures at fixed and/or various temperatures. They 
obtained a deviation less than 2% between the calculated and experimental dielectric 
constants (Jouyban et al., 2004). Peyman et al. (2007) measured the complex dielectric 
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permittivity of aqueous solutions at 20°C using an open-ended coaxial probe. The 
measurements were done over a range of frequency from 0.13 GHz to 20 GHz for various 
concentrations of NaCl solutions between 0.001 and 5 Molar. Lamkaouchi et al. (2003) 
used a free air transmission method at frequencies of 26 to 110 GHz to determine 
permittivity of lossy liquids such as water, NaCl solution with a salinity of 35%, and 
synthetic sea water. They measured the dielectric permittivity for a wide temperature 
range of 5 to 70°C. They improved the data that are incorporated in a number of 
microwave emissivity models used in numerical weather forecasting. Kheir et al. (2008) 
extracted the dielectric constant of liquids using a setup consisting of a microstrip-ring 
resonator covered with a metallic enclosure acting as a rectangular waveguide. They 
suggest that using both methods will definitely reduce the measurement ambiguity. Azad 
et al. (2013) and Bolvardi (2014) investigated the use of electromagnetic (EM) waves 
with various radiation patterns to induce a controlled transport of a nonhazardous dye 
(used as a contamination simulant). The medium in both studies was water, which helped 
monitoring the dye transport under EM stimulated conditions as well as in a porous 
medium. The results of the study suggested that dielectrophoresis could be the underlying 
mechanism behind the observed EM-induced dye flow in both aqueous and water-
saturated porous media (Azad et al., 2013; Bolvardi, 2014). 

METHODOLOGY 

A new sensor, sensitive to minor changes in the concentration of dissolved material in 
water, was designed. The sensor was installed in an experimental (EXP) setup to observe 
the electromagnetic reflection response at the interface between a 50  wave-port and the 
interior medium of the EXP setup. The sensor is capable of examining various materials 
under test (MUTs). A forward numerical finite-element model using COMSOL 
Multiphysics® software was developed to numerically simulate the EXP setup and 
compute the reflection response of the medium. The forward model was thus used to 
compute the reflection response for reference solutions with known electrical and 
physical properties and calibrated against corresponding measurements. The calibrated 
forward model was then inverted to compute the dielectric constant, electrical 
conductivity, and in turn volumetric content of biological and chemical solutions.  

Experimental Apparatus 

A low-temperature co-fired ceramic (LTCC) system was employed to fabricate the 
initial sensor. In the design, an electrical circuit consisting of capacitor electrodes and 
connecting leads was embedded within ceramic sheets using a silver epoxy paste. The 
EM waves, emitted by a vector-network analyzer (VNA), propagating through an SMA 
(Subminiature Version A) connector, enter the target medium. The center line of the 
SMA connector is electrically connected to the top plate of the capacitor using 
connecting leads. The bottom plate of the capacitor was connected to the outer shield of 
the SMA connector, sharing the same ground with the VNA. 

Capillary tubes were implemented for the insertion of the solution into the sensor. This 
minimized the introduction of air bubbles and their negative impact on measurements, 
lowered the signal-to-noise ratio, and enhanced the sensitivity of the setup. The use of 
capillary tubes provides the FEM-model with accurate dimensions. 
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Two series of biological and chemical solutions in water at different concentrations 
were prepared as MUTs (experimental samples). Sodium-chloride (NaCl) solution was 
selected as the chemical solution, since it is a common example of mineral contamination 
in water. Bovine serum albumin (BSA) protein was also selected as the biological 
solution in water. The reason behind the choice was the fact that BSA Protein Assay 
Standards are high-quality reference samples for generating accurate standard curves and 
calibration controls in total protein assays (Piercenet, 2014). BSA protein is also common 
due to its stability in biochemical reactions and low cost. 

 
Figure 2. Final setup (disassembled) 

Finite-Element Forward Model 

The numerical (finite-element) forward model was used to simulated several samples 
with known dielectric properties. The model uses the known dielectric properties as 
inputs and computes the EM reflection response over the desired frequency range at the 
interface of the wave-port and the medium containing the sample. On the other hand, the 
reflection response for the same set of samples was obtained using the experimental 
setup. The first goal was to validate the FEM results against the EXP results.  

The EXP and FEM results for liquid samples were compared, and their differences 
were recorded over the frequency range. The selected frequency range is narrow enough 
to allow the assumption that the dielectric properties variation is insignificant, and the 
materials are nondispersive. The dielectric properties of this kind of material are 
independent of the frequency variation as opposed to dispersive materials, whose 
dielectric properties are functions of frequency. This assumption disregards the dispersive 
nature of water and subsequently aqueous solutions. 

Because it is computationally expensive to model all details of the real device, some 
details were simplified. Hence, there may be some discrepancies between the computed 
data and experimental measurements. A calibration function was developed to estimate 
the difference between FEM and EXP results for all the FEM results based on their 
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dielectric properties. This calibration function calibrates the FEM results and matches 
them best with EXP results. The calibrated FEM results were then used in the inverse 
model. 

Inverse Model 

For solutions with unknown electrical properties, the reflection response at the wave-
port is measured using the experimental setup. The forward model is then inverted using 
an optimization scheme. The inverted model is referred to as the inverse model. The 
inverse model uses the EXP results (i.e., frequency-response measurements) as input. 
Then, the forward model is solved iteratively using various input electrical properties 
until an appropriate cost function (in this case, the difference between the numerical and 
experimental frequency responses for the unknown materials is minimized) to produce 
the dielectric properties of the unknown MUT.  

 

SUMMARY OF RESULTS AND DISCUSSION 

Experimental 

The setup was tested for air over the wide frequency range of 1.0 - 7.6 GHz, completed 
in 5 steps. Based on the FEM results compared to the EXP results, the appropriate 
frequency range to verify the FEM data was between 3.0 GHz and 4.6 GHz. The error 
bars in these experiments were about 0.02 dB, which is as low as the VNA’s calibration 
noise. The minimum reflection was observed where the difference was at its maximum 
among the samples with different concentrations. The minimum reflection occurs at the 
frequency where the impedance of the sensor filled with the MUT best matches the 50  
impedance of the VNA. This frequency is obviously dependent on the MUT. This 
minimum reflection made it possible to discriminate one sample from another (Figure 3). 

BSA samples were tested over the same frequency range of 3.0 - 4.6 GHz. The contrast 
among different concentrations of BSA solutions is smaller than the error bar of the 
measurement—which is as small as possible, i.e., the VNA’s calibration error. In other 
words, this low signal/noise ratio makes it impossible to discriminate between the BSA 
samples (Figure 4) using this VNA, which is among the typical high-precision and high-
accuracy VNAs in the market. This means a practical limit has been met. Hence, there is 
a need for other mechanisms to amplify the signal. 

The reflection response of the BSA samples was also measured at higher frequencies, 
4.5 - 6.1 GHz. According to Figure 5, the 1g/L BSA solution exhibits a considerable 
deviation from the distilled water benchmark over the frequency range of 5.0 - 5.5 GHz. 
The error bars remained at their minimum (the instrument’s noise floor) as in the EXP 
results for the lower frequency range. The strongest contrast between the water 
benchmark and the 1g/L BSA sample occurs over the frequency range of 5.0 - 5.4 GHz. 
This is the best frequency range to discriminate BSA solutions from water. The 
magnitude of the error bars for BSA was close to the calibration error bar (0.02 dB) of the 
VNA. This result proves the error due to air bubbles has been eliminated at BSA samples. 

FEM Forward Model 
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The FEM data agree reasonably with the EXP data at the frequency range of 3.0 - 4.6 
GHz. The FEM data and EXP data do not agree well over other frequencies. One 
potential cause is the discrepancy in the geometry of the FEM model and the EXP setup.  

Figure 3 includes both EXP and FEM data for all samples. It is noteworthy that the 
difference between the frequencies where the minimum reflections (i.e., best impedance-
match frequencies) occurs in the FEM and EXP data is the same for all samples. This 
difference between the frequencies of minimum reflection is 60 MHz. This constant (60 
MHz) shift (i.e., difference between the frequencies of minimum reflection) across all 
materials confirms that over the above-mentioned frequency range, the magnitude of the 
reflection depends solely on dielectric properties, and the best impedance-match 
frequency is influenced (shifted) by the geometry. 

One of the two sets of the excreted data (FEM or EXP) needs to be shifted to match 
with the other one. All EXP data were, hence, shifted 60 MHz to the left of the frequency 
spectrum to synchronize with the FEM data to find the discrepancy for calibration 
purposes. This approach guarantees that the best impedance match occurs at the same 
frequency in both EXP and FEM data, and it compensates for the discrepancies due to the 
geometry (as mentioned, the geometry controls the best impedance-match frequency). 
FEM and EXP were then subtracted to show the trend of the deviation between them, 
which is needed to be calibrated out. According to Figure 3, the deviations between FEM 
and EXP data are almost constant except over the frequency range of 3.7 - 4.1 GHz. The 
changes in dielectric properties exhibit more impact on the frequency response over the 
same frequency range. The indicated frequency range was selected for the purpose of the 
optimization scheme used for solving the inverse problem. The differences between EXP 
and FEM results for water and 0.5M NaCl are used to logarithmically interpolate the 
difference between the FEM and EXP results corresponding to the dielectric properties of 
MUTs. The computed difference is added to the FEM frequency response to calibrate the 
FEM results to minimize the deviation between FEM and EXP results. 

There are several justifications for the deviation between the FEM and the EXP data. 
These deviations are due to the discrepancies between the numerically simulated and 
actual geometry of the setup caused by defects in the LTCC fabrication process. The 
organic constituent of ceramic tapes burns during the procedure of laminating and co-
firing the LTCC layers. Subsequently, the ceramic layers shrink down by the ratio of 
0.8734, while the silver epoxy does not. This inconsistent shrinkage between the ceramic 
and silver epoxy causes minor deviations and inconsistencies in the sensor components’ 
dimension and location. This issue makes it difficult to design and fabricate the sensor 
with high precision. On the other hand, the silver-epoxy trace diverges, and some silver 
particles penetrate into the LTCC layers at the vicinity of the silver-epoxy traces (Nair, 
2013). The discontinuity of silver-epoxy particles produce conductive particles—with 
free charges—reradiating under EM excitation, leading to errors in frequency-response 
measurements. This phenomenon has a deteriorating effect on the accuracy of the 
measurement of the frequency response of the media. 
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 Table 1. Example scenarios examined using the inverse model 

 
*Literature values are available at Von Hippel (1954) 

 
Figure 6. Calibrated values of dielectric properties for solutions in water 

Inverse Model 

The final results of epsr and loss-tan of water along with all other samples are 
expressed in Table 1. An optimization scheme was simultaneously conducted for eight 

eps_r Loss tan eps_r Loss tan eps_r Loss tan

Air 1.0 0.00 1.000 0.0000 1.0 0.000 0.1204 2.6869 4.5%

Water 77.0 0.16 73.402 0.2077 76.7 0.157 0.0589 3.6095 1.6%

NaCl 0.1M 77.0 0.16 70.611 0.3430 75.5 0.240 0.0663 3.8356 1.7%

NaCl 0.3M 77.0 0.16 67.386 0.5185 69.3 0.435 0.0694 4.1607 1.7%

NaCl 0.5M 77.0 0.16 62.685 0.7524 67.0 0.625 0.0751 4.6021 1.6%

BSA 50g/l 77.0 0.16 73.518 0.1758 N/A N/A 0.0721 3.5339 2.0%

NRMSD 
[%] 

Absolute 
min [dB]

Sample
Initial guess Final estimate Literature values* RMSD 

[dB]
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data-points over the indicated frequency range at 0.1 GHz intervals. As shown in Table 1, 
there are differences between the computed dielectric properties and the literature values, 
particularly for water and 0.5M NaCl solution. These two samples were used as reference 
points to define the FEM model’s calibration function; hence, their results should closely 
match with the literature values. The reason behind the choice of such values is that the 
INV (inverse) model attempts to optimize the reflection response at all of the eight 
frequency-points simultaneously, which results in an average RMSD at all eight 
frequency-points. Consequently, the dielectric properties corresponding to the minimum 
RMSD for water do not match with the literature values, which are used initially to 
develop the FEM forward model and its calibration function. In future studies, the 
optimization scheme should be conducted at each single frequency-point individually and 
followed with a set of dielectric properties at that frequency-point. 

All scenarios are over the frequency range of 3.7 - 4.1 GHz. The result of the INV 
model suggests that as the concentration of NaCl samples and, in turn, the magnitude of 
the minimum reflection increase, the RMSD increases as well. The optimized dielectric 
properties of the samples in Table 1 are plotted in Figure 6 against properties available in 
the literature (refer to the “Materials and Methods” section). The data for epsr follows a 
certain pattern. The loss-tan data follows a uniform trend. The equations of the trend line 
for the epsr and the loss-tan are calculated using linear regression. 

    (4) 
R2=0.9987     

   (5) 
R2=0.9933  
Figure 6 shows the dielectric property data along with the lines that are fitted to them. 

Referring to the EXP data for BSA samples over the frequency range of 3.0 - 4.6 GHz, it 
is not possible to discriminate different concentrations of BSA. Yet the optimization 
scheme is conducted for the 50g/l BSA, and the derived dielectric properties are 
substituted in the calibration functions in Figure 6. The results are epsr =77.3666 and 
loss-tan =0.1325. 

CONCLUSION 

A new dielectric-measurement setup was developed, which is capable of detecting 
water-based biological or chemical mixtures in water at low concentrations. The setup 
includes a capillary sensor that requires quite small volumes of MUTs (0.9 cm3) 
compared to other common methods in order to discriminate distilled water from 
contaminated water. This setup is useful for liquids only available in small quantities to 
monitor relatively low contamination levels. The dimensions of the sensor are small 
enough that it provides the compatibility to be embedded in small devices. The test 
procedure is reasonably simple and convenient to be mechanized. The air entrapment 
within samples, which is a common source of error in dielectric measurement for liquids, 
is avoided in this method. Using capillary tubes as sample holder makes it possible to 
inspect samples for possible entrapment of air before the measurements of the frequency 
response. 

A numerical forward model was created to numerically simulate the experimental setup 
using an FEM method. The numerically simulated results for solutions of known 
dielectric properties in water were close to experimental results and followed the same 
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pattern and trend at specific ranges of frequency, but not at all frequencies. It is 
noteworthy that the precision in measuring the geometric dimensions of the setup to be 
input into the FEM forward model has a considerable influence on the FEM results. 
However, the numerical simulation of the setup at the current scale requires precise 
measurement of setup dimensions, which is impractical due to defects in the currently 
used sensor-fabrication process. The discrepancies between the EXP and FEM results 
were calibrated out.  

An inverse model was developed over a specific frequency range of 3.7 - 4.1 GHz to 
utilize EXP data and FEM forward model to return dielectric properties of unknown 
solutions. The inverse-model results were not reliable due to their variation with respect 
to initial guesses input into the forward model. The results for high-concentration 
solutions in water were not at the desired level to be accepted. The explanation for these 
defects is the failure in perfectly verifying the initial forward model against experimental 
data over the entire frequency range. A thorough investigation is required to improve and 
calibrate precisely the forward model before subsequently applying the inverse model to 
make them applicable to a wide frequency range. 

The following are suggestions to improve both the FEM model and the EXP setup for 
future research. For the FEM model, the first step is to improve the accuracy of the 
geometry in the FEM simulation. In addition, the measurement of dimensions of the EXP 
setup should be conducted using more precise equipment. Currently, the calibration 
function employs linear interpolation to predict the difference between the FEM and EXP 
frequency responses. This calibration function can be improved to use nonlinear 
interpolation. The samples are numerically simulated as nondispersive material in the 
FEM model. This approximation has been used as an effort to minimize the 
computational cost of the FEM simulation. In the future, the FEM can be modified to 
model the dispersive dielectric behavior of materials within a wider range of frequency in 
a reasonable amount of time. 

In the EXP model, the imperfections of the sensor should be eliminated and avoided as 
possible. Examples of these imperfections are the warped LTCC sheet and disjointed 
silver-epoxy paints on the LTCC sheets. The most practical improvement is to increase 
the amplitude of EM signals. This increase may amplify the signal-to-noise ratio where 
the instrument’s noise remains constant. Consequently, the gradient of EM waves can be 
used to induce dielectrophoretic forces and displace the suspended particles toward the 
receiver in order to enhance the discriminating signal. In other words, a receiver can be 
added to the setup at the location toward which the particles are pushed. This innovation 
can lead to improving the measurements sensitivity. 
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