
IDENTIFICATION OF SMALL ENDOGENOUS VIRAL

ELEMENTS WITHIN HOST GENOMES

by

Edward C. Davis, Jr.

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

May 2016



c© 2016
Edward C. Davis, Jr.

ALL RIGHTS RESERVED



BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Edward C. Davis, Jr.

Thesis Title: Identification of Small Endogenous Viral Elements within Host Genomes

Date of Final Oral Examination: 04 March 2016

The following individuals read and discussed the thesis submitted by student Edward
C. Davis, Jr., and they evaluated his presentation and response to questions during the
final oral examination. They found that the student passed the final oral examination.

Timothy Andersen, Ph.D. Chair, Supervisory Committee

Amit Jain, Ph.D. Member, Supervisory Committee

Gregory Hampikian, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Timothy Andersen, Ph.D.,
Chair, Supervisory Committee. The thesis was approved for the Graduate College
by John R. Pelton, Ph.D., Dean of the Graduate College.



Dedicated to Elaina, Arianna, and Zora.

iv



ACKNOWLEDGMENTS

The author wishes to express gratitude to the members of the supervisory com-

mittee for providing guidance and patience.

v



ABSTRACT

A parallel string matching software architecture has been developed (incorpo-

rating several algorithms) to identify small genetic sequences in large genomes. En-

dogenous viral elements (EVEs) are sequences originating in the genomes of viruses

that have become integrated into the chromosomes of sperm or egg cells of infected

hosts, and passed to subsequent generations. EVEs have been identified in all seven

classes of viruses and in the species of all kingdoms of life. Viruses from groups V

and VI are considered in this thesis, including HIV and Ebola, within host genomes

ranging from bacteria to humans. This database of small endogenous viral elements

(SEVEs) contains homology between the viruses and every chromosome of the ten

multicellular organisms in this study, including human, chimpanzee, gorilla, mouse,

fruitbat, nematode, and thale cress.
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CHAPTER 1

INTRODUCTION

1.1 Endogenous Viral Elements

The sequencing of the complete human genome by the Human Genome Project ranks

among the most momentous achievements of modern science. One of the surprising

results was the relatively small percentage of actual protein encoding genes, a mere

1.5% according to Nature [1]. The remainder consists of various types of noncoding

DNA (ncDNA), including introns (approximately 6%), regulatory sequences (8-20%),

mobile elements such as long interspersed nuclear elements (LINEs) and short inter-

spersed nuclear elements (SINEs), and noncoding RNA (ncRNA) such as the 5’ and

3’ untranslated regions (UTRs) of mRNAs. Other sequences encode for small RNAs,

such as small interfering RNAs (siRNA) and micro RNAs (miRNA).

Among the approximately 73% of noncoding DNA are 5-8% of endogenous retro-

viruses (ERVs) [2]. Until recently, all of these noncoding sequences in vertebrate

genomes were relegated to the dustbin of evolution by being labeled as “junk” DNA.

Analyses from the Encyclopedia of DNA Elements (ENCODE) project indicate that

the junk DNA hypothesis may be incorrect with up to 80% of the human genome

being either actively transcribed, serving a regulatory purpose or being at least

biochemically active [3]. David Baltimore, known for his famed virus classification

scheme, once quipped that in places the human genome resembled a sea of dead
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viruses. Much research has been focused on the study of ERVs because retroviruses,

Group VI on the Baltimore classification, are the only class of viruses that must

insert their genome into the host chromosome as a requisite part of their life cycle.

However, endogenous viral elements (EVEs) have been identified from all seven groups

of viruses in the Baltimore classification [4]. The mechanisms for the incorporation

of nonretroviral sequences into host genomes are not well understood, but it has been

suggested that rogue nucleic acids from viral infections are inserted with the help of

the reverse transcriptase and integrase enzymes of the retrotransposons that function

similarly to those in retroviruses [5].

1.1.1 Conservation of Endogenous Elements

The conservation of nucleotide sequences over extended evolutionary time scales

typically implies some necessary functionality that increases the genetic fitness of

the species. This is true of organisms with slow mutation rates, such as vertebrates,

as well as those with rapid mutation rates, such as viruses. Once viral genomes

are inserted into a host genome, as occurs with endogenous viral elements, the viral

sequence assumes the host neutral mutation rate resulting in an approximately million

fold rate reduction [6]. Therefore, any highly conserved regions common between

relatively slowly evolving eukaryotic organisms and their comparatively fast paced

viral antagonists are likely to be significant. It is not sufficient for the sequences of

viral invaders to penetrate the nuclei of somatic cells, as the insertion would end with

the death of the cell. The establishment of a provirus in the germ cells (e.g., sperm or

egg) is necessary to be included in subsequent generations. Following endogenization

in the host germ line, the viral elements can exert influence over the evolution of

the host. Conservation of EVE sequences common with recent viral isolates could be
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particularly significant given rapid viral mutation rates.

Conserved viral sequences could act as agents of infection, aiding and abetting

future viruses in the infection of the host by providing homologous targets for viral

integration. Alternatively, the sequences might confer some type of antiviral defense

or immunity to the host. One potential mechanism could be the production of small

RNA molecules derived from the viral sequences that interfere with some stage of viral

reproduction when expressed. Such RNA interference has been observed in plants,

invertebrates, and mammals [7]. It is also possible that the small RNAs interfere with

immune system function of the host. As an example, a recent study by Chuong et al.

indicates that ERV transcripts affect the transcriptional regulation of the interferon

network (IFN) [8].

There are many constraints imposed on viral sequences, so the location of the

sequences within the viral genomes is also important. Viruses must maintain compact

genomes to be contained within a tiny icosahedral capsid with a mean diameter of

5 nm [9]. Of particular interest from an immunological perspective are the viral

glycoprotein (GP) genes. The glycoproteins form on the viral envelope and in many

cases are what allow viruses to evade the immune system and gain entry into the

host cell via endocytosis. The glycoproteins enable the immune system to determine

the critical distinction between self and non-self. Further increasing the difficulty of

integration is that to gain access to the genomic DNA viral sequences must also pass

the double nuclear membrane of the eukaryotic cell.

1.1.2 Motivating the Search for EVEs

Human viral diseases play a key role in the human experience, from the annual

cycles of influenza viruses to the lethal HIV retroviruses that lead to AIDS, and
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Ebola filoviruses that cause human hemorrhagic fever. Other recent epidemics of

note include the Rift Valley bunyavirus outbreak in Kenya in 2006 and the H1N1

influenza pandemic of 2009. Measles, caused by the morbillivirus, is another high

profile infection enjoying a recent resurgence [10].

Retroviruses are of particular interest due to their innate reverse transcriptase

activity and high levels of virulence. A relative of the well known HIV virus is the

similarly structured Simian immunodeficiency virus (SIV). Together such immune

targeting viruses are members of the lentivirus family. Other retroviruses can even

lead to cancer by converting proto-oncogenes into oncogenes. Examples of these

include the human T-cell leukemia viruses (HTLV) [11], and the mouse mammary

tumor virus (MMTV) [12].

Another class of viruses capable of host genome endogenization are the negative

sense single-stranded RNA (-ssRNA) viruses, Group V on the Baltimore classification.

They are referred to as negative sense because their genomes are encoded in the

3’ to 5’ direction, opposite of the 5’ to 3’ direction of the mRNA transcripts to

be translated on ribosomes. Therefore, an RNA replicase enzyme is required to

generate the mRNA transcript that will be translated into viral proteins. Examples

of -ssRNA viruses include the Zaire ebolavirus of the family Filoviridae, the bornavirus

of family Bornaviridae, measles of family Paramyxoviridae, and rabies of the family

Rhabdoviridae.

Evidence suggests that Baltimore groups V and VI viruses, -ssRNA and retro-

viruses respectively, are relatively recent evolutionary innovations as they are espe-

cially well equipped to attack eukaryotic cells. The discovery of reverse transcriptase

activity that reverse transcribes single-stranded RNA into double-stranded DNA was

so profound as to require an exception to the central dogma of biology proposed
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by Francis Crick (DNA → RNA → protein). No such mechanism is known to

exist in prokaryotes [13] and such viruses target vertebrates specifically. Lentiviruses

and filoviruses infect many mammalian species, and bornaviruses are able to infect

mammals or birds [14].

Endogenous viral elements can be divided into two broad categories, endogenous

retroviruses (ERVs) that rely on retroviral reverse transcriptase encoded by the virus

itself for insertion, and endogenous non-retroviruses (ENRVs) that require other

means of insertion. The process by which ERVs are endogenized is well understood.

The reverse transcriptase enzyme generates the double-stranded DNA copy of the

viral RNA genome, complete with identical flanking long terminal repeats (LTRs).

The dsDNA copy of the genome is transported to the centrosome along microtubules,

enters the nucleus through a nuclear pore, and covalently binds to the genomic

DNA. Once integrated, it begins the latent proviral stage of its lifecycle where it

is indistinguishable from the host DNA. In this way, the mutation rate slows to the

host’s neutral rate [15].

The mechanism by which ENRVs are integrated is less well understood, as inser-

tion is not a necessary part of the viral reproductive cycle. The group V -ssRNA

viruses, for example, do not possess a reverse transcriptase enzyme. The segmented

-ssRNA viruses, such as bunyaviruses, replicate their genomes in the nucleus, but the

nonsegmented -ssRNA viruses such as bornaviruses and filoviruses do not. Neverthe-

less, their genetic sequences have been found in eukaryotic genomes [16]. The -ssRNA

viruses instead produce RNA-dependent polymerases to transcribe their genomes into

mature mRNA molecules complete with post-transcriptional modifications, including

5’ methyl-G caps and polyadenylated 3’ tails. The ribosomes within the host cell

are then pressed into service to translate the mRNA transcript into viral proteins.
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Most likely, it is the mRNA molecules that become endogenized in the germ line

rather than the viral genomes themselves. The reverse transcriptase activity of

the retrotransposons within the host genome, such as LINEs, are the most likely

candidates for endogenization.

Whether EVEs confer immunity or encourage susceptibility to viral infection

remains uncertain. One hypothesis suggests they become incorporated into EVE-

derived immunity genes (EDI). The Fv1 and Fv4 genes in mice have been shown to

act as inhibitors of murine leukemia [17]. Another hypothesis is that the sequences

encode for small RNA elements that either work to block viral RNA translation or as

miRNAs acting as competing endogenous RNA (ceRNA). Such elements encoded by

expressed pseudogenes have been studied with respect to human cancers [18]. Given

the established link between viruses and cancer, such a mechanism could also exist

in viruses.

The hypotheses discussed above rely on the assertion that endogenous viral ele-

ments provide resistance or immunity to the host. The alternative is that they proffer

aid to the attacking virion. As mentioned previously, glycoproteins are cell membrane

integral proteins that expose a carbohydrate chain into the extracellular fluid, helping

to mediate cell-to-cell communication and allowing the cell to be identified by the

host immune system. Enveloped viruses exploit this technique by exposing surface

glycoproteins, allowing them to masquerade safely within the host organism and

initiate fusion with the cell membrane. The HIV virus, for example, exposes the gp120

glycoprotein, allowing it to target the CD4 receptor on the surfaces of helper T-cells

[19]. An analogous receptor in the filovirus family is the GP glycoprotein. Sequences

similar to the GP have been identified in vertebrate genomes [20]. Homology with

the viral nucleoprotein (NP) gene sequences have also been observed. The NP is
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responsible for encapsulating the viral genome and so is an obvious frontline target

for host immune systems.
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CHAPTER 2

LITERATURE REVIEW

2.1 Biological Computation

The relationship between biology and computer science dates back at least fifty

years to the 1960s. From Sanger’s successful sequencing of the insulin protein, to

Watson and Crick’s discovery that the DNA molecule is the coding language for life,

it quickly became apparent that biomolecules are information carriers, much like a

silicon transistor. This revelation created a conceptual link between molecular biology

and Shannon’s information theory [21]. Zuckerkandl and Pauling compared nucleic

and amino acid sequences to semantemes, the fundamental unit of information in

linguistics. They coined the term semantides, a fundamental chemical unit [22]. This

gave rise to the field of paleogenetics, now better known as molecular evolution. The

once controversial idea that phylogenetic relationships could be inferred simply from

sequence analysis, combined with the advent of the molecular clock, helped form the

foundation of the field of bioinformatics [23].

2.1.1 Substitution Matrices

Computational biology originated with Margaret Dayhoff. Working in the FORTRAN

language on IBM computers, she developed the first molecular biology database.

Another of her innovations was the Percent Accumulated Mutation or PAM sub-
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stitution matrix for sequence alignment [24]. PAM matrices remain in use today,

with the PAM250 being the most common. The BLOcks SUbstitution Matrix or

BLOSUM is another important substitution matrix that applies observed rather than

extrapolated local alignment scores as PAM does [25]. The BLOSUM62 matrix is a

notable example.

Whereas substitution matrices employ heuristic techniques for pairwise compar-

isons, the Smith and Waterman algorithm for local sequence alignment always pro-

duces the same results. It is a dynamic programming algorithm that makes use of

matrices to reward matches and penalize gaps [26].

The FASTA set of programs for pairwise sequence similarity scoring was created

by Lipman and Pearson [27]. FASTA programs allow direct comparison of nucleotide

and amino acids sequences by performing translation on the fly. The RDF2 program

evaluates similarity scores with a shuffling method that permits the preservation of

the original sequence. The LFASTA program generates dot matrix plots of similarity

greater than a given threshold and supports a number of different scoring matrices.

The best sequences are evaluated by collecting the top ten sequences and rescoring

them. One of the most enduring contributions of this work is the FASTA file format,

which is now ubiquitous within the field of bioinformatics.

2.1.2 Bioinformatics Toolkits

The Basic Local Alignment Search Tool (BLAST), originally developed by Altschul,

Gish, and Miller, has become the de facto standard software package for performing

nucleotide or amino acid sequence comparisons [28]. Following in the footsteps of

the Smith-Waterman algorithm for local similarity and the faster heuristic approach

of FASTA, BLAST directly approximates optimal local alignments with a maximal
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segment pair (MSP) score. BLAST sacrifices the accuracy of Smith-Waterman for

speed, but with greater sensitivity than FASTA. The BLAST algorithm filters out low

complexity regions (meaning highly repetitive), then converts the query sequence into

a k -word list (k = 11 for nucleotides, 3 for amino acids). Each word is compared with

a substitution matrix such as BLOSUM62 and those obtaining scores greater than a

threshold T are kept. The remainder are added to a tree used to search the database

for exact matches that are then extended with gaps considered to yield high score

segment pairs (HSPs). These high scoring pairs are evaluated for significance and a

Smith-Waterman alignment is performed on the highest scoring of all. An e-value is

calculated from these alignments based on gap penalties and those achieving a value

greater than the threshold E (expected value) are reported to the user.

Inspired by BLAST is the BLAST-like Alignment Tool (BLAT) developed by W.

J. Kent, which claims improved accuracy and efficiency over BLAST when performing

cross-species comparisons [29]. Speed improvements are claimed of up to 500 times

for nucleic acids and 50 times for protein sequences when compared to BLAST. The

improvement is attributed to the BLAT technique of indexing non-overlapping k -mers

in the genome. The index can be cached in memory in most cases and computed only

once per genome. The algorithm uses the index to locate regions of likely homology

within the query sequence. It then performs local alignments between homologous

regions as in the Smith-Waterman algorithm. The aligned regions are spliced together

(much like exons) into larger regions (much like genes). The last step is to revisit

the smaller aligned regions to adjust gap boundaries for increased sensitivity. The

algorithm is benchmarked against TBLASTX using 1000 mouse genome reads against

human chromosome 22 for an average speed increase of 45% and sensitivity increase

from 84.5 to 86.7%.
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Other noteworthy bioinformatics tools include Thompson’s ClustalW method for

multiple sequence alignments (MSA) [30], Hidden Markov Models using Bayesian

networks [31], and genetic algorithms [32]. For the automated construction of phyloge-

netic trees, there is Hall’s Molecular Evolutionary Genetics Analysis using maximum

likelihood (MEGA) [33].

2.2 String Matching

The online exact string matching problem has broad applications in computer science,

not merely in computational biology or chemistry but also in text and speech analysis,

digital signal processing, databases, and compression. Generally stated, it is the task

of finding all occurrences of a pattern string p of length m within a given text t of

length n over an alphabet Σ of size σ. The worst case lower bound of the string

matching problem is O(n).

2.2.1 Match Table Algorithms

The first algorithm to achieve that lower bound was devised by Morris and Pratt

and hence bears their names. Knuth provided some improvements to the original

algorithm and so the eponymous algorithm has three initials [34]. The Knuth-Morris-

Pratt (KMP) algorithm maintains a partial match table to prevent the reprocessing of

already matched characters. The partial match table is updated whenever a mismatch

occurs, allowing the algorithm to skip ahead to the next possible position where a

match can possibly occur, thus eliminating backtracking. The construction of the

match table for pattern p occurs in O(m) time and the scanning of the text t requires
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O(n) time for an overall complexity of O(m+n). Given the obvious assumption that

m ≤ n, the overall time is simplified to O(n).

The distinction of creating the first string matching algorithm to achieve sublinear

average time complexity belongs to Boyer and Moore [35]. The success of the Boyer-

Moore algorithm is the innovative revelation that the end of a string (the suffix)

should be used to scan for matches rather than the first because it allows more of

the text to be skipped. Matches continue back to front until the first character of

the pattern is matched. Similarly to the KMP algorithm, a preprocessing table based

on the pattern is constructed in linear time O(m), and is accessible in constant time

O(1). The overall worst case performance of the algorithm is O(m + n) when the

pattern does not occur in the text (p 6⊂ t), and O(mn) when the pattern does occur

in the text (p ⊂ t).

2.2.2 Hashing Algorithms

The Rabin-Karp algorithm is a solution to the exact string matching problem that

employs hashing to find instances of pattern p in text t [36]. The hash function

converts a given string to an integer, taking advantage of the fact that the same string

will be hashed to the same number as the pattern p. The challenge is dealing with

collisions where a non-matching string hashes to the same index as p. Collisions must

be resolved by comparing the entire strings. However, the selection of a reasonably

good hash function ensures collisions will be infrequent. For practical purposes, this

requires the generation of large prime numbers for use in the hashing. The R-K

algorithm is best suited to multiple pattern matching and hence is commonly used

in plagiarism detection. The worst case time complexity is O(mn) like many string

matching algorithms.
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2.2.3 Automata Algorithms

Another class of algorithms capable of achieving sublinear average time complexity

are those that make use of factor automata. The automata are data structures that

can identify all factors of a given pattern p. The Backward-Oracle-Matching (BOM)

algorithm from Allauzen, Rochemore, and Affinot is one of the more efficient exam-

ples, particularly for long patterns (large m) [37]. In an attempt to combine the best of

both worlds, Faro and Lecroq introduced the Extended-Backword-Oracle-Matching

(EBOM) fast string matching algorithm [38]. It is a variant of the Boyer-Moore

algorithm with the suffix lookup table replaced with an automata based oracle like

BOM. The oracle is a deterministic finite automaton that accepts all of the suffixes

of a word. The automaton is built with the reverse of the pattern p in O(m) time

and searches with a sliding window moving from right to left, hence it is a backward

oracle match. The worst case time complexity is quadratic O(mn) like Boyer-Moore,

but the average time complexity is O(n logm/m).

2.2.4 Suffix Trees

A suffix tree is a data structure that represents all of the suffixes of a string. It is

similar to a trie and has applications in many string algorithms, including the exact

string matching problem. Ukkonen provides a linear time tree construction algorithm

[39]. Each trie in the tree is an automaton as in the Aho-Corasick algorithm. Suffix

links take the place of the failure transitions in the automaton. Each node in the

tree corresponds to a state in the automaton. The construction proceeds left to right

over the text t. States with at least two transitions are branching, states with one

transition other than root are implicit, and nodes with no transitions are the leaves.
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2.3 Endogenous Viruses

Viral genomes are among the most rapidly evolving in nature. This allows them

the flexibility to keep one step ahead of host immune systems, quickly adapting and

crossing interspecies boundaries. Such rapid mutation gives researches the opportu-

nity to observe evolution in nearly real-time by sequencing viral isolates. However, it

becomes much more difficult to track viral evolution across great expanses of time.

Fortunately, viruses tend to leave behind markers of their passage in the genomes of

the hosts they infect. These molecular “fossils” can be analyzed by viral archaeologists

to gain a greater understanding of both viral and host evolution.

2.3.1 Virology

In one of the seminal papers in the field of virology, Baltimore proved to be incredibly

prescient considering the limited amount of data available at the time [40]. He

provided a group-based classification system of viruses derived from the nature of their

genetic material. Class I consists of all viruses with double-stranded DNA (dsDNA)

and Class II encompasses those with single-stranded DNA (ssDNA). The genomes

of these DNA viruses can be directly transcribed by the host cell machinery. Class

III and Class IV consist of double-stranded and single-stranded RNA (dsRNA and

ssRNA, respectively). Class IV viruses require a template strand to be synthesized

before transcription can occur. Class V contains the negative sense ssRNA viruses,

with single strand genomes that are the inverse of mRNAs, and therefore must carry

an intermediate RNA polymerase to enable transcription of mature mRNA molecules.

Class VI includes RNA viruses that encode their genomes via a DNA intermediate,

now known as retroviruses, but previously known as tumor viruses due to their
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association with cancer. A Class VII for pararetroviruses (e.g., hepatitis B) was

later added, but otherwise Baltimore’s system of classification has required very little

modification.

2.3.2 Endogenous Retroviruses and Nonretroviruses

In one of the early treatments of this topic, Katzourakis and Gifford provide a rather

exhaustive analysis of endogenous viral element integration in animal genomes, both

retroviral and nonretroviral [14]. They performed in silico analysis (i.e., BLAST

searches) in a wide array of animal and viral genomes. Homologous sequences were

observed between DNA, RNA, and RT viruses, within animal hosts ranging from

insects to vertebrates, including mammals and birds. Both nuclear and cytoplasmic

replicating viruses were covered. Phylogenetic analyses were also performed with

wide ranging results. The function of EVEs and whether they are advantageous or

deleterious to the host remained unanswered.

Noting that 8% of the human genome is composed of endogenous retroviral ele-

ments, Horie et al. set out to determine the extent to which nonretroviral elements are

also endogenized [41]. They found that nonsegmented negative-sense RNA viruses

such as bornavirus and ebolavirus also have this potential. Sequences homologous

to the bornavirus nucleoprotein (NP) gene were identified within several species of

mammals, including humans and other primates, rodents and even elephants. The

phylogenetic analysis indicates that these elements can be traced back to insertions

that occurred more than 40 million years ago (Mya). These results indicate that not

only are nonretroviral endogenizations possible, but they have taken place numerous

times throughout evolutionary history.
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In a related work by Horie, et al., the authors perform a comprehensive search

for endogenous bornavirus-like elements (EBLs) [16]. Despite being nonsegmented

-ssRNA viruses that replicate their genomes in the cytoplasm, bornaviruses can cause

persistent infections in the nuclei of host cells. This means their mRNA transcripts

also find their way into host genomes via endogneous germline integrations just like

their retroviral counterparts. They provide a review of the presence of EBLs in

eukaryotic genomes, including invertebrates. In terms of host function, they note

the existence of endogenous nucleoprotein sequences in mice impacting the murine

leukemia virus, the remnants of open reading frames in primates, and the fragments

of env genes in endogenous retroviruses that resulted in the development of placental

mammals. Experiments were even conducted to insert modern bornavirus DNA into

cultured mouse cells, albeit with limited success.

Lee et al. also considered the ERV-L mutation that gave rise to the mammalian

placenta [15]. The authors conducted a study tracking ERV lineage back to 104-110

Mya. Other sequences, selfish genetic elements (SGEs), are found inserted within the

ERV sequences. For example, the ERV-L endogenous retroviral gene has homologs in

the chromosomes of four mammalian species, including boar, horse, chimpanzee, and

human (on chromosome 17). The study included multiple bioinformatics methods,

such as BLAST, MUSCLE, Needle, and RepeatMasker.

Belyi, Levine, and Skalka focused on the endogenous viral elements derived from

-ssRNA viruses (group V), such as bornavirus and ebolavirus, in a similar study

[5]. Previously, only retroviruses (group VI) were known to exist in animal genomes

(ERVs). The authors identified at least 80 nonretroviral elements (ENRVs) within the

genomes of 19 vertebrate species. Most of the elements originated from viruses that

cause neurological disease (bornavirus) or hemorrhagic fevers (ebolavirus). Based
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on the tell-tale signs of poly-G caps and poly-A tails surrounding the elements,

they were identified as former viral mRNA transcripts that had been endogenzed,

likely with the help of the reverse transcriptase enzyme from retrotransposons such

as long interspersed elements (LINEs). The estimates of the number of integrations

are admittedly low due to the limitations of the bioinformatics techniques applied in

the analysis.

In a recent review paper, Aiewsakun and Katzourakis explain that endogenous

viral elememts from all seven viral groups from the Baltimore classification have

been identified within the genomes of eukaryotic organisms [4]. They provide several

different dating techniques to trace viral-host interaction routes throughout evolution.

This can be accomplished by comparing orthologs or paralogs, assuming the host

neutral mutation rate, and augmentation with geographic data from known host

migration patterns.

2.3.3 Potential Functions of Endogenous Viruses

Aswad and Katzourakis later turned their attention to one of the potential functions of

EVEs, virally derived immunity, asserting that EVEs incorporated into the germline

and then passed to progeny via horizontal gene transfer are chronicles of the ongoing

battle between viruses and hosts [17]. Recent advances in genomic sequencing and

bioinformatics technology make it possible to properly study this evolution and led

to increased opportunities to study EVEs in silico. The paper focuses on functional

viral derived genes with intact open reading frames in multiple species. Those that

may act as inhibitors of viral infection are dubbed EVE-derived immunity genes or

EDIs. The genes are identified in several animal species, including fruitfly, mouse, cat,

sheep, and bat. The EDI gene functions are categorized as either blocking viral entry



18

into the cell (glycoprotein) or disrupting viral replication (gag genes) and immune

system anticipation (super antigen or sag genes). The functions of many other EVEs

remain unknown.

In addition to EDIs, another potential function of EVEs is the encoding of small

interfering RNAs (siRNAs) or micro RNA (miRNAs), one of the emerging areas

of study in genetics. They appear to be derived from pseudogenes (genes that

have lost their regulatory sequences) or other noncoding regions. According to

Kalyana-Sundaram et al., the traditional model of post-transcriptional modification

may be incomplete [18]. The model holds that introns are excised from RNA tran-

scripts, leaving only the exons to be spliced together in various combinations by

the spliceosome to form mature mRNA transcripts. However, endogenous siRNA

or miRNA binding sites may provide another level of control. Analysis of miRNA

recognizing elements (MREs) in pseudogones has been limited by their similarity to

analogous sequences encoding genes. The authors provide an analysis of pseudogene

transcription from 280 normal tissue samples and thirteen cancerous ones. They found

pseudogene expression to be prevalent, even ubiquitous, and in some cases possibly

cancer-specific. They propose a connection to the recently discovered competitive

endogenous RNA (ceRNA) networks in the transcriptome. Although this work did

not cover viruses specifically, EVEs could be potential ceRNAs given the relationship

between retroviruses and cancer (e.g., HTLV).

The miRBase created by Kozomara and Griffith-Jones is intended to be the pri-

mary online repository for micro RNA sequences and annotation [42]. The latest ver-

sion from 2014 contains 17,000 sequences from more than 140 species. The database

is searchable by sequence, experiment, tissue, and stage. The project objectives are

to be human readable and computer parsable.
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Sagan and Sarnow determined siRNAs to be involved with antiviral mechanisms,

establishing their role in silencing the expression of viral genes and therefore conferring

immunity to a host cell [43]. Such RNAs are evolutionarily conserved and triggered

by the presence of double-stranded RNA (dsRNA), which is often viral. Hence, they

are cleaved by the DICER complex and bind complementary mRNA transcripts to

prevent translation, effectively silencing the corresponding gene. This process had

previously been shown to provide immunity in plants and invertebrates, but this was

the first confirmation of the same function in mammals.
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CHAPTER 3

METHODS

3.1 Species Selections

Exhaustive identification of all potential endogenous viral elements in a particular

genome is challenging due to the considerable size of vertebrate genomes and the

rapid mutation rate of viruses. Here a sample size is generated by subdividing several

viral genomes into small fragments of only 18 base pairs, or about the size of a siRNA

sequence, with a step size of three base pairs. All of the chromosomes of a given host

genome are then scanned for all occurrences of each viral fragment sequence. The

primary objective of this research has been to assemble an initial database containing

a representative sample of all small endogenous viral elements across multiple viruses

and multiple host genomes.

The focus has been on viruses from groups V and VI of the Baltimore classification.

The lentiviruses HIV-1 and SIV were selected to represent the retroviruses. These

viruses were chosen because their genomes have been well studied and endogenous

retroviruses are already known to encompass 8% of the human genome. In terms of

potential clinical importance, there are also primates known to possess immunity to

SIV, such as the sooty mangabey [44].

Family Filoviridae is represented in this study by the infamous Zaire ebolavirus,

both because of the attention drawn by the recent 2014 outbreak in West Africa,



21

and its presence as a blood-borne pathogen. For a nonretrovirus to be endogenized,

its genome or the mRNA produced from it must be present within the nucleus of a

sperm or egg cell while a retrotransposon is active (assuming that the aforementioned

ENRV insertion hypothesis is correct). Such an event seems much more likely to occur

in the presence of a virus that can be sexually transmitted and is therefore already

in the vicinity of the gonads where germ cells reside. The morbillivirus responsible

for measles infections was selected as another representative from group V (-ssRNA

viruses) as something of a control against the ebolavirus, as it is known to be highly

infectious to humans but not known to be sexually transmitted.

The Influenza A (H7N9) virus from the Orthomyxoviridae family was the final se-

lection from group V due to the long, complex history between influenza and humans.

The influenza genome is segmented, whereas the ebolavirus and morbillivirus genomes

are not. The H7N9 genome is from a 2013 outbreak of H7N9 in China. The virus is

known to infect birds as well as mammals (the A is for avian). Particularly virulent

strains emerge when genetic recombination occurs between avian and mammalian

versions of influenza [45].

The set of host genomes selected for inclusion in this study reveals a strong

primate bias. The first on the list was the GRCh38 version of the human genome,

consisting of 22 autosomal chromosomes along with the sex chromosomes X and Y.

The genomes of the nearest living genetic relatives of Homo sapiens have also been

analyzed, including the chimpanzee (Pan troglodytes), the gorilla (Gorilla gorilla),

the orangutan (Pongo pygmaeus), and the gibbon (Nomascus leucogenys). The most

recent common ancestor of humans and chimpanzees dates to at least 13 million years

ago or as early as 4 Mya.

In order to provide more inclusive coverage of living systems, several of the model
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organisms from more distant branches of the current phylogeny are also included.

Arguably the best studied member of class Mammalia is the house mouse, also known

as Mus musculus. The GRCm38.3 version of the mouse genome was the most recent

at the time of this writing. Venturing away from class Mammalia and even phylum

Chordata, within the Ecdysozoa are the phyla Nematoda and Arthropoda. Drawn

from them are the genomes of the nematode worm C. elegans and the pioneering

fruitfly of T.H. Morgan’s lab, Drosophila melanogaster.

Representing the other two eukaryotic kingdoms Viridiplantae and Fungi are the

model genomes of the thale cress plant, Arabidopsis thaliana, and the haploid yeast

Saccharomyces cerevisiae. The E. coli bacteria is the representative model organism

for all prokaryotes.

The work of Pourrut et al. shows that fruit bats may act as reservoirs for the Zaire

ebolavirus [46]. The black flying fox or Pteropus alecto is known to be a host for the

Ebola and Nipah viruses, both from group V of the Baltimore classification, and the

SARS virus from group IV (+ssRNA) [47]. The black flying fox genome has been

sequenced but not annotated, meaning that the raw sequencing data are available as

scaffold files, but have not been compiled into chromosomes [48]. Nevertheless, the

number of viral matches for the flying fox is of interest from an emerging infection

point of view, and so have been included in the study.

3.2 Computational Approach

Several software components were designed and implemented to conduct this study.

The first component is an application for scanning the NCBI FTP server and down-

loading genome files, called the FTPScanner. The second is a massively parallel
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string search tool called the GenomeScanner, and the last a set of tools for storying

and analyzing the output data called the MatchDatabase.

3.2.1 FTPScanner

One of the common places where genomes are stored for bioinformatics research is

on the NCBI FTP site.1 The files are freely available for any industrious coder

to download. The two primary file formats are FASTA (.mfa or fa extension) and

Genbank (.gbk extension). The FASTA format is the simplest, consisting of a single

comment line beginning with a greater than character followed by a description. All

other lines are sequences of nucleotides or amino acids. Genbank files contain more

detailed information, including annotations, but are more complex and therefore more

difficult to parse.

The contents of the FTP server are arrayed in a sprawling filesystem with many

directories and subdirectories. In order to simplify the navigation of this hierarchy, the

first software component constructed for this project was the aptly named FTPScan-

ner and is implemented in the Java language. Its purpose is to scan the contents of the

FTP server for genome files in FASTA and Genbank format and download or update

the files on the local filesystem if desired. Upon encountering a new species, the code

performs an automated Wikipedia search to fetch pertinent information about the

organism such as kingdom, phylum, class, etc., and then stores the information in a

JSON file database, along with the paths to the genomic files.

Once the required genomic data have been acquired from the NCBI FTP server,

they can be passed to the next component, the genome scanner.

1ftp://ftp.ncbi.nlm.nih.gov/genomes
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3.2.2 GenomeScanner

The primary component of the software framework implemented for this project is

the GenomeScanner, a massively parallel string parser and searching engine. Built to

be as fast as possible, it is implemented in the C++ programming language. Linux

is the target operating environment but the source code could certainly be compiled

for another platform.

The user interface is command line driven with an input argument pointing to the

data file path where the genome files are stored on the filesystem (-fp). The second

input argument is a text file containing a line delimited list of viral genome files in

FASTA format (-vf). The third argument is a similar list containing all of the host

genome files to be searched (-hf).

Table 3.1: Viral Genome Sizes
Viral Genome Size (bp)

Human immunodeficiency virus 1 9181
Simian immunodeficiency virus 9519

Zaire ebolavirus 18922
Measles morbillivirus 15895

Influenzavirus A (H7N9) 13441

The scanner iterates over each viral genome file in the list once for each host

genome file and creates a new instance of the GenomeScanner class for each file pair.

The viral genomes are read directly into memory as they tend to be comparatively

small. Table 3.1 indicates the sizes of each of the viral genomes included in this study.

After reading the viral genome into memory, the Scan method iterates over the

viral sequence and generates subsequences of size k where k is the length of the small

endogenous viral elements to be identified. The default size of k is 18 but any desired

integer value can be specified from the command line using the -sub argument. There
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1: GGTCTCTCTGGTTAGACC

2: CTCTCTGGTTAGACCAGA

3: TCTGGTTAGACCAGATCT

...

n-2: AATAAAGCTTGCCTTGAG

n-1: AAAGCTTGCCTTGAGTGC

n: GCTTGCCTTGAGTGCTTC

Figure 3.1: Example of the first three and last three viral subsequences of the HIV-1
virus given parameters of k=18 and s=3.

is also a step size parameter s that configures the scanner to step ahead by s characters

(nucleotides) when generating the next subsequence. The default value of s is three,

but other values can be specified from the command line with the -step argument

provided that s is less than k. Figure 3.1 illustrates an example of this technique by

indicating the first three and the last three subsequences generated from the HIV-1

genome. The default step size of three was selected due to the large number of host

genomes and viruses selected for the study.

The host genomes are vast compared to the tiny viral ones. The primate genomes

(human, chimpanzee, gorilla, and orangutan) all contain approximately 3×109 base

pairs. This is not an unreasonable amount of data to be read into memory on any

machine with sufficient memory, but not without sacrificing some parallel processing

capabilities. For that reason, the GenomeScanner reads the host genome files in

discrete blocks. Host files are generally stored as one file per chromosome because

a chromosome is simply one continuous DNA molecule. The blocks are measured in

number of lines of a FASTA file. The block size defaults to one hundred thousand

(1×105) but can be specified from the command line via the -bs argument. Since a

typical FASTA line has a length of 70 characters and each character consumes one
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byte of space, the average size of a host genome block is about seven megabytes.

With the input data properly subdivided into viral subsequences (the proverbial

needles) and host genome blocks (the corresponding haystacks), the actual substring

matching can be performed. This problem is essentially an instance of the online

exact string matching problem. An excellent review of the problem space has been

provided by Faro and Lecroq [49].

The GenomeScanner contains implementations of several algorithms designed to

solve this problem. These include preprocessing algorithms such as the Knuth-

Morris-Pratt (KMP) algorithm [34] and the Boyer-Moore (BM) algorithm [35]. Also

included is the Rabin-Karp (RK) randomized algorithm [36] and an implementation

of Ukkonen’s online suffix tree construction algorithm [39]. Preliminary benchmarks

indicated that the implementation of Faro and Lecroq’s extended backward oracle

match algorithm (EBOM) [38] yielded the fastest search results within the current

architecture. The string matching algorithm to be applied can also be specified from

the command line using the -sa argument. The EBOM algorithm is the default

option due to the performance.

Even the most efficient string matching algorithm would be limited by the input

size. The time complexity of this particular problem has four determining factors: (1)

the size of the host genome h, (2) the size of the viral genome v, (3) the subsequence

length k, and (4) the subsequence step size s. Solving this problem would be quite

time intensive in a strictly sequential context, but fortunately it can be considered

embarrassingly parallel as little or no communication is required between concurrently

running tasks. An overview of the architecture is given in Figure 3.2.
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Figure 3.2: GenomeScanner Parallel Architecture.

The parallel architecture of the GenomeScanner engine is greatly inspired by the

Java programming language. First, there is a Runnable interface with a virtual Run

method to be implemented by all implementing classes.

An abstract class StringSearch encapsulates the data and methods for each string

search, including the block to be searched, the subsequence to be matched, the block

size, beginning and end, and a string identifier for each of the source files, e.g., the

host genome and viral genome file names. It also implements the Runnable interface,

which simply invokes the Search method. The infrastructure is intentionally generic

so the code can easily be extended to any alphabet or search space (e.g., amino acid

sequences or written text). Each subclass of the StringSearch class implements

a different string matching algorithm when it overrides the Search method. Each

implementation is responsible for updating the vector containing the indices of all

matches.

The StringSearchFactory class is responsible for generating instances of the ap-

propriate StringSearch subclass based on the selected algorithm, BOMStringSearch
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Figure 3.3: UML diagram of StringSearch class hierarchy.

for example (Figure 3.3).

Parallelism in the code is implemented (or not) via the thread interface class

ThreadInt. Each thread consists of a named identifier, a Runnable target object

and a boolean running status. There are three implementing subclasses of the

thread interface, a SimpleThread, which simply executes the code sequentially and

returns (sequential), a PThread implemented with Linux pthreads, and MPIThread

implemented with the Message Passing Interface (MPI). The pthread and the MPI

versions of the application are compiled separately as different dependencies are

required (MPI programs are executed with mpiexec). The pthread version is intended

for single machines with multiple cores, with each thread running on one processor

core. In the MPI implementation, the zero rank (root) process acts as a delegator,

passing data to the other worker nodes with nonzero rank to search each block for

subsequence matches.

The GenomeScanner program generates an abundant number of threads. In order

to avoid the overhead of frequent creation and destruction of threads, the thread pool

design pattern has been implemented in the ThreadPool class to allow the reuse of

thread objects (Figure 3.4).

As the GenomeScanner is reading viral subsequences from viral genomes and blocks
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Figure 3.4: UML diagram of Threading hierarchy.

of genomic data from host genomes, it associates each subsequence i and block j

with a thread from the thread pool and invokes a search with the appropriate search

algorithm. However, it is not sufficient to search for the viral subsequence alone but

also the complement. Sequences are saved in FASTA or Genbank files just as they

would be read in the 5’ to 3’ direction. In other words, the way they would be read

from mRNA molecules during translation. This allows researchers to search for start

and stop codons, to find expressed sequences or pseudogenes within the genome. In

the case of endogenous viral elements, it cannot be known whether the mRNA or the

viral genome itself was inserted into the host genome. Thus, each viral subsequence

actually results in two search threads, one for the 5’ to 3’ direction, and another for

3’ to 5’ (complementary). Figure 3.5 provides an example sequence.

To ensure that there are no dependencies between running search threads, the

threads should not need to report their results back to the master node. To that end,

each thread is responsible for writing its own data to disk. The StringSearch class is

serializable to the JSON file format by implementing the Jsonizable interface class.

When a thread finishes its search and if it has found any matches, it will generate

5’-GGTCTCTCTGGTTAGACC-3’

3’-CCAGAGAGACCAATCTGG-5’

Figure 3.5: Example of Complementary Viral Subsequences.
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its own file name with the JsonFile method and write its contents to it with the

Jsonize method. An example of the output is given in Figure 3.6.

The GenomeScanner also maintains a log file inspired by the log4j logger so that

the process can be monitored while it is running. The logs and data are written to

the file path specified by the -fp argument provided to the GenomeScanner when the

executable is launched.

{

"matches": [6407392],

"block": 1,

"begin": 1,

"end": 100311,

"dir": "5",

"textID": "NC_004354_chrX",

"pattID": "NC_001498",

"pattern": "CCGAAGTTGGCCTTGTCG"

}

Figure 3.6: JSON output from a match within the X chromosome of Drosophila
melanogaster and the Measles morbillivirus.

All of the match data for this project were collected by running the GenomeScanner

across all five viral species and twelve host genomes on a Beowulf cluster with four

nodes. Command lines for each host, virus pair (60 pairs) were generated and

executed. The data were logged to the JSON flat file database.

A string search algorithm benchmark was performed on the Beowulf cluster with

the parallel version of the GenomeScanner. The host input file was the human

chromosome 22 and the viral input file the HIV-1 virus. Chromosome 22 consists

of about 50 million base pairs and the FASTA file is divided into six blocks of 100K

lines. The HIV-1 genome is a little more than nine thousand base pairs. There are

ten SEVE matches from HIV-1 within chromosome 22. The five algorithms included
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in the benchmark were brute force, Knuth-Morris-Pratt, Boyer-Moore, Rabin-Karp,

and Backward Oracle Match. The brute force algorithm was implemented using the

find method of the string class in the C++ standard template library.

Table 3.2: String Algorithm Benchmark Results

Algorithm Abbreviation Time (min)
Brute Force BF 32.470
Rabin-Karp RK 30.080

Knuth-Morris-Pratt KMP 26.600
Boyer-Moore BM 10.972

Backward Oracle Match BOM 10.965

The results are summarized in Table 3.2. The Boyer-Moore and Backward Oracle

Match algorithms have approximately the same running time and are both well ahead

of the other string matching algorithms.

3.2.3 MatchDatabase

The third and final component of this software framework is the MatchDatabase.

Not quite as structured as the other two packages, it is a collection of data process-

ing scripts implemented in the Python programming language. This decision was

motivated by the desire to take advantage of the excellent Biopython bioinformatics

package developed by Cock et al. [50], and also the scipy and pandas scientific

computing packages.

The first priority was to cross reference the output from the GenomeScanner

with the NCBI database to determine if the SEVE matches are contained within

any significant genes or noncoding regions within each host genome. This requires

performing a BLAST [28] search for every subsequence match. The first attempt

at this was to perform an online search using the NCBIWWW.qblast method from
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the Biopython package. This proved prohibitively slow due to the large number of

matches.

NCBI databases can be downloaded using the update blast db command that

comes bundled with the BLAST+ toolkit [51]. Using this function, the nt (nu-

cleotide), nr (non-redundant), and refseq databases were downloaded to the filesys-

tem on the Beowulf cluster. The executables of the BLAST+ package were built

locally on the system as well. Python code was developed to wrap the calls to

the blastn command and capture the output. The results are returned in XML

format, and additional code was developed to convert the XML data into JSON

format and update the files in the MatchDatabase. The mpi4py package is an

MPI implementation for the Python language [52]. The resulting seveBlasterMPI

program was capable of running multiple BLAST searches in parallel for match, filter

the data to those entries that pertained to the specific host and virus, and update

the JSON files in the MatchDatabase.

BLAST search results for viral sequences contained the viral isolate from which

the sequence was derived but lacked the actual viral genes. The viralGenomeReader

program was developed to read the viral entries from the MatchDatabase and the

corresponding Genbank file for each virus. Combining the annotations from the

Genbank file with the match data allowed the actual location of the match within

the viral genome to be determined, such as the nucleoprotein (NP) or glycoprotein

(GP). Once the MatchDatabase entries were completed, the data could be analyzed.

The matchDataWriter program is the last major component of the MatchDatabase

Python package. The role of this program is to read all of the SEVE matches, viral

gene Genbank data, and BLAST search results from the database and write the

results to one comprehensive data table. The only currently supported format is
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comma separated values (CSV). This program also calculates the GC ratio of the

sequence and can integrate the results with chromosomal band locations from the

UCSC database.
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CHAPTER 4

RESULTS

4.1 Overview

The final version of the MatchDatabase contains 47,480 total records. These consist

of the verified exact matches of 18 base pair in length, derived from the five viral

genomes across the twelve eukaryotic genomes. Since the step size parameter was

set to 3 base pairs in the step parameter passed to the GenomeScanner, these data

represent one third of all possible SEVE sequences from each virus.

The reduced sampling was deemed necessary, as even the smallest virus (HIV-

1) contains over 9,000 base pairs requiring a total of 18,000 subsequence searches

through every host genome to consider all possible sequences. Reducing the sample

size enabled the collection of data across several viruses and numerous hosts. The

total run time required to scan the entire human genome for every possible 18 bp

SEVE match from the HIV-1 virus (step size of one) with the existing algorithm is

45 hours, so a step size of three reduces that time to 15 hours. The step size of one

results in 2,745 unique SEVE sequences while the step size of three produces 1,450.

This means that one third of the run time yields nearly one half of all sequences.

The data are first summarized by the number of matches from each virus within

each species. In order to be properly compared, the data must first be normalized

by the size of the host genome, as it is much more probable for a primate genome
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with six billion nucleotides to share homology with a random viral sequence than the

genome of a haploid yeast with only 120 million.

The haploid yeast S. cerevisiae genome contained no viral matches, and the E.

coli bacteria only two, one from the Ebolavirus and another from SIV. Therefore,

these two organisms will be omitted from the following summary figures and tables.

The number of SEVE matches in each host species are normalized by length (18

in this case). The host genome sizes are normalized by million of base pair (Mbp).

In this way, the number of matches can be compared between genomes.

Figure 4.1: Ratio of SEVE sequences to host genome sizes by host and virus species.

The normalized results are summarized by the bar chart in Figure 4.1. The data

set contains an obvious outlier. The mouse (Mus musculus) genome and the HIV-1

virus have a SEVE homology ratio of nearly 65, well above the next closest ratio of

close to 20 between the mouse and HIV-1 virus. Further data mining revealed that

the sequence 5’-AGAGAGAGACAGAGACAG-3’ alone accounts for 5,716 SEVE matches
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between the mouse and HIV-1 genomes. BLAST search data confirm that this

sequence is very prevalent in the mouse genome. The complementary sequence

3’-TCTCTCTCTGTCTCTGTC-5’ represents another 2,873 of the 9,672 total matches

between the mouse and HIV-1 genomes. The two sequences together comprise 88%

of the matches. Further analysis of the sequences will be included later, but for now

they will be omitted so that the mouse and HIV-1 data are more comparable to the

other sets.

Figure 4.2: Ratio of SEVE sequences to host genome sizes by host and virus species
with Mouse / HIV-1 outlier excluded.

The normalized data with the Mouse / HIV-1 outlier excluded are represented

in Figure 4.2. After filtering the anomalous sequence, the data become more readily

comparable. The noteworthy ratios are the Ebolavirus within the chimpanzee and

mouse genomes, HIV-1 within the fruitbat, and SIV within the nematode genome.

The SEVE matches will be further subdivided and analzed by the viral genes that

contain them in the following sections.
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4.2 Ebolavirus

4.2.1 Overview

The Zaire ebolavirus is a filovirus (filo meaning filamentous) named for a tributary of

the Congo river known as the Ebola. The virus is 970 nm long and 80 nm in diameter.

The genome encodes seven viral proteins in the order described in Table 4.1.

Table 4.1: Ebolavirus Gene Products
Name Product Size (bp)
NP Nucleoprotein 2220

VP35 Polymerase cofactor 1023
VP40 Matrix protein 981
GP Glycoprotein precursor 1095

VP30 Transcription cofactor 867
VP24 Membrane protein 756

L RNA polymerase 6639

The lifecycle of the Ebolavirus, like many viruses, consists of seven stages. These

are attachment to the host cell membrane, gaining entry to the cell cytoplasm,

transcription of the viral genome into messenger RNAs, translation of mRNAs into

viral proteins, replication of the viral genome, the assembly of genomes into proteins

into new virions, and finally the exit of mature virions from the cell.

The coding regions are flanked on either side by the 3’-OH leader and the 5’ trailer

respectively, as it is a minus strand (-ssRNA) virus. The virus is characterized by

having two or three gene overlaps of VP35/VP40, GP/VP30, or VP24/L [53].
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The glycoprotein (GP) facilitates attachment to the host receptors DC-SIGN and

DC-SIGNR [54]. Phosphatidyl serine on the viral membrane surface then binds to

the HAVCR1 cell receptor, inducing the cell to initiate apoptic mimicry by signal

transduction, and permitting the virion to enter the cell via macropinocytosis.

The RNA polymerase from the L gene binds to the 3’-OH leader of the viral RNA

transcribes it into an mRNA complete with 5’ cap and 3’ poly-A tail. The glycoprotein

is cleaved by the furin enzyme in the host cell into GP1 and GP2 proteins. The furin

enzyme, also known as the paired basic amino acid cleaving enzyme (PACE), is a

calcium-dependent serine endoprotease expressed in the cells of many tissue types,

including neuroendocrine, liver, gut, and brain. The human FURIN gene is found on

chromosome 15 [55].

GP1 promotes fusion of the viral membrane with the vesicle membrane by in-

teracting with host NPC1, allowing the ribonucleocapsid to enter the cytoplasm.

NPC1 (Niemann-Pick disease, type C1) is a transmembrane protein responsible for

mediating cholesterol transfers in mammalian cells. The human version is located on

chromosome 18.

Viral genome replication can begin once sufficient nucleoproteins have been trans-

lated to encapsulate the newly produced genomes. Viral genes are typically organized

by the quantity of a protein product required. In Ebola, for example, many more

copies of the NP protein are required than of the L polymerase. Therefore, the NP

gene is the first after the 3’ leader and the L gene is the last before the 5’ trailer.

The VP35 protein is a polymerase cofactor, involved in host immune system

evasion, specifically by inhibiting the RIG-I-like receptors of the host cells [56]. The

encapsulated virions then interact with the matrix protein (VP40), and exit the cell

by budding with the aid of host ESCRT protein complexes [57].
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The VP30 zinc-binding protein is necessary for activation of viral transcription

and is associated closely with the nucleocapsid complex [58]. VP24 promotes viral

survival by suppressing the the production of alpha/beta interferon (IFN-α/β) [59].

The role of the 5’ trailer sequence of the Ebola genome is not completely understood.

However, transcripts with the 5’ trailer deleted have been shown to be deficient in

replication, indicating that the trailer is important for viral genome replication [60].

4.2.2 Ebola SEVEs by Species

Grouping the number of ebolavirus matches by host chromosome and normalized

by the host chromosome size (Mbp) as a measure of relative homology (Figure 4.3)

reveals that the chimpanzee and even more so the mouse contain a relatively high

degree of homology compared to the other species.

According to a study of ebolavirus infections in 47 different mouse lineages by

Rasmussen et al., the mice displayed a range of symptoms from full hemorrhagic

fever to none at all [61]. Those that developed the lethal fever exhibited low levels of

activity for the Tie1 and Tek genes that increased the permeability of their membranes

and resulted in significant inflammatory responses. Importantly for this study, the

mouse adapted version of the ebolavirus (MA-EBOV) does not lead to the fatal

syndrome in lab mice. That includes GRCm38.3 genome from which these data are

produced. Similarly, not all humans are susceptible to the ebolavirus hemorrhagic

fever.

A study by Bermejo et al. indicates that both chimpanzees (Pan troglodytes) and

western gorillas (Gorilla gorilla) are susceptible to infection by the ebolavirus and

indeed the disease has resulted in sharp declines in their numbers in Gabon and the
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Congo [62]. The mortality rates could be as high as 95% for gorillas and 77% for

chimpanzees.1

Figure 4.3: Zaire ebolavirus SEVE match count by host name and chromosome.

The most frequently occurring sequences in the chimpanzee are on chromosome 1

and the Y chromosome. The top two sequences in chromosome 1 are 5’-AAAAATTTAAA-

AATAAAT-3’ and 3’-TTTTTAAATTTTTATTTA-5’, which occur 206 times and 466 times,

respectively. The two sequences are also complementary. The 5’ to 3’ sequence is

located within the 5’ header of the Ebola genome. BLAST searches returned no

significant results for the 5’ to 3’ sequence, however the 3’ to 5’ sequence was found in

the CAMK2N1 gene for the calcium/calmodulin-dependent protein kinase II inhibitor

1 protein on chromosome 1. The sequence can be found on every chromosome in the

Pan troglodytes genome.

1http://www.projetogap.org.br/en/noticia/ebola-killed-third-gorillas-chimpanzees-world
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The same sequences are also the most frequent Ebola matches in the human

genome, with 92 matches for the 5’ and 252 matches for the 3’ to 5’ sequence.

3’-TTTTTAAATTTTTATTTA-5’ can be found in the CECR2 gene in humans, a cat eye

syndrome candidate. The gene encodes a protein containing a bromodomain involved

in chromatin remodeling that may also play a role in DNA damage response [63].

Another often occurring sequence is 5’-TATTGAGCAGTATTGAAA-3’ with 57 matches

on human chromosome 15. The sequence comes from the VP24 gene for the Ebola

membrane protein. BLAST searches indicate that the sequence occurs only in non-

coding regions.

Other notable Ebola SEVE matches in the human genome include 5’-ATTATTTAA-

AATTCTTTC-3’ in the TRIM37 motif, 5’-AAAACAAAACTGATCTTT-3’ in the GRIN2B

glutamate receptor on chromosome 12, and 3’-TTACAAAGATGGCCTTAG-5’ in the PKC-

potentiated PP1 inhibitory protein (PPP1R14A gene) on chromosome 19.

The most frequent match for the chimpanzee Y chromosome is 5’-TCAACCACCACCT-

GGACC-3’ with 14 matches. The sequence is located within the VP35 polymerase

cofactor gene in the Ebola genome. The sequence is also found on the human Y

chromosome, within the inverted repeat IR2 of the Y palindromes P1, P2, and P3.

The now familiar 5’-AAAAATTTAAAAATAAAT-3’ and 3’-TTTTTAAATTTTTATTTA-5’

sequences also make numerous appearances within the mouse genome, occurring 40

and 157 times each. The 3’ sequence is found in the RRNAD1 gene for ribosomal

RNA adenine dimethylase located on chromosome 1.

The SEVE sequence 5’-TGAGTTCCAGGCCAGCCT-3’ from the Ebola VP35 protein

occurs an incredible 1,807 times in the mouse genome. BLAST searches find it to

be located within the LOC105246594 noncoding RNA region. Another commonly

matched sequence with 100 total matches is 3’-CTGCTCCTGCTGCTCCTG-5’ from the
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Ebola nucleoprotein gene, also located within the CXCL14 gene that encodes the

chemokine (C-X-C motif) ligand 14. This protein is involved in immunuregulatory

and inflammatory responses, and is related to the Akt signalling pathway [64]. The

human version is located on chromsome 5.

An additional sequence from the nucleoprotein is 5’-GAAAAAGAGGCCATGAAT-3’,

found 68 times in the mouse genome. BLAST results located it within the MAP3K13

gene that codes for a member of the serine/threonine protein kinase family that can

activate MAPK8 or MAP2K7 MAP kinase cascades, which indicates a likely role in

the JNK signalling pathway [65].

4.2.3 Ebola SEVEs by Viral Gene

Having considered the SEVE matches from the host perspective by chromosome, it

is also useful to group by viral gene. The number of matches in D. melanogaster,

A. thaliana, and C. elegans are negligible. The majority of the Ebolavirus SEVE

matches occur within the 5’ trailer at the end of the genome. In the M. musculus

genome, the sequence 5’-TGAGTTCCAGGCCAGCCT-3’ discussed in the preceding section

accounts for the large number of matches from the VP35 polymerase cofactor protein.

The role of the 5’ genome header in viral infectivity is not well understood.

4.3 Human Immunodeficiency Virus 1

4.3.1 Overview

The Human immunodeficiency virus is a retrovirus with a +ssRNA genome complete

with 5’ cap and 3’ poly-A tail. The virus is conical to spherical in shape, 80-100 nm

in diameter, and contains over 1500 capsid proteins in the mature form. The viral
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Figure 4.4: Zaire ebolavirus SEVE match count per viral gene and normalized by
gene size.

proteins encoded by the genome are summarized in Table 4.2. The protein coding

section is flanked on either side by long terminal repeat (LTR) regions 600 bp in

length. The 5’ end also contains a primer binding site (PBS) and the 3’ end includes

a polypurine tract (PPT).

Table 4.2: HIV-1 Gene Products
Name Product Size (bp)

gag-pol Protease, RT, RNaseH, integrase 4308
gag Group-specific antigen 1503
vif Viral infectivity factor 579
vpr Viral protein R 291
tat Transcriptional activator 2595
rev Regulator of expression 2685
vpu Viral protein U 249
env Envelope surface glycoprotein 2571
asp Antisense protein (unknown) 570
nef Negative factor 621

Lentiviruses such as HIV-1 are characterized by long term illnesses with extensive
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incubation periods. The infection process begins with attachment by the gp120 glyco-

protein to the host cell surface receptors DC-SIGN [19], Heparan Sulfate Proteoglycan

[66], and the CD4 receptors of the helper T cells [19]. Host cell entry is mediated via

clathrin-dependent endocytosis with the transmembrane glycoprotein gp4 facilitating

dynamin-dependent fusion with the endosome. The envelope spike encoded by the

env gene consists of three copies of gp120 and gp41 to form a trimer of heterodimers.

Once the nucleocapsid enters the cytoplasm, the +ssRNA viral genome is tran-

scribed into linear dsDNA by the viral reverse transcriptase (RT) enzyme. The

dsDNA must be transported to the host nucleus along with the viral integrase encoded

by the pol gene. The integrase enzyme randomly integrates the viral DNA into the

nuclear host DNA to form a provirus, accomplished by hijacking the DNA repair

mechanisms of the host cell [67]. The provirus may become latent, awaiting later

activation, or be transcribed immediately into new viral genomes.

The 5’-LTR of the provirus contains promoter elements that are bound by the

RNA polymerase II enzyme of the host to begin transcription. Some of the transcripts

will be unspliced and others will be spliced by post-transcriptional modification in

the spliceosome. The unspliced transcripts will either become future RNA genomes

or be translated after the transcripts are exported from the nucleus. The spliced

transcripts will be immediately translated to produce Tat, Rev, and Nef proteins.

The Rev protein contains both a nuclear localization sequence (NLS) to remain

in the nucleus. The unspliced transcripts bind to the rev response element (RRE),

located immediately downstream of the env gene. RRE binding results in a conforma-

tional change that exposes the nuclear export sequence (NES), allowing the unspliced

transcripts to be shuttled to the cytoplasm by exportin proteins. Upon releasing the

cargo, the NLS sequence is exposed and importins bring the Rev protein back into
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the nucleus for another cycle.

The unspliced transcripts are then translated into Env, Gag, and Gag-pol polypro-

teins. Cleavage of the Env proteins by the viral protease yields the envelope proteins

TM and SU, as well as the accessory proteins Vif, Vpu, and Vpr. New virions are

assembled and the genomes packaged at the host plasma membrane. The virions are

released via exocytosis by budding. The precusor polyproteins translated from the

unspliced transcripts are cleaved by the viral protease to form mature virions.

The Tat protein (Trans-Activator of Transcription) is a kinase that greatly in-

creases transcription rate of viral dsDNA by phosphorylating cell factors [68]. Tat can

also be absorbed by nearby uninfected T cells, inducing apoptosis, and accelerating

the demise of the host immune system [69].

The Nef protein is a negative regulatory factor that helps active T cells to increase

the likelihood of infection. It acts as an enzyme to lower the activation energy of

CD4+ lymphocytes. The T cell receptor response (TCR) renders the cells susceptible

to infection by other virions [70]. Nef expression is not strictly required for HIV

infection to occur.

The Vif protein, or viral infectivity factor, inhibits the antiviral activity of the

APOBEC3G protein by marking it for degradation via ubiquitination. APOBEC3G

is a cytidine deaminase that mutates viral mRNAs by deaminating the cytosine

nucleotides into uracil. Vif is necessary for viral replication because otherwise the

deaminase will enter the budding virions and scramble their genomes before they

reach the next target cell [71].

The Vpr protein (Viral Protein R) is involved in the regulation of nuclear import

of the pre-integration complex, including the reverse transcribed dsDNA and the in-

tegrase enzyme. Vpr is required for viral replication within post-mitotic macrophages
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and can also suspend dividing in the G2 phase leading to apoptosis [72].

The Vpu protein (Viral Protein Unique) induces the degradation of the CD4

viral receptor in the endoplasmic reticulum, resulting in a downregulation of CD4

expression. This results in the prevention of unintentional CD4-Env binding in the

ER to faciliate the proper formation of virions within the cell. The Vpu protein itself

is not packaged into new virions [73].

The role of the asp (antisense protein) remains unclear, though recent evidence

suggests it may be involved in the process of autophagy [74].

4.3.2 HIV-1 SEVEs by Species

In Figure 4.5, the data indicate that the least significant degree of homology exists be-

tween the Mus musculus genome and the HIV-1 virus. According to Zheng et al., lab

mice do not exhibit symptoms when infected with HIV due to a post-transcriptional

block [75]. The mouse version of the protein (mp32 ) is a nuclease that actively cleaves

HIV mRNA transcripts. The human version (p32 ) does not cleave the transcripts.

When the human p32 protein is introduced to their genomes, the mice become

susceptible to infection.

The primate species have similar levels of relative homology, with exceptions in

the gibbon chromosome 24, orangutan chromosome 19, chimpanzee Y chromosome,

and human chromsomes 20 and 21. A pair of complementary sequences from the rev

gene are the cause of these high values and will be discussed in the next section.

4.3.3 HIV-1 SEVEs by Viral Gene

Like the Ebolavirus, the number of matches in D. melanogaster, A. thaliana, and C.

elegans are not significant. The majority of the HIV-1 SEVE matches occur within
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Figure 4.5: Human immunodeficiency virus 1 SEVE match count by host name and
chromosome.

the rev gene, with an exceptionally high ratio in the P. alecto genome. The large

number of matches from the HIV-1 rev gene in the MatchDatabase are due to two

complementary sequences, 5’-AGAGAGAGACAGAGACAG-3’ having 8,715 matches and

3’-TCTCTCTCTGTCTCTGTC-5’ with 4,877 matches. These sequences alone account for

28.6% of the SEVE matches in the entire database and can be found in eight of the

twelve host genomes. The 5’ to 3’ sequence is found in the C7orf34 human gene,

or chromosome 7 open reading frame (ORF) 34. The 3’ to 5’ sequence is found in

the human ribosomal RNA gene (rRNA) intergenic spacer, downstream of the 47S

coding region based on BLAST results. It is also found in the Rbfox1 mouse gene.

The human version RBFOX1 is located on chromosome 16, from the Fox-1 family of

RNA binding proteins. The RBFOX1 gene is highly conserved across evolution and

is believed to play a role in neuronal development [76]. The sequence also occurs in

the chimpanzee gene SLC9A3, a solute carrier cation proton antiporter channel. The
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human version is located on chromosome 5.

Since the fruitbat genome has not been annotated, the chromosome data is un-

available. However, these same two sequences, 5’-AGAGAGAGACAGAGACAG-3’ and

3’-TCTCTCTCTGTCTCTGTC-5’ occur 739 and 515 times respectively. Clearly these

are the most significant sequences from the HIV-1 virus in host genomes.

Figure 4.6: Human immunodeficency virus 1 SEVE match count per viral gene and
normalized by gene size.

4.4 Simian Immunodeficiency Virus

4.4.1 Overview

The Simian immunodeficiency virus is similar to the human version as it is also a

lentivirus. SIV is also spherical in shape with a diameter of 80-100 nm. The genome is

somewhat simpler and encodes fewer viral proteins (Table 4.3). SIV is known to infect

up to 45 primate species in an evolutionary history spanning at least 32,000 years.
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Multiple lineages of SIV exist, including SIVcpz (chimpanzee), from which HIV-1

evolved, SIVsm (sooty mangabey) from which HIV-2 evolved, SIVagm (African green

monkey), and several others. The data presented here are from the SIVcpz genome,

which is only known to naturally infect Pan troglodytes [77]. Unlike HIV in humans,

SIV in primates is not always pathogenic, but can lead to the fatal Simian AIDS

(SAIDS).

Table 4.3: SIV Gene Products
Name Product Size (bp)
gag SIV2 Glycoprotein 1 1554
pol Protease, RT, RNaseH, integrase 3033
vif Viral infectivity factor 639
vpx Viral protein X 300
vpr Viral protein R 306
tat Transcriptional activator 2574
env Envelope surface glycoprotein 2601
nef Negative factor 558

The SIV life cycle is similar to the HIV-1, as the two viruses are closely related.

Like HIV, attachment is mediated via the gp160 glycoproteins in the viral envelope

binding to the CD4 molecules in the T cell membranes [78]. The glycoproteins are

encoded by the gag gene.

The pol gene encodes four proteins: the protease (prot), the reverse transcriptase

(p51 ), the RNase (p15 ), and the integrase (p31 ). The gag, pol, vif, vpr, tat, env,

and nef proteins perform similar roles in SIV as in HIV-1 (described in the previous

section). One exception is the SIV vpx protein found in HIV-2, but not HIV-1. The

vpx protein is similar to vpr in that it exploits cellular machinery by ubiquitylating

specific cellular proteins and marking them for destruction [79].
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4.4.2 SIV SEVEs by Species

The chimpanzee genome contains the greatest number of SEVE matches of any

of the primates in the study. This could be significant as only chimpanzees are

susceptible to SIV (the SIVcpz strain specifically). Indeed it is suspected by Worobey

et al. that HIV-1 is a derivative of SIVcpz that crossed the species barrier due to

bushmen hunting chipanizees for food [80]. The SEVE matches in the chimpanzee

genome are well distributed with each only occurring only a few times. The ex-

ceptions to this are 3’-TGGTGTTTGGTTTTTCGT-5’, 5’-AAAGAAAGGAAAATAGAA-3’, and

3’-GTGTTAAAATTTTCTTTT-5’, each occurring 26, 22, and 16 times, respectively. These

results indicate that a high degree of viral homology does not confer immunity to the

host.

Mice are unlikely to be infected by SIV if they are not naturally infected by

HIV [81]. Figure 4.7 contains the SEVE matches by host name and chromosome.

The unexpectedly high degree of homology in the mouse Y chromosome is due to

two sequences, 3’-GTTTATTGTGTATAAGAA-5’ from the tat gene with 87 matches, and

’5-GATGGTGAATTTTTTAGG-3’ from the gag gene with 52 matches. Neither sequence

occurs within a protein coding region. There are also a significant number of matches

(52) within the mouse chromosome 12. Most of the matches are within noncoding

regions except for 3’-TCTTTGAGGTTTCTTCCC-5’. That sequence is contained within

the immunoglobulin heavy chain region of the genome of Mus musculus strain 129S1

[102].
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Figure 4.7: Simian immunodeficiency virus SEVE match count by host name and
chromosome.

4.4.3 SIV SEVEs by Viral Gene

Most of the SEVE matches from the SIV virus occur within the chimpanzee genome,

particularly from the pol, tat, and vif viral genes (Figure 4.8). Of the matches

within the pol gene, there are three protein coding genes. The SEVE sequence

5’-AAAGAAGGGAAAGCAGGA-3’ is contained within the KLHL33 gene for kelch-like

family member 33 from chromosome 14. SEVE 5’-TTGTGGTATAACCTGTTG-3’ resides

in the GTF2A1 gene also on chromosome 14 that encodes the general transcrip-

tion factor TFIIA. Lastly, the sequence 5’-AGAGACCAAGCAGAGAAA-3’ is found in the

THSD7A gene on chromosome 7, encoding the thrombospondin type I glycoprotein

necessary to create blood platelets (thrombocytes).

From the SEVEs in the HIV-1 tat gene, the sequence 5’-CAAGACTATCCATGTGGG-3’

is contained within the ZP1 gene on chromosome 11 that encodes the zona pellucida
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glycoprotein 1, a sperm cell surface receptor. Another is 3’-ATTGACTGTTATACTGTC-5’,

contained within the ADAM18 gene on chromosome 8, encoding the disintegrin

and metalloproteinase domain 18. Only one sequence from the SIV vif SEVEs is

significant, 3’-TATATTCAAGTGTTTGAT-5’, contained within the HOOK3 chimpanzee

gene on chromosome 8. HOOK3 codes for the hook microtubule-tethering protein 3.

There are also a few significant matches from the tat gene within the mouse

genome. One is SEVE seqence 3’-GTCCAGGGTACCTTCTTT-5’ from chromosome 16 for

the LOC105246101 long noncoding RNA. Another is 3’-TGATACTTCTCGTTGGTT-5’

located within the Gnpda2 gene on chromosome 5 for the glucosamine-6-phosphate

deaminase 2 protein. Finally, there is sequence 3’-TACATTGTCTTTACAAGA-5’ from

the Gpr126 gene for G protein coupled receptor (GPCR) 126 on chromosome 10.

Figure 4.8: Simian immunodeficency virus SEVE match count per viral gene and
normalized by gene size.
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4.5 Measles Morbillivirus

4.5.1 Overview

The Morbillivirus, commonly known as the measles, has a spherical capsid of 150-300

nm with a -ssRNA genome that is 15-16 kb in size and encodes eight proteins as

described in Table 4.4.

Table 4.4: Measles Morbillivirus Gene Products
Name Product Size (bp)

N Nucleocapsid 1581
P/V/C Phosphoprotein 1524

M Matrix protein 1008
F Fusion protein 1653
H Hemagglutinin 1854
L RNA Polymerase 6552

The Morbillivirus life cycle is similar to other group V viruses like the Ebolavirus.

Attachment occurs through the hemaglutinin (H) protein on the viral surface to the

cell surface receptors. Three such receptors for the measles H protein have been

identified in humans. One is the CD46 complement regulatory protein (cluster of

differentiation 46), an inhibitory receptor encoded by the CD46 gene. Another is the

signalling lymphocyte activation molecule (SLAM) encoded by the SLAMF1 gene.

The third is the Nectin-4 cellular adhesion molecule encoded by the PVRL4 gene

[82]. All three genes are located on chromosome 1.

Following the binding of the receptor by the H protein, the F protein trimer

conformation changes, allowing fusion with the plasma membrane to occur [83]. The

ribonucleocapsid is then released into the cytoplasm via endocytosis.

The viral RNA polymerase (L) binds to the viral genome at the 3’-OH leader and

sequential transcription begins. The polymerase adds the 5’ cap and 3’ polyadenyla-
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tion to form mature mRNA transcripts. The gene that encodes the phosphoprotein

P also contains two overlapping genes for the V and C proteins. The mRNA for the

V protein is an edited version of the P mRNA and the C protein is a result of leaky

scanning. The process of leaky scanning involves a weak start codon (e.g., ACG) and

a small upstream open reading frame (uORF), allowing the ribosome to occasionally

skip the weak codon and translate multiple proteins from one mRNA [84].

Replication begins when sufficient nucleoproteins have been translated. The nu-

cleocapdsid (N) binds to the matrix protein (M) near the plasma membrane. The P

protein is a polymerase cofactor that binds the N proteins and helps position them

for assembly. The V and C proteins are viral infectivity factors that are not strictly

required for propagation [85]. Exocytosis is facilitated by host ESCRT proteins

(endosomal sorting complex for transport), and the virion is released through budding

[86].

4.5.2 Measles SEVEs by Species

There are no known animal hosts for the measles virus (MeV), though it is believed

to have evolved from the rinderpest virus of cattle [87]. Other viruses belonging to

the Morbillivirus, such as distemper, can infect dogs, cats, and cetaceans (Figure 4.9).

Recent research indicates that although the instances of infection are rare in the wild,

viruses such as measles and influenza from humans are capable of crossing species and

infecting apes and monkeys, including chimpanzees [103].

The species displaying the greatest level of homology with the measles virus is Mus

musculus. Mice are not naturally susceptible to infection by the measles virus, as their

cells lack the CD46 membrane receptor protein that human cells have. Transgenic

mice modified such that their dendritic cells express the CD46 cofactor and their
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CD150 interferon (IFN) pathways disrupted have been engineered to study measles

infections in mouse models [104].

There are four SEVE sequences that account for most of the matches between

measles and mice. The 3’-GGGGTGATTGGGAGGAGT-5’ sequence from the matrix pro-

tein (M) gene occurs 68 times, frequently in chromosomes 1, 3, 8, 10, and X. Sequence

5’-CAGCAACTGCATGGTGGC-3’ from the hemagglutinin protein (H) accounts for 73

matches, mostly within chromosomes 1, 2, and 7. SEVEs 5’-AAGAAAAGGAGATCAAGG-3’

and 5-TAGCAACAGTGTACTCAT-3 from the polymerase (L) contribute 63 and 35 matches,

respectively, the former from chromosomes 1, 6, X and the latter from 7, 10, and 17.

None of these appeared within protein coding regions.

The Y chromosome of the chimpanzee appears as an outlier in Figure 4.9 because

it contains 14 SEVE matches in a very small chromosome, three of which occur three

times each.

Figure 4.9: Measles morbillivirus SEVE match count by host name and chromosome.
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4.5.3 Measles SEVEs by Viral Gene

Most of the Measles SEVE matches occur within the 3’-OH Leader of the viral genome

by a significant margin (Figure 4.10). That could be significant since the 3’-OH leader

is where the L polymerase binds at the beginning of transcription. Only one of the 3’-

OH matches occurs a significant number of times, with 3’-TTGTCCCAGCCCCTCTTC-5’

having twelve appearances.

Two of the sequences do appear in protein coding genes in Homo sapiens and other

primates. The 3’-TTGGATCCTAACGACTTT-5’ sequence occurs within the NUCB2 gene

on chromosome 11, encoding the nucleobindin 2 regulator for glucose transporter

4 (GLUT4 ) [105]. Another interesting sequence is 3’-TTGTCCCAGCCCCTCTTC-5’,

residing within the ARRB2 gene on chromosome 17, responsible for coding arrestin

β 2 protein believed to play a role in the agonist-mediated desensitization of GPCRs

[106].

Figure 4.10: Measles morbillivirus SEVE match count per viral gene and normalized
by gene size.
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4.6 Influenzavirus A

4.6.1 Overview

The Influenzavirus is an enveloped virus with a spherical or filamentous capsid of

80-120 nm in diameter with a -ssRNA genome that is 13-14 kb in size and encodes

twelve proteins in eight segments, as described in Table 4.5. Unlike the other group

V viruses, the influenza genome is segmented, with segments ranging in length from

890 to 2,340 nucleotides. Influenza viruses are classified by the hemagglutinin and

neuraminidase receptor proteins expressed in the envelopes, H7N9 in this case. The

viruses are also categorized by the natural host, such as avian, bovine, or swine

(e.g., H1N1). According to the Centers for Disease Control (CDC), researchers have

identified 11 neuraminidasae subtypes and 18, for a total of 198 possible influenza

combinations.

Table 4.5: Influenzavirus A H7N9 Gene Products
Name Product Segment Size (bp)
PB2 PB2 Polymerase 1 2280
PB1 PB1 Polymerase 2 2274

PB1-F2 Apoptotic factor 2 273
PA PA Polymerase 3 2151

PA-X PA-X protein 3 760
HA Hemagglutinin 4 1683
NP Nucleocapsid protein 5 1497
NA Neuraminidase 6 1398
M2 Matrix protein 2 7 982
M1 Matrix protein 1 7 760

NEP Nuclear export protein 8 838
NS1 Nonstructural protein 1 8 654

Attachment occurs between the sialic acid receptor of the host cell membrane with

the hemagglutinin (HA) protein in the viral envelope. Sialic acid is a derivative of
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neuraminic acid that is prevalent in animal tissues, particularly in the human brain,

where it is involved in synaptogenesis [88]. HA proteins also cause red blood cells

to agglutinate. The virion enters the cell via clathrin mediated endocytosis and the

endosome releases the RNA segments into the cytoplasm.

The RNA segments are encapsidated to form ribonucleoproteins (RNPs). The

viral proteins contain nuclear localization signals (NLS) allowing them to bind to

importins that carry them through the nuclear pore complexes (NPCs) as part of

the Ran-GTP pathway [89]. Once inside the nucleus, the RNPs disassemble and the

RNA segments are transcribed by the viral RNA polymerases (PB1, PB2, and PA)

to create one mRNA per segment. Rather than generating their own 5’ methyl-G

caps, the viral polymerase cleave them from cellular mRNAs in a process called cap

snatching [90]. The mRNAs are polyadenlyated by polymerase stuttering [91].

The PA polymerase and PA-X protein are both translated from the third segment

due to a ribosomal frameshift. The PA-X protein is an endonuclease that acts by

inhibiting host immune system response and encouraging viral growth [92]. The PB1

polymerase and PB1-F2 protein are translated from segment two by leaky scanning.

The PB1-F2 protein invades the mitochondrial inner membrane via Tom40 channels,

repressing cellular innate immunity and ultimately leading to apoptosis [93]. Matrix

proteins M1 and M2 are translated from the segment 7 mRNA as a result of alternative

splicing. M1 forms the matrix boundary between the viral genome and the envelope.

M2 is a proton selective ion channel that is activated by low pH and is necessary

for viral replication [94]. Segment 5 encodes the nucleoprotein. The NS1 and NEP

proteins are translated from segment 8, also products of alternative splicing. NS1 is

a nonessential accessory protein with suspected roles in preventing cellular mRNA

polyadenylation and inhibiting interferon production [95].
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Once sufficient levels of NP and M1 proteins have been produced, the nuclear

export protein (NEP) triggers binding to exportins that transport the virion com-

ponents back to the cytoplasm, where they migrate to the plasma membrane for

assembly and exocytosis via budding.

4.6.2 Influenza A SEVEs by Species

The H7N9 influenza A variant included in this study is a form of avian flu that

normally only circulates in bird populations, especially agriculturally grown animals,

such as chickens and turkeys. Only rarely does an avian virus infect other species as

the H7N9 did in China during the year 2013, resulting in a mortality rate of 30% [107].

The strain that wreaked such havoc was likely a result of recombination between wild

and domesticated bird populations, infecting humans that came in contact with them.

Unfortunately, there are no representatives from class Aves in the match database,

but of the species included the chimpanzee apparently has the greatest homology with

Influenzavirus A (Figure 4.11).

Most of the SEVE matches are evenly distributed across the chimpanzee genome,

with two notable exceptions. The sequence 5’-CAAGGGATTCTCATACCT-3’ from the

neuraminidase (NA gene) is repeated 26 times, with four of these repeats from chromo-

some 2A. Finally, the SEVE 3’-TTCCTTTTCTTCTTCCTC-5’ from the PB2 polymerase

also appears 26 times, four times each within chromosomes 1, 10, and 14.

4.6.3 Influenza A SEVEs by Viral Gene

The chimpanzee Pan troglodytes has a large number of matches for this virus, as

discussed in the previous section. The nucleoprotein (NP) in Mus musculus and PA

in the orangutan and gorilla also appear significant (Figure 4.12). The number of
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Figure 4.11: Influenzavirus A SEVE match count by host name and chromosome.

matches in the human genome are relatively high for all of the viral genes. Note that

there are no 3’-OH header or 5’-PO trailer for the influenza virus as the genome is

segmented.

There are no particularly frequent sequence matches between the influenza genome

and the human, but there are some occurrences within protein coding regions. The

sequence 3’-TTCCTTTTCTTCTTCCTC-5’ from the viral PB2 polymerase gene is found

within the human CDC42BPA gene that encodes the CDC42 binding protein kinase

α. SEVE 5’-ATGCTGTGGATGTTGACG-3’ from the viral matrix protein M2 is con-

tained within the RNF14 gene for ring finger protein 14 on chromosome 5. The

SLC7A2 gene for the Y+ cationic amino acid transporter on chromosome 8 con-

tains sequence 5’-TATATGAACACTCAAATC-3’ from the PA polymerase. The CSAD

gene for the human cysteine sulfinic acid decarboxylase enzyme contains the SEVE

3’-CACTGCACCACCTTGTCT-5’ from the PB2 polymerase. Finally, the VOPP1 gene

for the vesicular prosurvival protein located on chromosome 7 that is overexpressed
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in cancer cells contains the sequence 5’-AGGACAGGTCAGCGTTCA-3’ from the viral

nucleoprotein (NP) gene.

Figure 4.12: Influenzavirus A SEVE match count per viral gene and normalized by
gene size.

4.7 SEVEs in miRBase

The miRBase database contains 28,645 miRNA entries from 219 eukaryotic species

and was last updated in June 2014. The data can be retrieved in two forms. The

hairpin form of the miRNA is the initial state following transcription that folds into

a double-stranded RNA hairpin structure. The mature form is the RNA molecule

that remains after the miRNA has been cleaved by the RNase III Dicer enzyme and

the RNA-induced silencing complex (RISC). The miRBase hairpin sequences were

compared to the SEVE entries in the MatchDatabase for homology. Pteropus alecto,

the black flying fox, and Nomascus leucogenys, the gibbon, were absent from the

miRBase and so could not be compared.
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Only one SEVE sequence had a match, TTCTCCTCCTCCTCCACC. The sequence exists

in chromosomes II, III, and IV of the Arabidopsis thaliana genome, and within the

gene that encodes the Nef protein in HIV-1. The Nef protein name stands for

“negative factor” and it is one of the virulence factors responsible for promoting

survival and reproduction of the virus. The miRNA in Arabidopsis was identified by

Breakfield et al. in 2012 [96].

The same sequence occurs several times in the match database, including the

parathymosin pseudogene (PTMS) RNA sequence in Pan troglodytes,2 and Nomascus

leucogenys. The sequence is also in the interleukin 1 receptor antagonist (IL1RN)

gene. There is one more appearance within the ACHE gene that encodes the acetyl-

cholinesterase (Yt blood group) in Nomascus leucogenys.

4.8 Randomly Generated Genome

Having assembled a database of nearly 50,000 SEVE sequences in twelve host genomes,

and with the remaining potential for tens of thousands more, begs the question of

whether these matches are simply the result of chance. To help answer that question,

a random eukaryotic organism with a single chromosome 1 Gbp in length has been

generated. The GenomeScanner has been tested against this Randomus organismus

with the same five viral genomes as the other twelve actual organisms.

Revisiting the data from Figure 4.2, with the addition of the data from Randomus

organismus, one can infer that the observed homology implied by the number of

SEVE matches is not merely random. The ratio of match count to host genome size

is low for the randomly generated genome even when compared to the plant and

2NCBI Reference Sequence XR 675047.1
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invertebrate data (Figure 4.13). The match data for the random organism are also

much more evenly distributed than for the naturally occurring ones.

Figure 4.13: Ratio of SEVE sequences to host genome sizes by host and virus species
with random organism included.

4.9 Chromosome Bands

Exhaustive SEVE sequence match data of length 18 has been generated for the human

and mouse genomes compared to the HIV-1 virus, meaning that the step size of the

GenomeScanner was set to one (-step=1). The original data set collected with the

step size of 3 produced 2,077 total matches for the human and 9,672 matches for the

mouse. The exhaustive data set includes 5,694 matches from the human genome and

23,666 matches from the mouse. The ratio for the two data sets are 2.75 and 2.5,
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respectively. These are nearly 3:1 ratios, indicating that the original data set is a

representative sample of all SEVEs.

Merging the comprehensive data with the cytological bands allows the creation

of chromosome maps for a given organism. Figure 4.14 provides a plot of SEVE

clusters, meaning the number of sequences within each band on the y-axis and the

chromosome number along the x -axis.

Figure 4.14: HIV-1 SEVE sequence matches by human chromosome bands.

Delving more deeply into the data from organism to chromosome level, the ma-

jority of the chromosome 2 matches occur either at the top of the short (p) arm in

band 2p25.3 or at the bottom of the long (q) arm at 2q37.3. The X chromosome also

contains most matches at the top of the small arm within the Xp22.33 band, perhaps

implying that small endogenous viral elements are more likely to be inserted at the

ends of chromosomes, or migrate to the telomeres over time. See Figure 4.15 for the

chromosome 2 example. Chromosome diagrams courtesy of NCBI.3

3http://ghr.nlm.nih.gov/chromosome
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Figure 4.15: HIV-1 SEVE sequence matches in human chromosome 2 bands.

4.10 Most Frequent SEVE Sequences

Although there are 47,480 SEVE matches in the MatchDatabase, a remarkable 18,867

of those matches are copies of the most frequently occurring sequences. This means

that nearly 40% of the SEVE matches are duplications of the same twelve sequences.

The top two are the complementary pair from the HIV-1 rev gene, 5’-AGAGAGAGAC-

AGAGACAG-3’ and 3-TCTCTCTCTGTCTCTGTC-5. The pair was discussed at the begin-

ning of this chapter with respect to the pervasiveness in the Mus musculus genome.

However, the sequences are also present to varying degrees in all ten of the multicel-

lular organisms.

The third sequence with 1,823 matches is 5’-TGAGTTCCAGGCCAGCCT-3’ from the

Ebola VP35 gene. This sequence is only found in the mouse and the primates

human, gorilla, gibbon, chimp, but not in the orangutan genome. Interestingly, the

complementary sequence is absent from the database.
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Another pair of complementary sequences from the 5’ header of the ebolavirus

genome, 5’-AAAAATTTAAAAATAAAT-3’ and 3’-TTTTTAAATTTTTATTTA-5’, are next with

655 and 1,600 matches, respectively. These sequences can be found in all ten multi-

cellular genomes with the exception of the fruitfly D. melanogaster. Interestingly, the

sequence TTAAAA in the center of this SEVE is a common pre-insertion site motif in

the human genome [97].

Sequence 5’-GTTCCAGGCCAGCCTGGC-3’, also from the Ebola VP35 gene, occurs

369 times in the mouse and primate genomes. Refer to Figure 4.16 for the remaining

six sequences.

Figure 4.16: Most frequent SEVE sequences in the MatchDatabase.
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4.11 Scalability and Efficiency

Any parallel architecture or algorithm should scale well with increasing data size (n).

Among the variable input parameters to the GenomeScanner are the chromosome

sizes of the host genomes. One chromosome is typically stored per file, so there is

a direct relation to the input size. Timing data was collected while scanning the

human, orangutan, and mouse host genomes for all possible SEVEs from the HIV-1

viral genome (i.e., with a step size of one).

Plotting these data with run time on the y-axis, file size on the x -axis, and

performing a best fit through the points produces the graph in Figure 4.17. The

clear linear relationship indicates that the algorithm run time scales linearly with

input file size. These benchmark data were generated using the Boyer-Moore string

search algorithm.

Figure 4.17: GenomeScanner scalability graph including the file sizes from three input
genomes (Human, Mouse, and Orangutan) versus running time, indicating a clear
linear relationship.



68

Another input parameter that can be varied for a given experiment is the SEVE

sequence length (k). Timing data were collected by ranging k from 10 to 30 bp, while

comparing human chromosome 22 to the HIV-1 virus with a step size of one. These

are the same conditions used to generate the string search algorithm comparison from

Table 3.2.

These data indicate that the algorithm runs comparatively longer for smaller

k as it results in more subsequences, and therefore a greater number of searches.

Larger k values result in fewer subsequences and so less overhead time is required

for thread management. Figure 4.18 represents a plot of these results with a vertical

line at k=18, the SEVE length used to populate the MatchDatabase. The algorithm

becomes more efficient near that point as the overhead ceases to be dominant, and

the overall runtime grows more linear.

Figure 4.18: GenomeScanner efficiency graph of subsequence size k fit against running
time using human chromosome 22 and the HIV-1 virus.
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CHAPTER 5

CONCLUSIONS

5.1 Future Work

There are a number of ways that this research could be expanded. First and foremost

is the exhaustive collection of every SEVE match in each organism by decreasing the

nucleotide step size passed to the GenomeScanner from three to one. These data have

already been collected for the HIV-1 virus.

The set of viruses under study could be expanded to other Baltimore groups than

V and VI, for example a dsDNA virus (Group I) such as the herpesvirus, a ssDNA

virus (Group II) such as parvovirus, a dsRNA virus (Group III) such as rotavirus, a

+ssRNA virus (Group IV) such as rhinovirus (common cold), and a dsDNA retrovirus

(Group VII) such as hepadnavirus (hepatitis B). Plans to study the Zikavirus, a group

IV member of the Flavirvirus family, are also being developed [108].

The host range could be expanded as well. Including, for example, a plant virus

such as tobacco mosaic could be searched for within plant genomes, or bacteriophage

sequences within bacteria. Additional animal genomes such as the dog (Canis lupus

familiaris) and cat (Felis catus) could also be considered. The sooty mangabey

genome (Cercocebus atys) has now been sequenced as well (although not annotated).1

1https://www.hgsc.bcm.edu/non-human-primates/sooty-mangabey-genome-project
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Mosquito species such as Aedes aegypti are frequent viral hosts and would be inter-

esting to consider as well [109], due to their importance as disease vectors.

The GenomeScanner software could be modified to support CUDA string match-

ing, such as Kouzinopoulos and Konstantinos have done [99]. Other bioinformatics

projects implemented in CUDA include the G-BLASTN implementation of the BLAST

algorithm by Zhao and Chu [100], and GAMUT, a GPU accelerated microRNA analyzer

developed by Wang et al. [101]. Support for additional string searching algorithms

could be added, such as the Backward Nondeterministic DAWG Matching algorithm

(BNDM) [110] or the Zhu-Takaoka algorithm [111]. The scanner could also be

expanded to include other alphabets, such as amino acids or written text.

The SEVE MatchDatabase could be compared to other RNA databases, such as

Rfam. The Rfam database of RNA families is another online repository of noncoding

RNA genes, cis-regulatory elements, and self-splicing molecules. The repository is

derived from covariance models similar to the hidden Markov models employed by

the related Pfam database for protein families [98].

Rather than simply storing the MatchDatabase results in a flat JSON database,

the data could be stored in a full featured JSON database such as MongoDB or a

distributed database like Cassandra. Other examples of NoSQL databases in the field

of bioinformatics are the LNCipedia for lncRNA transcripts [112] and the BIGNAsim

database for nucleic acid simulation data [113].
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With the data stored in a proper database, the results could be served on the

web with an interface for browsing results, comparing to other databases or even

submitting jobs, similarly to the BLAST, BLAT, Ensembl, or UCSC search tools.

5.2 Summary

The coevolution of viruses and cells likely traces back to the origins of life. The

complex interplay between dueling nucleic acids through evolutionary time leaves ev-

idence of its passage in the genomes of the organisms that survived to pass hereditary

information to their offspring. Endogenous viral elements have been identified across

all branches of life and all classes of viruses.

The work of identifying and understanding these common sequences is here ex-

tended with the development of a parallel computing system capable of locating all

exact genetic matches of a given length between the genomes of the viral invaders and

the defending hosts. The software package also provides the ability to cross reference

those matches with the NCBI databases via BLAST searches to determine which,

if any, coding regions the SEVEs fall within. The sequences can also be precisely

located within chromosomal bands by interfacing with the cytological data from the

UCSC genome browser.2

There are insufficient data to decisively conclude whether the presence of SEVEs

within a host genome confers immunity to the host, assistance to the virus, or both.

However, considerable quantities of data have been collected and numerous significant

sequences have been identified. It is a striking indication of the conservation of

2https://genome.ucsc.edu/
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genetic information across species that so much of the homology observed across

three kingdoms and five viruses can be attributed to a dozen small sequences.

Additional data collection and data mining are required to draw any definitive

conclusions. Some of these SEVE sequences may be significant, and others may

be random, but the tools have now been developed to continue searching for their

meaning.



73

REFERENCES

[1] Lander, Eric S., et al. “Initial sequencing and analysis of the human genome.”
Nature 409.6822: 860-921, 2001.

[2] R. Belshaw, V. Pereira, A. Katzourakis, G. Talbot, J. Paes, A. Burt, and M.
Tristem. “Long-term reinfection of the human genome by endogenous retro-
viruses.” Proc. Natl. Acad. Sci. USA, 101(14): 4894-4899, 2004.

[3] L. D. Ward and M. Kellis. “Evidence of abundant purifying selection in humans
for recently acquired regulatory functions.” Science 337.6102: 1675-1678, 2012.

[4] P. Aiewsakun and A. Katzourakis. “Endogenous viruses: Connecting recent and
ancient viral evolution.” Virology 479: 26-37, 2015.

[5] V. A. Belyi, A. J. Levine and A. M. Skalka. “Unexpected Inheritance: Multiple
Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in
Vertebrate Genomes.” PLoS Pathogens 6(7): e1001030, 2010.

[6] S. Kumar and S. Subramanian. “Mutation rates in mammalian genomes.” Proc.
Natl. Acad. Sci. USA 99: 803808, 2002.

[7] Y. Li, J. Lu, Y. Han, X. Fan, and S. W. Ding. “RNA interference functions as
an antiviral immunity mechanism in mammals.” Science, 342(6155): 231-234,
2013.

[8] E. B. Chuong, N. C. Elde, and C. Feschotte. “Regulatory evolution of innate
immunity through co-option of endogenous retroviruses.” Science 351.6277:
1083-1087, 2016.

[9] A. L. Boi, A. iber, and R. Podgornik. “Statistical analysis of sizes and shapes
of virus capsids and their resulting elastic properties.” Journal of biological
physics, 39(2): 215-228, 2013.

[10] J. Zipprich, K. Winter, J. Hacker, D. Xia, J. Watt, and K. Harriman “Measles
outbreakCalifornia, December 2014February 2015.” MMWR Morb Mortal Wkly
Rep, 64(6): 153-154, 2015.

[11] J. S. Welsh. “Contagious cancer.” The oncologist, 16(1): 1-4, 2011.



74

[12] C. J. Konstantoulas, and S. Indik. “Mouse mammary tumor virus-based vector
transduces non-dividing cells, enters the nucleus via a TNPO3-independent
pathway and integrates in a less biased fashion than other retroviruses.” Retro-
virology, 11(1): 1-15, 2014.

[13] A. van Dijk, E. V. Makeyev, and D. H. Bamford. “Initiation of viral RNA-
dependent RNA polymerization.” Journal of general virology, 85(5), 1077-1093,
2004.

[14] A. Katzourakis and R. J. Gifford. “Endogenous Viral Elements in Animal
Genomes”. PLoS Genetics, Vol. 6, Issue 11; e1001191, 2010.

[15] A. Lee, A. Nolan, J. Watson and M. Tristem. “Identification of an ancient
endogenous retrovirus, predating the divergence of the placental mammals.”
Phil Trans R Soc B, 368: 20120503, 2013.

[16] M. Horie, Y. Kobayashi, Y. Suzuki and K. Tomonaga. “Comprehensive analysis
of endogenous bornavirus-like elements in eukaryote genomes.” Phil Trans R Soc
B 368: 20120499, 2013.

[17] A. Aswad and A. Katzourakis. “Paleovirology and virally derived immunity.”
Trends in ecology and evolution, 27(11): 627-636, 2012.

[18] S. Kalyana-Sundaram, C. Kumar-Sinha, S. Sunita, et al. “Expressed Pseu-
dogenes in the Transcriptional Landscape of Human Cancers.” Cell, 149(7):
16221634, 2012.

[19] B. M. Curtis, S. Scharnowske, and A. J. Watson. “Sequence and expression of a
membrane-associated C-type lectin that exhibits CD4-independent binding of
human immunodeficiency virus envelope glycoprotein gp120”. Proc. Natl. Acad.
Sci. USA, 89 (17): 835660, 1992.

[20] D. J. Taylor, R. W. Leach, and J. Bruenn. “Filoviruses are ancient and
integrated into mammalian genomes.” BMC Evolutionary Biology, 10(1): 193,
2010.

[21] C. E. Shannon. “A Mathematical Theory of Communication.” Bell System
Technical Journal 27 (3): 379423, 1948.

[22] E. Zuckerkandl, L. Pauling. “Molecules as documents of evolutionary history.”
J. Theor. Biol. 8: 357366, 1965.

[23] J. R. Jungck, R. M. Friedman, “Mathematical tools for molecular genetics data:
An annotated bibliography.” Bull. Math. Biol. 46: 699744, 1984.



75

[24] M. Dayhoff Schwartz. “A model of evolutionary change in proteins.” Atlas of
protein sequence and structure., 1978.

[25] S. Henikoff and J.G. Henikoff. “Amino acid substitution matrices from protein
blocks.” Proc. Natl. Acad. Sci. USA 89.22: 10915-10919, 1992.

[26] T. F. Smith and M. S. Waterman. “Identification of common molecular subse-
quences.” Journal of molecular biology, 147(1): 195-197, 1981.

[27] D. J. Lipman and W. R. Pearson. “Rapid and sensitive protein similarity
searches.” Science, 227(4693): 1435-1441, 1985.

[28] S. F. Altschul, W. Gish, and W. Miller. “Basic Local Alignment Search Tool.”
Journal of Molecular Biology, 215: 403-410, 1990.

[29] W. J. Kent. “BLATthe BLAST-like alignment tool.” Genome research, 12(4):
656-664, 2002.

[30] R. Chenna, H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins,
and J. D. Thompson. “Multiple sequence alignment with the Clustal series of
programs.” Nucleic acids research, 31(13): 3497-3500, 2003.

[31] B. Yoon. “Hidden Markov models and their applications in biological sequence
analysis.” Current genomics, 10.6: 402-415, 2009.

[32] Y. Saeys, I. Inza, and P. Larraaga. “A review of feature selection techniques in
bioinformatics.” Bioinformatics, 23.19: 2507-2517, 2007.

[33] B. G. Hall. “Building phylogenetic trees from molecular data with MEGA.”
Molecular biology and evolution, mst012, 2013.

[34] D. Knuth, J. H. Morris,V. Pratt. “Fast pattern matching in strings.” SIAM
Journal on Computing, 6(2): 323350, 1977.

[35] R. S. Boyer, J. S. Moore. “A Fast String Searching Algorithm.” Communications
of the ACM, 20(10): 762772, 1977.

[36] R. M. Karp, M. O. Rabin. “Efficient randomized pattern-matching algorithms.”
IBM Journal of Research and Development 31(2): 249260, 1987.

[37] C. Allauzen, M. Rochemore , M. Affinot. “Factor oracle: a new structure for
pattern matching.” SOFSEM99, Theory and Practice of Informatics, Lecture
Notes in Computer Science, 1725: 291306, 1999.



76

[38] S. Faro and T. Lecroq, “Efficient Variants of the Backward-Oracle-Matching
Algorithm.” International Journal of Foundations of Computer Science, 20(6):
967984, 2009.

[39] E. Ukkonen. “On-line construction of suffix trees.” Algorithmica, 14(3): 249260,
1995.

[40] D. Baltimore. “Expression of animal virus genomes.” Bacteriological Reviews,
35(3): 235, 1971.

[41] M. Horie, T. Honda, Y. Suzuki, Y. Kobayashi, T. Daito, T. Oshida, K. Ikuta, P.
Jern, T. Gojobori, J. M. Coffin, and K. Tomonaga. “Endogenous non-retroviral
RNA virus elements in mammalian genomes.” Nature, 463: 7277-84, 2010.

[42] A. Kozomara, S. Griffiths-Jones. “miRBase: integrating microRNA annotation
and deep-sequencing data.” Nucleic acids research, gkq1027, 2010.

[43] S. Sagan and P. Sarnow. “RNAi, Antiviral After All.” Science, 342: 207, 2013.

[44] B. Sumpter, R. Dunham, S. Gordon, J. Engram, M. Hennessy, A. Kinter,
M. Paiardini, B. Cervasi, N. Klatt, and H. McClure. “Correlates of preserved
CD4(+) T cell homeostasis during natural, nonpathogenic simian immunodefi-
ciency virus infection of sooty mangabeys: implications for AIDS pathogenesis.“
Journal of Immunology, 178(3): 1680-1691, 2007.

[45] F. M. Boni et al. “Homologous recombination is very rare or absent in human
influenza A virus.” Journal of Virology, 82.10: 4807-4811, 2008.

[46] X. Pourrut et al. “Spatial and temporal patterns of Zaire ebolavirus antibody
prevalence in the possible reservoir bat species.” Journal of Infectious Diseases,
196.Supplement 2: S176-S183, 2007.

[47] C. Cowled et al. “Characterisation of novel microRNAs in the Black flying fox
(Pteropus alecto) by deep sequencing.” BMC genomics, 15.1: 1, 2014.

[48] K. Lindblad-Toh, M. Garber, O. Zuk, M. F. Lin, B. J. Parker, S. Washietl, P.
Kheradpour, J. Ernst, G. Jordan, E. Mauceli, et al. “A high-resolution map of
human evolutionary constraint using 29 mammals.” Nature, 478(7370): 476-82,
2011.

[49] S. Faro, T. Lecroq. “The Exact Online String Matching Problem: a Review of
the Most Recent Results.” ACM Computing Surveys, Vol. V, No. N, Art. A,
2013.



77

[50] P. J. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke and
M. J. de Hoon. “Biopython: freely available Python tools for computational
molecular biology and bioinformatics.” Bioinformatics, 25(11): 1422-1423,
2009.

[51] C. Camacho et al. “BLAST+: architecture and applications.” BMC bioinfor-
matics, 10.1: 1, 2009.

[52] L. Dalcn et al. “MPI for Python: Performance improvements and MPI-2
extensions.” Journal of Parallel and Distributed Computing 68.5: 655-662, 2008.

[53] J. H. Kuhn, S. Becker, H. Ebihara, T. W. Geisbert, K. M. Johnson, Y. Kawaoka,
W. I. Lipkin, A. I. Negredo et al. “Proposal for a revised taxonomy of the family
Filoviridae: Classification, names of taxa and viruses, and virus abbreviations.”
Archives of Virology 155(12): 2083103, 2010.

[54] C. P. Alvarez et al. “C-type lectins DC-SIGN and L-SIGN mediate cellular
entry by Ebola virus in cis and in trans.” Journal of virology 76.13: 6841-6844,
2002.

[55] A. M. Khatib, F. Sfaxi. “FURIN (furin (paired basic amino acid cleaving
enzyme).” Atlas Genet Cytogenet Oncol Haematol, 16(9): 639-643, 2012.

[56] D. W. Leung et al. “Structural basis for dsRNA recognition and interferon
antagonism by Ebola VP35.” Nature structural & molecular biology, 17.2: 165-
172, 2010.

[57] J. M. Licata et al. “Overlapping motifs (PTAP and PPEY) within the Ebola
virus VP40 protein function independently as late budding domains: involve-
ment of host proteins TSG101 and VPS-4.” Journal of virology, 77.3: 1812-1819,
2003.

[58] J. Modrof, S. Becker, and E. Muhlberger. “Ebola virus transcription activator
VP30 is a zinc-binding protein.” Journal of virology, 77.5: 3334-3338, 2003.

[59] L. W. Leung et al. “Ebola virus VP24 binds karyopherin α1 and blocks STAT1
nuclear accumulation.” Journal of virology, 80.11: 5156-5167, 2006.

[60] N. Biedenkopf et al. “Phosphorylation of Ebola virus VP30 influences the
composition of the viral nucleocapsid complex impact on viral transcription
and replication.” Journal of Biological Chemistry, 288.16: 11165-11174, 2013.

[61] A. L. Rasmussen et al. “Host genetic diversity enables Ebola hemorrhagic fever
pathogenesis and resistance.” Science, 346.6212: 987-991, 2014.



78

[62] M. Bermejo et al. “Ebola outbreak killed 5000 gorillas.” Science, 314.5805:
1564-1564, 2006.

[63] S. K. Lee, E. J. Park, H. S. Lee, Y. S. Lee, and J. Kwon. “Genome-wide screen
of human bromodomain-containing proteins identifies Cecr2 as a novel DNA
damage response protein.” Molecules and cells, 34(1): 85-91, 2012.

[64] J. Lu, M. Chatterjee, H. Schmid, S. Beck, and M. Gawaz. “CXCL14 as an
emerging immune and inflammatory modulator.” Journal of Inflammation,
13(1): 1, 2016.

[65] A. V. Marakhonov, A. V. Baranova, and M. Y. Skoblov. “Antisense regulation
of human gene MAP3K13: True phenomenon or artifact?.” Molecular Biology,
42(4): 514-520, 2008.

[66] L. de Witte, M. Bobardt, U. Chatterji, G. Degeest, G. David, T. B. Geijtenbeek,
P. Gallay. “Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-
1.” Proc. Natl. Acad. Sci. USA, 104(49): 194649, 2007.

[67] J. A. Smith, R. Daniel. “Following the path of the virus: the exploitation of
host DNA repair mechanisms by retroviruses.” ACS Chem Biol, 1(4): 21726,
2006.

[68] S. Debaisieux, F. Rayne, H. Yezid, B. Beaumelle. “The ins and outs of HIV-1
Tat.”. Traffic, 13(3): 35563, 2012.

[69] G. R. Campbell, E. Pasquier, J. Watkins, V. Bourgarel-Rey, V. Peyrot, D.
Esquieu, P. Barbier, J. de Mareuil, D. Braguer, P. Kaleebu, D. L. Yirrell, and
E. P. Loret. “The glutamine-rich region of the HIV-1 Tat protein is involved in
T-cell apoptosis.” J. Biol. Chem., 279(46): 48197204, 2004.

[70] L. Abraham, O. T. Fackler. “HIV-1 Nef: a multifaceted modulator of T cell
receptor signaling.” Cell Communication and Signaling, 10(1): 39, 2012.

[71] J. H. Miller, V. Presnyak, and H. C. Smith. “The dimerization domain of HIV-1
viral infectivity factor Vif is required to block APOBEC3G incorporation with
virions.” Retrovirology, 4(1): 81, 2007.

[72] M. Bukrinsky, A. Adzhubei. “Viral protein R of HIV-1.” Rev. Med. Virol., 9(1):
3949, 1999.

[73] E. Estrabaud, E. Le Rouzic, S. Lopez-Vergs, M. Morel, N. Beladouni, R.
Benarous, C. Transy, C. Berlioz-Torrent, and F. Margottin-Goguet. “Regu-
lated degradation of the HIV-1 Vpu protein through a betaTrCP-independent
pathway limits the release of viral particles.” PLoS Pathogens, 3(7): e104, 2007.



79

[74] C. Torresilla, J. Mesnard, and B. Barbeau. “Reviving an old HIV-1 gene: the
HIV-1 antisense protein.” Current HIV research, 13.2: 117-124, 2015.

[75] Y. Zheng, H. Yu, and B. Matija Peterlin. “Human p32 protein relieves a post-
transcriptional block to HIV replication in murine cells.” Nature cell biology,
5.7: 611-618, 2003.

[76] B. L. Fogel, E. Wexler, A. Wahnich, T. Friedrich, C. Vijayendran, F. Gao,
and D. H. Geschwind. “RBFOX1 regulates both splicing and transcriptional
networks in human neuronal development.” Human molecular genetics, dds240,
2012.

[77] M. Peeters, V. Courgnaud, B. Abela. “Genetic Diversity of Lentiviruses in Non-
Human Primates.” AIDS Reviews, 3: 310, 2001.

[78] M. Kim, B. Chen, R.E. Hussey, Y. Chishti, D. Montefiori, J. A. Hoxie, O.
Byron, G. Campbell, S. C. Harrison, and E. L. Reinherz. “The stoichiometry
of trimeric SIV glycoprotein interaction with CD4 differs from that of anti-
envelope antibody Fab fragments.” J Biol Chem., 276(46): 42667-76, 2001.

[79] D. Ayinde, C. Maudet, C. Transy, C., and F. Margottin-Goguet. “Review
Limelight on two HIV/SIV accessory proteins in macrophage infection: Is Vpx
overshadowing Vpr?.” 2010.

[80] M. Worobey et al. “Island biogeography reveals the deep history of SIV.”
Science 329.5998: 1487-1487, 2010.

[81] M. B. Gardner and P. A. Luciw. “Animal models of AIDS.” The FASEB Journal
3.14: 2593-2606, 1989.

[82] G. Lu, G. F. Gao, and J. Yan. “The receptors and entry of measles virus: a
review.” Chinese journal of biotechnology 29.1: 1-9, 2013.

[83] S. Heidmeier et al. “A single amino acid substitution in the measles virus F
2 protein reciprocally modulates membrane fusion activity in pathogenic and
oncolytic strains.” Virus research 180 (2014): 43-48, 2014.

[84] X. Q. Wang and J. A. Rothnagel. “5’Untranslated regions with multiple up-
stream AUG codons can support lowlevel translation via leaky scanning and
reinitiation.” Nucleic acids research 32.4: 1382-1391, 2004.

[85] P. Devaux and R. Cattaneo. “Measles virus phosphoprotein gene products:
conformational flexibility of the P/V protein amino-terminal domain and C
protein infectivity factor function.” Journal of virology 78.21: 11632-11640,
2004.



80

[86] E. Avota, S. Koethe, and S. SchneiderSchaulies. “Membrane dynamics and
interactions in measles virus dendritic cell infections.” Cellular microbiology,
15(2): 161-169, 2013.

[87] Y. Furuse, A. Suzuki, and H. Oshitani. “Origin of measles virus: divergence
from rinderpest virus between the 11th and 12th centuries.” Journal of virology
7: 52, 2010.

[88] B. Wang and J. Brand-Miller. “The role and potential of sialic acid in human
nutrition.” European journal of clinical nutrition 57(11): 1351-1369, 2003.

[89] E. C. Hutchinson and E. Fodor. “Transport of the influenza virus genome from
nucleus to nucleus.” Viruses 5(10): 2424-2446, 2013.

[90] E. Decroly, F. Ferron, J. Lescar, and B. Canard. “Conventional and uncon-
ventional mechanisms for capping viral mRNA.” Nature Reviews Microbiology
10(1): 51-65, 2012.

[91] H. Zheng, H. A. Lee, P. Palese, P., and A. Garca-Sastre. “Influenza A virus
RNA polymerase has the ability to stutter at the polyadenylation site of a viral
RNA template during RNA replication.” Journal of virology 73(6): 5240-5243,
1999.

[92] T. Hayashi, L. A. MacDonald, and T. Takimoto. “Influenza A virus protein
PA-X contributes to viral growth and suppression of the host antiviral and
immune responses.” Journal of virology 89(12): 6442-6452, 2015.

[93] T. Yoshizumi, T. Ichinohe, O. Sasaki, et al. “Influenza A virus protein PB1-F2
translocates into mitochondria via Tom40 channels and impairs innate immu-
nity.” Nature communications 5, 2014.

[94] E. Alvarado-Facundo, Y. Gao, R. M. Ribas-Aparicio, et al. “Influenza virus
M2 protein ion channel activity helps to maintain pandemic 2009 H1N1 virus
hemagglutinin fusion competence during transport to the cell surface.” Journal
of virology 89(4): 1975-1985, 2015.

[95] B. G. Hale, R. E. Randall, J. Ortn, D. Jackson. “The multifunctional NS1
protein of influenza A viruses.” Journal of General Virology 89(10): 2359-2376,
2008.

[96] N. W. Breakfield, et al. “High-resolution experimental and computational
profiling of tissue-specific known and novel miRNAs in Arabidopsis.” Genome
research 22.1: 163-176, 2012.



81

[97] B. B. Dev, A. Malik, and K. Rawal. “Detecting motifs and patterns at mobile
genetic element insertion site.” Bioinformation 8.16: 777, 2012.

[98] S. W. Burge, et al. “Rfam 11.0: 10 years of RNA families.” Nucleic acids
research gks1005, 2012.

[99] C. S. Kouzinopoulos and G. M. Konstantinos. “String matching on a multicore
GPU using CUDA.” Informatics PCI’09. 13th Panhellenic Conference on, IEEE,
2009.

[100] K. Zhao and X. Chu. “G-BLASTN: accelerating nucleotide alignment by graph-
ics processors.” Bioinformatics 30.10: 1384-1391, 2014.

[101] S. Wang, et al. “GAMUT: GPU accelerated microRNA analysis to uncover
target genes through CUDA-miRanda.” BMC medical genomics 7.Suppl 1: S9,
2014.

[102] I. Retter, et al. “Sequence and characterization of the Ig heavy chain constant
and partial variable region of the mouse strain 129S1.” Journal of Immunology
179.4: 2419-2427, 2007.

[103] B. Rothschild. “Emerging infectious diseases and Primate Zoonoses.” Journal
of Primatology 4: e130, 2015.

[104] H. Takaki, et al. “Dendritic cell subsets involved in type I IFN induction in
mouse measles virus infection models.” International journal of biochemistry
and cell biology 53: 329-333, 2014.

[105] T. Saito, et al. “Nucleobindin-2 is a positive regulator for insulin-stimulated
glucose transporter 4 translocation in fenofibrate treated E11 podocytes.”
Endocrine Journal 61.9: 933-939, 2013.

[106] H. Zheng H, H. H. Loh, P.Y. Law. “β-Arrestin-Dependent µ-Opioid Receptor-
Activated Extracellular Signal-Regulated Kinases (ERKs) Translocate to Nu-
cleus in Contrast to G Protein-Dependent ERK Activation.” Molecular Phar-
macology 73 (1): 17890, 2008.

[107] Q. Li, L. Zhou, M. Zhou, et al. “Preliminary Report: Epidemiology of the Avian
Influenza A (H7N9) Outbreak in China.” New England Journal of Medicine
370(6): 52032, 2013.

[108] G. Kuno and G-JJ Chang. “Full-length sequencing and genomic characteri-
zation of Bagaza, Kedougou, and Zika viruses.” Archives of virology 152.4:
687-696, 2007.



82

[109] V. Nene, et al. “Genome sequence of Aedes aegypti, a major arbovirus vector.”
Science 316.5832: 1718-1723, 2007.

[110] G. Navarro and M. Raffinot, “A Bit-Parallel Approach to Suffix Automata:
Fast Extended String Matching.” Proceedings of the 9th Annual Symposium
on Combinatorial Pattern Matching, Lecture Notes in Computer Science 1448:
14-31, 1998.

[111] R. F. Zhu and T. Takaoka. “On improving the average case of the Boyer-Moore
string matching algorithm.” Journal of Information Processing 10(3):173-177,
1987.

[112] P. J. Volders, et al. “LNCipedia: a database for annotated human lncRNA
transcript sequences and structures.” Nucleic acids research 41.D1: D246-D251,
2013.

[113] P. Andrio, et al. “BIGNASim: a NoSQL database structure and analysis portal
for nucleic acids simulation data.” Nucleic acids research 44.D1: D272-D278,
2016.


