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Using ciliate operations
to construct chromosome phylogenies
Jacob L. Herlin, Anna Nelson and Marion Scheepers

(Communicated by Joseph A. Gallian)

Whole genome sequencing has revealed several examples where genomes of
different species are related by permutation. The number of certain types of
rearrangements needed to transform one permuted list into another can measure
the distance between such lists. Using an algorithm based on three basic DNA
editing operations suggested by a model for ciliate micronuclear decryption, this
study defines the distance between two permutations to be the number of ciliate
operations the algorithm performs during such a transformation. Combining well-
known clustering methods with this distance function enables one to construct
corresponding phylogenies. These ideas are illustrated by exploring the phyloge-
netic relationships among the chromosomes of eight fruit fly (Drosophila) species,
using the well-known UPGMA algorithm on the distance function provided by
the ciliate operations.

Over evolutionary time, “local” DNA editing events such as nucleotide sub-
stitutions, deletions or insertions diversify the set of DNA sequences present in
organisms. Results of whole genome sequencing suggest that also “global” DNA
editing events diversify these DNA sequences.

Consider two species S1 and S2 with a common ancestor whose genome was
organized over n linear chromosomes. A gene G of the ancestor was inherited as
gene G1 by species S1 and as gene G2 by species S2. G1 and G2 are orthologous
genes, or simply orthologs. Assume that the species S1 and S2 each also has n
chromosomes, and that for each ancestral chromosome i , the orthologs of any
ancestral gene on chromosome i are also in the descendant species S1 and S2 on the
corresponding chromosome i . This assumption is known, in the context of certain
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human X
1110987654321

mouse X
45−3−112−89−106−71

Figure 1. The permutation between 11 synteny blocks of the hu-
man and the mouse X chromosomes. A negative symbol denotes
an orientation change by a 180◦ rotation of a synteny block. The
lengths of synteny blocks are not to scale. See Figure 2 of [Pevzner
and Tesler 2003].

fruit fly species, as the Muller hypothesis1. In this paper we shall assume the Muller
hypothesis for our applications.

It may happen that the order in which orthologs on chromosome i appear in
species S1 is different from the order in which they appear in species S2. In this
case chromosome i in each of these two species can be partitioned into a number,
say k, of synteny blocks2: a synteny block is a maximal list of adjacent orthologous
genes that have the same adjacencies in the two species. In this definition of
a synteny block, we permit blocks consisting of single genes. An endpoint of
a synteny block is also called a breakpoint. Synteny blocks may have opposite
orientation in two species. Thus the synteny blocks of chromosome i of species S1

are a signed permutation of the corresponding synteny blocks of chromosome i
of species S2. This phenomenon is observed in several branches in the tree of life.
Figure 1 illustrates the phenomenon for 11 synteny blocks of orthologous genes in
the X chromosome of human and mouse.

Since the appearance of [Sturtevant and Dobzhansky 1936] and [Dobzhansky and
Sturtevant 1938] on fruit fly genomes, it has been popular to use reversals3 as the
primary global DNA sequence editing operation to describe phylogenetic relation-
ships among genomes. See, for example, [Bafna and Pevzner 1995; Hannenhalli
and Pevzner 1999].

An insightful phylogenetic analysis that includes fine structural elements of rever-
sals is given in [Bhutkar et al. 2008]. It addresses the question of whether reversals
can occur at arbitrary locations in the genome of an organism. Certain locations,

1Named after H. J. Muller [1940] who observed that for the data then known for relatives of
Drosophila melanogaster, this assumption is true even for chromosome arms.

2This definition of a synteny block is more restrictive than the one used in [Bhutkar et al. 2008]:
The latter allows for differences in gene order up to a certain threshold, and does not allow for single
gene blocks. See the section “An application to genome phylogenetics” for more information.

3A reversal is a rotation of a DNA segment through 180◦. Reversals are also called inversions.
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which would disrupt the coding region of an essential gene, would not be observed in
extant organisms. Similarly, locations that negatively affect the fitness of organisms
would disappear over time due to “purifying selection”. Additionally, certain se-
quence motifs may actually promote DNA recombination that results in a genome re-
arrangement. For example, [Coghran and Wolfe 2002] reports a correlation between
breakpoints4 associated with rearrangements, and repetitive DNA. This point is also
considered in [Bhutkar et al. 2008]. In the review [Hughes 2000], a similar correla-
tion between rearrangements in bacterial genomes and repetitive DNA is discussed.
These considerations suggest that genome rearrangement events that lead to the
diverse genomes we observe in nature are not arbitrary, but constrained by contexts.
In this paper, we explore the use of context-directed DNA recombination events
to analyze genome rearrangements and to construct a phylogeny based on these.

In recent years, transpositions and block interchanges have also been considered
as possible global DNA sequence editing operations [Bafna and Pevzner 1998;
Coghran and Wolfe 2002; Mira and Meidanis 2007; Yancopoulos et al. 2005]. In
a block interchange, two disjoint segments of a chromosome exchange locations
without changing orientation. Thus, in Figure 1, synteny blocks 2 and 7 would
have been a block interchange if synteny block 7 did not also undergo a reversal. A
transposition is a special block interchange where the two segments that exchange
location are adjacent. In Figure 1, synteny blocks 4 and 5 illustrate a transposition.

On page 1661 of [Bhutkar et al. 2008], in the discussion of their selection of
genes to which their analysis of rearrangements in fruit fly genomes apply, the
authors indicate that genes deemed to have been relocated by a transposition rather
than a reversal have been explicitly removed from the analysis. Thus, the analysis of
[Bhutkar et al. 2008] features reversals exclusively. On the other hand, the analysis
in [Coghran and Wolfe 2002] of rearrangements in the genomes of two nematode
species includes reversals, transpositions and translocations. A translocation occurs
when segments from two different chromosomes exchange positions. In this paper,
we explore only reversals and block interchanges (both constrained by contexts) in
the analysis of rearrangements.

Experimental results from ciliate laboratories present us with examples of DNA
editing operations that routinely occur during developmental processes in these
organisms. The textbook [Ehrenfeucht et al. 2004] and the two surveys [Prescott
1994; 2000] give a good starting point for information about these “ciliate operations”
and the corresponding biological background. We shall call the yet to be fully
identified system in ciliates that accomplishes micronuclear decryption5, the ciliate
decryptome.

4Referring to the mouse X chromosome in Figure 1, a breakpoint is a transition point between
synteny blocks that are not consecutively numbered.

5Some details regarding this process are given below in Section 1.
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We shall illustrate how to use “ciliate operations” to deduce potential phylogenetic
relationships from genome rearrangement phenomena. Previous work, including
[Bafna and Pevzner 1995; Bhutkar et al. 2008; Hannenhalli and Pevzner 1999],
used unconstrained reversals to deduce phylogenetic relationships. Our main ideas
are to use ciliate genomic elements to model two genomes related by permutations
of locations and orientations of synteny blocks, to apply the context-directed DNA
operations of the ciliate decryptome to define a distance function between the
relevant permuted genomes, and to then use a classical distance-based algorithm to
derive phylogenies. Of the several different distance-based algorithms available,
we selected the UPGMA algorithm6.

Then we apply these ideas to chromosomes of eight species of fruit flies
(Drosophila) to obtain a phylogeny for each of these chromosomes.

The use of ciliate operations as the basis for deriving a distance function has
the attractive feature that the ciliate decryptome is programmable [Nowacki et al.
2007], and the computational steps taken by the decryptome can be monitored under
laboratory conditions [Möllenbeck et al. 2008]. Thus, there are extant organisms
that are poised to be employed as DNA computing devices naturally equipped to
determine phylogenetic relationships among permuted genomes.

Our paper is organized as follows: In Section 1 we briefly describe ciliate
nuclear duality. This duality is the basis for modeling pairs of genomes related
by permutation as genetic elements of the ciliate genome. In Section 2 we briefly
describe the context-directed DNA operations of the ciliate decryptome. In Section 3
we introduce and analyze the mathematical notion of a pointer list. In Section 4 we
model relevant features of the ciliate decryptome’s DNA operations by mathematical
operations on pointer lists. In Section 5 we describe an algorithm which we call the
HNS algorithm, that uses these operations on pointer lists to compute the distance
between chomosomes that are related by permutation. In Section 6 we use data
downloaded from flybase.org and the HNS and UPGMA algorithms to construct
phylogenies over eight species for each of the fruit fly chromosomes. In the closing
section, we discuss possible future directions related to this work.

1. Ciliates and nuclear duality

A ciliate is a single cell eukaryote that hosts two types of nuclei: one type, the
macronucleus, contains the transcriptionally active somatic genome, while the other
type, the micronucleus, contains a transcriptionally silent germline-like genome. The
micronuclear genome is, in the technical sense of the word, an encrypted version of
the macronuclear genome. Special events in the ciliate life cycle predictably trigger

6Descriptions of UPGMA can be found in Chapter 27 of [Barton et al. 2007], available online, or
in the textbook [Clote and Backofen 2000].
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F5E3D1C2B4A

54321

F5E

3

D1C2B4A

Figure 2. The top diagram depicts a possible micronuclear pre-
cursor, and the bottom diagram is another possible micronuclear
precursor of the macronuclear gene in the middle diagram.

conjugation between a pair of mating-compatible cells. Conjugation results in what
amounts to a Diffie–Hellman exchange7 between two conjugants, the formation of a
new micronucleus in each, and the decryption of one copy of the new micronuclear
genome to establish a replacement macronuclear genome, while in each conjugant
the instances of its preexisting genome are discarded. Readers interested in a
thorough survey of ciliate nuclear duality could consult [Prescott 1994].

The relationship between micro- and macronuclear DNA. To describe the exper-
imentally observed relationship between the micronuclear and macronuclear DNA
molecules, consider Figure 2.

The micronuclear DNA sequences in the top and the bottom rows of Figure 2
each have three types of regions: The white blocks, labeled with letters, are called
internal eliminated sequences (IESs). The blocks labeled with numbers are called
macronuclear destined sequences (MDSs), while the narrow strips are called point-
ers. As the micronuclear precursors show, there are two copies of each pointer.
For example, MDS 2 has a pointer on the left flank that is identical to the pointer
on the right flank of MDS 1. This pointer will be called the “1-2 pointer”. And
MDS 2 has a pointer on its right flank which is identical to the pointer on the left
flank of MDS 3. This pointer is called the “2-3 pointer”. The other pointers are
named similarly. Also note that MDS 1 does not have a pointer on its left flank, and
MDS 5 does not have a pointer on its right flank. As MDS 3 and the pointers on its
flanks show in the bottom row of Figure 2, in the micronuclear precursor, an MDS
plus its flanking pointer(s), as a unit, can be in a 180-degree rotated orientation
of the corresponding components in the macronuclear gene. The corresponding
macronuclear sequence in the middle row of Figure 2 contains only one of each
of the pointers present in its micronuclear precursor, and all the MDSs, but none

7A Diffie–Hellman exchange is a cryptographic protocol for secure exchange of a secret key in a
hostile environment. The conjugants exchange a haploid copy of the germline genome, which is an
encrypted version of the somatic genome.
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BqXpMqYpA
cds

BqYpMqXpA

Figure 3. Context-directed block swaps: the p · · · q · · · p · · · q
pointer context permits swapping the DNA segments X and Y .

of the IESs of the micronuclear precursor. In the macronuclear sequence, these
components occur in a specific order, which we call the canonical order.

In shorthand, the micronuclear precursor in the top row of Figure 2 is [4, 2, 1, 3, 5],
while the micronuclear precursor in the bottom row of Figure 2 is [4, 2, 1,−3, 5].

2. The ciliate DNA operations

We now turn to the actual ciliate algorithm that processes micronuclear precursors
to produce their corresponding macronuclear versions. The articles [Angeleska et al.
2007; Prescott et al. 2003] propose hypotheses about biochemical processes that
perform the decryption algorithm in ciliates. We do not address the biochemical
foundations here.

The textbook [Ehrenfeucht et al. 2004] describes three DNA editing operations
underlying this decryption process. There is experimental evidence that these
three operations accomplish the decryption process. The article [Möllenbeck et al.
2008] gives experimental data about the DNA products of intermediate steps of
the ciliate algorithm. We henceforth assume that the three operations that produce
macronuclear molecules from their micronuclear precursors are as proposed in
[Ehrenfeucht et al. 2004]: context-directed block interchanges (swaps), context-
directed reversals and context-directed excisions.

Context-directed block interchanges (swaps). The top strip in Figure 3 represents
a segment of DNA in a micronuclear chromosome of some ciliate. The symbols p
and q denote identified pointers, while A, B, M , X , Y represent segments of DNA.

The three necessary conditions to swap segments X and Y are:

(1) X and Y both have an occurrence of each of the pointers p and q at their flanks;

(2) the pointer pair p, q appears in the (alternating) context · · · p · · ·q · · · p · · ·q · · · ;
(3) neither occurrence of the pointer p nor of pointer q is flanked by a pair

of successively numbered MDSs. For specificity consider Figure 4, where
numbered blocks denote MDSs while lettered blocks denote IESs. The X
of Figure 3 may be taken to be the segment 2B of Figure 4, while the Y of
Figure 3 may be taken to be the segment D 3 of Figure 4.
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F5E3D1C4B2A

F5EB21C43DA

qp qp

qp qp

Figure 4. The top diagram depicts a possible micronuclear pre-
cursor, and the bottom diagram is the result of cds applied to the
pointer pair p= (1, 2) and q = (3, 4).

YpA

dX
cdr

YpAdX

Figure 5. Context-directed reversal: the − p · · · p or p · · · − p
pointer context-permits 180◦ rotation of flanked segment A.

Only when all three conditions are met is an interchange of the segments X
and Y permitted. The result of this swap is depicted in the bottom strip of Figure 3.
The reader may check, by comparing the bottom strips of Figures 3 and 4, that
subsequent to an application of cds the contextual conditions (1) and (2) are still
valid, but condition (3) is no longer met: indeed, one occurrence of each of the
pointers p and q is now flanked by successively numbered MDSs.

Context-directed reversal. To describe a context-directed reversal, consider the
left strip in Figure 5. It depicts a segment of DNA appearing in the micronucleus.

To rotate the yellow segment, labeled by an upside-down A, by 180◦, that is, to
reverse A, two necessary contextual conditions must be met:

(1) A is flanked by a pointer p and by the 180◦ rotation8 of p;

(2) neither occurrence of p is flanked by successively numbered MDSs. For
specificity, consult Figure 6, where numbered blocks denote MDSs and lettered
blocks denote IESs. The A of Figure 5 corresponds to the segment −2C 4 D
of Figure 6.

Only when both of these contextual requirements are met is rotation of the
segment flanked by the relevant pointer context permitted. The result of this context-
directed reversal is depicted by the right strip in Figure 5, and the corresponding
bottom strip of Figure 6. As illustrated, subsequent to a context-directed reversal,
one of the occurrences of the pointer p now has successively numbered MDSs on
both flanks and no further applications of cdr are permitted to this pointer context.

8In text, the 180◦ rotation of p will be denoted − p.
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A 5 B

2

C 4 D 3 E 1 F

p p

A 5 B

D 4 C

2 3 E 1 F

p p

Figure 6. The top row depicts a possible micronuclear precursor.
The bottom row results from cdr applied to the pointer p= (2, 3).

YpIESpX
cde

YpX

Figure 7. Context-directed excision: the IES flanked by pointer p
on both sides is removed, along with one copy of p.

Context-directed excision. To describe context-directed excision, consider Figure 7.
In it, the pointer p flanks a DNA segment identified as an IES (the yellow segment).
This context p IES p permits the excision of the IES segment plus one of the pointers,
with the result of joining the DNA segments flanking the original pair of pointers,
to the flanks of the remaining pointer.

Observe that context-directed block interchanges and context-directed reversals
do not decrease or increase the length of the string they operate on, and they retain
all the pointers. But context-directed excision, as illustrated in Figure 7, changes
the pointer contexts by deleting selected pointers and IESs.

3. Pointer lists

Pointers are an essential ingredient of the three DNA editing operations. We exploit
this central role of pointers by now basing our computational formalism (that
mathematically models these three ciliate operations) on pointers. Towards this end,
we introduce the notion of a pointer list9.

Definition 1. A finite sequence P := [x1, . . . , xm] of integers is said to be a pointer
list if it satisfies the following six conditions:

(1) m is an even positive integer.

(2) There is a unique i with µ= |xi | =min{|x j | : 1≤ j ≤ m}.

(3) There is a unique j with λ= |x j | =max{|xi | : 1≤ i ≤ m}.

9In anticipation of wider applicability of the notion of a pointer list, we give a definition that is
more general than the specific instance of it that we need.
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(4) For each i ∈ {1, . . . ,m} with µ< |xi |<λ, there is a unique j ∈ {1, . . . ,m}\{i}
such that |xi | = |x j |.

(5) For each odd i ∈ {1, . . . ,m}, xi ≤ xi+1 and xi · xi+1 > 0.

(6) Whenever i ∈ {1, . . . ,m} is odd, there is no j such that |xi |< |x j |< |xi+1| or
|xi+1|< |x j |< |xi |.

The following two mathematical facts are important in reasoning about ciliate
operations on pointer lists.

Lemma 1. Let [x1, x2, . . . , xm−1, xm] be a pointer list. If i and j are distinct
indices for which |xi | = |x j |, then xi and x j have the same sign if , and only if , i
and j have distinct parity.

Lemma 2. If [x1, x2, . . . , xm−1, xm] is a pointer list of length larger than 4, then
at least one of the following three statements is false:

(a) (∀i)(xi 6= xi+1).

(b) (∀i)(∀ j)(If |xi | = |x j |, then xi = x j ).

(c) (∀i)(∀ j)(∀k)(∀`)(If i 6= k, j 6= `, i < j and xi = xk and x j = x`, then either
i < j < ` < k or i < k < j < `).

In the interest of readability, the somewhat lengthy, yet elementary, proofs of
these facts are left to the reader.

Pointer lists to which we will apply the ciliate operations come about as follows:
Let Z denote the set of integers. For a set S, the symbol <ωS denotes the set of
finite sequences with entries from S. For an integer z, we define

ž(1)=
{

z if z = |z|,
z− 1 otherwise,

and in all cases, ž(2)= ž(1)+ 1. Then define the function π : <ωZ→ <ωZ by

π([z1, . . . , zk])= [ž1(1), ž1(2), . . . , žk(1), žk(2)].

Thus, for example, π([−1, 4, 3, 5, 2,−9, 7, 10,−8, 6]) is the sequence

[−2,−1, 4, 5, 3, 4, 5, 6, 2, 3,−10,−9, 7, 8, 10, 11,−9,−8, 6, 7].

It can be verified that this sequence is indeed a pointer list. The following lemma
captures this fact.

Lemma 3. For each finite sequence M := [s1, s2, . . . , sn] of nonzero integers such
that there is an integer m for which {|si | : 1 ≤ i ≤ n} = {m + 1, . . . ,m + n}, the
sequence π(M) is a pointer list.

The proof consists of verifying that π(M) meets all stipulations of Definition 1.
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4. The ciliate operations on pointer lists

We now introduce three special functions, cde, cdr and cds, from <ωZ to <ωZ,
inspired by the three ciliate operations, as follows. Let P := [x1, . . . , xm] be a given
finite sequence.

Context directed excision:

cde(P)=
{

P if there is no i with xi = xi+1,

[x1, . . . , xi−1, xi+2, . . . , xm] for i minimal with xi = xi+1,

Context-directed reversal:

cdr(P)=


P if there are no i < j

with xi =−x j ,

[x1, . . . ,xi−1,xi ,−x j , . . . ,−xi+1,x j+1, . . . ,xm]
for the minimal i with
xi =−x j for a j > i .

Context-directed block swaps: We set cds(P)= P if there are no i< j<k<`with
xi = xk and x j = x`. However, if there are i< j<k<`with xi = xk and x j = x`, then
choose the least such i , and for it the least corresponding j , and define cds(P) to be

[x1, . . . , xi , xk, . . . , x`, x j , . . . , xk−1, xi+1, . . . , x j−1, x`+1, . . . , xm].

These three operations have now been defined on arbitrary finite sequences of
integers. They behave rather well on the subset PL= {σ ∈ <ωZ : σ is a pointer list}
of their domain, as stated in the next two theorems. In the interest of readability
the proofs have been omitted.

Theorem 4. If P is a pointer list of length larger than 4, then at least one of the
following statements is true:

(1) cde(P) 6= P.

(2) cdr(P) 6= P.

(3) cds(P) 6= P.

Theorem 5 (pointer list preservation). Let P = [x1, . . . , xm] be a pointer list. Then
each of cde(P), cdr(P) and cds(P) is a pointer list.

A finite sequence σ is a fixed point of a function F : <ωZ→ <ωZ if F(σ )= σ .

Theorem 6. If P is a pointer list of length larger than 4 and not a fixed point of
F ∈ {cdr, cds}, then F(P) is not a fixed point of cde.

5. The HNS algorithm

Call a pointer list a destination if it is one of the following: [µ, λ], [−λ,−µ],
or for some integer z with |z| 6∈ {λ,µ}, the pointer list is one of [z, λ, µ, z] or
[z,−µ,−λ, z].



USING CILIATE OPERATIONS TO CONSTRUCT CHROMOSOME PHYLOGENIES 11

Let P be a pointer list. Letting cdei (P) denote the i-th iteration of cde on P ,
define e(P) to be the minimal value of i such that cdei+1(P) = cdei (P). Then
define E(P)= cdee(P)(P).

In the following theorem, recall that a finite sequence σ is a fixed point of a
function F : <ωZ→ <ωZ if F(σ )= σ .

Theorem 7. For a given pointer list P0, define the sequence P0, P1, . . . , Pi , . . . so
that

Pi+1 =


E(Pi ) if Pi is not a cde fixed point,
cds(Pi ) if Pi is a cde, but not a cds fixed point,
cdr(Pi ) if Pi is a cde and a cds but not a cdr fixed point.

Then the sequence P0, P1, . . . , Pi , . . . terminates in a destination.

Proof. By Theorem 5, each term in this sequence is a pointer list. By Theorem 4,
as long as such a pointer list has more than four terms, it is not a fixed point of
the ciliate operations. By Theorem 6, the sequence does not terminate with an
application of cds or of cdr, but with an application of E. Each application of E
reduces the length of a pointer list that is not a fixed point for E by a positive
even number of terms. According to the definitions of the ciliate operations, the
pointers with absolute value λ and µ are never excised, and thus are present in
any fixed point of a ciliate operation. Thus, a fixed point consisting of only two
terms necessarily consists of the terms with absolute values λ and µ. As such, a
two-term result is still a pointer list by Theorem 5. Stipulation (5) of Definition 1
shows that this fixed point must be [µ, λ] or [−λ,−µ]. Since applications of cde
remove terms that are equal and adjacent, a four-term fixed point must contain, in
addition to terms with absolute values µ and λ, two terms of equal absolute value.
If these two terms have opposite sign, the pointer list is not a fixed point for cdr.
Thus, these two terms must be of the same sign. But then, as the pointer list is a
fixed point of cde, these two terms are not adjacent. Moreover, their absolute value
is strictly between µ and λ. Now stipulation (5) of Definition 1 implies that this
pointer list is one of the two remaining claimed destinations. �

Thus the following algorithm, which we call the HNS algorithm, halts:

(1) Input: A pointer list P , its length |P| and integers r and s;

(2) Iteratively apply cde until a cde fixed point is reached. With each application,
decrease |P| by 2. Then proceed to (3).

(3) If P is a fixed point of cds, proceed to (4). Else, apply cds, increase s by 1,
and return to (1).

(4) If P is a fixed point of cdr, terminate the algorithm and report the current
values of P , r and s. Else, apply cdr, increase r by 1, and return to (1).
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P0, r = 0, s = 0

Input: Pi

|Pi |, r, s
Step 1

Is

cde(Pi )=Pi ?Step 2
Apply cde.

i = i ,
|Pi | = |Pi | − 2

Is

cds(Pi )=Pi ?Step 3

Apply cds.
|Pi+1| = |Pi |,

s = s + 1,
i = i + 1

Is

cdr(Pi )=Pi ?Step 4

Apply cdr.
|Pi+1| = |Pi |,

r = r + 1,
i = i + 1

Output:
destination,

r , s

no

yes

no

yes

no

yes

Figure 8. A flow diagram for the HNS algorithm.

Figure 8 depicts the algorithm in flow-diagram style. Let the original length of
the pointer list P be denoted |P|.

In step (2), the algorithm examines |P|−1 adjacent pairs. If P is not a cde fixed
point, then with the application of cde, |P| decreases by 2. In this step we update
the length of the resulting P with each nontrivial application of cde.

In step (3), the algorithm starts with a position k< |P| and then chooses a position
`> k+1 with xk = x` if any. This takes at most (|P|−1)+(|P|−2)+· · ·+2 search
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steps, which is O(|P|2). If this search fails, proceed to step (4). Else, suppose a
successful k+ 1< ` < |P| is found. Then for k < j < `, search for an m > ` with
xm = x`. This would require at most (`− k)(|P|− `) steps. If this fails, proceed to
step (4). Else, execute a cds based on the found quadruple (k, j, `,m), increase s
by 1, and return to step (1). Step (3) is completed in O(|P|2) search steps.

In step (4), the algorithm starts with a position k < |P| and then scans positions
j > k until it finds an x j = −xk . The worst case scenario for this search is also
(|P|−1)+(|P|−2)+· · ·+2, or O(|P|2). If the search succeeds, the result of cdr is
obtained in at most |P|−1 search steps. Increase r by 1, and return to step (2). Else,
if the search fails, terminate the algorithm and report the current values of P , r and s.

In one cycle of executing steps until return to step (1), the worst case scenario
employs at most O(|P|2) search and execution steps. For the next round, an upper
bound isO((|P| − 1)2)= O(|P|2). This continues for at most |P|/2 rounds. Thus
a global upper bound, in terms of the length of the initial pointer list, is O(|P|3).

The efficiency of this algorithm that produces from an initial pointer list a fixed
point for the operations cde, cds and cdr in O(|P|3) steps can probably be improved.
Additionally, this algorithm most likely does not minimize the number of steps
taken, using cde, cds and cdr, to reduce a pointer list to a fixed point.

In our phylogenetic application below, any calibration of time span in terms
of the number of operations required is based on the above HNS algorithm as
computational standard for the calibration.

6. An application to genome phylogenetics

As illustrated in Figure 1, for organisms S1 and S2 there may be synteny blocks of
orthologous genes on corresponding chromosomes. Choose S1 as reference and
number the synteny blocks in their 5′ to 3′ order of appearance on S1’s chromosome
as 1, 2, 3, . . . , n. In species S2, the synteny blocks of these same genes may appear
in a different order, and individual synteny blocks may also appear in orientation
opposite from the orientation in S1. Write the corresponding list of numbers in
their order of appearance on S2’s chromosome, making the number negative if the
synteny block orientation is opposite to that in S1. The result is a signed permutation
of the list 1, 2, 3, . . . , n.

Now imagine that the list of synteny blocks for S1 are the MDSs of a ciliate
macronuclear gene G, while the signed permutation that represents the correspond-
ing list of synteny blocks for S2 is the micronuclear precursor of G. Take the number
of operations the ciliate decryptome performs to convert the micronuclear precursor
to its macronuclear version G as a measure of the evolutionary distance between the
two chromosomes of S1 and S2. We used the HNS algorithm to simulate the actions
of the ciliate decryptome on the set of highly permuted genomes from various
species of fruit flies.
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The fruit fly genome is organized in four10 chromosomes, enumerated 1, 2, 3
and 4. These four chromosomes are traditionally divided into six so-called Muller
elements. The left and right arms of chromosome 2 are each one of these Muller
elements, and it is similar for chromosome 3. Chromosome 1 is the X chromosome.
The correspondence of chromosomal material to Muller elements is as follows:

chromosome 1 = X 2L 2R 3L 3R 4

Muller element A B C D E F

The fruit fly genome has at least 13,600 confirmed genes (and counting), but
is not expected to host significantly more genes. Recall that our definition of
a synteny block is more restrictive than the one used in [Bhutkar et al. 2008],
where “microinversions” are permitted. See, for example, Table 1 on page 1662
of [loc. cit.] for data on these more relaxed synteny blocks relative to the genome
of D. melanogaster. Between two species, the number of synteny blocks can still
be well over a thousand, as can be gleaned from Table 1 of [loc. cit.], where the
more relaxed definition of synteny block actually provides a lower bound on the
number of synteny blocks as defined in our paper.

According to findings of [Bhutkar et al. 2008], 95% of orthologous genes between
two species are present on the same Muller element. For the species we are using,
with one exception to be noted now, evidence suggests that all orthologous genes
are present on the same Muller elements. Using data obtained from flybase.org, we
examined the permutation structure of these for the eight species D. melanogaster,
D. yakuba, D. erecta, D. sechellia, D. mojavensis, D. simulans, D. grimshawi and
D. virilis. As illustrated in Figure 3 of [Bhutkar et al. 2008], there is a translocation
of genes between Muller elements B and C for D. erecta, one of the species in our
sample. Thus we combined Muller elements B and C into one computational unit
(chromosome 2) for our application. Thus, we refer to the five units A, B/C , D, E
and F in the remainder of this discussion.

For each of the five units we computed, using in-house developed software written
in Python, the number of applications of context-directed swaps or context-directed
reversals performed by the HNS algorithm to permute the synteny block order of
one species to produce the corresponding synteny block order of another species.
This was done with each species considered as reference species. Since HNS gives
preference to block interchanges, the number of reversals in our derived data is low.

Note that although we used the full gene lists from flybase.org, using pointer lists
and ciliate operations automatically reduces to performing ciliate sorting operations
on synteny blocks between pairs of species.

10There are exceptions: see, for example, Figure 1 of [Schaeffer et al. 2008]. None of the
exceptional species is considered in our paper.
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From our data about the number of context-directed swaps, s, and reversals, r ,
we define a corresponding distance matrix by using the formula s + r/2. As the
reader would observe from examining our data, this in fact does define a metric11.

Then we applied the unweighted pair group method with arithmetic mean, also
known as the UPGMA algorithm12, to these metrics. We used an in-house developed
MAPLE implementation of UPGMA to compute these phylogenies.

The Appendix contains the data, derived distance matrices and corresponding
phylogenetic trees for the five units in Figures 9, 10, 11, 12 and 13. An entry in
the format “r : s” in row i and column j of a table is interpreted as follows: r
denotes the number of context-directed reversals (cdr operations), while s denotes
the number of context-directed block interchanges (cds operations) executed by
the HNS algorithm to convert the permutation of the species in row i to that of the
species in column j . Thus the species in column j is the reference species. The
total for whole genomes is given in Figure 14.

We used the timeline given in Figures 1 and 3 of [Hahn et al. 2007] to calibrate the
timeline in our phylogenetic trees13. This calibration is a rough timeline: Our work
describes evolutionary relationships among instances of a specific chromosome
present in these eight species. The evolutionary timeline for a chromosome need
not agree with the evolutionary timeline for speciation. According to Figures 1 and
3 of [Hahn et al. 2007], the time span from the earliest common ancestor of our
species is roughly 60 million years.

Discussion

Comparison of our results in the Appendix and the results of [Bhutkar et al. 2008,
Table 2] show a significant difference in the number of sorting operations, with ours
typically higher. One reason for these differences lies in our definition of synteny
blocks: We allow blocks consisting of a single gene, and we do not allow blocks
containing different gene orders. Thus, we have a larger number of synteny blocks
to be sorted, and our computations took into account all orthologous genes. This
point is illustrated by comparing the number of synteny blocks for Muller element E

11There are strong grounds for equating the value of two reversals with that of a single swap. As
computations show, the result (given in the Appendix) is a matrix that is symmetric over its diagonal.
It is also evident that the number of sorting operations to sort permutation α to obtain permutation β,
plus the number of sorting operations to sort permutation β to permutation γ , is no smaller than
the number of sorting operations to directly sort permutation α to permutation γ . Thus, the triangle
inequality holds.

12This is Algorithm 4.1 in [Clote and Backofen 2000]. A good exposition is also given in Chapter
27 of [Barton et al. 2007], available online at www.evolution-textbook.org.

13We could have used alternative timelines, such as the timelines given in the figure at the
DroSpeGe website http://insects.eugenes.org/DroSpeGe/. Whichever published timeline one chooses
will determine the corresponding calibration applied to our data.

http://www.evolution-textbook.org
http://insects.eugenes.org/DroSpeGe/
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computational unit cso

A 266.75
B/C 207.75
D 247.25
E 364.25
F 8.5

Table 1. Ciliate sorting operations since most recent common
ancestor of all considered species.

for D. yakuba, D. sechellia and D. simulans (computed relative to D. melanogaster)
reported in [loc. cit., Table 5] with the actual number of sorting operations reported
for these species (with D. melanogaster as reference) in our Figure 12. Moreover,
whereas in [loc. cit.] the authors used unconstrained reversals as sorting operation,
we used context-directed reversals. Additionally, in [loc. cit.] genes that suggest that
a transposition is responsible for the rearrangement were excluded from the analysis.
We included all orthologous genes since the sorting operation of context-directed
swaps (block interchanges) accounts also for transpositions.

Comparison of the phylogenies in the Appendix with the phylogeny in [loc. cit.,
Figure 8] or with the phylogeny of sequenced species at flybase.org14 indicate
that our placement of D. sechellia is in all cases quite different. The placement of
D. mojavensis, D. virilis and D. grimshawi relative to each other and to the other
species agrees with both of these phylogenies for all but Muller elements A and E .

By using the UPGMA algorithm to construct phylogenies from distance matrices,
we assumed a uniform rate of evolution for the Muller elements. Comparing these
uniform rates among the different chromosomes indicates that no two individual
chromosomes undergo permutations at the same rates. Our sorting data suggests
the upper bounds in Table 1 on the number of ciliate sorting operations (cso) since
the most recent common ancestor of all the species considered.

These numbers were computed by taking the largest ciliate sorting distance
achieved between a pair of the considered species, and dividing15 by 2 to obtain an
estimate of the number of ciliate sorting operations to each species’ corresponding
genomic element since their most recent common ancestor.

The Muller F element has undergone remarkably few permutations in comparison
with the other Muller elements. Muller element E appears to be the most susceptible
to permutation, while Muller element F appears the most “resistant” to permutation.
This, however, may be a biased view of susceptibility to permutation since these
computational units do not harbor the same number of genes or synteny blocks. As

14http://flybase.org/static_pages/species/sequenced_species.html
15Using our hypothesis of uniform rate of evolution.

http://flybase.org/static_pages/species/sequenced_species.html
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indicated in [Hochman 1971], chromosome 4 (Muller element F) is generally a
very small chromosome: it may contain fewer than 100 genes (see, for example, the
results regarding Muller element F for various species in [Schaeffer et al. 2008]).
The other Muller elements each contains well over 1000 genes. Thus one would
expect the number of rearrangements needed to sort one species’ chromosome 4
gene content to that of another species to be relatively low in comparison with the
other, larger, chromosomes.

Tables 5 and 6 of [Bhutkar et al. 2008] report rearrangement rates that are com-
puted from the number of synteny blocks relative to D. melanogaster, the nucleotide
length of the Muller element, and the estimated divergence time for the species
in question. These rates assume that arbitrary reversals cause the rearrangements
and thus ignore genes deemed to have been moved by other sorting mechanisms,
and use a definition of synteny block that ignores certain rearrangements. In
the case of our context-directed sorting operations, a more appropriate measure
of “susceptibility to permutation” should probably take into account additional
parameters regarding nucleotide patterns in the Muller elements. Progress in
this regard would address the third16 and fourth17 questions raised in [Schaeffer
et al. 2008, pp. 1603–1604], phrased for arbitrary reversals, and may also indicate
whether context-directed reversals and block interchanges are more suitable sorting
operations for phylogenetic analyses based on permutations of genomic material.
Such rearrangement rates may be used as “susceptibility coefficients”, measuring
the susceptibility of a genomic element to rearrangement.

According to [Bhutkar et al. 2008, Figure 3], the F element of D. willistoni
(which is not among the species we considered) has been absorbed in the E-element
of D. willistoni. It would be interesting to “distill” the D. willistoni F-element
from the D. willistoni E-element, and compare its level of permutation relative
to the F-element of the eight species in our study. Establishing susceptibility
coefficients may enable us to obtain from the current permutation state of the
distilled D. willistoni F-element, and established evolutionary time distances for
the fruit fly phylogeny, an estimate of when absorption of the F-element into the
E-element took place.

Similarly, by separating the treatment of the B and C elements, calculating
the corresponding susceptibility coefficients of these elements, and distilling the
B-element components and the C-element components for D. ananassae, one may
be able to estimate when these transpositions occurred. Figure 3 of [loc. cit.] also
indicates that part of D. pseudoobscura’s Muller A element was transposed to its
Muller E element. Susceptibility coefficients may be useful in estimating when

16“. . . how do new inversions originate?” This can be expanded to include the question of how
new block interchanges originate.

17“. . . what is the molecular basis for gene arrangement polymorphism?”
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this transposition occurred. An investigation of the structural properties of the
chromosomes involved in these interchromosomal translocations may also reveal if
any DNA motifs promote these translocations.

The differences in phylogenies for different chromosomal domains in the con-
sidered species suggest the possibility of inferring from Mendelian inheritance
hypotheses and diploidy of the fruit fly genomes, interbreeding among ancestor
species that would produce the observed chromosomal configurations.

We relied on the UPGMA algorithm for constructing our phylogenies. Other
clustering techniques such as neighbor joining, or several other algorithms, as, for
example, in [Clote and Backofen 2000], may reveal finer details than the technique
applied here.

While using ciliate operations to compute the permutation-based distances be-
tween pairs of species, we found permutations which are not reducible to each other
by ciliate operations. In contrast to the case for unrestricted block interchanges and
unrestricted reversals, not all permutations are invertible by context-directed block
interchanges and reversals. When our algorithm terminates with a destination of
length 4 instead of 2, this indicates that the two permutations involved in the distance
measure require an additional transposition to complete the transformation. Though
we have not done so in our current paper, the fact of noninvertibility by ciliate
decryptome operations could be taken as an additional parameter in measuring
evolutionary distance. Instead, in this paper we counted this additional transposition
needed at the end as a single step towards the distance. An argument can be made
that the necessity of this additional transposition should be accounted for more
significantly in computing evolutionary distance. It also raises the question of
determining an easily applicable characterization of permutations that are invertible
by constrained block interchanges or reversals. The problem of mathematically
characterizing permutations that are invertible by context-directed operations has
been solved in subsequent work [Adamyk et al. ≥ 2016].

Finally, although the HNS algorithm finds in polynomial time the data needed
to construct a distance matrix, we do not propose that this algorithm finds optimal
data in the following sense: when one permutation can be transformed to another
by means of context-directed reversals and block interchanges, what is the least
number of these operations needed for such a transformation? The answer for
context-directed block interchanges has been obtained in [Adamyk et al. ≥ 2016].
The minimal number of operations may depend on strategic sorting decisions
made while sorting a permutation. One may inquire whether certain permutations
require less strategic decision making in order to obtain a successful sorting. The
permutations requiring the least number of strategic decisions for context-directed
block interchanges have been characterized in [Anderson et al. ≥ 2016], but a
complete answer is currently not known.



USING CILIATE OPERATIONS TO CONSTRUCT CHROMOSOME PHYLOGENIES 19

Appendix: The distance matrices underlying the application of UPGMA to
the five chromosomes of eight fruit fly species

D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 32:431 38:463 31:438 33:403 40:426 29:414 35:514

D. gri 26:434 36:446 35:430 36:381 45:404 40:391 45:504

D. sim 36:464 34:447 35:460 8:268 19:311 21:282 26:505

D. moj 29:439 37:429 41:457 41:407 34:434 36:422 37:515

D. mel 37:401 40:379 6:269 45:405 1:171 35:93 19:482

D. ere 36:428 43:405 29:306 42:430 3:170 25:182 28:499

D. yak 43:407 40:391 31:277 50:415 11:105 25:182 29:481

D. sec 43:510 39:507 20:508 39:514 7:488 22:502 17:487

D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 0.0 447.0 482.0 453.5 419.5 446.0 428.5 531.5

D. gri 447.0 0.0 464.0 447.5 399.0 426.5 411.0 526.5

D. sim 482.0 464.0 0.0 477.5 272.0 320.5 292.5 518.0

D. moj 453.5 447.5 477.5 0.0 427.5 451.0 440.0 533.5

D. mel 419.5 399.0 272.0 427.5 0.0 171.5 110.5 491.5

D. ere 446.0 426.5 320.5 451.0 171.5 0.0 194.5 513.0

D. yak 428.5 411.0 292.5 440.0 110.5 194.5 0.0 495.5

D. sec 531.5 526.5 518.0 533.5 491.5 513.0 495.5 0.0

0 10 20 30 40 50 60 mya

D. virilis

D. mojavensis

D. melanogaster

D. yakuba

D. erecta

D. simulans

D. grimshawi

D. sechellia

Figure 9. Data, distance matrix and resulting phylogeny for the
Muller A-element.
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D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 62:255 44:290 31:161 41:262 51:324 63:332 38:375

D. gri 56:258 43:318 38:187 52:280 62:342 50:370 45:393

D. sim 48:288 49:315 53:205 2: 95 24:188 16:223 9:256

D. moj 67:143 32:190 55:204 49:173 51:254 48:285 47:319

D. mel 59:253 58:277 8: 92 49:173 19:159 101:145 3:229

D. ere 45:327 44:351 14:193 57:251 11:163 9:249 32:275

D. yak 49:339 42:374 14:224 44:287 7:192 15:246 34:286

D. sec 52:368 49:391 7:257 41:322 3:229 38:272 46:280

D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 286 312 176.5 282.5 349.5 363.5 394

D. gri 286 339.5 206 306 373 395 415.5

D. sim 312 339.5 231.5 96 200 331 260.5

D. moj 176.5 206 231.5 197.5 279.5 309 342.5

D. mel 282.5 306 96 197.5 168.5 195.5 230.5

D. ere 349.5 373 200 279.5 168.5 253.5 291

D. yak 363.5 395 331 309 195.5 253.5 303

D. sec 394 415.5 260.5 342.5 230.5 291 303
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D. simulans

D. melanogaster

D. erecta

D. yakuba

D. sechellia

D. virilis

D. mojavensis

D. grimshawi

Figure 10. Data, distance matrix and resulting phylogeny for the
Muller B/C-element.
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D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 21:124 60:193 27:113 69:175 58:160 53:231 60:450

D. gri 27:121 51:210 29:154 52:187 56:174 56:244 59:460

D. sim 68:189 59:206 65:219 2: 69 5: 56 10:129 2:390

D. moj 23:115 23:157 59:222 53:214 59:192 55:257 51:469

D. mel 69:175 62:182 2: 69 81:200 8: 35 10:109 0:388

D. ere 66:156 58:173 7: 55 67:188 10: 34 12: 79 90:337

D. yak 59:228 64:240 26:121 71:249 14:107 18: 76 12:416

D. sec 54:453 55:462 2:390 49:470 0:388 4:380 12:416

D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 0 134.5 223 126.5 209.5 189 257.5 480

D. gri 134.5 0 235.5 168.5 213 202 272 489.5

D. sim 223 235.5 0 251.5 70 58.5 134 391

D. moj 126.5 168.5 251.5 0 240.5 221.5 284.5 494.5

D. mel 209.5 213 70 240.5 0 39 114 388

D. ere 189 202 58.5 221.5 39 0 85 382

D. yak 257.5 272 134 284.5 114 85 0 422

D. sec 480 489.5 391 494.5 388 382 422 0

 

 

0 10 20 30 40 50 60 mya

D. virilis

D. mojavensis

D. grimshawi

D. melanogaster

D. erecta

D. simulans

D. yakuba

D. sechellia

Figure 11. Data, distance matrix and resulting phylogeny for the
Muller D-element.
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D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 47:634 40:451 27:340 40:432 46:551 42:436 41:598

D. gri 47:634 47:616 25:549 46:602 55:664 54:603 47:705

D. sim 52:445 57:611 45:213 8: 71 142:241 13: 75 14:347

D. moj 89:309 53:535 39:216 39:185 43:401 31:194 45:446

D. mel 44:430 54:598 8: 71 39:185 196:196 7: 38 21:334

D. ere 50:549 55:664 10:307 39:403 6:291 12:291 38:428

D. yak 54:430 62:599 19: 72 43:188 15: 34 8:293 23:334

D. sec 51:593 53:702 14:347 39:449 5:342 38:428 9:341

D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 657.5 471 353.5 452 574 457 618.5

D. gri 657.5 639.5 561.5 625 691.5 630 728.5

D. sim 471 639.5 235.5 75 312 81.5 354

D. moj 353.5 561.5 235.5 204.5 422.5 209.5 468.5

D. mel 452 625 75 204.5 294 41.5 344.5

D. ere 574 691.5 312 422.5 294 297 447

D. yak 457 630 81.5 209.5 41.5 297 345.5

D. sec 618.5 728.5 354 468.5 344.5 447 345.5

0 10 20 30 40 50 60 mya

D. melanogaster

D. yakuba

D. simulans

D. mojavensis

D. erecta

D. sechellia

D. virilis

D. grimshawi

Figure 12. Data, distance matrix and resulting phylogeny for the
Muller E-element.
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D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 3:5 12:8 2:1 11:6 11:6 11:6 8:13

D. gri 3:5 10:12 3:4 11:9 11:9 11:9 10:12

D. sim 8:10 8:13 10:9 4:5 4:5 4:5 4:13

D. moj 2:1 3:4 6:11 7:7 7:7 7:7 9:12

D. mel 9:7 7:11 6:4 7:7 0:0 0:0 0:12

D. ere 9:7 11:9 6:4 9:6 0:0 0:0 0:12

D. yak 9:7 7:11 6:4 7:7 0:0 0:0 0:12

D. sec 8:13 8:13 2:14 9:12 0:12 0:12 0:12

D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 6.5 14 2 11.5 11.5 11.5 17

D. gri 6.5 17 5.5 14.5 14.5 14.5 17

D. sim 14 17 14 7 7 7 15

D. moj 2 5.5 14 10.5 10.5 10.5 16.5

D. mel 11.5 14.5 7 10.5 0 0 12

D. ere 11.5 14.5 7 10.5 0 0 12

D. yak 11.5 14.5 7 10.5 0 0 12

D. sec 17 17 15 16.5 12 12 12
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Figure 13. Data, distance matrix and resulting phylogeny for the
Muller F-element.
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D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 165:1449 194:1405 118:1053 194:1278 206:1467 198:1419 182:1950

D. gri 165:1449 187:1602 130:1324 197:1459 229:1593 211:1617 206:2074

D. sim 194:1405 187:1602 208:1106 24:508 194:801 64:722 55:1511

D. moj 118:1053 130:1324 208:1106 189:986 194:1288 177:1165 189:1761

D. mel 194:1278 197:1459 24:508 189:986 224:561 153:385 43:1445

D. ere 206:1467 229:1593 194:801 194:1288 224:561 58:801 188:1551

D. yak 198:1419 211:1617 64:722 177:1165 153:385 58:801 98:1529

D. sec 182:1950 206:2074 55:1511 189:1761 43:1445 188:1551 98:1529

D. vir D. gri D. sim D. moj D. mel D. ere D. yak D. sec

D. vir 0 1231.5 1502 1112 1375 1570 1518 2041

D. gri 1231.5 0 1695.5 1389 1557.5 1707.5 1722.5 2177

D. sim 1502 1695.5 0 1210 520 898 746 1538.5

D. moj 1112 1389 1210 0 1080.5 1385 1253.5 1655.5

D. mel 1375 1557.5 520 1080.5 0 673 461.5 1463.5

D. ere 1570 1707.5 898 1385 673 0 830 1645

D. yak 1518 1722.5 746 1253.5 461.5 830 0 1578

D. sec 2041 2177 1538.5 1655.5 1463.5 1645 1578 0
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Figure 14. Data, distance matrix and resulting phylogeny for the
whole genome.



USING CILIATE OPERATIONS TO CONSTRUCT CHROMOSOME PHYLOGENIES 25

Acknowledgement

We gratefully acknowledge that the advice of a very careful referee helped to greatly
improve the readability of this paper.

References

[Adamyk et al. ≥ 2016] K. Adamyk, E. Holmes, G. Mayfield, D. J. Moritz, and M. Scheepers,
“Games, genomes and graphs”, preprint.

[Anderson et al. ≥ 2016] C. Anderson, M. Scheepers, M. Warner, and H. Wauck, “On permutations
optimized for sorting by ciliate operations”, preprint.

[Angeleska et al. 2007] A. Angeleska, N. Jonoska, M. Saito, and L. F. Landweber, “RNA-guided
DNA assembly”, J. Theoret. Biol. 248:4 (2007), 706–720. MR 2899092

[Bafna and Pevzner 1995] V. Bafna and P. Pevzner, “Sorting by reversals: genome rearrangements
in plant organelles and evolutionary history of the X chromosome”, Mol. Biol. Evol. 12:2 (1995),
239–246.

[Bafna and Pevzner 1998] V. Bafna and P. A. Pevzner, “Sorting by transpositions”, SIAM J. Discrete
Math. 11:2 (1998), 224–240. MR 99e:05002 Zbl 0973.92014

[Barton et al. 2007] N. H. Barton, D. E. G. Briggs, J. A. Eisen, D. B. Goldstein, and N. H. Patel,
Evolution, Cold Spring Harbor Laboratory Press, 2007.

[Bhutkar et al. 2008] A. Bhutkar, S. W. Schaeffer, S. M. Russo, M. Xu, T. F. Smith, and W. M.
Gelbart, “Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes”,
Genetics 179:3 (2008), 1657–1680.

[Clote and Backofen 2000] P. Clote and R. Backofen, Computational molecular biology: an introduc-
tion, John Wiley & Sons, Ltd., Chichester, 2000. MR 2002h:92021 Zbl 0955.92013

[Coghran and Wolfe 2002] A. Coghran and K. H. Wolfe, “Fourfold faster rate of genome rearrange-
ment in nematodes than in Drosophila”, Genome Res. 12:6 (2002), 857–867.

[Dobzhansky and Sturtevant 1938] T. Dobzhansky and A. H. Sturtevant, “Inversions in the chromo-
somes of Drosophila pseudoobscura”, Genetics 23:1 (1938), 28–64.

[Ehrenfeucht et al. 2004] A. Ehrenfeucht, T. Harju, I. Petre, D. M. Prescott, and G. Rozenberg,
Computation in living cells: gene assembly in ciliates, Springer, Berlin, 2004. Zbl 1069.68048

[Hahn et al. 2007] M. Hahn, M. Han, and S.-G. Han, “Gene family evolution across 12 Drosophila
genomes”, PLOS Genetics 3:11 (2007), 2135–2146.

[Hannenhalli and Pevzner 1999] S. Hannenhalli and P. A. Pevzner, “Transforming cabbage into
turnip: polynomial algorithm for sorting signed permutations by reversals”, J. ACM 46:1 (1999),
1–27. MR 2000j:92013 Zbl 1064.92510

[Hochman 1971] B. Hochman, “Analysis of chromosome 4 in Drosophila melanogaster II: ethyl
methanesulfonate induced lethals”, Genetics 67:2 (1971), 235–252.

[Hughes 2000] D. Hughes, “Evaluating genome dynamics: the constraints on rearrangements within
bacterial genomes”, Genome Biology 1:6 (2000), 1–8.

[Mira and Meidanis 2007] C. Mira and J. Meidanis, “Sorting by block-interchanges and signed
reversals”, pp. 670–676 in Proceedings of the Fourth International Conference on Information
Technology: New Generations (Las Vegas, NV, 2007), edited by S. Latifi, IEEE Computer Society,
Los Alamitos, CA, 2007.

http://dx.doi.org/10.1016/j.jtbi.2007.06.007
http://dx.doi.org/10.1016/j.jtbi.2007.06.007
http://msp.org/idx/mr/2899092
http://mbe.oxfordjournals.org/content/12/2/239.full.pdf+html
http://mbe.oxfordjournals.org/content/12/2/239.full.pdf+html
http://dx.doi.org/10.1137/S089548019528280X
http://msp.org/idx/mr/99e:05002
http://msp.org/idx/zbl/0973.92014
http://www.cshlpress.com/default.tpl?cart=144543698711976786&fromlink=T&linkaction=full&linksortby=oop_title&--eqSKUdatarq=540
http://dx.doi.org/10.1534/genetics.107.086108
http://msp.org/idx/mr/2002h:92021
http://msp.org/idx/zbl/0955.92013
http://dx.doi.org/10.1101/gr.172702
http://dx.doi.org/10.1101/gr.172702
http://www.genetics.org/content/23/1/28.full.pdf+html
http://www.genetics.org/content/23/1/28.full.pdf+html
http://dx.doi.org/10.1007/978-3-662-06371-2
http://msp.org/idx/zbl/1069.68048
http://dx.doi.org/10.1371/journal.pgen.0030197
http://dx.doi.org/10.1371/journal.pgen.0030197
http://dx.doi.org/10.1145/300515.300516
http://dx.doi.org/10.1145/300515.300516
http://msp.org/idx/mr/2000j:92013
http://msp.org/idx/zbl/1064.92510
http://www.genetics.org/content/67/2/235.full.pdf+html
http://www.genetics.org/content/67/2/235.full.pdf+html
http://dx.doi.org/10.1186/gb-2000-1-6-reviews0006
http://dx.doi.org/10.1186/gb-2000-1-6-reviews0006
http://dx.doi.org/10.1109/ITNG.2007.184
http://dx.doi.org/10.1109/ITNG.2007.184


26 JACOB L. HERLIN, ANNA NELSON AND MARION SCHEEPERS

[Möllenbeck et al. 2008] M. Möllenbeck, Y. Zhou, A. R. O. Cavalcanti, F. Jönsson, B. P. Higgins,
W.-J. Chang, S. Juranek, T. G. Doak, G. Rozenberg, H. J. Lipps, and L. F. Landweber, “The pathway
to detangle a scrambled gene”, PLOS One 3:6 (2008), e2330.

[Muller 1940] H. J. Muller, “Bearings of the Drosophila work on systematics”, pp. 185–268 in The
New Systematics, edited by J. Huxley, Clarendon Press, Oxford, 1940.

[Nowacki et al. 2007] M. Nowacki, V. Vijayan, Y. Zhou, K. Schotanus, T. Doak, and L. Landweber,
“RNA-mediated epigenetic programming of a genome-rearrangement pathway”, Nature 451:7175
(2007), 153–158.

[Pevzner and Tesler 2003] P. A. Pevzner and G. Tesler, “Genome rearrangements in mammalian
evolution: lessons from human and mouse genomes”, Genome Res. 13:1 (2003), 37–45.

[Prescott 1994] D. M. Prescott, “The DNA of ciliated protozoa”, Microbiol. Rev. 58:2 (1994), 233–
267.

[Prescott 2000] D. M. Prescott, “Genome gymnastics: unique modes of DNA evolution and processing
in ciliates”, Nature Reviews Genetics 1 (2000), 191–198.

[Prescott et al. 2003] D. M. Prescott, A. Ehrenfeucht, and G. Rozenberg, “Template-guided recombi-
nation for IES elimination and unscrambling of genes in stichotrichous ciliates”, J. Theoret. Biol.
222:3 (2003), 323–330. MR 2067536

[Schaeffer et al. 2008] S. W. Schaeffer, A. Bhutkar, B. F. McAllister, M. Matsuda, L. M. Matzkin,
P. M. O’Grady, C. Rohde, V. L. S. Valente, M. Aguadé, W. W. Anderson, K. Edwards, A. C. L.
Garcia, J. Goodman, J. Hartigan, E. Kataoka, R. T. Lapoint, E. R. Lozovsky, C. A. Machado, M. A. F.
Noor, M. Papaceit, L. K. Reed, S. Richards, T. T. Rieger, S. M. Russo, H. Sato, C. Segarra, C. R.
Smith, T. F. Smith, V. Strelets, Y. N. Tobari, Y. Tomimura, M. Wasserman, T. Watts, R. Wilson,
K. Yoshida, T. A. Markow, W. M. Gelbart, and T. C. Kaufman, “Polytene chromosomal maps of
11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps”,
Genetics 179:3 (2008), 1601–1655.

[Sturtevant and Dobzhansky 1936] A. H. Sturtevant and T. Dobzhansky, “Inversions in the third
chromosome of wild races of Drosophila pseudoobscura, and their use in the study of the history of
the species”, PNAS 22:7 (1936), 448–450.

[Yancopoulos et al. 2005] S. Yancopoulos, O. Attie, and R. Friedberg, “Efficient sorting of genomic
permutations by translocation, inversion and block interchange”, Bioinformatics 21:16 (2005),
3340–3346.

Received: 2013-01-23 Revised: 2014-12-11 Accepted: 2014-12-21

jlherlin@indiana.edu Department of Mathematics, Indiana University, Rawles Hall,
831 East 3rd Street, Bloomington, IN 47405, United States

anelson@math.utah.edu Department of Mathematics, University of Utah, 155 S 1400 E,
Room 233, Salt Lake City, UT 84112-0090, United States

mscheepe@boisestate.edu Department of Mathematics, Boise State University,
Boise, ID 83725, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1371/journal.pone.0002330
http://dx.doi.org/10.1371/journal.pone.0002330
http://dx.doi.org/10.1038/nature06452
http://dx.doi.org/10.1101/gr.757503
http://dx.doi.org/10.1101/gr.757503
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC372963/
http://dx.doi.org/10.1038/35042057
http://dx.doi.org/10.1038/35042057
http://dx.doi.org/10.1016/S0022-5193(03)00037-7
http://dx.doi.org/10.1016/S0022-5193(03)00037-7
http://msp.org/idx/mr/2067536
http://dx.doi.org/10.1534/genetics.107.086074
http://dx.doi.org/10.1534/genetics.107.086074
http://dx.doi.org/10.1073/pnas.22.7.448
http://dx.doi.org/10.1073/pnas.22.7.448
http://dx.doi.org/10.1073/pnas.22.7.448
http://dx.doi.org/10.1093/bioinformatics/bti535
http://dx.doi.org/10.1093/bioinformatics/bti535
mailto:jlherlin@indiana.edu
mailto:anelson@math.utah.edu
mailto:mscheepe@boisestate.edu
http://msp.org


involve
msp.org/involve

MANAGING EDITOR
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS
Colin Adams Williams College, USA

colin.c.adams@williams.edu
John V. Baxley Wake Forest University, NC, USA

baxley@wfu.edu
Arthur T. Benjamin Harvey Mudd College, USA

benjamin@hmc.edu
Martin Bohner Missouri U of Science and Technology, USA

bohner@mst.edu
Nigel Boston University of Wisconsin, USA

boston@math.wisc.edu
Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA

budhiraj@email.unc.edu
Pietro Cerone La Trobe University, Australia

P.Cerone@latrobe.edu.au
Scott Chapman Sam Houston State University, USA

scott.chapman@shsu.edu
Joshua N. Cooper University of South Carolina, USA

cooper@math.sc.edu
Jem N. Corcoran University of Colorado, USA

corcoran@colorado.edu
Toka Diagana Howard University, USA

tdiagana@howard.edu
Michael Dorff Brigham Young University, USA

mdorff@math.byu.edu
Sever S. Dragomir Victoria University, Australia

sever@matilda.vu.edu.au
Behrouz Emamizadeh The Petroleum Institute, UAE

bemamizadeh@pi.ac.ae
Joel Foisy SUNY Potsdam

foisyjs@potsdam.edu
Errin W. Fulp Wake Forest University, USA

fulp@wfu.edu
Joseph Gallian University of Minnesota Duluth, USA

jgallian@d.umn.edu
Stephan R. Garcia Pomona College, USA

stephan.garcia@pomona.edu
Anant Godbole East Tennessee State University, USA

godbole@etsu.edu
Ron Gould Emory University, USA

rg@mathcs.emory.edu
Andrew Granville Université Montréal, Canada

andrew@dms.umontreal.ca
Jerrold Griggs University of South Carolina, USA

griggs@math.sc.edu
Sat Gupta U of North Carolina, Greensboro, USA

sngupta@uncg.edu
Jim Haglund University of Pennsylvania, USA

jhaglund@math.upenn.edu
Johnny Henderson Baylor University, USA

johnny_henderson@baylor.edu
Jim Hoste Pitzer College

jhoste@pitzer.edu
Natalia Hritonenko Prairie View A&M University, USA

nahritonenko@pvamu.edu
Glenn H. Hurlbert Arizona State University,USA

hurlbert@asu.edu
Charles R. Johnson College of William and Mary, USA

crjohnso@math.wm.edu
K. B. Kulasekera Clemson University, USA

kk@ces.clemson.edu
Gerry Ladas University of Rhode Island, USA

gladas@math.uri.edu

David Larson Texas A&M University, USA
larson@math.tamu.edu

Suzanne Lenhart University of Tennessee, USA
lenhart@math.utk.edu

Chi-Kwong Li College of William and Mary, USA
ckli@math.wm.edu

Robert B. Lund Clemson University, USA
lund@clemson.edu

Gaven J. Martin Massey University, New Zealand
g.j.martin@massey.ac.nz

Mary Meyer Colorado State University, USA
meyer@stat.colostate.edu

Emil Minchev Ruse, Bulgaria
eminchev@hotmail.com

Frank Morgan Williams College, USA
frank.morgan@williams.edu

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
moslehian@ferdowsi.um.ac.ir

Zuhair Nashed University of Central Florida, USA
znashed@mail.ucf.edu

Ken Ono Emory University, USA
ono@mathcs.emory.edu

Timothy E. O’Brien Loyola University Chicago, USA
tobrie1@luc.edu

Joseph O’Rourke Smith College, USA
orourke@cs.smith.edu

Yuval Peres Microsoft Research, USA
peres@microsoft.com

Y.-F. S. Pétermann Université de Genève, Switzerland
petermann@math.unige.ch

Robert J. Plemmons Wake Forest University, USA
plemmons@wfu.edu

Carl B. Pomerance Dartmouth College, USA
carl.pomerance@dartmouth.edu

Vadim Ponomarenko San Diego State University, USA
vadim@sciences.sdsu.edu

Bjorn Poonen UC Berkeley, USA
poonen@math.berkeley.edu

James Propp U Mass Lowell, USA
jpropp@cs.uml.edu

Józeph H. Przytycki George Washington University, USA
przytyck@gwu.edu

Richard Rebarber University of Nebraska, USA
rrebarbe@math.unl.edu

Robert W. Robinson University of Georgia, USA
rwr@cs.uga.edu

Filip Saidak U of North Carolina, Greensboro, USA
f_saidak@uncg.edu

James A. Sellers Penn State University, USA
sellersj@math.psu.edu

Andrew J. Sterge Honorary Editor
andy@ajsterge.com

Ann Trenk Wellesley College, USA
atrenk@wellesley.edu

Ravi Vakil Stanford University, USA
vakil@math.stanford.edu

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
antonia.vecchio@cnr.it

Ram U. Verma University of Toledo, USA
verma99@msn.com

John C. Wierman Johns Hopkins University, USA
wierman@jhu.edu

Michael E. Zieve University of Michigan, USA
zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $160/year for the electronic version, and
$215/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes
of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California,
Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://msp.org/involve
mailto:berenhks@wfu.edu
mailto:colin.c.adams@williams.edu
mailto:baxley@wfu.edu
mailto:benjamin@hmc.edu
mailto:bohner@mst.edu
mailto:boston@math.wisc.edu
mailto:budhiraj@email.unc.edu
mailto:P.Cerone@latrobe.edu.au
mailto:scott.chapman@shsu.edu
mailto:cooper@math.sc.edu
mailto:corcoran@colorado.edu
mailto:tdiagana@howard.edu
mailto:mdorff@math.byu.edu
mailto:sever@matilda.vu.edu.au
mailto:bemamizadeh@pi.ac.ae
mailto:foisyjs@potsdam.edu
mailto:fulp@wfu.edu
mailto:jgallian@d.umn.edu
mailto:stephan.garcia@pomona.edu
mailto:godbole@etsu.edu
mailto:rg@mathcs.emory.edu
mailto:andrew@dms.umontreal.ca
mailto:griggs@math.sc.edu
mailto:sngupta@uncg.edu
mailto:jhaglund@math.upenn.edu
mailto:johnny_henderson@baylor.edu
mailto:jhoste@pitzer.edu
mailto:nahritonenko@pvamu.edu
mailto:hurlbert@asu.edu
mailto:crjohnso@math.wm.edu
mailto:kk@ces.clemson.edu
mailto:gladas@math.uri.edu
mailto:larson@math.tamu.edu
mailto:lenhart@math.utk.edu
mailto:ckli@math.wm.edu
mailto:lund@clemson.edu
mailto:g.j.martin@massey.ac.nz
mailto:meyer@stat.colostate.edu
mailto:eminchev@hotmail.com
mailto:frank.morgan@williams.edu
mailto:moslehian@ferdowsi.um.ac.ir
mailto:znashed@mail.ucf.edu
mailto:ono@mathcs.emory.edu
mailto:tobrie1@luc.edu
mailto:orourke@cs.smith.edu
mailto:peres@microsoft.com
mailto:petermann@math.unige.ch
mailto:plemmons@wfu.edu
mailto:carl.pomerance@dartmouth.edu
mailto:vadim@sciences.sdsu.edu
mailto:poonen@math.berkeley.edu
mailto:jpropp@cs.uml.edu
mailto:przytyck@gwu.edu
mailto:rrebarbe@math.unl.edu
mailto:rwr@cs.uga.edu
mailto:f_saidak@uncg.edu
mailto:sellersj@math.psu.edu
mailto:andy@ajsterge.com
mailto:atrenk@wellesley.edu
mailto:vakil@math.stanford.edu
mailto:antonia.vecchio@cnr.it
mailto:verma99@msn.com
mailto:wierman@jhu.edu
mailto:zieve@umich.edu
http://msp.org/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2016 vol. 9 no. 1

1Using ciliate operations to construct chromosome phylogenies
JACOB L. HERLIN, ANNA NELSON AND MARION

SCHEEPERS

27On the distribution of the greatest common divisor of Gaussian
integers

TAI-DANAE BRADLEY, YIN CHOI CHENG AND YAN FEI

LUO

41Proving the pressing game conjecture on linear graphs
ELIOT BIXBY, TOBY FLINT AND ISTVÁN MIKLÓS

57Polygonal bicycle paths and the Darboux transformation
IAN ALEVY AND EMMANUEL TSUKERMAN

67Local well-posedness of a nonlocal Burgers’ equation
SAM GOODCHILD AND HANG YANG

83Investigating cholera using an SIR model with age-class structure
and optimal control

K. RENEE FISTER, HOLLY GAFF, ELSA SCHAEFER,
GLENNA BUFORD AND BRYCE C. NORRIS

101Completions of reduced local rings with prescribed minimal prime
ideals

SUSAN LOEPP AND BYRON PERPETUA

119Global regularity of chemotaxis equations with advection
SAAD KHAN, JAY JOHNSON, ELLIOT CARTEE AND YAO YAO

133On the ribbon graphs of links in real projective space
IAIN MOFFATT AND JOHANNA STRÖMBERG

155Depths and Stanley depths of path ideals of spines
DANIEL CAMPOS, RYAN GUNDERSON, SUSAN MOREY,
CHELSEY PAULSEN AND THOMAS POLSTRA

171Combinatorics of linked systems of quartet trees
EMILI MOAN AND JOSEPH RUSINKO

1944-4176(2016)9:1;1-4

involve
2016

vol.9,
no.1


	Boise State University
	ScholarWorks
	1-1-2016

	Using Ciliate Operations to Construct Chromosome Phylogenies
	Jacob L. Herlin
	Anna Nelson
	Marion Scheepers

	1. Ciliates and nuclear duality
	2. The ciliate DNA operations
	3. Pointer lists
	4. The ciliate operations on pointer lists
	5. The HNS algorithm
	6. An application to genome phylogenetics
	Discussion
	Appendix: The distance matrices underlying the application of UPGMA to the five chromosomes of eight fruit fly species
	Acknowledgement
	References

