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Abstract: Canonical Notch signaling involves Notch receptor activation via interaction 28 

with cell surface bound Notch ligand.  Recent findings also indicate that Notch signaling 29 

may be modulated by cross-talk with other signaling mechanisms.  The ECM protein 30 

MAGP2 was previously shown to regulate Notch in a cell type dependent manner, 31 

although the molecular details of this interaction have not been dissected.  Here, we 32 

report that MAGP2 cell type specific control of Notch is independent of individual Notch 33 

receptor-ligand combinations but dependent on interaction with RGD binding integrins.  34 

Overexpressed MAGP2 was found to suppress transcriptional activity from the Notch 35 

responsive Hes1 promoter activity in endothelial cells, while overexpression of a 36 

RGDRGE MAGP2 mutant increased Notch signaling in the same cell type.  This effect 37 

was not unique to MAGP2 since the RGD domain of the ECM protein EGFL7 was also 38 

found to be an important modulator of Hes1 promoter activity.  Independently of MAGP2 39 

or EGFL7, inhibition of RGD-binding integrins with soluble RGD peptides also 40 

increased accumulation of active N1ICD fragments and Notch responsive promoter 41 

activity independently of changes in Notch1, Jag1, or Dll4 expression.  Finally, β1 or β3 42 

integrin blocking antibodies also enhanced Notch signaling.  Collectively, these results 43 

answer the question of how MAGP2 controls cell type dependent Notch signaling, but 44 

more importantly uncover a new mechanism to understand how extracellular matricies 45 

and cellular environments impact Notch signaling. 46 

 47 
 48 
  49 
 50 

 51 

 52 

  53 



Introduction: 54 

 55 

Extracellular matrices within cellular microenvironments play an integral role in the 56 

regulation of a wide variety of normal cellular physiological responses.  Alternatively, 57 

abnormal extracellular microenvironments contribute to the pathogenesis of many 58 

vascular diseases of humans such as atherosclerosis, arteriosclerosis, and cancer.  59 

Therefore understanding how ECM molecules in these diverse microenvironments 60 

impact cell physiology is an important step towards to understanding the pathophysiology 61 

of these diseases. 62 

 63 

There are numerous receptor mechanisms whereby cells detect and interact with ECM 64 

molecules within cellular microenvironments.  The best understood of these cellular 65 

ECM receptor systems are integrins which are heterodimeric transmembrane proteins 66 

consisting of one α-subunit and one β-subunit.  Collectively, there are 18 known α-67 

subunits and 8 known β-subunits that can combine in various combinations to form up to 68 

24 functional integrins [1].  Integrin heterodimers have diverse ligand specificities 69 

including the arginine-glycine-aspartic acid (RGD) domain [2].  Once bound to specific 70 

ECM ligands, integrins initiate a wide variety of signaling cascades that are mediated by 71 

activation of several downstream kinases including focal adhesion kinase (FAK), Src, 72 

and the integrin-linked kinase (ILK) pathways that collectively have broad impacts on 73 

cellular physiology [3]. 74 

 75 

Microfibril associated glycoprotein-2 (MAGP2) is an extracellular matrix protein that 76 

interacts with microfibril/elastin networks [4, 5] and mediates cell adhesion via it’s N-77 

terminal RGD domain [6].  In addition to a role in building elastin networks, MAGP2 is 78 

also a pro-angiogenic component of vascular microenvironments [7] and increased 79 

expression of MAGP2 has been associated with increased vascular densities and poor 80 

prognosis in ovarian cancers [8].  Beyond it’s structural role in the ECM, MAGP2 also 81 

functions as a matricellular protein by interacting with the Notch signaling cascade.  82 

Specifically, the C-terminal of MAGP2 interacts with the Notch ligand Jagged1 [9], and 83 

ultimately increases Notch signaling in COS-1 cells [10].  MAGP2 does not equally 84 



impact Notch signaling in all cell types however.  MAGP2 increases Notch signaling in a 85 

variety of non-endothelial cell lines, but consistently decreases Notch activation in 86 

several varieties of human and mouse endothelial cell lines [11].  It is the ability of 87 

MAGP2 to suppress Notch signaling in endothelial cells that imparts pro-angiogenic 88 

activity to MAGP2 [11].  However, the exact mechanism whereby MAGP2 promotes 89 

Notch signaling in some cell types, but blocks Notch signaling in endothelial cells has 90 

remained a mystery. 91 

 92 

Herein we show that the cell type-specific effect of MAGP2 on Notch signaling is 93 

independent of individual Notch receptor-ligand combinations but dependent on MAGP2 94 

interaction with RGD binding integrins. MAGP2 is not unique in this function however 95 

since we also found that the RGD domain of EGFL7 also controls Notch signaling.  On a 96 

larger scale, inhibition of integrin function with blocking antibodies or soluble RGD 97 

peptides also impacted Notch signaling activity.  Collectively, our results lead us to 98 

believe that MAGP2 and EGFL7 are just two of many ECM proteins that may indirectly 99 

control Notch via interactions with RGD binding integrins since.  Therefore, the broad 100 

implication of our results is the identification of a general signaling axis connecting 101 

cellular microenvironments (and the ECM proteins within these microenvironments) to 102 

Notch via integrin signaling. 103 

 104 

Results: 105 

 106 

MAGP2 suppresses Notch signaling in endothelial cells via interactions with RGD 107 

binding integrins 108 

 109 

We previously demonstrated that MAGP2 inhibits Notch signaling in endothelial cells 110 

but increases Notch signaling in non-endothelial cell lines [11].  Our first hypothesis to 111 

explain this observation was that MAGP2 may specifically inhibit receptor – ligand 112 

combinations present in endothelial cells, but promote receptor – ligand combinations 113 

present in non-endothelial cells.  Therefore, we used RT-PCR to compare expression of 114 

Notch receptors and ligands in SVEC endothelial cells and B16F0 melanoma cells in 115 



which MAGP2 had previously been shown to reduce or increase Notch signaling 116 

respectively [11].  As shown in figure 1A, both cell lines expressed Notch receptors 1, 3, 117 

and 4 and also shared expression of Notch ligands Jagged1 and 2 (JAG1, 2).  However, 118 

expression of Notch ligands Delta-like 1 and 3 (Dll1, 3) was restricted to B16F0 cells 119 

while expression of the Delta-like 4 (Dll4) Notch ligand was restricted to SVEC cells.  120 

Therefore, we transiently transfected 293T cells with combinations of Notch1 together 121 

with MAGP2 and either Dll1, Dll3, or Dll4 cDNAs and monitored Notch activation by 122 

western blot analysis of whole cell lysates with anti-VAL1744 antibodies that only 123 

recognize the activated N1ICD domain cleaved at the VAL1744 position by gamma-124 

secretase.  As shown in figure 1B, regardless of combination, co-transfected MAGP2 125 

cDNA decreased Notch activation independently of Notch receptor – ligand combination. 126 

 127 
Figure 1:  MAGP2 128 
suppresses Notch 129 
activation 130 
independently of 131 
ligand type.  (A) 132 
Expression patterns of 133 
Notch receptors and 134 
ligands in murine 135 
SVEC endothelial 136 
cells and B16F0 137 
melanoma cells.  Expression of Notch receptors and ligands was screened by RT-PCR with transcript 138 
specific oligos.  Non-reverse transcribed RNA (RT-) was used as a negative control to control for 139 
amplification from contaminating genomic DNA.  Shown are the results of a single experiment that was 140 
performed twice with identical results.  (B) Effect of MAGP2 on Notch activation by various Notch 141 
ligands.  293T cells were transfected with combinations of cDNA encoding Notch1, MAGP2, and various 142 
Notch ligands (JAG1, Dll1, Dll3, Dll4).  Notch activation was monitored by western blot analysis with 143 
anti-N1ICD (VAL-1744) specific antibodies.  Equivalent protein loading was monitored by stripping and 144 
re-blotting with anti-β-actin antibodies.  Shown is a representative result from a single experiment that was 145 
performed 6 times in it’s entirety. 146 
 147 

 148 



An alternative hypothesis to explain the cell type-specific regulation of Notch by MAGP2 149 

involved an unknown receptor protein for MAGP2 expressed in endothelial cells but not 150 

in non-endothelial cells.  Since MAGP2 contains an integrin binding RGD domain, we 151 

hypothesized that MAGP2 might bind to integrins present in endothelial cells but not 152 

non-endothelial cells and trigger a differential impact on Notch signaling.  To test this 153 

hypothesis, we transfected HMEC endothelial cells with a Notch responsive Hes-1 154 

luciferase construct plus MAGP2 cDNA and added increasing amounts of soluble RGD 155 

peptide to transfected cells to block activation of RGD binding integrins.  As shown in 156 

figure 2A and as previously observed [11], transfection of MAGP2 cDNA alone 157 

decreased Hes-1 promoter activity in HMEC cells.  The addition of soluble RGD peptides 158 

completely blocked the ability of MAGP2 to suppress Hes-1 promoter activity suggesting 159 

that MAGP2 decreases Hes-1 promoter activity by interacting with RGD binding 160 

integrins.  161 

 162 

To directly test if MAGP2 suppresses Hes-1 promoter activity in an RGD dependent 163 

manner, we used site directed mutagenesis to induce an RGDRGE mutation in 164 

MAGP2 and compared Hes-1 promoter activity in the presence of RGD and RGE 165 

versions of MAGP2.  The mutation was confirmed by sequence analysis (Fig 2B) and 166 

recombinant proteins were purified from bacterial cells by anti-FLAG chromatography 167 

(Fig 2C).  The functional outcome of the mutation was confirmed by comparing 168 

endothelial cell adhesion to RGD or RGE versions of the purified proteins.  Purified 169 

proteins were coated onto cell culture plates and remaining binding sites were blocked 170 

with BSA.  As anticipated, HMEC endothelial cells successfully adhered to both 171 

MAGP2-RGD and positive control fibronectin, but failed to adhere to MAGP2-RGE or 172 

BSA negative control indicating that the RGD domain is the sole binding site for HMEC 173 

endothelial cells on MAGP2  (Fig 2D).  HMEC cells were subsequently transfected with 174 

the Hes-1 luciferase reporter and either RGD or RGE versions of MAGP2 cDNAs to 175 

monitor Notch signaling activity.  As previously shown, MAGP2-RGD suppressed Hes-1 176 

promoter activity.  Surprisingly, MAGP2-RGE had a completely opposite effect and 177 

increased Notch signaling (Fig 2E).  This result demonstrated that ligation of RGD 178 



binding integrins by MAGP2 decreased Hes-1 promoter activity and that MAGP2 likely 179 

has both positive and negative Notch regulatory activities. 180 

 181 
Figure 2:  MAGP2 suppresses Notch 182 
activation in a RGD dependent manner.  183 
(A) Effect of MAGP2 and soluble 184 
RGD peptides on Hes-1 promoter 185 
activity.  Human HMEC endothelial 186 
cells were transfected with a Notch 187 
responsive Hes-1 luciferase reporter 188 
construct +/- MAGP2 cDNA then 189 
treated with increasing concentrations 190 
of soluble RGD peptide.  Hes-1 191 
promoter activity was monitored by 192 
luciferase expression in solubilized cell 193 
lysates.  The bar graph depicts data 194 
from n=5 independent experiments.  P-195 
values (compared to -MAGP2, -RGD 196 
control) were calculated by student’s t-197 
test.  (B) The RGD integrin binding 198 
domain of MAGP2 was mutated to a 199 
non-integrin binding RGE domain and 200 
verified by sequence analysis.  Note 201 
that the CGT to CGC change present in 202 
the R codon of the RGE mutant is 203 
silent.  (C) C-terminally FLAG tagged RGD (D) and RGE (E) versions of MAGP2 were expressed in 204 
BL21-DE3 cells and purified by anti-FLAG affinity chromatography.  Protein isolation was monitored by 205 
SDS-PAGE and coomassie staining.  (D) Effect of MAGP2-RGE mutation on cell adhesion.  206 
Recombinantly produced and purified RGD and RGE versions of MAGP2 were coated onto cell culture 207 
plates and cell adhesion was compared to positive control fibronectin, or negative control BSA.  (E) Effect 208 
of RGD and RGE versions of MAGP2 on Hes-1 promoter activity.  HMEC cells were transfected with 209 
either Hes-1 luciferase reporter alone, or in combination with either MAGP2-RGD or MAGP2-RGE and 210 
Notch activity was monitored in solubilized cell lysates.  The bar graph depicts data from n=4 experiments.  211 
The student’s t-test was used to calculate p-values compared to cells transfected with Hes1-luciferase alone 212 
and are indicated above their corresponding bars.   213 
 214 



Integrin function couples to Notch signaling activity. 215 

We found that the RGD domain of MAGP2 was essential for suppression of Notch in 216 

HMEC cells.  RGD domains are common throughout the extracellular matrix where they 217 

serve as binding sites for several types of integrins [2].  Therefore, it was important to 218 

determine if the RGD domain of MAGP2 was unique in it’s ability to control Notch.  219 

EGF-like domain-containing protein 7 (EGFL7) also contains an RGD domain that 220 

interacts with αvβ3 integrin [12] and has previously been shown to control Notch [13, 221 

14].  To determine if the RGD domain of EGFL7 also controls Notch signaling we 222 

compared Hes-1 promoter activity in HMEC cells transfected with RGD  RGE EGFL7 223 

mutants.  As shown in figure 3A, EGFL7-RGD significantly enhanced Hes-1 promoter 224 

activity compared to non-transfected cells.  RGD  RGE mutation of EGFL7 further 225 

increased Hes1 promoter activity suggesting that integrin ligation by EGFL7 decreases 226 

Notch1 signaling activity.   227 

To more broadly examine the role of integrin ligation in Notch signaling, we 228 

treated HMEC cells with soluble RGD peptides that bind RGD binding integrins but 229 

prevent integrin activation [15].  HMEC endothelial cells were incubated with increasing 230 

concentrations of soluble RGD peptides and accumulation of cleaved Notch1 NICD 231 

fragments was monitored in cell lysates by western blot with anti-VAL1744 antibodies.  232 

As shown in figures 3B and 3C, soluble RGD peptides dose-dependently caused a 233 

significant accumulation of N1ICD fragments.  Further western blot analysis suggested 234 

that activation of Notch signaling did not appear to obviously correlate with increased 235 

expression of either the full length Notch1 receptor, the Notch ligands Jagged1 or Dll4, or 236 

the VEGF receptor KDR.  Collectively, these findings demonstrated that generation of 237 

the N1ICD domain is regulated by RGD binding integrins and thus supported our 238 

hypothesis that the ECM may regulate Notch via interactions with RGD binding 239 

integrins. 240 

 241 

 242 

 243 

 244 

 245 



Figure 3:  RGD binding 246 
integrins control Notch.  247 
(A) The effect of EGFL7 248 
on Hes-1 promoter 249 
activity.  Empty vector (-250 
C), RGD or RGE 251 
versions of EGFL7 were 252 
co-transfected with Hes-253 
1 luciferase plasmid into 254 
HMEC cells and 255 
luciferase activity was 256 
monitored in whole cell lysates.  The data depict the average +/- SE of n=4 experiments.  P-values are 257 
indicated above their corresponding bars.  (B) The effect of soluble RGD peptides on N1ICD accumulation 258 
in HMEC cells.  HMEC cells were treated with increasing concentrations of soluble RGD peptides and 259 
N1ICD accumulation was monitored by western blot in fractionated whole cell lysates with anti-VAL1744 260 
antibodies.  Expression of full-length Notch1, Jagged1, Dll-4, and VEGFR2 (KDR), was monitored by 261 
subsequent stripping and re-blotting with specific antibodies.  Equivalent protein loading was monitored by 262 
blotting with anti-β-actin antibodies.  Shown are representative blots from a single experiment that was 263 
performed n=5 independent times.  (C) Image-J quantitation of N1ICD western blot data presented in panel 264 
B.  Bar graph depicts data from n=5 experiments.  P-values were calculated with the student’s t-test 265 
compared to untreated control cells and are indicated above their corresponding bars. 266 
 267 

β3 and β1 integrins control Notch signaling. 268 

At least eight of the 24 known integrin heterodimers have affinity for RGD motifs [2].  269 

Therefore, we used RT-PCR to compare expression of α and β integrin subunits known 270 

to heterodimerize into RGD binding integrins in HMEC cells [2].  HMEC cells expressed 271 

α2, α5, αV, β1, β3, and β6 subunits (Fig. 4A).  Both MAGP2 and EGFL7 had previously 272 

been shown to interact with αvβ3 integrins but not with β1 integrins [6, 12] leading to the 273 

hypothesis that β3 but not β1 integrins would interact with Notch signaling.  To test this 274 

hypothesis, we cultured HMEC endothelial cells in the presence of 0.5 to 2.0 µg/ml of β3 275 

or β1 blocking antibodies and used western blot analysis to monitor Notch activation via 276 

N1ICD fragment accumulation in whole cell lysates.  As shown in figure 4B and 4C, 7H2 277 

β3 blocking antibodies that had previously been shown to block β3 integrin mediated 278 

adhesion [16] dose-dependently enhanced N1ICD accumulation.  In contrast, P5D2 β1 279 



blocking antibodies that had previously been shown to block β1 integrin mediated 280 

adhesion [17] induced N1ICD accumulation at low dose (0.5 µg/ml), although higher 281 

concentrations of β1 blocking antibodies failed to significantly affect N1ICD 282 

accumulation.  We next transfected HMEC cells with the Hes-1 luciferase reporter and 283 

monitored Hes-1 promoter activity in the presence or absence of blocking antibodies 284 

directed against β3 or β1 integrins.  Interestingly, application of both β3 and β1 blocking 285 

antibodies dose-dependently increased Hes-1 promoter activity across all tested antibody 286 

concentrations (0.5 to 2.0 µg/ml) (Fig 4D).  Moreover, this activity was not restricted to 287 

the Hes-1 promoter since both β3 and β1 blocking antibodies also enhanced promoter 288 

activity from the Notch responsive Hes-5 and synthetic 4X-CSL promoters at 2.0 µg/ml 289 

(Fig 4E).  Since HMEC cells also expressed β6 integrin, we also examined HES-1 290 

promoter activity in the presence of 10D5 αvβ6 blocking antibodies but did not observe a 291 

significant change in reporter activity (data not shown). Collectively these results 292 

confirmed our hypothesis that β3 integrins couple to the Notch signaling pathway, and 293 

also suggested that β1 integrin couples to Notch signaling via a mechanism that has 294 

similarities, but may also have distinctions compared to β3 – Notch signaling. 295 

 296 
Figure 4: β3 and 297 
β1 integrins couple 298 
to Notch signaling.  299 
(A) Analysis of 300 
RGD binding α 301 
and β integrin 302 
subunits in HMEC 303 
endothelial cells.  304 
PCR analysis of 305 
reverse transcribed 306 
(RT+) or non-307 
reverse transcribed 308 
(RT-) RNA with sequence specific oligos was used to detect expression of various RGD binding integrin 309 
subunits or GAPDH as a control.  PCR products were resolved in PAGE gels and detected with ethidium 310 
bromide.  Shown are the results of a representative experiment that was performed twice with identical 311 
results.  (B) Effect of β3 and β1 blocking antibodies on N1ICD fragment accumulation in HMEC cells.  312 



HMEC endothelial cells were cultured in the presence of increasing concentrations of β3 or β1 blocking 313 
antibodies and N1ICD accumulation was monitored by western blot analysis of whole cell lysates with 314 
anti-VAL1744 specific antibodies. Protein loading was monitored by stripping and subsequent re-blotting 315 
with anti-vinculin antibodies.  Shown are the results of a single experiment from n=4 independent 316 
experiments.  (C) Image-J quantitation of data presented in panel B.  The bar graph depicts N1ICD pixel 317 
density from n=4 experiments.  The student’s t-test was used to calculate p-values compared to untreated 318 
HMEC cells and are indicated above their corresponding bars.  (D) Effect of β3 or β1 blocking antibodies 319 
on Hes-1 promoter activity.  HMEC endothelial cells were transfected with Hes-1 luciferase constructs and 320 
incubated in increasing concentrations of β3 or β1 blocking antibodies.  Notch signaling was monitored by 321 
measuring luciferase activity in solubilized cell lysates.  The bar graph depicts data from n=4 experiments.  322 
P-values compared to untreated cells were calculated using the student’s t-test and are indicated above 323 
corresponding bars.  (E) Comparison of β3 or β1 blocking antibodies effect on Hes-1, Hes-5, and 4X-CSL 324 
promoters.  HMEC cells were transfected with luciferase reporter vectors containing either Hes-1, Hes-5, or 325 
4X-CSL promoters and treated with 0 or 2µg/ml of β3 or β1 blocking antibodies.  The bar graph depicts 326 
data from n=4 experiments.  P-values compared to untreated cells were calculated with the student’s t-test 327 
and are indicated above their corresponding bars. 328 
 329 

Discussion: 330 

 331 

The original intent of this project was to explore the mechanistic basis by which MAGP2 332 

suppresses Notch signaling in endothelial cells but promotes Notch signaling in non-333 

endothelial cells.  The capacity of MAGP2 to differentially control Notch was originally 334 

hypothesized to be based on MAGP2 interactions with specific Notch receptor – ligand 335 

combinations present in endothelial cells but not in non-endothelial cells.  In testing this 336 

hypothesis, we observed differential expression of Notch receptors in endothelial (SVEC) 337 

and non-endothelial (B16F0) cells, but transplantation of these ligands and MAGP2 into 338 

293T cells did not suggest a differential ability of MAGP2 to regulate Notch1 activation 339 

by individual ligands (Fig 1).  Instead, mutation of the MAGP2 RGD domain to a non-340 

integrin binding RGE domain not only eliminated the ability of MAGP2 to suppress 341 

Notch signaling in endothelial cells, but also imbued MAGP2 with the ability to promote 342 

Notch signaling in endothelial cells (Fig 2).  Combining these results and the results of 343 

Miyamoto et al [10] which demonstrated that the C-terminal of MAGP2 is necessary to 344 

promote Notch signaling in 3T3 cells, we now hypothesize that MAGP2 controls Notch 345 

signaling with a two-part mechanism.  In cells expressing MAGP2 binding integrins (i.e. 346 



αvβ3), MAGP2 acts in a dominant negative fashion negating the pro-Notch signaling 347 

conferred by the MAGP2 C-terminal.  However in cells lacking MAGP2 binding 348 

integrins, the C-terminal of MAGP2 increases Notch through induced dissociation of the 349 

Notch extracellular domain as previously demonstrated [10].  Interestingly, MAGP2 is 350 

subject to cleavage by proprotein convertase near the C-terminal [18] raising the 351 

intriguing possibility that cleavage of MAGP2 (or other ECM proteins) may act as an 352 

additional level of regulatory activity.  A similar mechanism can also be envisioned for 353 

EGFL7.  In this case however, we found that EGFL7 increased Notch signaling and 354 

mutation of the RGD domain further increase Notch signaling.  These results suggest that 355 

EGFL7 may also contain both pro- and anti-Notch regulatory activity although it is not 356 

known if EGFL7 is subject to cleavage in the ECM. 357 

 358 

Although our original intent was to explore the mechanism by which MAGP2 controls 359 

Notch, our results have uncovered a mechanism that may be broadly applied to many 360 

ECM proteins that interact with integrins.  As such these results add a new dimension to 361 

the emerging idea that the cellular microenvironment via specific extracellular matrices is 362 

capable of controlling Notch signaling activity.  Other reports have also hinted at this 363 

possibility.  Weijers et al., [19] described an effect of low molecular weight fibronectin 364 

fragments on the expression of the Notch ligand Dll4 and subsequent Notch activation in 365 

endothelial cells.  More recently, Estrach et al., [20] and Stenzel et al., [21] demonstrated 366 

that laminin 111 and laminin α4 increase Dll4 expression in endothelial cells via α2β1 367 

and α6β1 integrins.  Stenzel et al., continued to show that disruption of this signaling 368 

system had dramatic complications for normal angiogenesis thus hinting at the biological 369 

significance of this signaling system [21].  While similar in some ways, our results are 370 

distinct since treatment of HMEC cells with soluble RGD peptides increased Notch 371 

signaling activity independently of Notch1, Jagged1, or Dll4 expression (Fig 3).  372 

Therefore, instead of controlling Notch signaling via increased Notch receptor or ligand 373 

expression, our results suggest that integrin ligation directly engages in cross-talk with 374 

Notch.  Support for this mechanism has been published elsewhere.  Suh et al., [22] 375 

demonstrated that collagen1 increases NICD accumulation via interactions with α2b1 376 

integrins, Mo et al., [23] observed that the downstream integrin regulator ILK (Integrin 377 



linked Kinase) decreases Notch signaling by stimulating ubiquitination and rapid 378 

degradation of the active Notch1 NICD fragment, and Ma et al., [24] found that the 379 

kinase domain of SRC binds to the ankyrin domain of active NICD.  Finally, a recent 380 

screen to find genetic interactions with Notch identified a signaling mechanism involving 381 

Notch, SRC, and JNK that was important for normal eye development in drosophila [25].  382 

Further investigation will be required to determine the mechanism by which integrins 383 

couple to Notch signaling, however it is worth noting that SRC and ILK are well known 384 

downstream effectors of integrins [3]. 385 

 386 

Our results not only suggest that integrins control Notch signaling, but that signaling 387 

through β1 and β3 integrins differentially controls Notch.  We found that blocking 388 

antibodies against β3 and β1 integrins both increased Hes-1, Hes-5, and 4X-CSL 389 

promoter activity while β3 but not β1 blocking antibodies dose-dependently increased 390 

N1ICD accumulation (Fig 4). While we don’t know how β3 and β1 integrins 391 

differentially control Notch, this observation is consistent with previous work showing 392 

that β1 and β3 integrins have both overlapping and independent mechanotransduction 393 

activities in cells [26-28].  Building on this idea is the fact that β1 and β3 ligands often 394 

have distinct spatiotemporal distributions in tissues. For instance, β1 ligands such as 395 

laminins and collagen 4 are enriched in angiostatic vascular basement membranes [29], 396 

while β3 ligands such as vitronectin, fibronectin, and fibrin are enriched in pro-397 

angiogenic provisional matrices [30].  Therefore, we speculate that diverse 398 

microenvironments differentially regulate Notch in response to cellular integrin 399 

expression profiles and the local extracellular matrix composition.   400 

 401 

Future experiments will need to determine the scope to which ECM proteins in the 402 

microenvironment influence angiogenesis through Notch signaling, but it is noteworthy 403 

that a number of ECM proteins have been shown to regulate Notch signaling and to 404 

interact with either β3 integrins (e.g. EGFL7 [12, 13] and MAGP2 [6, 7, 11] or with β1 405 

integrins (e.g. CCN3 [31, 32] and Reelin [33, 34]).  Finally, additional observations have 406 

demonstrated that Notch1 and β1 integrin co-localize in neural stem cells [35] and that 407 



activation of Notch signaling can control β1 integrin affinity [36, 37] suggesting the 408 

existence of a feedback loop that coordinates Notch and integrin function. Collectively, 409 

our observations combined with other results suggest the presence of an ECM – integrin 410 

– Notch signaling axis that may represent an important mechanism enabling cells to 411 

respond to their microenvironment.  412 

 413 

In conclusion, through basic research aimed at understanding how MAGP2 controls 414 

Notch signaling, we have arrived at a more universal understanding of how ECM 415 

molecules in the cellular microenvironment impact cell physiology via integrin ligation 416 

and subsequent manipulation of the Notch signaling pathway. 417 

 418 

Materials and Methods: 419 

 420 

Plasmids 421 

 422 

The pcDNA3.1 myc-his tagged MAGP2 expression construct was previously described 423 

[7] and was subjected to site-directed mutagenesis with mutagenic oligos to produce the 424 

MAGP2-RGE construct.  The EGFL7 expression plasmid was constructed by gateway 425 

cloning a human EGFL7 cDNA (clone ID# 30400137) that had been amplified by PCR 426 

with oligos that added 5’ Kozak sequence and 3’FLAG tag, cloned into pcDNA-DEST40, 427 

and sequenced in its entirety.  Mutagenesis of the EGFL7 expression construct was 428 

performed by site-directed mutagenesis with mutagenic oligos and mutants were 429 

identified by sequence analysis.  The Myc-tagged mammalian expression vectors 430 

encoding murine Notch1 (pCS2+mN1FL6MT) and Jagged-1 (pCS2+Jag1-6MT) were 431 

kindly provided by Dr. Raphael Kopan (Washington University, St. Louis, MO).  The 432 

Delta-like 1 (Dll1) and Delta-like 3 (Dll3) expression constructs were kindly provided by 433 

Dr. Geraldine Weinmaster (UCLA, Los Angles, CA).  The Delta-like 4 (Dll4) expression 434 

construct was cloned by PCR amplification of murine Dll4 cDNA (clone ID# 86280 with 435 

oligos that introduced 5’ kozak and EcoR1 sequences, and 3’ SacII sequence.  The PCR 436 

product was ligated into pcDNA3.1 Myc-his and sequenced in it’s entirety.  The Hes1 437 

and Hes5-luciferase reporters were purchased from Addgene and consist of nucleotides -438 



467 to +46 and -800 to +73 relative to the transcriptional start sites respectively.  The 4X-439 

CSL luciferase construct was also purchased from Addgene and consists of 4 tandem 440 

repeats of the high affinity CSL binding sites ( 5’CGTGGGAA3’). 441 

 442 

Luciferase assays 443 

 444 

For experiments examining the effect of RGD peptides, or WT vs RGE MAGP2/EGFL7 445 

cDNAs on Hes-1 promoter activity, HMEC cells were seeded into 24-well plates at a 446 

density of 25,000 cells/well and transfected the following day with LT-1 liposomes 447 

containing various combinations of Hes-1 luciferase (200ng/well), MAGP2/EGFL7 448 

cDNAs (WT or RGE) (100ng/well), and CMV-β-gal control plasmid (10ng/well). Where 449 

appropriate, cells were treated with 1, 10, or 100 µg/ml of soluble RGD 450 

(GCGYGRGDSPG) peptide (GenScript, Piscataway, NJ).  48 hours after transfection, 451 

cells were lysed in passive lysis buffer (Promega, Madison, WI) and luciferase and β-gal 452 

activities were measured on a Glo-Max luminometer.  In experiments with β3 and β1 453 

blocking antibodies, HMEC cells were transfected by electroporating 2,000,000 cells in 454 

PBS with 1.9 µg of luciferase reporter (Hes-1, Hes-5, or 4X-CSL luciferase) and 0.1 µg 455 

of CMV-β-gal reporter.  Cells were pulsed in a nucleofector 2b (Lonza, Walkersville, 456 

MD) electroporator (2mm gap) set for “HUVEC”, diluted into EGM2 growth media, and 457 

plated into 12 wells of a 24-well plate (250 µl/well) to which 0, 0.5, 1, or 2 µg/ml of β3 458 

(7H2) or β1 (P5D2) blocking antibodies (Developmental Studies Hybridoma Bank, Iowa 459 

City, IA) were immediately added.  Electroporated cells were collected 24 hours later and 460 

luciferase activity was measured as previously described [38]. 461 

 462 

Reverse transcription PCR 463 

 464 

Total RNA was extracted from cultured cells using Ribosol (Amresco, Solon, OH) and 465 

iScript reverse transcriptase (Bio-Rad, Hercules, CA) was used to generate cDNA pools 466 

from 1µg of total RNA.  RT-PCR reactions were performed using 12.5ng of cDNA, 467 

0.8uM each oligo, 200 µM dNTP, 1x standard buffer, and 2 units Taq Polymerase in a 468 

total reaction volume of 25 µl. Cycling parameters were as follows: 1 cycle at 94oC for 2 469 



min; 25 cycles at 94oC for 45 sec, 55oC for 30 sec, and 72oC for 30 sec.  Oligonucleotide 470 

sequences are reported in table 1. 471 

 472 

Recombinant protein and adhesion assay 473 

 474 

The bacterial pSBET MAGP2 expression vector was previously described [7].  The 475 

MAGP2 RGE mutant vector was constructed by site-directed mutagenesis of wild-type 476 

MAGP2 as described above.  Recombinant MAGP2 proteins were expressed in BL21-477 

DE3 E. coli cells and purified from sonicated cell lysates by affinity chromatography on 478 

FLAG-M2 monoclonal antibody columns (Sigma, St. Louis, MO).  Bound proteins were 479 

washed initially with 10 column volumes of TBS/0.1% Triton X-100, followed by an 480 

additional 20 column volumes of TBS.  Afterward, recombinant proteins were eluted by 481 

addition of 2.5 column volumes of FLAG M2 peptide (100 g/ml), which subsequently 482 

was concentrated by centrifugation in 5 kD centricon devices (Sartorius, Goettingen, 483 

Germany). 484 

 485 

Antibodies 486 

 487 

Antibodies against Notch1 (#3608), Jagged1 (#2620), Dll4 (#2589), N1ICD (VAL1744, 488 

#2421), and KDR (VEGFR2) (#2472) were purchased from Cell Signaling Technologies 489 

(Danvers, MA).  The 7H2 β3 blocking antibodies and P5D2 blocking antibodies were 490 

previously described [16, 17] and purchased as monoclonal supernatants from the 491 

Developmental Studies Hybridoma Bank (Iowa City, Iowa).  Anti-β Actin antibodies (sc-492 

130656) and anti-Vinculin antibodies (sc-5573) were purchased from Santa Cruz (Paso 493 

Robles, CA). 494 

 495 

 496 

 497 
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Table 1:  Oligonucleotides used in this study. 640 
Oligo Name Oligo Use Oligo sequence 

AA37 Mouse GAPDH fwd RT-PCR GACAATGAATACGGCTACAGCAAC 

AA38 Mouse GAPDH rev RT-PCR GTGCAGCGAACTTTATTGATGGTA 

AA11 Mouse Notch1 fwd RT-PCR TGCACCTGCTGTCATCTCTGACTT 

AA12 Mouse Notch1 rev RT-PCR AGGATCAGTGGAGTTGTGCCATCA 

AA13 Mouse Notch3 fwd RT-PCR AGCTGTGTCAGGAAGGTGGAAAGT 

AA14 Mouse Notch3 rev RT-PCR AACAGAGATAGCGGGCCACAAGAT 

AA17 Mouse Dll3 fwd RT-PCR TGTGAAGAGCCTGATGAATGCCGT 

AA18 Mouse Dll3 rev RT-PCR ACCTCACATCGAAGCCCGTAGAAT 

AA19 Mouse Dll4 fwd RT-PCR ACTCACCACTCTCCGTGCAAGAAT 

AA20 Mouse Dll4 rev RT-PCR TATGCTCACAGTGCTGGCCATAGT 

AA21 Mouse Dll1 fwd RT-PCR AATCTGTCTGCCAGGGTGTGATGA 

AA22 Mouse Dll1 rev RT-PCR TGCACGGCTTATGGTGAGTACAGT 

AA23 Mouse Notch4 fwd RT-PCR TGAAGGGCCACACTGTGAGAAAGA 

AA24 Mouse Notch4 rev RT-PCR ACACACACACAAGGATCTCTGGCA 

AA25 Mouse JAG2 fwd RT-PCR TAGCAAGGTATGGTGCGGATGGAA 

AA26 Mouse JAG2 rev RT-PCR GTCGGGCACAGTTGTTGTCCAAAT 

AA28 Mouse JAG1 fwd RT-PCR TGCTGAGCATGCTTGTCTCTCTGA 

AA29 Mouse JAG1 rev RT-PCR CAAGGTTTGGCCTCGCACTCATTT 

AA103 Human GAPDH fwd RT-PCR TCCATGACAACTTTGGTATTCGT 

AA104 Human GAPDH rev RT-PCR AGTAGAGGCAGGGATGATGTT 

KW181 Human Int α2 fwd RT-PCR TCTCAGAAGTCTGTTGCCTGCGAT 

KW182 Human Int α2 rev RT-PCR ACTGATGTCACCAGCCTTGTCTGT 

KW183 Human Int α5 fwd RT-PCR TCGAGACAAACTCTCGCCGATTCA 

KW184 Human Int α5rev RT-PCR TCACGGCAAAGTAGTCACAGCTCA 

KW185 Human Int αV fwd RT-PCR AAGATGTTGGGCCAGTTGTTCAGC 

KW186 Human Int αV rev RT-PCR AGCAACTCCACAACCCAAAGTGTG 

KW187 Human Int β1 fwd RT-PCR TCTGCGGACAGTGTGTTTGTAGGA 

KW188 Human Int β1 rev RT-PCR AATGGGACACAGGATCAGGTTGGA 

KW189 Human Int β3 fwd RT-PCR CCCACTTGGCATCATTCACAGCAA 

KW190 Human Int β3 rev RT-PCR AAGAGACCTTCAAGACTGGCTGCT 

AK366 Human Int β8 fwd RT-PCR AGCAAATTGGCAGGCATAGTGGTG 

AK367 Human Int β8 rev RT-PCR TCGTCACGTTTCTGCATCCTTCCA 

AK368 Human Int β6 fwd RT-PCR AGCAAATTGGCAGGCATAGTGGTG 

AK369 Human Int β6 rev RT-PCR AGACATCTCTTTGGAAAGCCGGGA 



AK370 Human Int α8 fwd RT-PCR AAGGGATTTCGACCACTGAGCTGT 

AK371 Human Int α8 rev RT-PCR ACTCCTCTTATTTCCACCTGCGCT 

AA953 Mouse MAGP2 RGE mutagenesis GTGAATGTCTCAGGCACATCCTCTCCA 

CGTTGACCACTGAC 

AA952 Mouse MAGP2 RGE mutagenesis GTCAGTGGTCAACGTGGAGAGGATGTGCCT 

GAGACATTCAC 

PD424 hEGFL7 RGE mutagenesis GGATGGCGGGGTGAGACTTGCCAGTCAGATG 

PD425 hEGFL7 RGE mutagenesis CATCTGACTGGCAAGTCTCACCCCGCCATCC 

AA39 Mouse DLL4 fwd cloning GGCGGCGAATTCACCATGGCGGCAG 

CGTCCCGG 

AA6 Mouse DLL4 rev cloning GGCGGCCCGCGGTACCTCCGTGGCAATGAC 
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