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• Novel  model  developed  for  cell  lin-
eage tracing  of dopaminergic  neuron
progenitors.

• Nestin+  neural  progenitors  are
responsible  for  replenishing  nigral
dopaminergic  neurons.

• Sox2  is  not  expressed  by  adult
dopaminergic  neuron  progenitors.
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a  b  s  t  r  a  c  t

The  primary  clinical  motor  symptoms  of  Parkinson’s  disease  (PD) result  from  loss  of dopaminergic  (DA)
neurons  in  the  substantia  nigra  (SN).  Consequently,  neurogenesis  of  this  group  of  neurons  in the  adult
brain  has  drawn  considerable  interest  for  the  purpose  of  harnessing  endogenous  neurogenerative  poten-
tial as  well  as  devising  better  strategies  for stem  cell  therapy  for PD. However,  the  existence  of  adult
neurogenesis  for DA neurons  within  the  SN remains  controversial.  To  overcome  technical  and  design
limitations  associated  with  previous  studies,  our  group  has developed  a  novel  genetic  mouse  model  for
assessing  adult  nigral  DA neurogenesis.  This  system  utilizes  transgenic  mice that  express  a  tamoxifen-
activatable  Cre recombinase  (CreERT2) under  the  control  of  the  neuronal  progenitor  cell  promoters  nestin
or  Sox2  leading  to suppression  of  the  DA neuron  marker  tyrosine  hydroxylase  (TH)  via excision  of  exon  1
by flanking  loxP  sites  in  adult  animals.  This study  reports  that six  months  following  initiation  of a  six  week
treatment  with  tamoxifen  mice  with  nestin-mediated  Th excision  displayed  a significant  reduction  in  TH+
neurons  in  the  SN.  This  finding  indicates  that  nestin-expressing  cells  regenerate  DA  neurons  within  the
SN of  adult  animals.  Interestingly,  no  reduction  was  observed  in TH+  cells  following  Sox2-mediated  Th
excision  suggesting  that  a nestin+/SOX2−  precursor  cell  population  drives  DA  neurogenesis  in the  adult
SN.  This  information  represents  a substantial  leap  in current  knowledge  of  adult  DA neurogenesis,  will
enable  improved  in  vitro  and in  vivo  modeling,  as  well  as facilitate  the  harnessing  of  this  process  for
therapeutic  intervention  for  PD.

Published by Elsevier  Ireland  Ltd.  This  is an  open  access  article  under  the  CC  BY license  (http://
creativecommons.org/licenses/by/4.0/).

Abbreviations: PD, Parkinson’s disease; AD, Alzheimer’s disease; DA, dopaminergic; TH, tyrosine hydroxylase; Sox2, SRY (sex determining region Y)-box 2; SGZ, subgranular
zone;  SVZ, subventricular zone; SC, stem cell; NPC, neuronal precursor cell; 6-OHDA, 6-hydroxydopamine; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
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1. Introduction

Parkinson’s disease (PD) is the most common motor disor-
der and the second most prevalent neurodegenerative disease.
PD motor dysfunction (rigidity, tremor, bradykinesia, and postu-
ral instability) results from loss of dopaminergic (DA) neurons in
the substantia nigra (SN). However, a basic understanding of the
mechanism for DA neuron loss remains elusive. Consequently, only
symptomatic treatments exist for PD and none that address the
underlying neurodegeneration. Determining whether DA neurons
are replenished in the adult SN is fundamental to understanding
the loss of these neurons during PD. One possibility is that sup-
pression of adult DA neurogenesis could be a driving force toward
PD. Additionally, exploiting endogenous neurogenesis could offer
potential avenues for therapy as well as better inform stem cell
transplantation efforts.

Deficiencies in the process of adult neurogenesis have been
strongly associated with Alzheimer’s disease (AD), a neurodegen-
erative disorder sharing many epidemiological features with PD.
Hippocampal neurons responsible for memory processing are pref-
erentially lost in AD and evidence suggests this may  be due, in
part, to decreased neurogenesis (reviewed in Ref. [1]). Hippocam-
pal adult neurogenesis occurs at a high rate throughout life but
appears to decrease sharply in human AD as well as mouse mod-
els of the disease. Interventions that promote adult neurogenesis
improve preclinical model outcomes for histopathology as well
as functionality. Neurogenesis of hippocampal neurons in adult
humans and rodents begin from stem cell (SC) populations residing
in the subgranular zone (SGZ) of the dentate gyrus. SC populations
are relatively less differentiated and possess replicative capacity.
Therefore, these cells can regenerate the SC pool as well as con-
tribute progeny that can differentiate into neuronal precursor cells
(NPCs) that are post-mitotic and committed to neuronal fates.

In addition to hippocampal neurons, olfactory neurons are
replenished throughout the life of primates and rodents. SCs
responsible for this process reside in the subventricular zone (SVZ).
Once born, NPCs migrate a considerable distance to the olfactory
bulb before integration and final differentiation into functional
neurons. Currently, the SGZ and SVZ are the only known locations
for SC generation in the adult mammalian brain. However, whether
NPC pools reside elsewhere or transdifferentiation to NPCs from
existing cell types occur remains to be determined.

The evidence for a contribution of adult neurogenesis to PD is
inconclusive. Reduced proliferation of SVZ cells has been reported
in human PD [2,3]. Additionally, a number of studies have reported
that wide-spread overexpression of a protein known to be a mono-
genic cause of rare forms of PD, alpha-synuclein (WT, A53T, E46K,
and A30P), in mice results in inhibition of neurogenesis in the SGZ
and SVZ [4–8]. Moreover, transgenic mouse overexpression of PD-
causing mutations in leucine-rich repeat kinase 2 (LRKK2) hinder
proliferation and survival of SCs in the SVZ and SGZ [9]. However,
a major caveat is that none of these mouse models induce DA neu-
ron loss in the SN so the relevance to DA neurogenesis or even
PD is debated. Administering the PD model neurotoxins 6-OHDA
or MPTP in rats or mice, respectively, does target DA neurons and
inhibition of SC generation in the SVZ has been reported [2,10,11].
Conversely, other groups have reported increased neurogenesis fol-
lowing MPTP treatment [12]. In any event, the DA neuron loss in
these models is rapid, easily achieving 80–100% loss within two
weeks. Such a speedy loss does not mirror human progressive PD
and cannot be explained by suppression of neurogenesis making
connections between PD and this process using these neurotoxins
dubious.

Attempts have been made to monitor adult DA neurogenesis
in the SN directly using various cell lineage tracing methods with
conflicting results [13–15]. Lack of compelling evidence for DA neu-

rogenesis has reinforced the prevailing notion that the presence
of a toxic stimulus or trophic factor withdrawal induces mature
DA neurons to undergo death in a slow and progressive manner.
Therefore, while still controversial, the predominate viewpoint is
that stem cell replacement of adult DA neurons in the SN does not
occur at appreciable levels [13]. The most prevalent method of DA
neuron lineage tracing utilizes DNA incorporation of the thymidine
analog bromodeoxyuridine (Brd-U) or similar reagent to monitor
for cell division of SCs. This method is problematic for a number of
reasons. Firstly, Brd-U is quite toxic to the organism and to divid-
ing cells. Secondly, Brd-U can yield false-positive results for cells
undergoing DNA repair. Additionally, these regimens of Brd-U use
are adopted from studies focused in regions of the brain exhibiting
high levels of neurogenesis such as the hippocampus. Moreover,
use of this chemical requires double-immunolabeling for the DA
neuron marker tyrosine hydroxylase (TH) and Brd-U. Resolution of
double-positive cells requires great care using confocal microscopy
and issues have been reported [15]. This method is also not read-
ily amenable to large sample numbers. Another common method of
lineage tracing is by injection of retrovirus to permanently label SCs
and NPCs. However, this requires knowledge of the precursor cell
location which is currently unknown. The aim of this study was
to overcome these limitations by employing a novel system that
utilizes a drug that could be administered for 6–8 weeks without
severe health complications, extends the post-labeling duration,
and allows for accurate quantitation of DA neurons in the SN of
mice by single-labeling.

2. Methods

All husbandry and study procedures involving mice were per-
formed in accordance with Boise Veterans Affairs Medical Center
Institutional Animal Care and Use Committee guidelines. Thlox mice
[16] were kindly provided by Drs. Richard Palmiter and Martin
Darvas at The University of Washington. The nestin-CREERT2 [17]
and Sox2-CREERT2 [18] mouse lines were obtained from The Jack-
son Laboratory. Mice were fed ad libitum and maintained on 12 h
light–dark cycles. For tamoxifen treatment, three-month-old mice
were provided 400 mg/kg tamoxifen citrate chow (Envigo) as sole
food source for 6 weeks. Mice were then placed back on standard
rodent chow for the remainder of the study.

For Immunohistochemistry (IHC), mice (n = 6 per group) were
anesthetized with 5% isoflurane and transcardially perfused with
10 mL  0.1 M phosphate buffer (PB) (pH 7.2) with 1 mM EDTA fol-
lowed by 10 mL  4% paraformaldehyde (PFA) in PB. Brains were
harvested and then fixed in 4% PFA for 24 h at 4 ◦C. Next, brains
were cryoprotected in 30% sucrose/PB at 4 ◦C until sunk. The brains
were then frozen in OCT media and a Leica CM1950 crysostat used
to cut 35 �m sections. Free-floating IHC was  performed with three
PB washes between each step. Endogenous peroxidase activity was
removed with H2O2 (3%) and methanol (10%) for 30 min followed
by blocking and permeabilization with 0.5% bovine serum albu-
min/0.2% triton X100/PB solution for 1 h. To label DA neurons a
primary antibody against tyrosine hydroxylase (EMD Millipore;
AB152) (1:2000 dilution) was  used overnight at 4 ◦C. A secondary
antibody conjugated to biotin (Jackson Immuno Research) (1:500
dilution) was  then applied for 1 h at room temperature followed by
ABC staining (Vector Labs) (A and B solutions at 1:100 dilutions)
for 1 h. DA neurons were visualized using 3.3′ diaminobenzidine
(DAB) (Sigma–Aldrich) substrate addition at 1 mg/mL (pH 7.2) and
allowed to develop for 4 min. The reaction was  stopped in ddH2O,
sections placed on slides, dried, and coverslips mounted using Vec-
tamount.

All DA neuron somas in the SN for all SN-containing sections
in the right hemisphere (average of 38.6 sections per hemisphere)
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Fig. 1. Genetic model to assess adult DA neurogenesis. Tamoxifen (Tam) treatment activates CRE activity in nestin or Sox2-expressing cells resulting in Th gene silencing.

Fig. 2. Adult DA neurogenesis by nestin positive cells. Six week treatment with tamoxifen (Tam) citrate chow (400 mg/kg chow) was used to activate CREERT2 activity in
3-month-old transgenic mice (A). NestinCRE−ERT2:Thlox/lox mice showed decreased DA neurons in the SN following Tam treatment (B). DA neurons in the SN were visualized
by  IHC (DAB) using a TH antibody. All sections containing SN from the right hemisphere were counted and neuron totals were corrected using the Abercrombie factor.
Multiple-way ANOVA was  performed followed by posthoc Tukey’s test (6 mice per group; error bars = SEM; *p < 0.05; ns = not significant).

were counted using bright field microscopy. The left hemisphere
was punctured with a 30 gauge needle at the time of cryosec-
tioning to identify hemispheres. To correct for bisected DA neuron
somas appearing in adjacent sections, the Abercrombie factor was
determined and applied to counts [19].

Data is presented as mean ± SEM for groups. Statistical
significance (p < 0.05) between groups was determined using

multiple-way ANOVA followed by a post hoc Tukey’s test using
GraphPad Prism 6 software.

3. Results

A genetic approach was  developed to remove the DA neuron
marker tyrosine hydroxylase (TH) from precursor cells in adult
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mice (Fig. 1). Consequently, if DA neurons were replenished in adult
mice, there should be a gradual loss of TH positive neurons in the
SN over time following removal of the Th gene from precursor cells.
Tamoxifen-inducible Th excision was chosen for this drug’s ability
to readily cross the blood-brain barrier and good tolerability. To tar-
get NPCs for Th excision, nestin and Sox2 promoters were selected
to drive the expression of a tamoxifen-inducible CRE recombinase
(CREERT2) in SCs and/or NPCs. Nestin and Sox2 are two  of the most
well-described neural progenitor markers and are not expressed
in mature neurons making them good initial candidates to target
DA neuron precursors. Both nestin-CREERT2 [17] and Sox2-CREERT2

[18] mouse lines were crossed with transgenic mice possessing the
endogenous Th gene engineered with loxP sites flanking exon 1 [16]
thereby allowing for the excision and silencing of Th in the pres-
ence of CRE activity. Three-month-old double or single (control)
transgenic mice (nestinCRE−ERT2:Thlox/lox , Sox2CRE−ERT2:Thlox/lox, or
Thlox/lox) were treated with or without tamoxifen-laden chow for
six weeks (Fig. 2A). Six months following initiation of tamoxifen
treatment brains were harvested and DA neurons in the SN counted.
Remarkably, tamoxifen treated nestinCRE−ERT2:Thlox/lox mice exhib-
ited significantly fewer TH+ neurons in the SN than controls (Fig. 2B,
Fig. S1). In addition, no reduction in TH+ cells was  observed in the
SN of untreated nestinCRE−ERT2:Thlox/lox mice or tamoxifen-treated
Sox2CRE−ERT2:Thlox/lox or Thlox/lox mice indicating that the loss in TH
signal was due to Th gene excision and not the result of non-specific
downregulation of Th expression by tamoxifen or the presence of
the CRE transgene. Therefore, this result indicates that a nestin-
positive population of precursors replenishes adult DA neurons in
mice. However, it was surprising to find that Sox2CRE−ERT2:Thlox/lox

mice showed no TH+ cell loss given that Sox2 has been widely
reported to be a ubiquitous neural SC marker [20,21].

4. Discussion

This study provides compelling evidence for DA neurogenesis in
the SN of adult mice by utilizing a novel cell lineage tracing model.
Discovery of a nestin+ pool of DA progenitor cells will empower
future studies to focus on the process of adult neurogenesis for
DA neurons as well as enable locating these cells within the mam-
malian brain. Interestingly, this study found that Sox2 was not
expressed in progenitors that gave rise to DA neurons in the adult
SN. Sox2 expression is largely restricted to neural SCs, being turned
down following cell cycle exit [22]. Additionally, Sox2 expression
is closely linked to SC function, being one of four transcription
factors (Oct3/4, Sox2, c-Myc, and Klf4) whose overexpression in
concert can induce adult somatic cells to become embryo-like SCs
[23]. Nestin is an intermediate filament protein expressed by SCs
and NPCs in vivo and in vitro and may  persist for a longer period
of time than Sox2 expression (reviewed in Ref. [24]). Thus, tar-
geting nestin-expressing cells will affect SOX2+ SCs in addition to
a more differentiated progenitor population. Taken together, this
may  suggest that SOX2− cells giving rise to DA neurons in the adult
SN exhibit greater differentiation and are not renewed by SCs. The
implication would be that there is a limited supply of DA neuron
progenitors available for adult neurogenesis. Therefore, depletion
of this progenitor pool by normal turnover or by deleterious factors
would result in an eventual loss of mature DA neurons. Another
possibility is that SCs are not needed due to transdifferentiation of
progenitors from another cell type. Investigation of additional neu-
ral SC and NPC markers by cell lineage tracing in vivo might address
this.

The cause of DA neuron loss in PD has remained a mystery
despite several decades of intense investigation. Over this time,
considerable effort has been placed in identifying factors that
induce death of mature DA neurons in vitro and in vivo. However,

if DA neurogenesis is a natural ongoing homeostatic mechanism
in the brain as evidence presented here suggests, inhibition of this
process could be responsible, at least in part, for the progressive loss
of DA neurons observed in PD. Reports of heightened sensitivity for
SC and NPC populations in the adult brain to enhanced inflamma-
tory response and other toxic stimuli support this notion [25–27].
Interestingly, the rate for DA neuron loss in the SN using a purely
inflammatory model of PD reported by two groups mirrors TH+ cell
loss by nestin-mediated Th excision shown in Fig. 2B. Extrapolating
for single brain hemispheres, data presented by Frank-Cannon et al.
[28] and Morrison et al. [29] indicate an approximate rate of 14.3
and 12.3 DA neuron loss/day, respectively. If the total TH+ cell loss
in the SN observed in Fig. 2B is divided by the tamoxifen treat-
ment duration of six weeks, a rate of 13.9 ± 1.2 is yielded. This is an
intriguing correlation that would also suggest that the enhanced
inflammatory model might mediate neurodegeneration by imped-
ing adult neurogenesis of DA neurons. Future studies are warranted
to further substantiate this association.

Findings from this study may  direct stem cell replacement ther-
apy for PD. Growth of stem cell research in the late 1980’s generated
great interest for use of this technology as a potential PD treatment.
However, clinical trials using fetal stem cells to replace lost DA
neurons have yielded promising but variable results [30,31]. The
variability was believed to result from inconsistent source stem
cells. Thorough characterization of neural stem cells in vivo may
allow for the development of appropriate and consistent cell types
for therapy. Therefore, identification and characterization of the
newly discovered nestin+/Sox2− DA neuron precursor population
will provide a foundation for these investigations.

In conclusion, this study reveals the existence of a
nestin+/SOX2− DA progenitor pool that replenishes mature
DA neurons in the adult mouse SN. This finding has broad implica-
tions for brain biology and PD pathology and serves as a basis for
future investigation of these important cells.
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