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ABSTRACT

While interest in two-dimensional materials has exploded in recent years, the high

cost of chemical vapor deposition (CVD) systems can act as a barrier to entry for some 

researchers interested in studying these materials. This thesis presents an open-source 

design for an automated CVD that can be built for a fraction of the cost of similarly 

capable commercial systems and that can easily be customized and expanded. With a 

CVD built as described, growth of high quality graphene and graphene foam is 

demonstrated. These results highlight the flexibility of the open-source design in 

producing a variety of nanomaterials, which are at the forefront of research in emerging 

semiconductor devices, bionanotechnology, and energy storage and conversion.
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CHAPTER ONE: INTRODUCTION

1.1 Open-Source Technology

Open-source technology, broadly speaking, is the field of technological 

development in which the design of the final product is published and freely available for

others to reuse or adapt to their own needs. This is in contrast to the standard commercial 

approach to technological development where designs and software are often patented or 

kept as trade secrets, giving the company a monopoly in the development and use of the 

technology in question [1].

When a new hardware or software solution is desired, there are two main costs 

associated with its development. The first is engineering cost, that is, the cost of 

designing and testing the product, while the second is the incremental cost associated 

with producing each individual unit once the design has been finalized. In the traditional 

commercial approach, the engineering cost of a product is spread over the volume of 

product sold. Partially because of this, low volume products such as scientific equipment 

are often much more expensive than high volume products such as automobiles and 

consumer electronics, even though the latter are generally more complex and have higher 

total engineering costs. In the case of low volume scientific equipment, a relatively low 

number of units are made so a greater portion of the total engineering cost must be 

absorbed into the price of each unit.

In light of this, one of the chief benefits of open-source technology for scientific 
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applications lies in the reduction of the engineering cost for the development of low 

volume products. An extreme example of this is the case in which a scientist needs a 

piece of custom equipment. They must either design and build the equipment themselves,

paying the engineering cost with their own labor, or pay these costs to a company that 

does custom work. The time required for the first and the cost required for the second can

put many experiments out of reach for a researcher with low funding. If, on the other 

hand, someone else in the field had previously published an open-source design for a 

piece of equipment similar to what was needed, the scientist could adapt the design to 

their needs, potentially reducing the engineering cost associated with building custom 

equipment by an order of magnitude or more, and a similar argument could be made for 

software.

The open-source technology field can be divided into two main sections: software

and hardware, as discussed below.

1.1.1 Free and Open-Source Software

Free and open-source software (FOSS) has a long history and its popularity has 

been bolstered by its widespread adoption on the Internet, where consistent 

communication protocols are necessary and newcomers often benefit more from adopting

the existing standards than they would from trying to create and promote their own 

standards [1]. In the scientific arena, Linux, an open-source operating system first 

released in 1991 by Linus Torvalds [2], has run on the majority of the top 500 

supercomputers for over a decade [3], and as of June 2015 was the operating system on 

488 of the top 500 supercomputers [4]. 
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1.1.2 Open-Source Hardware

The history of open-source hardware is shorter and less storied. One of the most 

widely known examples of open-source hardware is Arduino, a group of electronic 

prototyping platforms with an accompanying open-source integrated development 

environment (IDE) [5]. While the Arduino board designs are open source, and many have

created derivatives of them, much of the usefulness of the Arduino ecosystem lies in the 

code and design-sharing community that has risen around it. By using and modifying this

shared code base, complex microcontroller solutions can be designed and built much 

faster than was possible without Arduino boards and the similar systems that have arisen 

around Arduino.

Another notable open-source hardware that has been widely adopted is the 

RepRap open-source 3D printer [6]. With it, researchers have recently built open-source 

syringe pumps and optics equipment, both at an order or greater reduction in price from 

commercial equipment. And while much of the resulting equipment has reported 

Figure 1.1 Open-source syringe pump with 3D-printed parts. Reproduced under 
terms of the Creative Commons Attribution License from [7].
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functionality equivalent to commercial products, those that don't can still lead to a large 

reduction in the cost of educational equipment, allowing for the outfitting of educational 

labs using a fraction of the budget needed for commercial equipment [7,8]. One variation 

of the syringe pump is shown in Figure 1.1, while one of the pieces of optical equipment, 

a lab jack, is shown in Figure 1.2.

On the other end of the spectrum, Rosenegger et al. recently demonstrated an 

open-source scanning two-photon microscope, shown in Figure 1.3, with a 

signal-to-noise ratio that exceeded those of the commercial systems they tested and 

represented savings in excess of $150k. That magnitude of savings could bring research 

that requires a two-photon microscope into reach for many scientists for which funding is

low, and the estimated two month build time for two inexperienced researchers is easily 

Figure 1.2 Open-source lab jack with 3D-printed parts. 
Reproduced under terms of the Creative Commons 
Attribution License from [8].
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within reach of many labs [9].

As open-source scientific hardware gains traction, it is perceivable that the rate of 

scientific discovery could increase as a result as researchers spend fewer resources 

acquiring commercial equipment or designing their own equipment and are freed to 

spend more time and effort conducting experiments. This work represents a small 

contribution to that idea in the form of an open-source chemical vapor deposition system 

for the production of two-dimensional materials.

Figure 1.3 Model of an open-source scanning 
two-photon microscope. Reproduced under terms of the
Creative Commons Attribution License from [9].
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1.2 Two-Dimensional Materials

1.2.1 Graphene – A Semi-Metallic 2D Material

The modern research push into two-dimensional (2D) materials was sparked by 

Novoselov and Geim's isolation of few- and single-layer graphene via the mechanical 

exfoliation of graphite, work originally published in 2004 [10]. The mechanical 

exfoliation was carried out by peeling layers of graphite off of a bulk crystal with tape 

and then repeating the process with the continually thinner graphite crystal left on the 

tape until single- or few-atom thick crystals are remaining. Novoselov et al. discovered 

that these single- and few-atom thick crystals of graphitic carbon, known as graphene, 

were stable in air, semi-metallic, and had extremely high mobilities (about 10,000 cm2 / 

Vs), though the on/off ratio of graphene transistors was found to be less than 30 at room 

temperature, limiting its usefulness as the active component in transistors. The transport 

Figure 1.4 Molecular model of a 
single-layer graphene crystal. The crystal 
consists of carbon atoms that are sp3 bonded 
into a 2D sheet. 
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of electrons was also found to be ballistic over distances up to 0.4 μm, evidence for the 

high quality of the resulting crystals [10]. Single-layer graphene is atomically flat, 

consisting of carbon atoms sp3 bonded in a hexagonal array, as shown in Figure 1.4.

1.2.2 Hexagonal Boron Nitride – A Dielectric 2D Material

If the two carbon atoms in a graphene unit cell were replaced with nitrogen and 

boron, the resulting crystal is hexagonal boron nitride (hBN), as shown in Figure 1.5. 

Though similar to graphene in crystal structure and lattice constant (within 1.7%), while 

graphenen has two bands that meet in a point at its Fermi level, making it a semimetal, 

hBN has a 5.97 eV bandgap, making it an insulator. Like graphene, hBN is also 

chemically inert and thought to be free of dangling bonds and other potential charge 

traps. The combination of these properties with its favorable dielectric properties make 

Figure 1.5 Single-layer hexagonal 
boron nitride crystal structure. The 
structure is flat and similar to the 
graphene structure but half of the 
carbon atoms are replaced by nitrogen 
and the other half by boron.
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hBN a potential replacement for the crystalline oxides currently used as substrates and 

dielectrics in 2D devices [11]. In one experiment, graphene was mechanically placed onto

both hBN and SiO2 substrates and the hBN sample showed order of magnitude 

improvements in both mobility and carrier inhomogeneity [11].

1.2.3 Molybdenum Disulfide – A Semiconducting 2D Material

The third 2D material we will look at is molybdenum disulfide (MoS2). While 

graphene and hBN are both one atom thick in single-layer crystals, a single layer of MoS2

consists of three atomic layers: a layer of molybdenum surrounded by two aligned layers 

of sulfur, as shown in Figure 1.6 [12]. While builk MoS2 is an indirect-gap 

semiconductor, having a band gap of 1.29 eV, as the number of MoS2 layers in a crystal 

Figure 1.6 Single-layer crystal of 
molybdenum disulfide (MoS2). In the case of 
MoS2, a single-layer crystal consists of three 
layers of atoms: a layer of molybdenum atoms 
(blue) sandwiched between two 
vertically-aligned layers of sulfur atoms (green, 
only upper layer shown). Adapted under terms 
of the Creative Commons Attribution License 
from [12].
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decreases, the indirect band gap increases, eventually reaching 1.90 eV in single layer 

crystals, making a ~1.8 eV direct gap the narrowest gap in the band structure. So, as the 

thickness of a MoS2 crystal decreases, the band gap transitions from indirect in the bulk 

to direct in few- and single-layer crystals. One interesting result of this is a massive 

increase in the photoluminescence quantum yield of MoS2 crystals as the thickness is 

decreased. While bulk crystals have a negligible quantum yield, quantum yields as high 

as 4×10-3 were observed on one study for monolayer crystals [13].

1.2.4 Other 2D Materials

While the 2D materials already discussed can be used as conductors, dielectrics, 

semiconductors, light emitters, and light detectors, there are a wealth of other 2D 

materials that have been studied. These include an analog of graphene that contains 

silicon instead of carbon; silicene, which is also a semimetal, chemically modified 

graphene where some of graphene's pi-bonds are broken and covalent bonds are made out

of the plane, including fluorgraphene and graphene oxide, transition metal 

dichalcogenides besides MoS2 including tungsten disulfide and tungsten and tungsten and

molybdenum diselunide, other layered chalcogenides, layered oxides like micas, and 

others. There are many good reviews of 2D materials that provide additional details 

[14–17].

1.2.5 2D Material Synthesis

There are two general classes of 2D materials synthesis methods: top-down and 

bottom-up. In top-down synthesis methods, layers are removed from a large crystal of a 

layered material until only one or a few layers remain. One method, called mechanical 

exfoliation, accomplishes this using tape, as was done for the first isolation of 
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single-layer graphene [10]. Other top-down methods, generally referred to as exfoliation, 

include photoexfoliation, which uses laser energy to push layers apart, liquid exfoliation, 

which often uses high energy ultrasonic waves and the accompanying cavitation bubbles 

to separate layers [16], and lithium intercalation, where lithium ions infiltrate between 

layers of a material and then form bubbles on the introduction of water [18]. 

Though mechanical exfoliation yields high quality crystals, the method is limited 

by an inability to scale production to large volumes. Other exfoliation methods can 

produce higher yields of single- and few-layer flakes, but the resulting flakes are often 

small or damaged as a result of the exfoliation. For this reason, much research has been 

done in the bottom-up synthesis of 2D materials using a variety of approaches. These 

methods include molecular beam epitaxy (MBE), chemical synthesis, and chemical vapor

deposition. While molecular beam epitaxy gives fine control over layer thickness of the 

deposited films [16], and it has been used to grow layered crystals with some of the 

lowest thermoconductivities thus far recorded [19], the high cost and low throughput 

associated with the method limit its appeal. Chemical synthesis of 2D materials, most 

often graphene, uses large flat, high-carbon precursors as building blocks for crystal 

layers. Much progress has been made in graphene synthesis, but broad use for the 

production of 2D materials is limited [16].

Chemical vapor deposition (CVD), a family of synthesis processes used widely in

the production of commercial microelectronics, is one of the most studied methods for 

the production of 2D materials. Single crystals and films of single- and few-layer 

graphene, hBN, MoS2, and other TMDs have all been grown via CVD. Graphene has 

been produced on both metal and insulating substrates [16], hBN has been grown directly
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onto CVD-grown graphene [20], MoS2 directly onto hBN [21], and a host of additional 

examples of the CVD growth of 2D materials can be found in the literature. This thesis 

details the design and construction of a CVD that is capable of conducting many of these 

growths.

1.2.6 2D Heterostructures

While 2D materials in isolation are an interesting and productive field of study, 

much of the promise of 2D materials is in the devices and materials that can be made 

when they are stacked and patterned. 2D materials that have been stacked with other 2D 

materials are often called two-dimensional heterostructures. These crystals are similar to 

bulk layered crystals, where the layers are held together with weak van der Waals forces, 

but layers are generally not the same type of crystal and their lattices are not aligned. 

While this thesis is concerned with the production of a chemical vapor deposition system 

for 2D materials synthesis, much of the promise of 2D materials is in the production of 

heterostructures and related reviews can be found in the literature [14,17,22,23].
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CHAPTER TWO: BACKGROUND INFORMATION

2.1 Current CVD Options

If a researcher wants to enter the field of CVD-grown 2D materials, they have a 

few options: Build or purchase a manually controlled CVD, purchase an automated CVD,

or build an automated CVD. In this section, we will consider the pros and cons of each 

option.

2.1.1 Build or Purchase a Manual CVD

The main advantage of a manually controlled CVD is its low cost relative to 

automated systems. A manual system that is otherwise nearly equivalent to the 

open-source CVD described herein can be purchased for about $19,000 from MTI 

(personal communication, September 24, 2015), making it much more affordable than the

automated systems described below. The chief disadvantage of this option is the high 

time requirement needed to operate a manual system. Additionally, for a manual system, 

all recipe execution and logging must be done by hand, making both consistency between

growths and auditing of past growths depend highly on the skill and possibly fatigue level

of the operator.

2.1.2 Build an Automated CVD

The next most expensive option is for the researcher to design, build, and program

an automated CVD. This option is more inexpensive than purchasing an automated CVD,

costing about $30,000 for parts as compared with $95,000 for a turn-key system (Y. Tu, 
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personal communication, August 31, 2015), but the engineering cost shows up in the time

required for design, part acquisition, building, and programming of the system, the total 

duration of which depends heavily on the experience of the researchers conducting the 

build. And all the while, the researcher must be payed, giving the engineering cost of 

building a custom system an unknown monetary cost. Further, any time spent building a 

CVD system is time lost from the original goal of conducting research.

The benefits of an automated system above a manual system include a lower time 

investment requirement for each growth, increased repeatability if the control program 

allows for the use of recipes, and the ability to audit past growths if the controls record 

growth logs. Additional benefits include the possibility for a high level of customization, 

the ability to modify and update the system at a later date without having to void a system

warranty to do so, and a significant gain of experience in vacuum systems and system 

automation for those conducting the build. 

2.1.3 Purchase an Automated CVD

The third option is to purchase a turn-key system. The main advantage of this 

approach is that the researcher will be able to grow 2D materials while spending the least 

amount of time working on procuring a CVD with automation capabilities. They will also

have many of the other benefits of having an automated CVD, depending on the specs of 

the device purchased, including a high level of consistency between growths with the use 

of recipes, a low time investment required for growths, and the ability to audit past 

growths by looking at growth logs.

The main disadvantage of purchasing an automated CVD is the high cost. 

Because CVD manufacturers generally have a low volume of sales, they must spread 
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their engineering costs over a small number of units, pushing up the price. According to 

recent quote requests, a CVD with capabilities on par with the open-source design 

described herein would cost anywhere from $95,000 to $170,000 (Y. Tu, personal 

communication, August 31, 2015; A. Kumar, personal communication, September 2, 

2015), a cost that is three to six times that spent on parts for the design described herein. 

Other disadvantages include an inability to modify the closed-source controls programs, 

and a potential difficulty modifying the system hardware without voiding the warranty or 

losing support.

2.2 A Fourth Option

So as things stand, a researcher has to choose between purchasing a manually 

controlled system, saving money and time but not gaining the ability to automatically run

recipes or audit past runs, designing, building, and programming an automated system, 

gaining the benefits of automation and a lower cost while losing both time and the cost of

labor of those building the system, or they can purchase a turn-key system if they have 

the funds. 

This thesis presents a fourth option: With the open-source design described 

herein, a researcher could build their own automated system without having to cover the 

entire engineering cost of designing and programming an automated system. This could 

bring down the barrier to entry into 2D materials research that acquiring an automated 

CVD represents, leading to an increased participation in 2D materials research and 

potentially to an acceleration in the development of nanoelectronics and other fields 

where 2D materials could be applied.
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2.3 Parameter Space of CVD Graphene Growth from Methane

For this study, 2D graphene was grown on copper foil. Graphene has also been 

grown on nickel, ruthenium, and cobalt, but most of the research has focused onto nickel 

and copper foils. The high solubility of carbon in nickel and cobalt (> 0.1 atom %) leads 

to a high incidence of multilayer regions when the metal cools and the carbon atoms 

precipitate to the surface, making it difficult to consistantly grow single- and few-layer 

graphene samples. Carbon has a low solubility in copper (<0.001 atom %), however, 

allowing for the growth of large area graphene films on copper foil and sputtered copper 

films [1]. In light of this, much of the research on large area graphene growth has shifted 

to the use of copper [2–4]. 

In one study, running a 35:2 ratio of methane to hydrogen at low pressures 

(LPCVD) and a temperature of 1000°C, graphene growths on copper foil that lasted 60 

minutes were found to have similar graphene thicknesses to growths that lasted 10  

minutes, being mostly mono-layer with a small area (<5%) multi-layer. This suggests that

graphene growth on copper foil from methane is self-limiting, leading to a higher 

consistency between growths, and that graphene growth from methane on copper is a 

surface-catalyzed process [2].

In another study, graphene was grown onto copper foil using a variety of methane 

to hydrogen ratios, and sometimes adding argon, at both atmospheric pressure and low 

pressure (625 mTorr). The atmospheric graphene growths were found to be non-uniform 

with large, multi-layer domains over a mono-layer base, suggesting that atmospheric 

growths of graphene on copper are not self-limiting as are low pressure growths. The 

researchers' conclusion for this difference is that the diffusion of methane to the sample's 
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surface is the rate-limiting step in the atmospheric pressure case. This means that uneven 

methane flux rates across the surface of the substrate lead to inconsistant graphene 

growth rates, resulting in uneven films. For the low pressure case, on the other hand, 

diffusion of methane is much faster as a result of larger mean free paths at lower 

pressures, and the reaction of methane with the surface is the rate limiting step. And 

because the rate limiting step is largely uniform over the surface of a sample in the 

LPCVD case, the resulting films are more uniform [1].

Temperatures for high quality graphene growth must be quite high. In one study, 

graphene was grown in an LPCVD at temperatures from 800°C to 1000°C, and the 

concentration of defects, as determined by the ratio of the intensity of the D Raman peak 

to the G Raman peak (ID/IG), decreased dramatically as the temperature increased. At  

800°C,  ID/IG was greater than 2, indicating a high concentration of defects, while at  

1000°C the ratio was about 0.05, indicating low defect, high quality graphene. One factor

that can be a problem with growing at this temperature, however, is the loss of copper 

from sublimation [5]. Evidence of this can be seen clearly in our CVD system in Figure 

3.7.

The recipe used to demonstrate growth of graphene for this thesis (Figure 4.1) 

was adapted from [6] and uses methane, hydrogen, and argon, low pressures, a growth 

temperature of 1000°C, and a ratio of methane to hydrogen of 17. Based on the parameter

spaces explored above, these growth conditions were expected to produce high quality 

films of mostly mono-layer graphene.
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CHAPTER THREE: EXPERIMENTAL METHODS – SYSTEM DESIGN

Using variations of the design herein, a three gas, low pressure/atmospheric 

pressure CVD (Figure 3.1) could be built for around $26k worth of parts, while a three 

gas, atmospheric pressure CVD could be built with around $16k of parts, the latter being 

upgradeable to an LPCVD via the addition of the low pressure subsystems. Also, because

the parts list (see supplementary material files) is divided by subsystem, a researcher or 

technician could easily swap out parts of a subsystem from the design, add or remove 

entire subsystems, or adapt subsystems and their LabView drivers for use in non-CVD 

applications. 

Figure 3.1 Front view of the final CVD hardware.
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The following sections describe the design's main subsystems, as detailed on the 

parts list. No claim is made that the design described is optimized. Rather, the design 

should be seen as a functional first attempt at an open-source CVD, and anyone using this

design as a guide should verify that each subsystem including LabView drivers and 

control programs satisfies the specifications desired for their final system.

3.1 Hardware Design

See the supplementary materials for construction notes with higher resolution 

subsystem images annotated by part number and the parts list for component 

descriptions.

3.1.1 Gas Delivery Lines

The gas canisters for the system were placed into a gas cabinet immediately 

behind the table holding the CVD. With the use of flexible hoses (part 7 in Figure 3.2a), 

gas canisters can easily be removed via the disconnecting of the VCR fitting (parts 4 and 

7) and the unthreading of the remaining ¼ solid section (parts 2-5). To reattach the gas 

line to a new canister, the steps above are done in reverse with new Teflon tape, while the

VCR gasket (part 6) must be replaced before reattachment of the VCR fitting to ensure a 

proper seal.

Figure 3.2b shows the gas line routing from the back of the gas cabinet to the gas 

filter lines. The ¼ inch stainless tubing (part 10) was cut and bent by hand, with the bend 

in the middle allowing for a limited amount of play when connecting the downstream 

VCR fitting to the gas filter line. This subsystem would need to be modified for any other

gas canister location.
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Figure 3.2 Gas delivery line. Views show a) the inside of the gas 
cabinet and b) on the back side of the gas cabinet.
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3.1.2 Gas Filter Lines

Following the gas delivery lines are the gas filter lines (Figure 3.3). Here there are

manual diaphragm valves for each gas (part 5), as well as a two-stage filter, 2 micron 

(part 7) followed by a 3 nm ultra high purity filter. Note: The filters used in our final 

system, and shown in the image, were phased out of the final design because of their high

cost, but they are functionally equivalent to those in the final design. 

3.1.3 Mass Flow Controllers

The mass flow controllers (MFCs) chosen were the M100 series from MKS 

Instruments (Figure 3.3, right side of image). Flow rates were chosen to be 1000 sccm for

argon and methane, 500 sccm for hydrogen, and a 20 sccm MFC was additionally 

installed for future expansion.

Figure 3.3 Gas filter lines. MFCs are shown at the right.
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3.1.4 Gas Mixing Line

As seen in Figure 3.4, the gases exiting the mass flow controllers are mixed in ¼ 

inch tubing via Swagelok union fittings and hand-cut ¼ inch stainless tubing. The mixed 

gases are then routed through a manual diaphragm valve (part 6) and connect to the 

intake manifold via a VCR to KF25 adapter. The diaphragm valve is useful for system 

seal check and leak isolation as it isolates the MFCs and everything upstream from the 

remainder of the system.

Figure 3.4 Gas mixing line.
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3.1.5 Intake Manifold

The intake manifold consists of a KF25 6-way cross (Figure 3.5). One flange is 

used to deliver the process gases, two flanges (the top and bottom) are used for pressure 

gauges, one flange connects to the process tube, and two flanges are available for future 

expansion.

Figure 3.5 Intake manifold.
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3.1.6 Pressure Gauges

For low pressure CVD applications, two capacitive manometers were used 

(Figure 3.6), one with a 1000 Torr full range (part 5) and the other with a 10 Torr full 

range (part 4). These manometers are connected to the intake manifold via KF17 to KF25

adapters (parts 1a, 1b), and can be moved to other KF25 fittings throughout the system to 

aid in leak localization.

Figure 3.6 Pressure gauges.
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3.1.7 Reaction Tube

The reaction tube assembly is shown in Figure 3.7. The reaction tube is a 24-inch 

long, 1 inch outer diameter sintered quartz tube (part 2) that is coupled to the intake 

manifold via a KF25 to 1-inch quick disconnect (part 1) and the exhaust manifold via a 

1-inch to KF40 quick disconnect. Tubes with fire-polished ends should be used to lower 

the likelihood of tube breakage during handling.

 The tube assembly can be removed via the loosening of the quick disconnects 

from the tube, then the removal of the KF cast clamps that couple the quick disconnects 

to the intake and exhaust manifolds. Quick disconnects can then be slid toward the center 

of the tube and the whole tube assembly can be lifted away from the system.

Figure 3.7 Reaction tube assembly. Coloration downstream of the furnace center 
is mainly due to copper deposition from graphene growths.
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3.1.8 Furnace

The furnace is a Lindberg/Blue M Mini-Mite Tube Furnace (Figure 3.8). This 

furnace accepts a 1 inch outer diameter tube and can operate at temperatures up to 

1100ºC. Control is possible with the controller seen on the front of the furnace, or via a 

serial connection. The temperature and setpoint are displayed on the front panel during 

operation via either method.

Figure 3.8 Tube furnace.
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3.1.9 Exhaust Manifold

The exhaust manifold (Figure 3.9) is based around a KF40 6-way cross (part 1). 

The flow goes into the exhaust manifold from the reaction tube assembly and out via the 

exhaust line connected to the bottom flange. The upper flange is used for an overpressure 

relief line, while the back flange holds a manual venting valve. Two ports are unused and 

available for future expansion.

Figure 3.9 Exhaust manifold.
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3.1.10 Overpressure Relief

The max system pressure is regulated via an overpressure relief line (Figure 3.10).

Part 3 is a poppet check valve with a 1 psi cracking pressure. Part 8 is a ¼ inch hand-bent

stainless tube going from the system to the snorkel manifold. This is the main 

overpressure safety component, limiting the system pressure to below 1 psi above the 

pressure in the building exhaust line pressure.

Figure 3.10 Overpressure relief line. a) Connection to top of exhaust manifold. b) 
Connection to room's exhaust snorkel.
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3.1.11 Vent Valve

The vent valve sits on the back side of the exhaust manifold (Figure 3.11). The 

vent is a manual diaphragm valve (part 3) used to equilibrate the system pressure with the

room pressure before breaking the system seal. With normal, automated system use the 

vent valve will not need to be used as the automated controls automatically repressurize 

the system to slightly above room pressure after each run.

Figure 3.11 Vent valve assembly.
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3.1.12 Exhaust Line

Connecting to the bottom flange of the exhaust manifold is the exhaust line 

(Figure 3.12). The exhaust line contains a ball valve for leak isolation (part 7), a 

molecular sieve filter (part 10), and a slot for the butterfly valve, which is its own 

subsystem. The filter can be heated via a standard wall socket to drive out volatiles.

Figure 3.12 Exhaust line. a) shows how the exhaust line is coupled to the exhaust 
manifold via a KF40 to KF25 adapter (part 1). b) shows the ball valve (part 7) and 
filter (part 10), while c) shows where the butterfly valve is integrated into the 
exhaust line. 
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3.1.13 Butterfly Valve

Contained within the exhaust line is the butterfly valve (Figure 3.13). Both 

pressure gauge readings feed into the valve's integrated controller and the valve uses the 

downstream vacuum to match the system pressure to a software-controlled setpoint. The 

butterfly valve is situated downstream of the filter in order to avoid deposition of effluent 

on the valve hardware.

Figure 3.13 Butterfly valve.
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3.1.14 Vacuum Pump

The vacuum pump subsystem is shown in Figure 3.14. The system is connected to

the vacuum pump (part 4) via KF25 bellows (part 1). The exhaust of the vacuum pump is 

routed to the snorkel manifold via a second bellows (part 7).

Figure 3.14 Vacuum pump subsystem.
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3.1.15 Snorkel Manifold

The snorkel manifold (Figure 3.15) connects to the lab's exhaust port, allowing 

for the connection of multiple lines to the building's exhaust. In the case of this CVD 

design, two ports are used, one for the bellows from the exhaust side of the vacuum pump

and the other for the overpressure relief valve. The third port is used by another piece of 

equipment in the lab. A 6-way cross might be considered if additional exhaust ports are 

needed in a room.

Figure 3.15 Snorkel manifold.
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3.1.16 Cables

Active hardware components were chosen with DB-type connectors, so cabling 

consisted largely of DB cables that had been severed at one end for individual wire 

access. Figure 3.16 shows cable management and the construction notes have detailed 

instructions for the fabrication and connections of each cable.

Figure 3.16 System overview showing cable management. 
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3.1.17 Data Acquisition and Control

While communication with the furnace and butterfly valve was carried out via 

serial, the MFCs and Baratrons required analog inputs and outputs. These were supplied 

via a National Instruments CompactDAQ data acquisition system (Figure 3.17, part 1). 

The final design uses one 16-channel analog input module (part 2) and two 4-channel 

analog output modules (parts 3a, 3b). The high cost of this system may be reason to 

explore other options for both data acquisition boards and active hardware (MFCs, 

Baratrons) for future builds.

Figure 3.17 National Instruments cDAQ system with 2 
modules. Note: An additional analog output module (part 
3b) was added to the final design but not to our system.
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3.1.18 Base and Supports

The base was fabricated from a ½-inch aluminum plate 30 inches wide by 42 

inches long (Figurue 3.18, base). The edges and corners of the base were rounded with a 

file and sandpaper, then 8 rubber feet were distributed across its underside. 

Gas filter line, MFC, and gas mixing line hardware was attached to the base via 

machined aluminum 3/8 inch plates, as seen in Figure 3.18b (part 8). These are held off 

with spacers (part 2) so that cap screws can secure the parts from the bottom of the 

support plate. Reference designs of the support plates can be found in the supplementary 

material.

KF components including the intake manifold, exhaust manifold, and exhaust line

were supported via vertically oriented aluminum support structures (Figure 3.18c). The 

parts are clamped into the support structure via a pair of cap screws (Figure 3.18c, part 9)

and the support structure is secured to the base plate via a piece of machined angle 

aluminum (part 10). Slots in the angle aluminum pieces allow for some play in the height 

and location of the support piece, while the system configuration can be completely 

changed via the drilling and tapping of new holes in the base plate.

The furnace was secured to the base plate via a pair of angle aluminum brackets 

(Figure 3.18d, part 10). This ensures that the furnace will not move during a growth and 

break the stationary reaction tube contained within it. The furnace's face plate had to be 

removed before holes were drilled into the furnace body to ensure that no internal 

components were damaged. 
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Figure 3.18 Base plate and support structures. a) Base plate in a system side view. 
b) Details of a manual valve support structure in the gas mixing line. c) Close up of a
support for the molecular sieve filter. d) One of two securing brackets for the 
furnace.
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3.2 Driver and Software Design

Once a sample is prepped and placed into the reaction tube, the manual gas line 

and gas mixing valve are turned on, the furnace is turned on, and the vacuum pump is 

started, all system control is conducted on a PC running LabView. The main elements of 

the controls programming are the device drivers, the manual control program, and the 

automatic control program. Detailed system startup instructions are given in the 

construction notes in the supplementary material.

3.2.1 Device Drivers

Contained within the 'Programs/sub-VIs' folder of the supplementary materials 

folder, the device drivers are small LabView programs that operate the system's active 

hardware (MFCs, pressure gauges, furnace, and butterfly valve). These driver programs 

can be opened and tested individually in order to test the operation of single active 

components. Or, in the case that the system design is modified, the drivers for the 

modified components can be reprogrammed independently, making it simple to modify 

the system design to fit a lab's individual needs.

3.2.2 Manual Control Program

The manual controls LabView VI, called 'ManualControls.vi' is located in the 

'Programs' folder of the supplementary material. A screen capture of the user interface is 

shown in Figure 3.19. Once the system has been built and the active components tested, 

the manual controls VI can be used to check system seal and run simple growths. When 

the manual control program is in use, both setpoints and actual values for the system 

pressure, furnace temperature, and gas flow rates will be recorded in a dated log file.

Because the active hardware components are controlled via sub-VIs,
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Figure 3.19 Screen capture of the ManualControls.vi control interface. Using this VI the pressure or valve state, gas flow 
rates, and furnace temperature can all be set and monitored.
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modifications to the system design that include different active components than those 

described in this design should not affect the operation of the manual control program as 

long as the individual device drivers are updated.

3.2.3 Automatic Control Program

For complex recipes and repeatable growths, the automated control program 

should be used. Called 'Read&RunRecipe.vi' and contained with the 'Programs' folder of 

the supplementary materials, the automatic control program operates the CVD according 

to user-generated recipes. A sample recipe, 'Quick.csv', is included in the 

'Programs/Recipes' folder of the supplementary materials. The contents of the comma 

separated value (csv) file is shown in Figure 3.20. Recipes are organized into stages, and 

the stages of the sample recipe are as follows: Stage 0 sets the initial setpoints and then 

immediately ends. Stage 1 ends when the furnace temperature reaches 200°C. In stage 2, 

the temperature setpoint will ramp from 200°C to 500°C at a rate of 30°C/min and the 

stage will end once the furnace reaches 500°C. Stage 3 lasts for 10 minutes, and stage 4 

ends when the furnace cools to 100°C. After this, the CVD is repressurized with argon 

and the program stops. The pressure and gas flow rates are set at the beginning of the 

stage. A line is shown for a fourth gas (C2H4) for future system expansion.

Figure 3.20 Contents of the Quick.csv recipe.

Stage 0 1 2 3 4
Pressure Setpoint (Torr) 680 500 300 0 680
Temperature Setpoint (C) 25 200 500 500 25
Temperature Ramp Rate (C/min, 30 C/min max) 30
Ar Flow (sccm) 0 600 0 0 500
CH4 Flow (sccm) 0 0 400 0 0
H2 Flow (sccm) 0 0 0 200 0
C2H4 Flow (sccm) 0 0 0 0 0
Dwell Time (min) 10
Stage End Condition Start Temp Ramp Time End
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Once the recipe is created and saved as a .csv file, the automatic controls program

is started and the recipe selected in the file dialog. After the recipe has been selected, the 

first tab of the controls program will show a simulation of the recipe. The plots generated 

from this simulation can be seen in Figure 3.21. The top three plots show the projected 

pressure, temperature, and gas flow rate setpoints vs. stage number, while the bottom 

three charts show the same values vs. approximate elapsed recipe run time. During the 

generation of these simulated run graphs, the software also analyzes the recipe to 

determine if all recipe stages are within the system's allowed setpoints. If the recipe 

checks out, the square green indicator on the right lights up and the user is able to click 

the 'Run Recipe' button.

On successful recipe check and clicking of the 'Run Recipe' button, the user can 

then move on to the next program tab to see the process of the system check. Prior to 

executing the user's recipe, the automatic control program will conduct a system check to 

ensure that the furnace and butterfly valve are replying over serial, the gases required for 

the recipe are available, the system is sealed, and the vacuum pump is operating. In the 

case that any of these checks fail, the system is repressurized to room pressure with argon

and the program is stopped. A screen capture of the controls program after a successful 

system check is shown in Figure 3.22.

If the system check is successful, the program will begin to run the recipe and the 

user can continue to the next program tab to monitor the recipe's progress. A screen shot 

of the third tab is shown in Figure 3.23. Here the user can see the setpoints and end 

condition for the current stage, as well as the current pressure, temperature, and gas flow 

rates. When the recipe reaches the 'End' stage, it will cool until it reaches 100º C and then
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Figure 3.21 Screen capture of the 'Check Recipe' tab of Read&RunRecipe.vi. When the VI is run and a recipe selected, the recipe will 
be checked and simulated, with the simulated growth profiles appearing in the graphs, plotted by both stage number and estimated 
growth time. If the growth profiles are acceptable as shown, the user can click 'Run Recipe' to begin the CVD system check.
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Figure 3.22 The 'System Check' tab of Read&RunRecipe.vi. When a CVD run has been started, the program will first conduct a system
check to ensure that the furnace and butterfly valve are responding, the gases required for the recipe are available, the vacuum pump is 
on, and the CVD is sealed. If the system check succeeds, the user will be prompted for an experiment note then the recipe will start. If the 
system check fails, the CVD will be refilled with argon to room pressure and the program will end.
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Figure 3.23 The 'Run Recipe' tab of Read&RunRecipe.vi. After the system check has been passed and an experiment note entered, the 
state of the run can be monitored on this tab. The system state shown is 1 minute after the recipe switched from stage 1 to stage 2. The 
pressure dropped from ~500 Torr to ~300 Torr, the argon flow rate dropped from ~600 sccm to 0 sccm, the methane flow rate increased 
from 0 to ~400 sccm, and the furnace temperature setpoint is ramping to 500°C at 30°C/min.
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the system will repressurize with argon and stop, leaving the butterfly valve set to a 

pressure slightly above room pressure to provide a safety against overpressure yet to 

allow the system to be opened even if the vacuum pump is kept on.

3.2.4 Auditability

Similarly to the manual controls program, the automatic controls program logs 

both setpoints and actual values for pressure, temperature, and gas flow rates. 

Additionally, the automated control program saves a copy of the recipe to the 

'Programs/CVD Run Logs' folder with the same name as the normal log file but with a 

'-recipe' suffix. Together, the run logs and the saved recipes allow a researcher to quickly 

evaluate past growths and provide an audit trail for recipe changes through different 

growth trials.

In the construction notes, there is additionally an Excel macro that allows one to 

quickly plot the setpoints and run values of a log file by opening Excel and then using a 

keyboard shortcut ('Ctrl+g' in this case). The resulting plots for the log file resulting from 

running the 'Sample.csv' recipe are shown in Figure 3.24. Comparing them to the plots of 

the predicted run from Figure 3.21, we see that the logged system values matched the 

predicted recipe profile well, including the temperature ramp as seen on the left side of 

the temperature plot (Figure 3.24a). 

There is noticeable lag in the pressure after sharp increases in the pressure 

setpoint (Figure 3.24b). This is a result of the limited volume of gas entering the system 

limiting the rate of pressure increase. Also, the shoulder on the right side of the 

temperature plot (Figure 3.24a) is a result of the furnace lid being manually opened to 

increase the cooling rate.



48

To test the auditability of the system, the Quick.csv recipe was ran a second time, 

this time with a user error and a simulation of a gas canister running out. The graphs 

resulting from running the Excel macro in the run log can be seen in Figure 3.25. At 

around 9 minutes into the run, the methane valve was closed, and the flow rate can be 

seen to drop in Figure 3.25c, while the setpoint remains constant in 3.25d. Further, just 

after the 20 minute mark, we can see in Figure 3.25a that the furnace temperature drops 

rapidly away from the setpoint, a result of the furnace lid being opened and the heating 

elements being disabled by the furnace. Finally, as compared to the run logged in Figure 

3.24, this run was much shorter, a result of the furnace cooling to the 100°C program 

shutoff temperature much faster with the furnace open.

Figure 3.24 Plots resulting from running the Excel macro on the log file resulting 
from running the 'Quick.csv' recipe. Shown are a) the furnace temperature and 
setpoint, b) the pressure and setpoint, c) the gas flow rates, and d) the gas flow 
setpoints.
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The ability for a user to visually inspect run logs allows for rapid auditing of past 

runs, giving them the ability to demonstrate consistency and increasing the repeatability 

of their growths.

Figure 3.25 CVD run logs for a Quick.csv recipe run during which the furnace was
prematurely opened and the methane valve was turned off during the run.
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CHAPTER FOUR: RESULTS AND DISCUSSION

The CVD system built during this project has become a workhorse for the growth 

of graphene and graphene foam. This chapter details some example growths and 

characterization of the resulting materials.

4.1 Graphene

4.1.1 Graphene Growth

The planar graphene was grown by chemical vapor deposition (CVD) method on 

copper foil via a method adapted from a previously published protocol [1]. The copper 

foil (99.8%, Alfa Aesar 0.001 inch) was placed into the center of the reaction tube and the

recipe shown in Figure 4.1 was executed via the automatic control program.

On conclusion of the growth, the graphene was coated with a bilayer of PMMA 

(495 K A2 and 950 K A4). The layers were each coated at 3000 rpm with a 2 minute bake

at 200º C. The uncoated side of the copper foil was exposed to an oxygen plasma to 

remove the graphene on that side and then the copper foil was etched overnight in 

Figure 4.1 Recipe used for the growth of graphene on copper foil.

Stage 0 1 2 3 4 5
Pressure Setpoint (Torr) 1 1 1 1 1 690
Temperature Setpoint (C) 25 1000 1000 1000 400 25
Temperature Ramp Rate (C/min) 30 C/min max increase 0
Ar Flow (sccm) 0 100 100 100 100 500
CH4 Flow (sccm) 0 0 0 850 850 0
H2 Flow (sccm) 0 0 100 50 50 0
C2H4 Flow (sccm) 0 0 0 0 0 0
Dwell Time (min) 0 90 30
Stage End Condition Start Temp Time Time Temp End
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Transcene CE-100. The resultant PMMA/graphene film was then transferred to a silicon 

wafer and given a DI rinse and acetone bath to remove the PMMA.

4.1.2 Graphene Characterization

The resulting graphene on silicon was analyzed with Raman (Horiba Instruments, 

Edison, NJ) using a 532 nm excitation laser. The resulting spectra minus the bare silicon 

background for four different locations on the sample are shown in Figure 4.2. The D 

band at ~1350 cm-1 is noticeably small across all readings, suggesting the graphene has a 

low defect density. Also, the high intensity of the G peak (~1585 cm-1) relative to the 2D 

peak (~2685 cm-1) indicates that the sample is likely multi-layer as the G peak is much 

smaller than the 2D peak in Raman spectra of monolayer graphene [2,3]. The peak at 

~2440 cm-1 appeared with an inconsistent intensity on the bare silicon wafer substrate and

Figure 4.2 Raman of graphene grown in the CVD system 
described. Trials were taken at 4 different places on the 
sample. Characteristic peaks at ~1350 cm-1, ~1585 cm-1, and 
~2685 cm-1 correspond to the D band, G band, and 2D band, 
respectively. 
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is not thought to be a signal from the graphene.

Raman maps were additionally taken of four graphene samples grown using the 

recipe in Figure 4.1. The ratio of the 2D peak to the G peak heights was mapped, as 

shown in Figure 4.3. These ratios indicate all four samples consist mostly of mono-layer 

(I2D/IG > 2) or bi-layer (I2D/IG ≈ 1.2) graphene [4]. The laser used for the map had a 

wavelength of 633 nm with a spot size of ~1 μm.

Figure 4.3 Raman maps of four samples grown using identical recipes. Intensity 
shown is the ratio of the 2D peak height to the G peak height. 
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The ratio of the area of the G peak to the defect-related D peak was also mapped 

for the same four areas of the samples, as shown in Figure 4.4. Using this ratio, we can 

estimate the grain size of the graphene samples using Lα (nm) = 2.4 × 10-10 λ4 (IG/ID), 

where λ is the excitation wavelength in nanometers [5,6]. Clockwise from the top left, the

areas analyzed have average graphene grain sizes of: Lα = 150 nm,  Lα = 87 nm,  Lα = 77 

nm, and  Lα = 204 nm. This, along with the result above, indicate that the CVD can 

produce high quality mono- and few-layer graphene.

Figure 4.4 Map of the integrated intensity of the G peak to that of the D peak for 
the four graphene samples.
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4.2 Graphene Foam

4.1.2 Graphene Foam Growth

According to a procedure adapted from [7–9], graphene was grown on a nickel 

foam catalyst (MTI Corporation Porosity ≥95%, 80-110 PPI, 1.2 mm thick) using the 

recipe shown in Figure 4.5.

The graphene/nickel foam that resulted was coated with PMMA (950A4) and the 

nickel catalyst was then removed by a 24-hour etch in 1 M FeCl3/1 M HCl. After transfer 

to the desired substrate, the PMMA layer was removed in an acetone vapor bath for 20 

minutes.

4.2.2 Graphene Foam Characterization

A graphene foam resulting from the described growth with the nickel substrate 

still present was placed onto a silicon substrate and analyzed via Raman using the same 

laser line and intensity as was used for the graphene. The resulting spectra from four sites

on the sample tested are shown in Figure 4.6. In these spectra, the defect-related D band 

at ~1350 cm-1 is noticeably absent, suggesting high quality graphene with a low 

concentration of defects. Also, the G band signals at ~1585 cm-1 are about the same size 

Figure 4.5 Recipe used for the growth of graphene foam onto nickel foam 
substrate.

Stage 0 1 2 3 4 5
Pressure Setpoint (Torr) 2 2 2 2 2 690
Temperature Setpoint (C) 25 1000 1000 1000 300 25
Temperature Ramp Rate (C/min) 30 C/min max increase 0
Ar Flow (sccm) 0 100 100 100 250 250
CH4 Flow (sccm) 0 0 0 50 0 0
H2 Flow (sccm) 0 100 100 100 0 0
C2H4 Flow (sccm) 0 0 0 0 0 0
Dwell Time (min) 0 30 5
Stage End Condition Start Temp Time Time Temp End
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or larger than 2D band at ~2685 cm-1, suggesting these areas were multi-layer. Trial 3 

looks to have had a silicon signal that washed out the graphene signal. 

The graphene foam was additionally imaged using a scanning electron 

microscope (SEM) operating at 20 keV (Hitachi S-3400N-II). The resulting images are 

shown in Figure 4.7. While there was some collapse of the foam structure after etching, 

as can be seen by comparing Figures 4.7a and 4.7c, the graphene kept much of the 

structure when the nickel foam was removed. This is consistent with the conclusion 

reached from Raman analysis that the graphene foam samples consist of multi-layer 

graphene. Also of note, Figure 4.7b shows apparent wrinkles on the surface of the nickel 

foam, likely wrinkles in the graphene layers. This wrinkling is consistent with the small 

thermal expansion coefficient of graphene relative to metals – as the metal foam cools 

Figure 4.6 Raman of graphene foam on nickel with the 
background signal subtracted. The defect-related graphene D 
peak at ~1350 cm-1 is absent in these spectra.
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after CVD growth of the graphene, it will shrink while the graphene layers coating it will 

shrink much less.
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CHAPTER FIVE: CONCLUSION

5.1 Summary and Discussion

In summary, in this effort, an open-source CVD has been designed, sourced, built,

and programmed. This system is capable of both atmospheric pressure and low pressure 

growths, temperatures up to 1100º C, and substrates up to ~1 inch in width. Additionally, 

with the detailed parameter and recipe logging, past growths can quickly be audited for 

possible issues or repeated, allowing for quick system troubleshooting and high process 

repeatability. With the resulting system, we have grown both graphene and graphene 

foam, both shown to be of high quality. 

With this open-source design, the engineering cost for other researchers building 

their own CVDs for 2D material growth will be substantially reduced, allowing labs to 

begin synthesizing and studying 2D materials on a smaller budget than was previously 

possible. Because the design is divided by subsystem, modifications can easily be made 

to the design if customization is desired, and customization of the final system can be 

carried out without voiding a system warranty because parts are warrantied individually, 

rather than the system. Also, because the automation software has been programmed in 

LabView, and device drivers exist as individual subVIs, additional systems can easily be 

added to the controls program via the programming of additional hardware drivers and 

their integration into the controls programs.
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5.2 Future Work

The CVD system built for this study has become a workhorse in the production of

both graphene and graphene foam for numerous studies, including the use of both 

graphene and graphene foam as a substrate for cell growth and differentiation studies. 

Additionally, work is being conducted to synthesize high quality transition metal 

dichalcogenides, as described in the literature [1–3]. 

Possible future modifications of the CVD design include the addition of solid and 

liquid precursor injection ports for the injection of sulfur for transition metal disulfide 

growths, a cold finger on the exhaust side of the growth tube to condense low vapor 

pressure effluents, and the addition of a fourth gas line as needed by future experimental 

efforts. In the long term, a mass spectrometer or residual gas analyzer may be attached to 

the exhaust manifold in order to determine the identity and concentration of process 

exhaust gases. Additionally, a removable plasma generating attachment has been 

considered to enable plasma-enhanced CVD growths.
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CHAPTER SIX: SUPPLEMENTARY INFORMATION

6.1 Supplementary Materials Folder Description

The following represents a file tree of the contents of 'Supplementary 

Materials.zip'. File and folder names are self-explanatory, but extra information has been 

provided in italics when deemed useful.

• Supplementary Materials

• Programs

• CVD Run Log – Folder where ManualControls.vi and 
Read&RunRecipe.vi deposit run and recipe logs.

• Recipes

• Quick.csv – Example recipe. This is the same recipe used in the test 
case in Chapter Three.

• Sub-VIs – Folder containing active component LabView drivers.

• Arduino Code.txt – Code for the use of an Arduino in place of an analog 
input module in the cDAQ.

• Excel CVD Graphing Macro.txt – Text of the Excel graphing macro for 
log files. Must be pasted into Excel's macro programming interface.

• ManualControls.vi – Manual control program, as described in Chapter 
Three.

• Read&RunRecipe.vi – Automated control program, as described in 
Chapter Three.

• Support Drawings – Folder containing reference drawings for support 
structures. Dimensions of structures should be verified against user's specific 
system requirements prior to manufacture. 

• Exhaust Line Support.pdf

• Exhaust Manifold Support.pdf

• Intake Manifold Support.pdf
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• Large Support Base.pdf

• MFC Support.pdf – Same general design concept used for valve supports 
in gas filter line and gas mixing line subsystems.

• Construction Notes.pdf – Detailed instructions on the construction of the 
described CVD system.

• Parts List.xls – List of parts with vendor and approximate price information 
for the CVD system described. Also contains options for user to change the 
number of gas lines and projected system price will update.


