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Abstract—This paper examines a shortcoming of the classical
phasor diagram of a salient-pole synchronous machine based on
the well-established two-reaction theory. Unlike in the phasor
diagram of a smooth-air-gap machine, it is not possible to
readily identify the internally-developed electromagnetic power
of a salient-pole synchronous machine from this phasor diagram.
By de ning new machine reactances, a single equivalent circuit of
a salient-pole synchronous machine is proposed together with a
phasor diagram where the internally-developed electromagnetic
power is made apparent. The revised two-reaction theory is
illustrated using the mathematical model of a two-phase salient-
pole synchronous machine whose equations are manipulated
using complex space vectors instead of traditional matrix trans-
formations.

I. INTRODUCTION

At the 2000 North American Power Symposium, a paper
by R. H. Park on the dq0 transformation ranked second in
a survey of papers having had the most impact in power
engineering over the last century [1]. The dq0 transformation,
also known as the Park transformation, is still today the basis
for the investigation of synchronous machine dynamics in
power systems.
Historically, the development of a versatile mathematical

model of a synchronous machine began with the two-reaction
theory of Blondel, Doherty and Nickle, and others [2-3], and
was later generalized by Park in his papers de ning an ideal
synchronous machine and outlining the theory of the dq0
transformation [4-5].
Subsequent re nements of Park’s theory have been made in

the development of equivalent damper windings in the direct
and quadrature axes, the quanti cation of magnetic saturation,
and the determination of machine parameters during subtran-
sient, transient and steady-state analyses [6-9].
In this paper, we examine two shortcomings of the two-

reaction theory. The rst is a lack of a single equivalent
circuit for a salient-pole synchronous machine in steady state.
The second is the inability of the classical phasor diagram to
determine the internally-developed electromagnetic power of
the machine using relevant complex vectors.
We propose to remedy these shortcomings by analyzing a

two-phase salient-pole synchronous machine for simplicity.
Damper windings are not considered in this analysis as the
aim is to produce a new steady-state circuit and its phasor
diagram.

II. THEORETICAL REVIEW

Let us consider a two-phase salient-pole synchronous ma-
chine with two stator windings (a,b) and one eld winding
(f). The mathematical model of this machine comprises three
voltage equations and a second-order mechanical equation of
motion. Using Kimbark’s notation [7], the voltage equations
are expressed in motor notation as the following set of three
rst-order differential equations,

= + (1)

= + (2)

= + (3)

together with the ux-current relationships

= (4)

where

= + cos 2 (5)
= cos 2 (6)
= = sin 2 (7)
= = cos (8)
= = sin (9)
= (10)

and where ( ) = + is the electrical angle of rotation
of the rotor shaft in steady state. By de ning the following
complex space vectors,

= + (11)
= + (12)
= + (13)

the voltage equations can be concisely formulated as

= + (14)

= + (15)
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together with the ux-current vector relations

= + 2 + (16)
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2
+ (17)

Assuming a magnetically-linear coupling eld, the magnetic
coenergy of this machine is given by
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+
1

2
+
1

2
(18)

It is straightforward to show that this coenergy can also be
expressed as
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(19)

Expanding this last expression yields
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By taking the partial derivative of the coenergy with respect
to the mechanical rotor shaft angle = (2 ) , where
is the number of poles per phase, we obtain the following

expression for the developed electromagnetic torque

=
0

=
³
2

´ 0

=
³
2

´
<
n

2 ( )2 +
o
(21)

III. CLASSICAL TWO-REACTION THEORY
If we de ne ctitious dq space vectors rotating with the

rotor reference frame,

= (22)
= (23)
= (24)

the stator voltage equation (14) can be transformed into the
following vector equation

= + + (25)

After substituting all complex space vectors with their rectan-
gular variables, that is, = + , = + and

= + , the following two real equations are obtained,

= + (26)

= + + (27)

Expressed in dq variables, the original ux-current relations,

= + 2 + (28)

=
1

2
+
1

2
+ (29)

become

= + + (30)

=
1

2
+
1

2
+ (31)

Expanding these equations in rectangular form,

= + (32)
= (33)
= + (34)

where the d-axis and q-axis inductances, and , are
respectively de ned as

= + (35)
= (36)

The developed electromagnetic torque can be expressed in dq
variables as

=
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o
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(37)

By replacing with its rectangular coordinates,

= + (38)

the standard form of the developed electromagnetic torque of
a salient-pole synchronous machine is obtained as

=
³
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³
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IV. CLASSICAL PHASOR DIAGRAM
The steady-state machine voltage equations are obtained

by setting the time derivatives of the d-axis and q-axis ux
linkages to zero in Eqs. (26)-(27). Using capital letters to
denote steady-state quantities, these equations become

= (41)
= + (42)

These two equations can each be represented by a circuit in
the d-axis or q-axis as shown in Figure 1. The two circuits are
coupled via the steady-state speed voltages induced in opposite
axes, and .
The internally-developed electromagnetic power is obtained

by adding the power contributions of the two speed voltages
in the two subcircuits yielding

= ( ) = (43)

where = (2 ) is the mechanical rotor shaft speed in
steady state. This power expression can also be expressed as

=

= ( + )

= ( ) + (44)
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Fig. 1. d-axis and q-axis Circuits of a Synchronous Machine

where = , = and = . This
last expression makes apparent the power developed due to
each of the reluctance term and the synchronous power of the
second term found in smooth-air-gap machines.

fdjE

qjI

d djX I

dI

dqI

dqV

−X Iq q

Fig. 2. Classical Phasor Diagram of a Salient-Pole Synchronous Machine

The classical phasor diagram is obtained by combining the
steady-state equations in both axes as

= + + ( ) + (45)

Figure 2 is a pictorial representation of Eq. (45) with the
stator resistance neglected. The phasor diagram in this picture
resembles Kimbark’s phasor diagram [7, p. 70] and differs
slightly from the classical one using space vectors instead of
complex quantities such as ( ) instead of .
The input real power into the machine is equal to

2 = 2× 1
2
< { } = + (46)

This input power is equal to the internally-developed electro-
magnetic since stator resistance and magnetic core losses
are being neglected in the equivalent circuit representation.
The synchronous power term ( ) is recognizable from
the complex product of ( ) and ( ) . However, the re-
luctance power term is not readily identi able in this classical
phasor diagram. In the next section, we propose a new single-
circuit representation of a salient-pole synchronous machine
along with a modi ed phasor diagram where the two terms
of the internally-developed electromagnetic power are readily
identi able.

V. REVISED PHASOR DIAGRAM
By de ning the following reactances,

+ =
+

2
(47)

=
2

(48)

the steady-state voltage equations (41)-(42) can be manipu-
lated to yield the following phasor equation which is repre-
sented by the single equivalent circuit shown in Figure 3:

= ( + +) + + (49)
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Fig. 3. Proposed Single Equivalent Circuit of a Salient-Pole Synchronous
Machine

If we de ne an internal voltage as the sum of the de-
pendent voltage source ( ) and the independent voltage
source ( ),

= +

= + ( )

= + + (50)

then we can easily verify that the internally-developed elec-
tromagnetic power is equal to the real power absorbed by
this internal voltage by expanding the following equation

= < { }
= < {¡ + +

¢
( )}

= 2 + (51)
= ( ) + (52)

A phasor diagram for the single equivalent circuit can be
drawn as shown in Figure 4 where the stator resistance has
been omitted for simplicity. The internally-developed power

can now be identi ed as the real part of the complex
product of this internal voltage voltage and the conjugate
of the current vector = ( + ). By decomposing
the current vector into its real and imaginary components,

= + , the internally-developed power becomes
readily available as the sum of three terms:
• a power term ( ) resulting from the complex product
of ( ) and ( ) ;

• a power term ( ) resulting from the complex
product of ( ) and ( ) ; and

• a power term ( ) resulting from the complex
product of ( ) and ( ) .
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Fig. 4. Proposed Phasor Diagram of a Salient-Pole Synchronous Machine

VI. TORQUE PRODUCTION IN A SALIENT-POLE
SYNCHRONOUS MACHINE

In steady state, Equations (30)-(31) describing the ux-
current relationships can be expressed as

= + + (53)

=
1

2
+
1

2
+ (54)

where = 0 and = 0 .
In this form, it is apparent that there are three complex

current vectors in the air gap of a salient-pole synchronous
machine, namely, , and . These three current vectors
are depicted in Figure 5 and are relative to a dq reference frame
attached to the rotor. The eld current vector is oriented
along the eld axis which is assumed to be colinear with the
direct axis. The stator current vectors and are complex
conjugate vectors with respect to the direct axis.
In steady state, a previous expression of the electromagnetic

torque, Equation (37), can be successively rewritten as

=
³
2

´
<
n
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o

(55)

=
³
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´³
× + ×

´
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where the cross product expressions have been intuitively
de ned as

× = <
n o

= =
n o

(57)

× = <
n
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Noting that

× =
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1
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the last torque expression, Equation (56), can be expanded as

=
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´μ1
2

× +
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(60)
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Fig. 5. Torque Production in a Salient-Pole Synchronous Machine Interpreted
as the Pairwise Interaction of Three Complex Current Vectors

Torque production in a salient-pole synchronous machine
can now be interpreted as the pairwise magnetic interaction of
three complex current vectors in the air gap of the machine.
The interaction of the conjugate current vectors and is
responsible for the reluctance component of the torque which
is absent in round-rotor synchronous machines.

VII. CONCLUSION
In this paper, we have extended the two-reaction theory of

a two-phase salient-pole synchronous machine by proposing
a single equivalent circuit in dq coordinates. A new phasor
diagram for this equivalent circuit identi es an internal voltage
responsible for the internally-developed electromagnetic power
in a straightforward manner. The torque production in a
salient-pole synchronous machine has also been explained
using the interaction of three complex current vectors in the
air gap of the machine.
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