Complexity and Characterization of Set Splitting

Peter Bernstein Tufts University

Cashous Bortner
University of Nebraska

Samuel Coskey
Boise State University
Shuni Li
Macalester College
Connor Simpson Cornell University

Discrepancy theory

Combinatorial discrepancy theory is a well-studied area of mathematics with applications to computational geometry, machine learning, probabilistic algorithm design, and other fields concerned with the regularity of distributions.

- Let X be a finite set and let $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{n}\right\} \subseteq 2^{X}$ be a collection of subsets. The discrepancy of \mathcal{B} is

$$
\operatorname{disc}(\mathcal{B}):=\min _{S \subseteq X} \max _{B_{i} \in \mathcal{B}}| | B_{i} \cap S\left|-\left|B_{i} \backslash S\right|\right|
$$

- In a celebrated 1985 result, Joel Spencer gave a tight upper bound of

$$
\operatorname{disc}(\mathcal{B}) \leq K \sqrt{n}
$$

where K is an absolute constant [5]. He later conjectured that no efficient algorithm exists to find a set S witnessing that discrepancy is within his bound [1].

- In 2010, Bansal and others disproved the conjecture by giving an efficient algorithm to find such an S [2].
- However, $\operatorname{disc}(\mathcal{B})$ can be much smaller than Spencer's bound, so Bansal's work prompts the following question:
Is it efficient to determine whether $\operatorname{disc}(\mathcal{B}) \leq 1$ and to find a witness S when this is the case?
Our work provides an answer.

Splittability

We use $[x]$ to denote the nearest integer to x, with free rounding if x is an odd multiple of $\frac{1}{2}$. Let $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\} \subseteq 2^{X}$ be a collection of subsets of a set X, and fix $0<p<1$.

p-Splittable

\mathcal{B} is p-splittable if there exists a $S \subseteq X$ such that for each $B_{i} \in \mathcal{B}$,

$$
\left|B_{i} \cap S\right|=\left[p\left|B_{i}\right|\right]
$$

Note that when $p=\frac{1}{2}$, being p-splittable is equivalent to having $\operatorname{disc}(\mathcal{B}) \leq 1$.

Fig. Splittable and unsplittable collections for $p=1 / 2$

Complexity of p-splitting

Main Theorem

Determining whether a collection is p-splittable is NP-Complete for any $0<p<1$.
Selected proof techniques:
Here, we outline some parts of our reduction from the NP-complete problem ZeroOne Equations (ZOE) [4]. ZOE is stated as follows: Given a 0,1-matrix A does there exist a 0,1 -vector \vec{y} such that $A \vec{y}=\overrightarrow{1}$, where $\overrightarrow{1}$ is the vector of ones?

- We can encode $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\} \subseteq 2^{X}$ in the form of a 0,1 -matrix M, which has a 1 in its (i, j) position precisely when element j of the collection is in B_{i}

Fig. A split collection and its corresponding matrix equation for $p=1 / 2$

- To represent splitting \mathcal{B}, we apply M to a 0,1 -vector \vec{x} encoding a potential solution $S \subseteq X$ to the splitting problem. The set S corresponding to \vec{x} is a valid solution if the i th entry of $M \vec{x}$ is equal to $\left[p\left|B_{i}\right|\right]$
- We make use of this encoding by applying a polynomial-time construction that turns an arbitrary input to ZOE into a p-splitting problem in the form described above
Corollary
Given a collection \mathcal{B}, determining whether there exists a set S witnessing $\operatorname{disc}(\mathcal{B}) \leq 1$
is NP-complete.

When is a collection p-splittable?

For general p, finding simple rules to tell when a collection of sets is p-splittable is very difficult, as one would expect given the theorem above. However, we do have criteria for some special collections.
Lemma
Let $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\}$, a collection of sets whose elements all lie in exactly m sets.

- If \mathcal{B} is p-splittable, then $\sum_{i=1}^{n}\left[p\left|B_{i}\right|\right]$ is divisible by m.
- If $m=1$ or $m=n-1$, the converse holds: if $\sum_{i=1}^{n}\left[p\left|B_{i}\right|\right]$ is divisible by m then
\mathcal{B} is p-splittable.

Criteria for $\frac{1}{2}$-splittability

While the main theorem implies it is hard to find splittability criteria in general, we have had some success with small n and $p=\frac{1}{2}$. Some known results in this case are:

- Every collection of one or two sets is splittable.
- A collection of three sets is splittable if and only if it is not of the form [3]

The situation becomes much more complex for four or more sets. 4-Set Classification Theorem
Every unsplittable collection of four sets falls into one of eleven simple patterns.
To prove this theorem we used a supercomputer to check all cases with a small number of elements, manually sorted the output, and generalized the conclusion using the lemma below.

Lemma

If \mathcal{B} is splittable, then \mathcal{B} remains splittable when an even number of elements are added to any of its Venn regions.

Computer experiments also lead us to the following:
Conjecture
Any collection of sets with no empty Venn regions is splittable.

References \& Acknowledgements

[1] N. Alon and J. Spencer. The Probabilistic Method. Wiley, 2000, p. 240.
[2] N. Bansal. "Constructive Algorithms for Discrepancy Minimization". In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. FOCS ' 10 IEEE Computer Society, 2010, pp. 3-10
[3] D. Condon et al. "On Generalizations of Separating and Splitting Families". In: submitted
[4] S. Dasgupta, C. Papadimitrious, and U. Vazirani. Algorithms. McGraw Hill, 2006, p. 254 [5] J. Spencer. "Six Standard Deviations Suffice". In: Transactions of the AMS 289.2 (1985), pp. 679-706.
This work was supported by the NSF under grant No. DMS 1359425 and Boise State University

