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Discrepancy theory

Combinatorial discrepancy theory is a well-studied area of math-
ematics with applications to computational geometry, machine
learning, probabilistic algorithm design, and other fields con-
cerned with the regularity of distributions.
•Let X be a finite set and let B = {B1, B2, . . . , Bn} ⊆ 2X be
a collection of subsets. The discrepancy of B is

disc(B) := min
S⊆X

max
Bi∈B

∣∣∣∣∣Bi ∩ S
∣∣− ∣∣Bi \ S

∣∣∣∣∣.
•In a celebrated 1985 result, Joel Spencer gave a tight upper
bound of

disc(B) ≤ K
√
n

where K is an absolute constant [5]. He later conjectured that
no efficient algorithm exists to find a set S witnessing that
discrepancy is within his bound [1].

• In 2010, Bansal and others disproved the conjecture by giving
an efficient algorithm to find such an S [2].

•However, disc(B) can be much smaller than Spencer’s bound,
so Bansal’s work prompts the following question:
Is it efficient to determine whether disc(B) ≤ 1 and to find a
witness S when this is the case?
Our work provides an answer.

Splittability

We use [x] to denote the nearest integer to x, with free rounding
if x is an odd multiple of 1

2. Let B = {B1, . . . , Bn} ⊆ 2X be a
collection of subsets of a set X , and fix 0 < p < 1.

p-Splittable
B is p-splittable if there exists a S ⊆ X such that for each
Bi ∈ B,

|Bi ∩ S| =
[
p |Bi|

]
.

Note that when p = 1
2, being p-splittable is equivalent to having

disc(B) ≤ 1.
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Fig. Splittable and unsplittable collections for p = 1/2

Complexity of p-splitting

Main Theorem
Determining whether a collection is p-splittable is NP-Complete for any 0 < p < 1.

Selected proof techniques:
Here, we outline some parts of our reduction from the NP-complete problem Zero-
One Equations (ZOE) [4]. ZOE is stated as follows: Given a 0,1-matrix A,
does there exist a 0,1-vector ~y such that A~y = ~1, where ~1 is the vector of ones?
•We can encode B = {B1, . . . , Bn} ⊆ 2X in the form of a 0, 1-matrix M , which has
a 1 in its (i, j) position precisely when element j of the collection is in Bi.
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Fig. A split collection and its corresponding matrix equation for p = 1/2

•To represent splitting B, we apply M to a 0,1-vector ~x encoding a potential solution
S ⊆ X to the splitting problem. The set S corresponding to ~x is a valid solution if
the ith entry of M~x is equal to

[
p|Bi|

]
.

•We make use of this encoding by applying a polynomial-time construction that turns
an arbitrary input to ZOE into a p-splitting problem in the form described above.

Corollary

Given a collection B, determining whether there exists a set S witnessing disc(B) ≤ 1

is NP-complete.

When is a collection p-splittable?

For general p, finding simple rules to tell when a collection of sets is p-splittable is very
difficult, as one would expect given the theorem above. However, we do have criteria for
some special collections.
Lemma
Let B = {B1, . . . , Bn}, a collection of sets whose elements all lie in exactly m sets.
• If B is p-splittable, then

∑n
i=1

[
p|Bi|

]
is divisible by m.

• If m = 1 or m = n− 1, the converse holds: if
∑n

i=1

[
p|Bi|

]
is divisible by m then

B is p-splittable.

Criteria for 1
2 -splittability

While the main theorem implies it is hard to find splittability
criteria in general, we have had some success with small n and
p = 1

2. Some known results in this case are:
•Every collection of one or two sets is splittable.
•A collection of three sets is splittable if and only if it is not of
the form [3]:

odd
odd

odd

The situation becomes much more complex for four or more sets.
4-Set Classification Theorem
Every unsplittable collection of four sets falls into one of
eleven simple patterns.
To prove this theorem we used a supercomputer to check all
cases with a small number of elements, manually sorted the
output, and generalized the conclusion using the lemma below.

Lemma
If B is splittable, then B remains splittable when an even
number of elements are added to any of its Venn regions.

Computer experiments also lead us to the following:
Conjecture
Any collection of sets with no empty Venn regions is splittable.
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