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Abstract: This article investigates the effective liquid-gas surface tension changes of 

water and 5-90nm gold nanofluids measured during electrowetting on dielectric 

experiments. The Young-Laplace equation for sessile droplets in air was solved to fit 

the experimental droplet shape and determine the effective liquid-gas surface tension 

at each applied voltage. A good agreement between experimental droplet shapes and 

the predictions was observed for all the liquids investigated in applied range of 0-30V. 

The measured liquid-gas effective surface tensions of water and gold nanofluid 

decreased with voltage. At a given voltage, the effective liquid-gas surface tension of 

gold nanofluids initially decreased as the size of gold nanoparticles increased from 5 

nm to 50 nm. Then, for 70nm and 90nm particle gold nanofluids, the effective liquid-

gas surface tension started increasing too. The size of nanoparticles, and the applied 

voltage have a significant effect on variation of the effective liquid-gas surface 

tension with variations as much as 93% induced by voltage at a given particle size and 

80% induced by particle size at a given voltage. 

   

Keywords: Solid-liquid surface tension, Liquid-gas surface tension, Contact angle, 

Wettability, Electrowetting, Gold nanoparticle. 
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1. Introduction 

The management of small amounts of liquids is essential for fluidic micro-electro-

mechanical systems (MEMS) such as lab-on-chip and micro total analysis systems [1-

4], microfluidic optics [5-6] and displays [7]. Several methods have been developed 

for microscale liquid management such as hydraulics [8], electrophoresis [9], electro-

osmosis [10] and capillary driven phenomena [11] where liquid-gas and solid surface 

tensions are used to manage the liquid motion. The electrowetting phenomenon for 

liquid manipulation has raised a wide interest due to its applications in reading 

technology at micro scale, advanced lithography and complex photonics devices, 

microfluidic and nanofluidic liquid transportation, thermal management, wave guides, 

tunable micro lenses, controllable micromirrors, liquid displays, lab-on-chip and bio-

MEMS [12-18].  

In electrowetting experiments an electric field is applied between the liquid of 

interest and an underlying electrode. Redistribution of charges and dipoles at the 

liquid-solid interface change the effective liquid-solid surface tension and then the 

contact angle for a liquid droplet [19]. Electrowetting on dielectric (EWOD) has the 

potential to make larger changes in the contact angle, since an electrical insulator 

blocks the charge transfer between the liquid and the underlying electrode and 

electrolysis is eliminated. The droplet contact angle for a sessile droplet in air was 

observed to decrease [20] with increased voltage during electrowetting. 

The challenges and applications of electrowetting have been explained in detail in 

references [20-22]. Several phenomena are reducing its level of reversibility [21], 

such as contact angle saturation [23], contact line instability and formation of small 

droplets at the contact line [24], flow inside micro-droplet [25-26] and non-

equilibrium [26-27]. Several reasons have been proposed to explain the saturation 

phenomenon such as dielectric break down at higher voltage [28], the high charge 

density in the vicinity of the contact line [29], trapping charge effect [29], air 

ionization near the contact line [30], the effect of liquid resistivity [31] and fluid flow 

inside the droplet [25]. In addition, the roughness of the surface may affect the 

instability of the triple line [24] and contact angle hysteresis [32]. The effect of 

surface roughness on contact angle has been considered by Wenzel and Cassie-Baxter 

equations [33-36]. The conditions [37], uncertainties [38-39] and the use of correct 

form of these equations have been discussed in detail in reference [40]. 

Figure 1 shows schematically the force balance at the triple line of a sessile 
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droplet. The balance of liquid-gas and solid surface tensions forces typically defines 

the contact angle when gravity and surface roughness does not play a critical role.   

 

  
 
Figure 1. Schematic of effective forces at the triple line due to the liquid-gas and solid 

surface tensions.  

When gravity becomes important [41], it favors the spreading of liquids on solid 

substrates and the reduction of contact angle. Practically, the droplet contact angle 

was observed decrease with increasing volume [42-43]. 

Suspended nanoparticles in the liquid host were observed to change the effective 

liquid-gas [44] and solid surface tensions [45] as well as the sessile droplet contact 

angle [46]. Similar results were observed in bubble growth experiments inside gold, 

silver and alumina nanofluids [41, 47-52]. The distribution of nanoparticles at the 

triple region is believed to play a major role in these experiments. Nanofluids have 

been found to have a different spreading and thinning (layering) behavior in the triple 

region compared to the pure liquids. The number of layers of nanoparticles 

(thickness) decreases in a stepwise pattern towards the triple line edge. The 

distribution of nanoparticles depends on the characteristics of nanoparticles, 

nanoparticle concentration, nanoparticle charge, solid-liquid-gas materials and film 

depth at the triple region [53-54]. It has been shown theoretically that particles can 

spread the triple line to a distance 20-50 times of the particle diameter through a 

structural disjoining pressure by self-ordering of particles in a confined wedge. 

However, the structural disjoining force only becomes significant at relatively high 

particle concentrations, i.e. over 20 vol. % [55]. 

Given the effects of nanoparticles on wetting and the strong interdependence 

between electrowetting and triple line phenomena, it is expected that nanoparticles 

play a major role in electrowetting. Most electrowetting experiments with nanofluids 

performed so far have focused on the contact angle [25, 20-21] of bismuth telluride 
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and silver nanofluids [20]. Major questions remain of what components of surface 

tension contribute to the contact angle changes. While typically it was assumed that 

the effective liquid-solid surface tension is responsible for the contact angle changes 

in electrowetting [19], this paper demonstrates strong effects of the applied voltage on 

the effective liquid-gas surface tension in water with and without suspended gold 

nanoparticles of 5-90nm diameters. This finding shines new light on the 

understanding of electrowetting experiments.   

2. Experimental data 

Figure 2 shows a schematic of the experimental setup. A Si (100) substrate was 

coated with 100 nm of Si3N4 and 1.2 mµ  hydrophobic layer of AF Teflon solution (1% 

solute solution from Dupont). The mean roughness of the substrate was measured to 

be 0.51 nm, using tapping mode atomic force microscopy (AFM) [20]. The pure water 

and gold nanofluid droplets were injected on top of the coated substrate slowly and 

then a DC voltage was applied and gradually increased.  

 
Figure 2. Schematic of experimental setup.  

Gold nanoparticles of 5 nm, 30nm, 50 nm, 70 nm and 90 nm diameter were 

dispersed in DI water. The nanoparticles were functionalized by the manufacturer 

with a proprietary carboxylic acid and the solution could contain less than 0.1% of 

residual hydroxides. The concentration for all the gold nanofluids tested was 

44 mlg /µ .   

A Nikon D100 camera equipped with a 7× optical zoom lens was employed to 

capture side-view high resolution images of the droplets during the electrical 

actuation. The pictures were captured a few seconds after applying the DC voltage to 
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ensure the steady state contact angle was reached. The droplet shape was captured 

during an applied voltage between 0-30 volts. 

3 Prediction of the droplet shape 

The Young-Laplace equation has been employed to predict the droplet shape both 

with [45-46] and without [42, 56] the presence of suspended nanoparticles. The 

Young-Laplace equation for droplets is, 

r
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Rds
d
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θρρ
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θ sin)(2
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−−+=                                      (1)  

The details of derivation of the Young-Laplace equation for droplets can be seen 

in references [46-47]. The Young-Laplace equation has been also applied successfully 

to predict bubble shapes [50-52]. In the case of nanofluids, the liquid-gas surface 

tension, lgσ in Eq. 1 was replaced by the effective liquid-gas surface tension of 

nanofluids, nlgσ . To obtain the droplet shape, the Young-Laplace equation was solved 

with the following system of ordinary differential equations for axisymmetric 

interfaces. 

θcos=
ds
dr                                                          (2) 

θsin=
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This system of ordinary differential equations avoids the singularity problem at 

the bubble apex, since, 

os Rr
1sin

0
=

=

θ                                                       (5) 

where oR  is radius of curvature at apex. 

The Young-Laplace equation can be applied to predict the droplet shape while the 

solid surface is smooth and homogenous. The Young-Laplace equation was also used 

to calculate the liquid-gas surface tension of nanofluids, knowing maximum radius of 

droplet, mr , height of lateral apex, mδ , and using the boundary conditions 

0)0()0()0()0( ==== Vzr θ                                           (6) 

The system of ordinary differential equations (1-4) was solved to obtain the 

axisymmetric droplet shape, using radius of triple line, droplet height and boundary 
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conditions (6). A similar method has been employed to calculate the liquid-gas 

surface tension in reference [44] and droplet shapes in references [42, 46, 56]. The 

Young-Laplace equation has been also employed in the presence of an electric field 

[57]. 

 
Figure 3. Schematic of a droplet shape. 

4. Results and discussion 

The characteristics of droplet shape such as radius of triple line, dr , droplet height 

δ , and the  location of lateral apex, ),( mm zr (seen in Figure 3) were measured, using 

captured images of droplets for the entire voltage range. Knowing characteristics of 

the droplet, the system of ordinary differential equations (1-4) was solved to predict 

the droplet shape and extract the effective liquid-gas surface tension as a function of 

voltage. Figure 4 shows good agreement between experimental droplet shapes and the 

predictions of droplet shapes, after solving the system of ordinary differential 

equations (1-4).  

Figures 5 and 6 present the measured dependence of the effective liquid-gas 

surface tensions of water and gold nanofluids with applied voltage. Similarly, Fig. 7 

depicts the variation of the effective liquid-gas surface tension of gold nanofluids with 

nanoparticle size. The experimental uncertainty for the fitted surface tension was 

estimated to be less than 6.5%.  Under an applied electric field, the effective liquid-

gas surface tension of water was found to decrease with voltage with a variation of as 

much as 83% over the entire range. The surface tension measured at 0 volts is within 

0.1% of the reference value. The largest change in the effective surface tension occurs 

between 0 and 10V after which the changes are more gradual. The reduction of liquid-

gas surface energy might be attributed to the presence of repulsion forces between 

counter-ions that start to accumulate near liquid-gas interface adjacent to the top 
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electrode as soon as a voltage is applied. The higher applied voltage, the higher is the 

charge density at the liquid-gas interface and therefore the larger the decrease in 

surface energy. The change in surface charge density seems to occur more strongly 

for the first voltage increment. Similar to the result presented here the effective liquid-

gas surface tension of pure water was observed to decrease in electric fields due to 

excess electric charges [58]. The electric field has been also predicted to change the 

molecular O-H bound lengths and the angle of H-O-H bound [59], however the 

applied fields were much larger than in our experiments.  
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Figure 4. Comparison of experimental data with prediction of droplet shape using the 

fitted values of the effective surface tension and when voltage is zero and 30 volts, 

respectively. The size of nanoparticles is 90 nm.   

Figure 6 shows the effects of the size of nanoparticles and voltage on the effective 

liquid-gas surface tension of gold nanofluids. At a given voltage, the effective liquid-

gas surface tension of gold nanofluids initially decreased as the size of gold 

nanoparticles increased from 5 nm to 50 nm. Then for 70nm and 90nm particle, the 

effective liquid-gas surface tension started increasing too. Effective surface tension 

changes are as much as 93% induced by voltage at a given particle size and 80% 

induced by particle size at a given voltage 

There are multiple avenues to affect the surface energy in complex liquids such as 

the gold nanofluids tested in this work. These changes may be connected to the 

presence and interactions between nanoparticles distributed on the droplet surface, in 

addition to ionic charges and perhaps residual surfactants from the host liquid that 
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distribute at the liquid-gas interface. The organization of nanoparticles on the liquid-

gas interface depends on the equilibrium between repulsive and attractive forces 

among nanoparticles, as well as forces driving the diffusion of nanoparticles near the 

interface. The electrostatic forces serve as repulsive forces and Van der Waals forces 

may serve as attractive forces. Nanoparticle agglomeration and assembly near liquid-

gas interfaces, was proposed to be responsible for the observed changes in the 

effective liquid-gas surface tension of nanofluids under no electric field [44]. It is 

possible that the assembly of nanoparticles may change under an applied electric field 

giving rise to the experimentally observed trends. For all nanofluids the liquid-gas 

surface tension decreased with the applied voltage, which is similar to the trend 

observed for water, including the sharpest decrease at the first voltage increment and 

is perhaps mainly due to the distribution of the ionic charges intrinsic to the host 

solution, although redistribution of nanoparticles on the surface with voltage could be 

an alternative explanation. The nanoparticle redistribution effect could be also 

superposed onto a surface ionic charge distribution effect. It is observed that at zero 

voltage the effective gas-liquid surface tension of all nanofluids was higher than water 

and decreased monotonically as the particle size increased (see Figure 7). These 

results could indicate the presence of nanoparticles at the liquid-gas interface. At 

locations where nanoparticles are breaking through the interface, the gas-liquid 

contribution to surface energy is replaced by solid-gas contributions from 

nanoparticles. For wetting cases, the typical values of gas-solid surface tensions [41-

42, 45-46] are larger than the gas-water surface tensions, potentially explaining the 

observed increase in the effective surface tension with addition of gold nanoparticles. 

As soon as the first voltage increment was applied, the trend of nanoparticle size vs. 

effective surface tension was broken by the 70 nm and 90 nm nanoparticles. The 90 

nm gold nanofluid experienced a much less decrease in surface tension compared to 

the rest of the nanofluids as shown in Figure 6. This trend is perhaps explained by the 

effect of the applied voltage on the distribution of nanoparticles at the gas-liquid 

interface as well as the surface energy. Different size nanoparticles are likely to 

organize differently and perhaps the larger size nanoparticles are somewhat less 

susceptible to large changes under electrostatic interactions than their smaller 

counterparts. While the discussion above provides several possible mechanisms to 

explain the observed experimental trends, more studies, including nanoparticle 

distribution under electric field are required to understand the surface tension 
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dependence with electric field in nanofluids. 
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Figure 5. Variation of the effective liquid-gas surface tension with applied voltage for 

water.  
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Figure 6. Variation of the effective liquid-gas surface tension with applied voltage and 

size of the gold nanoparticles.   
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Figure 7. Variation of the effective liquid-gas surface tension with size of gold 

nanoparticles at zero voltage.     

5. Conclusions  

Water and gold nanofluids were employed to study the effects of applied voltage 

and the size of gold nanoparticles on the effective liquid-gas surface tension during 

electrowetting on dielectric experiments. The Young-Laplace equation was able to 

successfully predict the droplet shape and was used to extract the effective liquid-gas 

surface tension in the range of 0-30 V. The effective liquid-gas surface tension of 

water and gold nanofluid was found to decrease with the applied voltage. For a given 

voltage, the effective liquid-gas surface tension of gold nanofluids decreased as size 

of nanoparticles increased from 5 nm to 50 nm and it started increasing, as size of 

nanoparticles increased further (from 50 nm to 90 nm). At zero voltage, the effective 

surface tension of all gold nanofluids decreased monotonically as the particle size 

increased. 

Nomenclature 

d  Dielectric thickness ][m  

g  Acceleration of gravity ]/[ 2sm  

oR  Radius of curvature at origin ][m  

dr  Radius of contact line of droplet ][m  
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V  Volume of droplet ][ 3m  

v  Voltage ][v  

Greek Symbols 

δ  Droplet hight ][m  

ε  Dielectric constant  

oθ  Equlibruim contact angle  

lρ  Liquid density ]/[ 3mkg  

sgσ  Solid-gas surface tension ]/[ mN  

slσ  Solid-liquidsurface tension ]/[ mN  

lgσ  Gas-liquid surface tension ]/[ mN  
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