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Abstract

Characterizing the subsurface is important for many hydrogeologic projects such

as site remediation and groundwater resource exploration. Methods based on

the analysis of conventional pumping tests have the notable disadvantage that

at a certain distance, the signal is small relative to the noise due to the effects of

recharge, pumping in neighboring wells, change in the level or adjacent streams,

and other common disturbances. This work focuses on oscillatory pumping

tests in which fluid is extracted for half a period, then reinjected. We discuss

a major advantage of oscillatory pumping tests: small amplitude signals can

be recovered from noisy data measured at observation wells and quantify the

uncertainties in the estimates. We demonstrate results from a joint inversion of

storativity and transmissivity. We conclude with an analysis of the duration of

the initial transient, providing lower bounds on the length of elapsed time until

the effects of the transient can be neglected.

Keywords: oscillatory pumping tests, data processing

1. Introduction1

Subsurface imaging, or determining important hydraulic parameters such2

as spatially-distributed hydraulic conductivities (K) and specific storage (Ss),3
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remains an important challenge in hydrology. Various pressure-based methods,4

i.e., methods that use changes in head or flow rate as the primary source of5

measurements, have been used to obtain an image of the 3-D heterogeneity of6

the flow parameters. Examples of such methods include partially penetrating7

slug tests (e.g Bouwer and Rice (1976); Butler (1998); Cardiff et al. (2011);8

Zlotnik and McGuire (1998)), direct push methods (e.g Dietrich and Leven9

(2009); Butler et al. (2002)) and borehole flow meters (e.g. Hess (1986); Paillet10

(1998)).11

Hydraulic tomography (Hao et al., 2007; Illman et al., 2009; Yeh and Liu,12

2000) is an imaging method that uses data from aquifer tests in which the pres-13

sure is changed at several distinct locations and the measurements of pressure14

responses at many locations in the aquifer are recorded. Inversion of the result-15

ing data set provides an estimate of 3-D spatially heterogeneous flow parameters16

(Gottlieb and Dietrich, 1995). One example of such a method is transient hy-17

draulic tomography (Zhu and Yeh, 2005; Cardiff et al., 2012; Berg and Illman,18

2011; Xiang et al., 2009). A more comprehensive review of publications on re-19

search related to hydraulic tomography is offered by Cardiff and Barrash (2011).20

A difficulty associated with traditional pumping and slug tests and also hy-21

draulic tomography based on these tests is that the signal weakens with distance22

and, after a certain point becomes submerged in the ambient noise. The hy-23

draulic head is sensitive to external changes, such as changes in the level of24

rivers adjacent to the field area, pumping or irrigation in close proximity to25

the observation well, tidal effects, barometric pressure, changes in overburden,26

etc. Noise from these sources may affect results in a variety of ways (Spane and27

Mackley, 2011). A disadvantage of hydraulic tomography using constant-rate28

pumping tests is that the signal associated with hydraulic tomography may not29

be easily distinguishable from these noises and trends.30

Oscillatory hydraulic tomography is a subsurface imaging method that em-31

ploys a tomographic analysis of oscillatory signals. In oscillatory signal tests,32

a periodic pressure signal can be imposed at one or more stimulation points,33

and the transmitted effects of this signal are recorded at monitoring wells. The34
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idea of harmonic testing was first proposed in the petroleum literature by Kuo35

(1972) as an extension to pulse testing (Johnson et al., 1966; McKinley et al.,36

1968). More recent publications on reservoir characterization using harmonic37

tests include Fokker et al. (2012); Fokker and Verga (2011); Ahn and Horne38

(2011). Oscillatory aquifer tests have similarly been used to estimate aquifer39

hydraulic parameters (Engard et al., 2005; Wachter et al., 2008; Becker and40

Guiltinan, 2010).41

Oscillatory pumping tests have several advantages over traditional pumping42

tests including (1) a reduction in the cost of disposing of contaminated water43

because there is no net extraction or injection into the aquifer, (2) a reduced44

computational cost through use of a steady-periodic model and (3) an ability to45

distinguish the signal from the background noise. Disadvantages of oscillatory46

pumping tests may include (1) the need for potentially different field equip-47

ment to generate a periodic stimulation and (2) the amplitude of signals at the48

observation locations may be much smaller than those of signals generated by49

constant-rate pumping.50

As a modification to oscillatory pumping test analysis, multi-frequency oscil-51

latory hydraulic imaging was proposed by Cardiff et al. (2013) in which multiple52

signals of different frequencies are used as a stimulation to obtain information53

on the aquifer heterogeneity. The authors use a “steady-periodic” model for-54

mulation to analyse the head responses to the stimulation, which allows for55

a reduced computational cost in numerically solving the fully-transient model.56

This formulation assumes that the signal has reached a steady periodic state57

and assumes that the initial transient effects are negligible. An analysis of when58

this assumption can accurately be made is an important question that, to the59

best of our knowledge, has not yet been addressed. Black and Kipp Jr (1981)60

first introduced an analytic solution for the steady-periodic response of the sig-61

nal to a line-source oscillatory stimulation for a homogeneous isotropic aquifer62

that is effectively laterally unbounded. This approach provided an estimate of63

the hydraulic diffusivity using the ratio of the amplitude or phase shift from64

two observations wells. Rasmussen et al. (2003) derived the leaky and partially65
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penetrating analytic solution for transmissivity and storativity in a confined66

aquifer. They also provide expressions for the transient solution that decays67

with time.68

We use the analytic expressions to show that the duration of the initial tran-69

sient (i.e. number of periods required for the signal to achieve a steady-periodic70

response) is a function of a non-dimensional quantity. The non-dimensional71

expression depends on the following physical parameters: the frequency of os-72

cillations, the radial distance from the source, and the hydraulic diffusivity. We73

extend the analysis to more general heterogeneous aquifers and derive bounds74

for the time required for the signal to reach a steady-periodic response.75

The existence of signal processing routines for signal extraction and denoising76

for oscillatory signals was briefly discussed in Cardiff et al. (2013). To denoise an77

oscillatory signal, methods such as the discrete Fourier transform (Renner and78

Messar, 2006; Hollaender et al., 2002) and ordinary least squares (Rasmussen79

et al., 2003; Toll and Rasmussen, 2007) are commonly and successfully used. We80

assume the frequency of oscillations is known and demonstrate the effectiveness81

of ordinary least squares in recovering the signal in the presence of common82

sources of noise. We quantify the uncertainties in the estimates and show that83

the errors in estimating the components (phase and amplitude) of a signal decay84

with time. Using regression for denoising and using the results of the covariance85

of the estimator, we present a joint inversion of storativity and transmissivity86

of a synthetic 2-D example.87

The paper is organized as follows. In section 2 we review the governing88

equations. In section 3, we discuss denoising the signal under various types of89

noise, which is followed by a joint inversion of storativity and transmissivity90

in section 4. In section 5, we analyze the behavior of the initial transient and91

follow with concluding remarks in section 6.92
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2. Governing Equations93

In this section, we review the governing equations. This closely follows the94

notation and presentation of Cardiff et al. (2013). Groundwater flow through95

a 2-D depth-averaged confined aquifer with horizontal confining layers for a96

domain Ω and boundary ∂Ω is described by the following equations,97

S(x)
∂h(x, t)

∂t
−∇ · (T (x)∇h(x, t)) = q(x, t), x ∈ Ω (1)98

h(x, t) = 0, x ∈ ∂ΩD (2)99

∇h(x, t) · n = 0, x ∈ ∂ΩN (3)100

where n is the normal vector, x ∈ R2 (L) denotes the position vector, h (L) rep-101

resents the hydraulic head, S(x) (-) represents the storativity and T (x) (L2/T)102

represents the transmissivity. ΩD and ΩN refer to Dirichlet (constant head) and103

Neumann boundary conditions (constant flux) respectively.104

Using Euler’s formula, we represent the oscillator as an exponential function.105

For the the case of one source at position xs oscillating at a fixed frequency ω106

(radians/T), q(x, t) is given by107

q(x, t) = Q0δ(x− xs)eiωt (4)108

Because the solution is linear in time, the signal (after some initial time has109

elapsed) achieves a steady-periodic response and can be represented as,110

h(x, t) = Φ(x)eiωt (5)111

where Φ(x), known as the phasor, carries information about the amplitude and112

phase of the signal. Plugging these definitions into (1) results in the more113

computationally efficient form,114

iωS(x)Φ(x)−∇ · (T (x)∇Φ(x)) = Q0δ(x− xs), x ∈ Ω (6)115

Φ(x) = 0, x ∈ ∂ΩD (7)116

∇Φ(x) · n = 0, x ∈ ∂ΩN (8)117
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The hydraulic head is given by (5) once Φ is known. Note that the steady-118

periodic formulation, i.e. equations (6)-(8), only holds if we are able to neglect119

the initial transient.120

3. Signal Denoising121

In this section, we will assume that the effects of the transient can be ne-122

glected and that the solution to the groundwater equations is a sinusoid of123

known frequency. Even though the solution is a sinusoid of known frequency,124

in practice, the measurement signals are corrupted by noise. In this section, we125

address how to recover the signal from a set of noisy measurements. We demon-126

strate the effectiveness of linear regression on four common types of noise: white127

noise, white noise with a jump in the signal, white noise with a linear drift and128

correlated noise, and quantify the errors in the estimates. This analysis hinges129

on the fact that the frequency is known however if the frequency is unknown, one130

can extract the frequency of the sinusoid by using the discrete Fourier transform131

and then proceed with this analysis.132

Consider the measurement time series at a given point,133

Φ(x̄, ti) = β1 cos(ωti) + β2 sin(ωti) + ε(ti) (9)134

where ε(ti) is the residual or error term. We assume ε has zero mean. If ε135

has known mean µ, it can be detrended by subtracting it from (9). If µ is not136

known, it will be shown that the following analysis holds true provided the time137

between measurements is small enough. Rewrite Φ as138

Φ = Xβ + ε, X =




cos(ωt1) sin(ωt1)

cos(ωt2) sin(ωt2)
...

...

cos(ωtm) sin(ωtm)




, β =


 β1

β2


 (10)139

Note that if the signal was not perfectly a single sinusoid but instead a sum140

of several sinusoids oscillating at distinct frequencies then the columns of X141

would be extended to incorporate the additional frequencies. For this analysis142
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however we limit ourselves to the case of a single sinusoid. The solution to the143

least-squares problem for β̂ = [β̂1, β̂2]T is given by144

β̂ =
(
XT X

)−1
XT Φ (11)145

Estimating for β1 and β2 is equivalent to regressing on the phase and amplitude146

of the signal however it circumvents the problem of non-uniqueness of the phase.147

The covariance of the estimates is given by148

Cov(β̂) = (XT X)−1XT E[εεT ]X(XT X)−1 (12)149

whe E[ ] denotes the expected value. Expression (12) depends on the covariance150

matrix of ε, and can be simplified under certain assumptions of the noise.151

For our numerical results, all of our examples are synthetic and we consider152

the signal153

Φ(x, t) = 0.02 cos(ωt) + 0.05 sin(ωt) (m) (13)154

with ω = 2π/40 (1/s). Assume the data is being collected for a total of 30155

periods (i.e. 20 minutes) at sampling intervals of 0.1 seconds. We present156

results for four distinct types of noise.157

1. First we consider the case of white noise (figure 1). Suppose εi ∼ N (0, σ2).158

Then, E[εεT ] = σ2I and expression (12) simplifies to,159

Cov(β̂) = σ2(XT X)−1 (14)160

= σ2




∑m
i=1 cos2(ωti)

∑m
i=1 cos(ωti) sin(ωti)

∑m
i=1 sin(ωti) cos(ωti)

∑m
i=1 sin2(ωti)



−1

(15)

161

162

Each of the sums in (15) can be viewed as a product of 1/∆t and the left163

Riemann sum of their respective functions. If the interval of time between164

measurements ∆t is small and the total sampling time, Ts, is a multiple165

of the period of the signal,166

Cov(β̂) ≈ 2σ2 ∆t

Ts


 1 0

0 1


 (16)167
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The covariance decreases with an increase in Ts/∆t, the number of data168

measurements. The result (16) indicates that there is no posterior covari-169

ance between the two estimates, i.e the errors in estimating β1 and β2 are170

uncorrelated. We can thus write the error in the estimates as,171

|β̂ − β| ≈ 2∆t

Ts




∑
εi cos(ωti)

∑
εi sin(ωti)


 (17)172

In the case where ε has a nonzero mean µ, the estimates will not be affected173

provided the data is being collected for a multiple of the period. This is174

because the solution is given by,175

β̂ =
(
XT X

)−1
XT (Φ− µ) (18)176

and if the data is being collected for a multiple of the period, XT µ = 0.177

2. Consider the case where in addition to white noise, there is an abrupt shift178

in the hydraulic head at some time in the time series. If the shift occurs179

for exactly a multiple of the period (figure 2), it will not affect the least180

squares estimates because of its orthogonality with XT . The worst case181

would be when it happens for an additional half period (figure 3). While182

the error due to the non-orthogonal components will remain present, the183

overall error can be reduced by taking a longer measurement collecting184

interval.185

3. Consider the case where there is a linear drift in addition to white noise186

such that the measured signal is187

Φ(x, t) = 0.02 cos(ωt) + 0.05 sin(ωt) + ε (m) (19)188

where εi = αti + ni , ni ∼ N (0, σ2) and α (m/s) is the drift coefficient.189

We consider two cases: (1) where the presence of the drift is unknown and190

too small to be visible in the raw data, and (2) when the presence of a191

linear drift is known or visible. In the former case (see figure 4) and by192

keeping the same regressors, the errors in the estimate of β are given by,193

β̂ − β = (XT X)−1XT (αt + ε) (20)194
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If the sampling time ∆t is small enough and that data is being collected195

for a multiple of the period, then196

∣∣∣β̂ − β
∣∣∣ ≈

∣∣∣∣∣∣
2α

ω


 0

1


 +

2∆t

Ts
XT n

∣∣∣∣∣∣
(21)197

Note that the second term is precisely the error that results from having198

pure white noise. The additional errors incurred by the presence of a linear199

drift do not affect the estimates β̂1. The estimates for β̂2 depend on both200

α and ω and do not decrease with the sampling time, however, if there201

is a constant linear drift present, a longer sampling time will increase the202

likelihood of the detection of the drift by looking at the measured signal.203

If the presence of the drift is known or can be detected by looking at204

the measured signal, the regressors can be modified and the estimates205

improved.206

Φ = Xβ + n, X =




cos(ωt1) sin(ωt1) t1

cos(ωt2) sin(ωt2) t2
...

...
...

cos(ωtm) sin(ωtm) tm




, β =




β1

β2

α




(22)207

By regressing for the drift coefficient, this allows for more accurate results208

(see figure 5). In particular, the error of using the new regressors results209

in an error,210

|β̂ − β| ≈ 2∆t

Ts




1 0 0

0 1 + 12
−12+2T 2

s ω2
6ω

−12+T 2
s ω2

0 6ω
−12+T 2

s ω2
3ω2

−12+2T 2
s ω2







∑
ni cos(ωti)

∑
ni sin(ωti)
∑

niti




(23)211

Note that the additional errors incurred by assuming drift behave as212

∆t/T 2
s and thus their effects are negligible if the sampling time is long213

enough.214

4. Consider the presence of a stationary AR(1), or first-order autoregressive,215

noise (figure 6). Such a process has the property that the output depends216

9
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on the value at the previous time. It can be written as217

Φ(x̄, ti) = β1 cos(ωti) + β2 sin(ωti) + εi (24)218

where εi = cεi−1 + ni and ni ∼ N (0, σ2), |c| < 1.219

In all four of the cases discussed, we have shown that using linear regression220

allows us to recover the signal from a set of noisy measurements.221

4. Inversion by Geostatistical Approach222

4.1. Geostatistical Approach223

The next section will briefly describe the geostatistical method for inversion224

and demonstrate examples from synthetic cases of single frequency oscillatory225

hydraulic imaging, with the signal denoising done by least squares as described226

in the previous section. The geostatistical method for inversion is one of the227

prevalent methods to solve stochastic inverse problems (Kitanidis, 1995, 2010,228

2007). We closely follow the algorithm discussed in (Li et al., 2005) for joint229

inversion. The idea of the geostatistical method for inversion is to represent the230

unknown field as the sum of a deterministic term and a stochastic term that231

models small-scale variability. Inference of the parameters is made through the232

posterior probability distribution function by using information from the prior233

combined with the likelihood of the measurements. The measurement equation234

can be written as,235

y = h(s) + v, v ∼ N (0, R) (25)236

where y represents the noisy measurements and v is a random vector corre-237

sponding to observation error with mean zero and covariance matrix R. Let238

s = [sT
k , sT

s ]T be the function to be estimated where sk and ss correspond to239

the log transmissivity and log storativity fields respectively.240

sk ∼ N (Xkβk, Qk), ss ∼ N (Xsβs, Qs) (26)241

where, Xk and Xs are matrices of known base functions and βs and βk are242

a set of drift coefficients to be determined. The log-transformation was used243

10
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to ensure that the forward problem is well-posed since the fields need to be244

positive. Denote the full quantities,245

X =


 Xk 0

0 Xs


 , β =


 βk

βs


 , Q =


 Qk 0

0 Qs


 (27)246

The expression for Q requires the assumption that log transmissivity and247

log storativity are uncorrelated. More detail on how to choose the modeling248

parameters Q and X can be found in Kitanidis (1995). To choose R, we use the249

covariance of the least-squares estimates as a lower bound. Following the geo-250

statistical method for quasi-linear inversion, we compute ŝ and β̂ corresponding251

to the maximum-a-posteriori probability. To solve the optimization problem,252

the Gauss-Newton algorithm is used. Starting with an initial estimate for the253

field s0, the procedure is described in algorithm 1.254

Algorithm 1 Quasi-linear Geostatistical Approach
1: Compute the Ny ×Ns Jacobian J as,

Ji =
∂h

∂s

∣∣∣∣
s=si

(28)

2: Solve the system of equations,


 JiQJT

i + R JiX

(JiX)T 0





 ξi+1

βi+1


 =


 y − h(si) + Jisi

0


 (29)

3: Update si+1 by,

si+1 = Xβi+1 + QJT
i ξi+1 (30)

4: Add a line search if necessary. Repeat steps 1−3 until the desired tolerance

has been reached.

To construct the Jacobian, since the number of unknown parameters is gen-255

erally larger than the number of measurements, the adjoint state method is used256

where by each row of the Jacobian is calculated by one adjoint ‘run’. For a de-257

tailed derivation of the adjoint equations for oscillatory pumping tests refer to258

Cardiff et al. (2013). Note that if either log transmissivity or log storativity is259
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known, it is treated as a normal random variable with known mean Xβ and zero260

covariance and algorithm 1 remains unchanged. More details of the inversion261

can be found in Cardiff et al. (2013); Saibaba et al. (in press).262

4.2. Numerical Results263

Using the geostatistical method as discussed, we present inversion results for264

a synthetic example. Assuming a 2-D isotropic depth-averaged confined aquifer265

and given a set of discrete measurements of the hydraulic head our objective is266

to determine the random log conductivity field. We use FEniCS to discretize the267

governing equations using standard linear finite elements (Logg et al., 2012a,b;268

Logg and Wells, 2010) and use the Python interface. The modeling parameters269

are chosen to be R = σ̃2I, Xs = Xk = [1, ..., 1]T . We choose the covariance270

matrices Qk and Qs to have entries Qk(i, j) = Qs(i, j) = κ(xi, yj) corresponding271

to the exponential kernel,272

κ(x, y) = exp (−‖x− y‖2/(L/5)) (31)273

such that the correlation length is L/5 = 20 [m]. where L is the length of274

the domain. (To reduce the computational and memory cost associated with275

forming these large covariance matrices, they are not formed explicitly and the276

fast Fourier transform (FFT) is used to accelerate the matrix-vector products.)277

The measurements were synthetically generated by adding noise ν ∼ N (0, σ2),278

σ = 0.01 (m). The choice of σ̃ in the modeling parameter R was chosen based off279

of the covariance of the least squares estimator. The pumping volume was 1.4280

(L/half cycle) and the pumping frequency was chosen to be ω = 2π/60 (1/s).281

The pumping source is located at the center of the aquifer. We assume the282

signal has reached steady-periodic state and that data has been collected every283

0.1 seconds for half an hour. The configuration for data aquisition is shown in284

figure 7, with the source in the center surrounded by 16 measurement locations.285

The system is discretized with 10201 points corresponding to a physical system286

of 100m x 100m with the area of interest being the 20m x 20m area centered at287

the origin. The boundary conditions are assumed to be Dirichlet and their effects288

12

kimberlyholling
Text Box
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Hydrology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Hydrology, (2014)] DOI: 10.1016/j.jhydrol.2014.01.007



  

Definition Parameters Values

Aquifer length (m) L 100

Mean storativity (-) log10 S −4

Variance of storativity (first example) σ2(log10 S) 0

Variance of storativity (second example) σ2(log10 S) 0.11

Mean transmissivity (m2/s) µ(log10 T ) −5

Variance of transmissivity σ2(log10 T ) 0.12

Frequency (1/s) ω 2π
60

Pumping volume (L/ half cycle) Q 1.4

Table 1: Parameters Chosen For Test Problem

minimized by choosing the boundaries at a far enough distance from the source.289

At each measurement location we denoise the signal to get the two components290

of β̂ which are then recorded. These components effectively correspond to the291

sine and cosine components of the signal and are both used in the inversion. The292

results are presented for known constant storativity (S = 10−5[−]) (figure 8)293

and for the joint inversion case where both storativity and transmissivity are not294

known (figures 9 and 10). All true fields were considered to be Gaussian random295

fields generated using an exponential covariance kernel κ(x,y) = exp(−‖x −296

y‖2/(L/5)) using the algorithm described in Dietrich and Newsam (1993). The297

parameters used in the generation of the numerical example are summarized in298

Table 1.299

5. Analysis of the initial transient300

5.1. Homogeneous Aquifers301

We have so far considered the groundwater equations after the effects of the302

initial transient have subsided and can be neglected. In this section, we analyze303

the duration of this initial transient. Under the assumption of a homogeneous304

isotropic confined aquifer where the lateral extent of the aquifer is “infinite”305

compared to the measurement locations, the problem simplifies to the case of306
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a penetrating line source of periodic flow for which the transient solution is307

known. An analytic solution to the steady periodic solution to this problem was308

introduced in (Black and Kipp Jr, 1981). A similar set of analytic solutions,309

including an expression for the initial transient, was derived in (Rasmussen310

et al., 2003) is311

h(r, t) =
Q0e

iωt

2πT

(
K0

(
r

√
iω

D

)
−

∫ ∞

0

λJ0(rλ)
iω
D + λ2

e−(iω+Dλ2)tdλ

)
(32)312

where r (L) is the radial distance from the pumping source, D = T/S (L2/T) is313

the diffusivity and J0 and K0 are the zeroth-order modified Bessel functions of314

the first and second kind respectively. The first term corresponds to the steady315

periodic solution and the second term corresponds to the initial transient that316

decays with time. Equation (32) indicates that the duration of the transient317

depends on the parameters ω, D and r. Denote T5% and NP5% as the length of318

time and the number of periods respectively that is required for the magnitude319

of the transient solution to fall within 5% of the amplitude of the corresponding320

steady state solution. (The subscripts 1% and 10% correspond accordingly to321

the 1% and 10% marks - see figure 11).322

To simulate realistic field conditions, we use an oscillating pumping stimu-323

lation that contains a period of “ramp-up”.324

q(x, t) = Q0 cos(ωt)
(
1− exp(−(t/T )2)

)
δ(x− xs) (33)325

where T , the time scale parameter is chosen to be the period of the oscillations.326

We use the adaptive Gauss-Konrad quadrature to numerically integrate the327

solution for a source term of the form (33) (Shampine, 2008). The duration of328

the initial transient increases as r and ω increase and decreases as D increases329

(figure 7 - top, middle). A natural non-dimensional scaling that combines the330

parameters of interest is331

γ =
ω

D
r2 (34)332

The hypothesis that NP5% admits a scaling of this form is tested and we observe333

that the data collapses into a single curve (figure 7 - bottom). In other words, the334
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number of periods is a self-similar solution with γ being the similarity variable.335

Figure 7 shows the behaviour of the initial transient for a specific range of γ and336

this range was chosen to be representative of the range of “measurable” signals,337

as demonstrated by figure 13 but it is not exhaustive. If the estimates of the338

aquifer parameters (storativity and transmissivity) are available, the curve in339

figure 7 provides a lower bound on the time needed to wait, depending on the340

desired error tolerance. If the values of interest do not fall within this range,341

these curves can be generated again as necessary.342

5.2. Heterogeneous Aquifers343

Aquifers are, in general, not homogeneous and an analytic solution of the344

form (32) is not available. One approach is to use the analysis described for345

homoegeneous aquifers using effective parameters for storativity and transmis-346

sivity, if avalaible. Another approach for dealing with heterogeneous aquifers is347

to calculate a bound for which the time falls within some tolerance tol based on348

the eigenvalues of the discretization matrices. This can only be done if estimates349

for the fields are available. We semi-discretize the PDE (1),350

Kh + M
∂h

∂t
= beiωt (35)351

h and b are vectors corresponding to the spatial discretizations of the hydraulic352

head and the source term respectively. The time at which the solution falls353

within a given tolerance tol of the steady periodic solution (see the appendix354

for a derivation) is given by,355

T =
1

λmin
log

(
‖b̃‖2

tol ∗ (
√

λ2
min + ω2)

)
(36)356

where λmin is the minimum eigenvalue of M−1/2KM−1/2 and b̃ = M−1/2b.357

Note that knowledge of λmin requires estimates for the conductivity and stora-358

tivity field to be known apriori. Also note that since this bound holds on the359

entire domain and we are only concerned about the behavior of the signal at360

specific locations, i.e. the measurement locations, it will be a loose upper bound.361

It will be a large overestimate of the time one has to wait, particularly if the362
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domain is much larger than the measurement location area. While the method363

discussed has its limitations, it nonetheless provides a first analysis to estimate364

how long the effects of the initial transient persist.365

6. Conclusions and Discussion366

We have presented approaches to estimate the time needed until the sig-367

nal reaches a steady-periodic response. When the noise level is low, the time368

at which the transient becomes insignificant is clear from the measurements.369

However, if the signal is submerged in the noise, it is difficult to distinguish the370

transient from the steady state. For the homogeneous case, we have shown how371

the number of periods scales with a non-dimensional scalar that depends on dif-372

fusivity, radius from the oscillating source, and frequency of oscillations. This373

analysis will be beneficial for those conducting field experiments as the analysis374

provided offers a lower bound for the duration during which the initial tran-375

sient effects cannot be neglected. For heterogeneous aquifers and if estimates376

of the storativity and transmissivity fields are known, we suggested an alter-377

nate method however both methods discussed have their limitations and this378

question needs to be further investigated. One extension would be to consider379

a reduced order model for the groundwater equations.380

A major benefit in oscillatory pumping tests is the ability to extract the381

signal from a variety of different types of noise, even when the signal is small382

compared to the level of noise provided the duration of the test is long enough.383

While we have focused our analysis on four different types of noise, the sinusoidal384

nature of the signal allows us to extract low magnitude signals from a wider385

variety of disturbances provided the time is long enough. In practice, there386

might be noise that has periodic components, such as daily tidal signals, however387

these can be identified prior to the actual test to ensure that the pumping388

frequency is unique in the sense that interference with such signals is minimized.389

We demonstrated the effectiveness of regression and concluded by presenting390

results for a joint inversion of storativity and transmissivity.391
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While we have only shown results of single frequency signals, multiple fre-392

quency signals can just as easily be denoised and the additional information393

obtained from the additional frequencies improves the resulting image recon-394

struction, as demonstrated by Cardiff et al. (2013). Instead of each test cor-395

responding to a single-frequency oscillatory, pumping at multiple frequencies396

simultaneously would reduce the total time required to conduct a field test.397

This holds exciting prospects for oscillatory hydraulic tomography. In future398

studies, we will investigate which frequency, or range of frequencies, yields the399

best inversion results. There have been recent developments in efficient meth-400

ods of solving the inverse problem using the geostatistical approach for oscilla-401

tory hydraulic imaging based on a Krylov subspace method for shifted systems402

(Saibaba et al., in press).403

Our analysis was limited to the most basic two-parameter model. In many404

cases, a dual porosity model may be more appropriate. Additional questions of405

practical importance that we will investigate in future studies are the effects of406

leakage, boundaries and how the results from oscillatory hydraulic tomography407

compare with those resulting from transient and steady-state hydraulic tomog-408

raphy. It may be that combining these tests would provide more detail than a409

single test alone.410
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Figure 1: Hydraulic head at three periods, in the case of white noise. ε ∼ N (0, σ2) with σ = 1

(cm) (top) and σ = 5 (cm) (bottom). The L2 norm of the relative errors are respectively

0.36% and 1.7%. The root mean square errors in the estimates are respectively 0.01 (cm) and

0.06 (cm). The data is synthetic, with the true signal being that shown in (13).
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Figure 2: Hydraulic head at three periods, in the case of white noise with an abrupt shift of

one period (The jump is exaggerated for illustration purposes). ε ∼ N (0, σ2), σ = 1 (cm)

(top) and σ = 5 (cm) (bottom). The L2 norm of the relative errors are respectively 0.36%

and 1.7%. The root mean square errors in the estimates are respectively 0.01 (cm) and 0.06

(cm). Note these errors are identical to the pure white noise case, because the disturbance

occured for exactly a multiple of the period. The data is synthetic, with the true signal being

that shown in (13).

Appendix A. Derivations535

We derive bounds for which the solution of the groundwater equations is536

effectively steady-periodic. After semi-discretizing the partial differential equa-537

tion (1),538

Kh + M
∂h

∂t
= beiωt (A.1)539

where K and M are the stiffness and mass matrix respectively, and b and h are540

now vectors corresponding to the discretization of the amplitude of the pumping541
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Figure 3: Hydraulic head at three periods, in the case of white noise with an abrupt shift

of half a period (The jump is exaggerated for illustration purposes). ε ∼ N (0, σ2), σ = 1

(cm) (top). The L2 norm of the relative error is 2.8% and the root mean square error of the

estimates is 0.1 (cm). and (bottom) plot of the root mean square error with time. The data

is synthetic, with the true signal being that shown in (13).
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Figure 4: Hydraulic head at the entire sampling duration, in the case of white noise with a

linear drift. n ∼ N (0, σ2) and a linear drift α = 0.005 (cm/s). σ = 5 (cm) (top). The L2

norm of the relative error is 2.9% and the root mean square error of the estimates is 0.1 (cm).

and (bottom) plot of the root mean square error with time. The data is synthetic, with the

true signal being that shown in (13).
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Figure 5: Hydraulic head at the entire sampling duration, in the case of white noise with a

linear drift. n ∼ N (0, σ2) and a linear drift α = 0.01 (cm/s). σ = 5 (cm) (left). The L2 norm

of the relative error is 1.7% and the root mean square error of the estimates is 0.06 (cm). and

(right) plot of the root mean square error with time. The data is synthetic, with the true

signal being that shown in (13).
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Figure 6: Hydraulic head at three periods, in the case of AR(1) noise . AR(1): εi = cεi−1+ni,

where ni ∼ N (0, σ2(1− c2)), σ = 1 (cm), c = 0.8 (top). The L2 norms of the relative error is

1.1% and the root mean square error is 0.04 (cm). and (bottom) plot of the root mean square

error with time for various correlation coefficients. The data is synthetic, with the true signal

being that shown in (13).
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Figure 7: (top) The location of the pumping source and the measurement wells and (middle,

bottom) the synthetic generated signal used for the inverse problem, noisy and denoised, at

two locations.
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Figure 8: The true log transmissivity field (top) and the reconstructed log transmissivity field

(bottom) the relative L2 error within the area of measurements is 0.13 - for the inversion for

transmissivity only. The plots are zoomed in so the area of measurements is more clearly

visible.
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Figure 9: The true log transmissivity field (top) and the reconstructed log transmissivity

field (bottom). The relative L2 error within the area of measurements is 0.18 - for the joint

inversion. The plots are zoomed in so the area of measurements is more clearly visible.
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Figure 10: The true log storativity field (top) and the reconstructed log storativity field

(bottom). The relative L2 error within the area of measurements is 0.59 - for the joint

inversion. The plots are zoomed in so the area of measurements is more clearly visible.
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Figure 11: (top) The transient solution with marked lines denoting the time at which the

magnitude of the transient drops to 1 (black), 5 (blue) and 10 percent of the amplitude of

the signal. (bottom) Comparison of the signal (transient plus steady-state) and steady-state

only. The parameters used in this example are Y = 10−4 (m2/s), S = 10−5 (-) , ω = 2π/40

(1/s) and Q = 1.6 (L/half cycle).
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Figure 12: q = Q0 cos(ωt)(1 − exp(−(t/T )2)), T being the period of oscillations. Behavior

of T5% as (top) diffusivity is fixed - D = 0.1 (m2/s), radius varies and (middle) radius is

fixed r = 20 (m), diffusivity varies. (bottom) loglog plot demonstrating data collapse using

the scaling parameter γ. Note that the blue and black lines correspond to 1 and 5 percent

respectively. The hollow symbols correspond to the case where radius is fixed, i.e. the top

plot, and the shaded symbols to the case where the diffusivity is fixed, i.e the middle plot.

Using the non-dimensional scaling, they collapse onto a single line. The minimum number of

periods we considered was 3 periods. 32
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Figure 13: The attenuation of the signal with γ. h0 = Q
2πT

. Note that at γ ≈ 100, h ≈
Q

2πT
∗ 10−3. With typical values of Q = 0.1 (L/s) and T = 10−4 (m2/s), the signal for

γ = 100 would be h ≈ 2 ∗ 10−4 (m).

source and the hydraulic head respectively. Define M1/2 = UΛ1/2UT where the542

columns of U are the eigenvectors of M . Then by multiplication of (A.1) with543

M−1/2,544

Ah̃(x, t) +
∂h̃(x, t)

∂t
= b̃eiωt (A.2)545

where A = M−1/2KM−1/2 is a symmetric positive definite matrix, h̃ = M1/2h546

and b̃ = M−1/2b. The solution to (A.2) is given by the variation-of-constants547

formula (Hochbruck and Ostermann, 2010).548

h̃(x, t) =
∫ t

0

e−(t−s)Ab̃eiωsds (A.3)549

Assume a diagonalization of A, A = V DV T =
∑n

j=1 λjvjv
T
j , where V is the550

matrix whose columns are the eigenvectors of A, vj , and D is a diagonal matrix551

whose diagonal is comprised of the eigenvalues of A, λj . Evaluating (A.3),552

h̃(x, t) =




n∑

j=1

eiωt − e−λjt

λj + iω
vjv

T
j


 b̃ (A.4)553
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As t →∞, h̃(x, t) reaches a quasi-steady state. Using the property that ‖V ‖2 =554

‖V T ‖2 = 1,555

‖h̃(x, t)−
n∑

j=1

eiωt

λj + iω
vjv

T
j b̃‖2 ≤ e−λmint

√
λ2

min + ω2
‖b̃‖2 (A.5)556

For a given tolerance tol, the time needed to wait until the hydraulic head557

reaches quasi-steady state globally is,558

T =
1

λmin
log

(
‖b̃‖2

tol ∗ (
√

λ2
min + ω2)

)
(A.6)559

560
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1. We analyze the behavior of the transient for homogeneous aquifers and

show it scales with ωr2/D.

2. We derive bounds for the duration of the initial transient for heterogeneous

aquifers.

3. We showcase the denoising properties of linear regression on signals sub-

jected to various types of noise.

4. We perform a joint inversion for storativity and transmissivity on synthetic

data.
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