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Modified Kubelka-Munk equations for localized waves inside a layered medium
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We present a pair of coupled partial differential equations to describe the evolution of the average total
intensity and intensity flux of a wave field inside a randomly layered medium. These equations represent a
modification of the Kubelka-Munk equations, or radiative transfer. Our modification accounts for wave inter-
ference �e.g., localization�, which is neglected in radiative transfer. We numerically solve the modified
Kubelka-Munk equations and compare the results to radiative transfer as well as to simulations of the wave
equation with randomly located thin layers.
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I. INTRODUCTION

The most basic mesoscopic theory that attempts to explain
multiply scattered wave energy is the theory of radiative
transfer �RT�. In a one-dimensional �1D� layered medium,
RT is equivalent to the well-known Kubelka-Munk �KM�
equations �1,2� because the KM equations are in essence a
two-flux theory and in 1D there are only two directions �up
and down�. However, due to the inevitability of wave inter-
ference in 1D �3�, RT is unable to accurately predict all as-
pects of energy transport in randomly layered media. Wave
interference is explicitly ignored in RT �2,4� and leads to the
phenomenon of wave localization, as described by many au-
thors previously �3,5–7�. Wave localization is of primary im-
portance for topics such as the interaction of electrons with
disorder �8� �e.g., the metal-to-insulator transition�, the trans-
mission of light through randomly layered structures �such as
a stack of transparencies �6��, and the late-time behavior of
seismic recordings at volcanoes �9�.

Previous studies have been devoted to understanding RT
in layered media, despite its neglect of wave interference.
Hemmer �10� may have been the first to solve for the Green’s
function of RT in 1D, as pointed out by Paasschens �11�. The
application of 1D RT to vertical seismic profiles has been the
subject of work by Wu �12,13� and Wu and Xie �14�. Sato
and Fehler �15� have discussed 1D RT, and Sato �16� has
derived the solution of the Green’s function of RT in 1D
using the integral form, instead of the differential form used
by Hemmer �10�. Building upon the work of Wu and Xie
�14�, which centered on stationary RT in layered media, the
time-dependent case has been recently considered �17�.
Bakut et al. �18� have generalized the Green’s function of 1D
RT in homogeneous media to a medium composed of piece-
wise homogeneous layers. Though 1D RT has been thor-
oughly understood in the course of these studies, how wave
interference changes the picture—from the point of view of
RT—has so far not been covered. It is the aim of the present

work to properly incorporate wave interference, and hence
the phenomenon of wave localization, within the framework
of RT for the case of layered media.

Wave localization in 1D systems has received consider-
able attention, both theoretically and experimentally. As a
result, several different techniques have been applied.
Among the most widely used is random matrix theory
coupled with Fürstenberg’s theorem �6,19–21�. This ap-
proach deals with the wave field itself for a single realization
of randomness by using “self-averaging” quantities �22�.
Given an ensemble of random realizations, these quantities
converge �closely� to their average in a single realization,
provided the realization includes enough scatterers. In spite
of its ability to model the wave field itself, random matrix
theory is basically a stationary theory and it relies on a lim-
iting procedure, Fürstenberg’s theorem, which takes the limit
as the number of matrix products �i.e., scatterers� becomes
infinite. Furthermore, random matrix theory is primarily lim-
ited to 1D systems. Historically, this fact has led to a discon-
nect in the prevailing theoretical treatment of multiple scat-
tering in 1D �random matrix theory� versus 2D and 3D �RT�.

Significant progress has been made recently toward incor-
porating wave interference into RT �at least within the diffu-
sion approximation� using the self-consistent �SC� theory of
Anderson localization. In fact, a 1D version of the SC theory
has been studied analytically �23�. The SC theory is different
from random matrix theory in that it predicts the late-time
spatial and temporal evolution of the mean wave field inten-
sity �the squared wave field� for an ensemble of random re-
alizations. The crux of the SC theory is that it attempts to
include the effects of wave interference by using a “self-
consistent” expression for the diffusion constant, an idea
originally popularized by Vollhardt and Wolfle �8�.

Here, we include the effects of wave interference by de-
riving the 1D RT equations from a fundamental level, using
a procedure first demonstrated by Goedecke �2�. We find that
once properly modified, the 1D RT equations �also known as
the KM equations �2�� can account for interference effects
such as wave localization. We call these new equations
modified KM equations. Thus, we are able to correctly ac-
count for wave interference within the framework of RT, at
least in 1D. We also show that the predictions of the modi-
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fied KM equations agree with predictions of random matrix
theory: namely, the expected exponential decay of the
steady-state transmission coefficient with sample size. We
finish by testing and verifying the modified KM equations
through a comparison with numerical simulations of the
wave equation. In contrast to the 1D version of the SC theory
�23�, the modified KM equations hold for all times and
model both the total intensity and the intensity flux. At the
end, we comment on the prospects of generalizing the 1D
theory to higher dimensions, especially 3D where the noto-
rious and interesting transition from extended to localized
wave propagation occurs.

II. SCATTERING MATRIX WITH INTERFERENCE
TERMS

We aim to derive equations similar to the 1D RT equa-
tions, or KM equations, but with the explicit inclusion of
wave interference. Although it is not necessary, we assume in
the following that there is no absorption for simplicity. For a
layered medium made up of thin layers, or 1D scatterers,
embedded in a homogeneous background medium, the scat-
tering matrix relating incident and scattered waves at scat-
terer n is

� Śn

S̀n+1

� = �r t

t r
�� S̀n

Śn+1

� , �1�

where r and t are the reflection and transmission coefficients

of a scatterer, S̀n+1 and Śn+1 are the downward and upward
propagating complex wave amplitudes at the base of scat-

terer n, and S̀n and Śn are the downward and upward propa-
gating complex wave amplitudes at the top of scatterer n, as
shown in Fig. 1. Note that the complex wave amplitudes at

the top of scatterer n, S̀n and Śn, are related to the complex

wave amplitudes at the base of scatterer n−1, S̀n and Śn, by
simple phase advance or delay

Śn =
Śn

�Z
,

S̀n = �ZS̀n, �2�

where �Z is the delay operator associated with the propaga-
tion time between scatterers n and n−1 �24�. From Eq. �2�, it

follows that �Śn�2= �Śn�2 and �S̀n�2= �S̀n�2. By taking the
squared magnitude of the two equations making up the scat-
tering matrix, Eq. �1�, and adding and subtracting them, we
thus arrive at the equations

�Śn�2 + �S̀n+1�2 = ��r�2 + �t�2���S̀n�2 + �Śn+1�2�

+ �r*t + t*r��S̀n
*Śn+1 + S̀nŚn+1

* � , �3�

�Śn�2 − �S̀n+1�2 = ��r�2 − �t�2���S̀n�2 − �Śn+1�2�

+ �r*t − t*r��S̀n
*Śn+1 − S̀nŚn+1

* � . �4�

For a 1D scatterer embedded in a homogeneous medium,
two identities exist: �r�2+ �t�2=1, or conservation of energy,
and r*t+ t*r=0, as shown by Ursin �25�. With these identi-
ties, expressions �3� and �4� can be simplified as

�S̀n+1�2 − �Śn+1�2 = �S̀n�2 − �Śn�2, �5�

��S̀n+1�2 + �Śn+1�2� − ��S̀n�2 + �Śn�2�

= − 2
�r�2

�t�2
��S̀n�2 − �Śn�2� − 4

Im�r*t�
�t�2

Im�S̀nŚn+1
* � . �6�

Note that the interference terms are not present in Eq. �5�.
This equation states that the energy flux between scatterers n
and n−1 equals that between scatterers n and n+1. The prin-
ciple of energy flux conservation in layered media has been
used by Claerbout to derive the method of “acoustic daylight
imaging” ��24� in Chap. 8�. In contrast, Eq. �6�, which de-
scribes the local change in total intensity on either side of a
scatterer, contains an interference term. This term depends on
the correlation between the downward propagating wave

field at the top of scatterer n �S̀n� and the upward propagating

wave field at the base of scatterer n �Śn+1�.
We continue by averaging Eqs. �5� and �6� over en-

sembles of randomly placed scatterers. We denote ensemble
averages with brackets 	¯
 and thus the ensemble average
of the squared magnitude of the down-going wave field be-

tween scatterers n−1 and n by 	�S̀n�2
= Ìn and so on for other
wave field quantities. With ensemble averaging, we obtain
from Eqs. �5� and �6� that

�Ìn+1 − Ín+1� − �Ìn − Ín� = 0, �7�

�Ìn+1 + Ín+1� − �Ìn + Ín� = − 2
�r�2

�t�2
�Ìn − Ín�

− 4
Im�r*t�

�t�2
Im	S̀nŚn+1

* 
 . �8�

The stationary 1D RT equations result from these equations
by first assuming zero correlation in phase between wave
fields propagating in opposite directions at scatterer n,

	S̀nŚn+1
* 
=0, followed by taking a limiting procedure to move

from discrete to continuous variables, as shown by Goedecke
�2�.

FIG. 1. The up- and down-going waves near scatterer n. We
consider a random medium consisting of thin layers, or 1D scatter-
ers, of thickness d and local wave number k embedded in a homo-
geneous background medium of wave number k0.
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It is well known, however, that wave interference causes

the term 	S̀nŚn+1
* 
 to be nonzero, especially in 1D. We thus

include the term containing 	S̀nŚn+1
* 
, and therefore account

for interference effects, by considering the directional wave
fields on either side of a planar source within a 1D random
medium. We take the depth axis �z axis� positive downward.
First, consider the situation above the source depth zs. There,

the up-going wave field Śn is the wave field incident from the
source direction and it can be related to the down-going

wave field S̀n using the reflection coefficient R1 for the entire
random medium above scatterer n as �26�

R1Śn = S̀n. �9�

Moreover, the up-going wave field Śn+1 can be related to the

up-going wave field on the other side of scatterer n, Śn, using
the reflection and transmission coefficients of a single scat-
terer, r and t, and the reflection coefficient for the entire
random medium below scatterer n, denoted R2, as

Śn =
tŚn+1

1 − rR2
. �10�

Equations �9� and �10� relate the wave fields Śn+1 and S̀n:

S̀n =
R1tŚn+1

1 − rR2
. �11�

Substituting this relationship for S̀n into Eq. �8� and assuming
the ensemble averaging can be distributed as

Im� R1t

1 − rR2
�Śn+1�2� = 	�Śn+1�2
Im� R1t

1 − rR2
� , �12�

Eq. �8� above the source becomes

�Ìn+1 + Ín+1� − �Ìn + Ín� = − 2
�r�2

�t�2
�Ìn − Ín�

− 4Ín+1
Im�r*t�

�t�2
Im� R1t

1 − rR2
� .

�13�

Applying the same considerations to the situation below
the source depth zs means that the direction of the wave field
incident from the source is the opposite of the case just
shown. In addition, the roles of the terms R1 and R2 are
different: R1 is now the reflection coefficient for the entire
random medium beneath scatterer n and R2 is the reflection
coefficient for the entire random medium above scatterer n.
This convention maintains the same relation between R1 and
R2 and the direction of the incident wave field as was used

previously. Thus, starting with R1S̀n+1= Śn+1, Eq. �8� below
the source is

�Ìn+1 + Ín+1� − �Ìn + Ín� = − 2
�r�2

�t�2
�Ìn − Ín�

− 4Ìn
Im�r*t�

�t�2
Im� R1

*t*

1 − r*R2
*� .

�14�

For a single realization of the ensemble, the R1 and R2 here
are not necessarily equal to the R1 and R2 considered previ-
ously. However, the ensemble averages of the reflection co-
efficients on either side of the source are the same since the
spacings of the scatterers above and below the source are
drawn from the same random distribution. From Eqs. �13�
and �14�, the two situations differ not only by the direction of

the wave field present in the last term �Ìn or Ín+1�, but also by

a sign change in the last term �since sgn�Im	 R1
*t*

1−r*R2
*

�

=−sgn�Im	 R1t

1−rR2

��.

III. MODIFIED KM THEORY: THE STATIONARY CASE

With these two cases �above and below the source�, we
now take the limiting procedure—as discussed by Goedecke
�2�—to move from the discrete to the continuous case. We
examine here the case below the source and then state the
result for the case above the source, since the procedure for

the two cases is the same. First, note that Ín+1 and Ìn+1 are

defined at the base of scatterer n, just as Ín and Ìn are defined
at the base of scatterer n−1. We define the average spacing
between the scatterers as �−1 and thus the number of scatter-
ers per unit depth is � �the number density�. Multiplying both
sides of Eq. �14� by � results in

�Ìn+1 + Ín+1� − �Ìn + Ín�
�−1 = − 2�

�r�2

�t�2
�Ìn − Ín�

− 4�Ìn
Im�r*t�

�t�2
Im� R1

*t*

1 − r*R2
*� .

�15�

As pointed out by Goedecke �2�, the term on the left-hand
side of Eq. �15� becomes a spatial derivative when making
the transition to a continuous depth variable n�−1→z. There-
fore, the directional wave fields become functions of z—that

is, Ìn= Id�z� and Ín= Iu�z� where Id and Iu are the ensemble-
averaged down-going and up-going intensities. Therefore,
Eq. �15� becomes

d�Id + Iu�
dz

= − 2�
�r�2

�t�2
�Id − Iu� − 4�Id

Im�r*t�
�t�2

Im� R1
*t*

1 − r*R2
*� .

�16�

We further simplify Eq. �16� by defining the ensemble-
averaged total intensity It= Id+ Iu and the ensemble-averaged
intensity flux If = Id− Iu. This simplifies Eq. �16� as
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dIt

dz
= − 2�

�r�2

�t�2
If − 4�Id

Im�r*t�
�t�2

Im� R1
*t*

1 − r*R2
*� . �17�

We finally define the scattering mean free path �s, the local-
ization length �loc, and a dimensionless parameter B as

B

�s
= �

�r�2

�t�2
,

1

�loc
= 2�

Im�r*t�
�t�2

Im� R1
*t*

1 − r*R2
*� . �18�

Using these parameters, we can rewrite Eq. �17� concisely as

dIt

dz
=

− 2B

�s
If −

2

�loc
Id. �19�

We have chosen the definitions in Eq. �18� in a manner
consistent with the usual definitions for these quantities
�2,3�. For instance, regarding the quantity � �r�2 / �t�2, in the
weak-scattering limit ��t�2
1� we find that

�
�r�2

�t�2

 ��r�2 = ���r�2 + �t − 1�2�

�r�2

�r�2 + �t − 1�2
=

B

�s
, �20�

where

B =
�r�2

�r�2 + �t − 1�2
. �21�

Thus, B is a dimensionless parameter describing the direc-
tionality of the scattering �17�. For isotropic scattering, B
=1/2. In addition we define

1

�s
= ���r�2 + �t − 1�2� , �22�

consistent with what we know for the 1D scattering cross
section from Sheng �3�: �s= �r�2+ �t−1�2. Therefore, from Eq.
�22�, we can identify the factor ���r�2+ �t−1�2�=��s. In the
weak-scattering limit, it is well known that �s=1/��s. Thus,
our definition for �s in Eq. �22� is consistent with the usual
definition of �s in the weak-scattering limit. The appendix
demonstrates the consistency of the definition for �loc as it
appears in Eq. �19� based on the relation in Eq. �18�.

We have just shown how to apply the limiting procedure
to Eq. �14�. Applying the same limiting procedure to Eqs. �7�
and �13� gives all of the necessary stationary transport equa-
tions, which we summarize here:

dIf

dz
= 0, �23�

dIt

dz
=

− 2B

�s
If +

2

�loc
Iu �for z � zs�

=
− 2B

�s
If −

2

�loc
Id �for z � zs� . �24�

These equations comprise the modified KM equations in the
stationary case. Equation �24� may be rewritten more con-
cisely as

dIt

dz
= − 2� B

�s
+

1

�loc
�If −

sgn�z − zs�
�loc

�It − �If�� , �25�

where the quantity It− �If� is either 2Iu for z�zs or 2Id for
z�zs: it is twice the intensity propagating back toward the
source. Equation �25� shows that the inclusion of wave inter-
ference in the KM �or RT� equations leads to two additional
terms which affect the average total intensity in different
ways. The first term containing 1/�loc on the right-hand side
�RHS� of Eq. �25� causes the coherent intensity to decay
more rapidly than when wave interference is neglected. Fur-
thermore, the second term containing 1/�loc on the RHS
causes the spatial distribution of the incoherent intensity to
be entirely different than in the case of no interference �as
demonstrated later in a numerical example�. The form of Eq.
�25� allows the identification of the extinction mean free path
�the decay of the coherent intensity�, 1 /�ext=B /�s+1/�loc.
This insight is possible since the quantity It− �If� in Eq. �25�
is zero for the coherent intensity. Note that the coherent in-
tensity decays exponentially even without interference ef-
fects ��loc→�, or RT� due to scattering out of the forward
direction.

IV. MODIFIED KM THEORY:
THE TIME-DEPENDENT CASE

Having derived the modified KM equations for the sta-
tionary case in Eqs. �25� and �23�, we will turn our attention
to the time-dependent �dynamic� case. Given the current co-
ordinate system for z, this is accomplished by noting that
dIu /dz=�Iu /�z+v−1� Iu /�t and dId /dz=�Id /�z−v−1� Id /�t,
where v is the velocity of energy transport �the energy ve-
locity�. Including the presence of planar isotropic �zero net
down-going component� sources �17�, we obtain the follow-
ing time-dependent equations

�If

�z
+

1

v

�It

�t
=

�

v
, �26�

�It

�z
+

1

v

�If

�t
= − 2� B

�s
+

1

�loc
�If −

sgn�z − zs�
�loc

�It − �If�� ,

�27�

where � is the isotropic �omnidirectional� source term �17�.
Note that for �loc→� �no wave interference�, Eqs. �26� and
�27� are the same equations as have been studied previously
by others within the context of RT in layered media
�12–14,17�.

With Eqs. �26� and �27�, which are the modified KM
equations in the time-dependent case, we proceed to numeri-
cally solve the equations for two cases: with interference and
without ��loc→�, or RT�. These cases are compared to en-
semble averages of simulations of the wave equation.

V. NUMERICAL SIMULATIONS

Our numerical solution of Eqs. �26� and �27� exploits
staggered grid-finite-difference methods �27�. In this tech-
nique, we calculate the total intensity It and the intensity flux
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If on different spatial grids that have been shifted by half of
a grid spacing and on different temporal grids shifted by half
of a time step. Our purpose is to test whether the modified
KM equations �26� and �27� predict the results of a wave-
based simulation. Therefore, we also simulate the wave

equation for normally incident plane waves in a layered me-
dium, excited by a planar force source:

1

c2�z�
�2u

�t2 −
�2u

�z2 =
1

�c2�z�
Fw�t���z� , �28�

where u is the displacement field as a function of time t and
spatial coordinate z, c is the phase velocity, � is the density
of the medium, F is a dimensionless constant related to the
strength of the forcing function, w�t� is the dimensionless
source time function, and ��z� is the spatial delta function.
We simulate Eq. �28� by the finite-difference method using
centered, second-order approximations for the derivatives.
The details of the numerical implementation have been pre-
viously discussed in Haney et al. �17�.

The setup of our numerical simulation is as follows: for a
single realization, we place 50 scatterers randomly over a
depth range of L=200 m. The scatterers are lower in propa-
gation velocity �1000 m/s� than the background medium
�2000 m/s� but have the same density. We excite a source in
the center of the 200-m range at zs=0 m. At the ends of the
200-m range are absorbing boundaries. To obtain ensemble
averages of the total intensity, we first bandpass-filter our
numerical results from a single realization with a Gaussian
filter peaked at 500 Hz. We filter in the frequency domain
since the transport properties �i.e., �s and �loc� are strongly
dependent on frequency. In other words, Eqs. �26� and �27�
model the wave experiment in a particular frequency band.
After filtering, we square the wave field for each of 100
simulations with randomly placed scatterers and then add the
squared wave fields. From the ensemble-averaged wave
fields, we estimate the extinction mean free path �ext from
the decay of the coherent intensity and the localization length
�loc from the exponential decay of the incoherent intensity
away from the source. We find �ext=38.1±0.5 m and �loc
=57.2±1.7 m. These two parameters enter into Eqs.�26� and
�27�. We further find that the energy velocity of the coherent
wave is only slightly altered from the phase velocity of the
background medium �2000 m/s�, which is expected since
the scatterers we employ are 1D versions of Rayleigh scat-
terers �B=1/2, with thickness d much less than the dominant
wavelength� �3�, and hence are not resonant scatterers.

The thick black line in Fig. 2 is the total intensity from the
numerical solution of the standard KM equations �RT, �loc
→��, with the wave simulation shown as the thin blue line.
Note that these snapshots are logarithmic in intensity. Strong
localization effects are evident in the wave simulation as
seen in the sharp exponential peak in the total intensity at the
source position at later times. This behavior is not captured
in the solution of the standard KM equations, which predict
that the total intensity is flat around the source position. In
addition, the standard KM equations significantly underpre-
dict the decay of the coherent wave. The discrepancy be-
tween standard KM theory and the wave simulation is most
evident at t=0.11 s in Fig. 2�d�, where the wave simulation
shows a concentration of total intensity near the source po-
sition.

The simulation for the modified KM equations is the thick
black line in Fig. 3. In contrast to the standard KM equations

FIG. 2. �Color online� Comparison of numerical results for
ensemble-averaged wave propagation �thin blue line� and standard
KM theory, or RT �thick black line�. The various panels show �a�
t=0 s, �b� t=0.02 s, �c� t=0.045 s, and �d� t=0.11 s. The source
time function is zero phase and hence acausal �symmetric about t
=0 s�.
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�or RT�, the modified KM equations capture the exponen-
tially peaked behavior of the total intensity near the source
position and, at all times, agree well with the wave simula-
tion. Thus, the modified KM equations are capable of mod-
eling the transport of intensity in 1D localized media, where

interference effects cannot be ignored. It is worth emphasiz-
ing finally that both the standard KM solution in Fig. 2 and
the modified KM solution in Fig. 3 satisfy global energy
conservation.

VI. CONCLUSION

With a proper modification to the well-known Kubelka-
Munk equations, we are able to accurately describe the trans-
port of wave intensity in a 1D layered medium at all times,
even when interference effects dominate �e.g., wave localiza-
tion�. This is confirmed by numerical simulations comparing
wave simulations and the modified Kubelka-Munk equa-
tions. In the future, we plan to extend our approach, which
currently uses only two fluxes, to a theory valid for 2D and
3D disordered media. One approach to this extension would
utilize higher-dimensional discrete flux theories as described
by Cwilich �28�. Such a transport theory will be capable of
simultaneously describing the propagating coherent intensity,
the intensity flux, and the localization transition in 3D.
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APPENDIX: VERIFICATION OF THE
LOCALIZATION LENGTH

Here, we give credence to our use of the term localization
length �loc as it appears in Eq. �19�. By doing so, we justify
the expression for �loc in Eq. �18�. We proceed by finding the
stationary transmission coefficient for a slab geometry in the
case of interference. We adopt the approach shown by van
Rossum and Nieuwenhuizen �29�, wherein the authors de-
rived the stationary transmission coefficient T for the case of
no interference. In that case, T�L�
ze /L, where ze is the
extrapolation length outside the slab and L is the thickness of
the slab �29�. In analogy to electronic systems, the behavior
T�L�
ze /L is an expression of Ohm’s law.

We begin by taking the stationary version of Eqs. �26� and
�27�:

dIf

dz
=

�

v
, �A1�

dIt

dz
= − 2� B

�s
+

1

�loc
�If −

sgn�z − zs�
�loc

�It − �If�� , �A2�

where, as discussed before in reference to Eqs. �26� and �27�,
� is the isotropic �omnidirectional� source term �17�. Let a
single stationary �planar� source act at depth zs, such that �
=��z−zs�. Based on physical considerations, we know that It

is symmetric �even� about z=zs and If is antisymmetric
�odd�. This, together with the fact that �=��z−zs� in Eq.
�A1�, leads to the relation If =sgn�z−zs� /2v and therefore
that sgn�If�=sgn�z−zs�. Since sgn�If� � If � = If, Eq. �A2� may
be written as

FIG. 3. �Color online� Comparison of numerical results for
ensemble-averaged wave propagation �thin blue line� and modified
KM theory �thick black line�. The panels show the same times as
depicted in Fig. 2. The modified KM equations are seen to accu-
rately model the exponential localization of intensity at the source
position than in Fig. 2.
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dIt

dz
= − �2B

�s
+

1

�loc
�If −

sgn�z − zs�
�loc

It. �A3�

Solving this equation for If allows a substitution for If in Eq.
�A1�. At depths away from the source �for z�zs�, this gives
an expression in terms of It only:

d2It

dz2 +
1

�loc

d

dz
�sgn�z − zs�It� = 0. �A4�

For the case of no interference, �loc→�, Eq. �A4� reduces to
the Laplace equation �the diffusion equation in the stationary
case�. However, when interference is taken into account, the
equation is a modified Laplace equation.

In preparation for an application of the standard approach
shown by van Rossum and Nieuwenhuizen �29�, we proceed
by investigating how the extrapolation length outside of a
slab of thickness L changes when interference is accounted
for. We use the well-known approach of Morse and Feshbach
�30� to define the extrapolation length. Consider a slab con-
taining randomly located thin layers extending from z=0 to
z=L. Outside of this interval, the medium is homogeneous.
Take a planar source of intensity at some zs�0, outside of
the slab. Since the entire slab extends over z=0 to z=L, we
have zs�z and thus sgn�z−zs�=1 for all points z within the
slab. In this case, Eqs. �A3� and �A4� are, for all points z
inside of the slab, given by

dIt

dz
= − �2B

�s
+

1

�loc
�If −

It

�loc
�A5�

and

�2It

�z2 +
1

�loc

�It

�z
= 0. �A6�

At the far end of the slab z=L, we require there be no
up-going intensity Iu= �It− If� /2=0. Now using Eq. �A5�, we
substitute for If in the relation It− If =0, giving an equation in
terms of It only:

It +
�tr�loc

�loc + �tr
�dIt

dz
+

It

�loc
� = 0, �A7�

where we use the transport mean free path �tr=�s /2B to
make the notation concise �17�. We can rewrite Eq. �A7� as

It + �
dIt

dz
= 0, �A8�

where �=�tr�loc / ��loc+2�tr�. Equation �A8� means that, near
z=L, It
C�L+�−z� /� where C is a dimensioning constant.
Within this approximation, It=0 at z=L+�; therefore, the
extrapolation length ze—the distance outside of the slab
where It vanishes—is equal to �. That is, ze=�tr�loc / ��loc

+2�tr�. One can see in this expression that, for no interfer-

ence ��loc→ � �, ze=�tr which is the usual extrapolation
length encountered in 1D when interference is neglected
�17�.

At the side of the slab on which the source of intensity is
incident, at z=0, we require the down-going intensity to be
equal to the incident intensity I0. Thus, Id= �It+ If� /2= I0 at
z=0. Using Eq. �A5�, we substitute for If in the relation �It

+ If� /2= I0, giving

It −
�tr�loc

�loc + �tr
� �It

�z
+

It

�loc
� = 2I0. �A9�

Equation �A9� may be rewritten as

It − �tr
�It

�z
=

2I0��loc + �tr�
�loc

. �A10�

Near z=0, the solution is approximately given by

It 

2I0��loc + �tr�

�loc
� z

�tr
+ 2� . �A11�

Within this approximation, at a distance equal to the �inter-
ference adjusted� extrapolation length outside of the slab, z
=−ze, It is therefore given by

It = 2I0
��loc + �tr���loc + 4�tr�

�loc��loc + 2�tr�
= 2I0	 , �A12�

where we represent the term containing �loc and �tr by 	.
Following the method employed by van Rossum and

Nieuwenhuizen �29�, we seek to solve Eq. �A6� with the
boundary conditions It=0 and It=2I0	 at the �interference
adjusted� extrapolation lengths z=L+ze and z=−ze, respec-
tively. The solution is

It�z� = 2I0	� e−z/�loc − e−�L+ze�/�loc

eze/�loc − e−�L+ze�/�loc
� . �A13�

The steady-state transmission coefficient T�L�= It�z=L� / I0 is

T�L� = 2	e−L/�loc� 1 − e−ze/�loc

eze/�loc − e−�L+ze�/�loc
�


 2	e−L/�loc�1 − e−ze/�loc

eze/�loc
� , �A14�

where the approximation is for ze�L. This expression
shows that when interference is taken into account the
steady-state transmission coefficient goes down exponen-
tially as a function of the length of the slab L—a hallmark of
localization in the stationary case. This behavior is in stark
contrast to T�L�
ze /L �29� obtained when interference is
neglected ��loc→ � �. The fact that the length scale control-
ling the exponential decay with L in Eq. �A14� is �loc sup-
ports the use of this term in Eq. �19� and, as a consequence,
the expression for �loc in Eq. �18�.
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