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Abstract Dust devils occur in arid climates on the Earth and ubiquitously on Mars, where they likely
dominate the supply of atmospheric dust and influence climate. Martian dust devils have been studied
with a combination of orbiting and landed spacecraft, while most studies of terrestrial dust devils have
involved manned monitoring of field sites, which can be costly both in time and personnel. As an alternative
approach, we describe a multiyear in situ survey of terrestrial dust devils using pressure loggers deployed
at El Dorado Playa in Nevada, USA, a site known for dust devil activity. Analogous to previous surveys
for Martian dust devils, we conduct a posthoc analysis of the barometric data to search for putative dust
devil pressure dips using a new automated detection algorithm. We investigate the completeness and
false positive rates of our new algorithm and conduct several statistically robust analyses of the resulting
population of dips. We also investigate possible seasonal, annual, and spatial variability of the putative
dust devil dips, possible correlations with precipitation, and the influence of sample size on the derived
population statistics. Our results suggest that large numbers of dips (>1000) collected over multiple
seasons are probably required for accurate assessment of the underlying dust devil population. Correlating
long-term barometric time series with other data streams (e.g., solar flux measurements from photovoltaic
cells) can uniquely elucidate the natures and origins of dust devils, and accurately assessing their influence
requires consideration of the full distribution of dust devil properties, rather than average values.

1. Introduction

Dust devils are small-scale (few to many tens of meters) low-pressure vortices rendered visible by lofted
dust. They have been observed to persist from minutes to hours and can travel kilometers, often carried
by the ambient wind [Lorenz, 2013a]. On Earth, they are observed in arid locations primarily, where the
ground is usually dry enough to provide a ready supply of dust [e.g., Balme and Greeley, 2006]. On Mars, they
have been observed ubiquitously, both from the ground [Metzger et al., 1999] and from orbiting spacecraft
[Cantor et al., 2006]. On both planets, dust devils contribute to the atmospheric aerosol content, sometimes
increasing the dust content over the U.S. Southwest by more than an order of magnitude [Renno et al., 2004].
On Mars, dust devils may be the primary source for atmospheric dust, which plays a role in the radiative
balance of the Martian atmosphere and, therefore, on the planet’s meteorology [Basu et al., 2004]. Dust
devils also seem to have lengthened the operating lifetime of Martian rovers by frequently cleaning their
solar panels (http://mars.jpl.nasa.gov/mer/mission/status_opportunityAll.html#sol3603). Since the dust
supply from dust devils on both planets may be dominated by the seldom observed larger devils, it is
particularly important to study the underlying distribution of dust devils, rather than focusing on the
typical devil. Thus, elucidating the origin, evolution, and population statistics of dust devils is critical for
understanding important terrestrial and Martian atmospheric properties and for in situ exploration of Mars.

While the pressure dips associated with dust devils have been recorded on Earth [e.g., Wyett, 1954; Lambeth,
1966; Sinclair, 1973], they are actually more systematically documented in studies of dust devils on Mars
(e.g., by Mars Pathfinder: Murphy and Nelli, 2002; and by the Phoenix mission: Ellehoj et al., 2010), where
landers have recorded meteorological parameters over long periods with a high enough cadence to detect
small vortical structures. Most terrestrial meteorological records have cadence too low (canonically, 15 min)
to record dust devils, for which a sampling rate of ∼1 Hz or better is typically required.

Here we examine a continuous high-resolution pressure record to provide a census of vortices on Earth at
El Dorado Playa near Boulder City, Nevada, a location known for dust devil activity [e.g., Pathare et al., 2010;
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Metzger et al., 2011]. Because the survey is made posthoc on the pressure time series, it is directly analogous
to the Martian surveys. In addition to being a convenient measure of the overall intensity of a dust devil
(as is also the case with other vortex motions such as tornadoes) [e.g., Karstens et al., 2010], the pressure
dip may itself play a significant role in dust lifting [e.g., Balme and Hagermann, 2006]. As at Mars, such an
approach detects pressure dips from all vortices without reference to whether they are dust laden or not.
One feature initially noted in the data presented here is a diverse range of skewed or multipole signatures
resulting from the cycloidal path of a devil nearby [Lorenz, 2013b], even for single-core vortices.

Lorenz and Lanagan [2014] performed a manual search of a subset of the data analyzed here, a month long
measurement series (about 20 million data points) from three stations deployed during summer 2012, to
identify about 650 discrete pressure dips that are interpreted as vortex signatures. For longer surveys, and
for additional field sites, this manual approach will be somewhat laborious; and hence, in the present paper,
we develop an automated search for these signatures.

2. Instrumentation and Data Collection

Previous terrestrial in situ dust devil studies involved field campaigns with personnel in attendance, which
usually entails significant labor costs. Our approach has been to deploy small data acquisition systems
which can operate for months without intervention. Recovery of a unit is required in order to retrieve its
data, which are stored on board in flash memory, but the units are sufficiently inexpensive (compared with
labor and transportation costs to deploy) that multiple units can be deployed, and, as long as a subset is
recovered, the operation overall is cost effective.

The systems used [Lorenz, 2012a] are based around the Gulf Coast Data Concepts B1100 pressure logger,
which combines a precision Bosch BMP085 pressure sensor (logged with a resolution of 1 Pa or 0.01 mb)
with a microcontroller that logs the pressure data and housekeeping temperature as ASCII files on a 2 GB
microSD flash memory card. The whole unit operates as, and its form factor resembles, a large USB memory
stick, facilitating data transfer to a computer. As described in Lorenz [2012a], for this application the nominal
single AA battery is replaced by a pair of alkaline D cells, allowing unattended multimonth operation at
sample rates of 2 Hz or more. The sensor and battery are installed in a plastic case, drilled to allow pressure
equalization, and painted light brown to minimize visibility.

We deployed 15 loggers at six locales on El Dorado Playa over the course of about 2 years, and each logger
is designated by a combination of letters and numbers in Table 1, such as S42, M01, etc. Table 1 also groups
the loggers by location and shows the dates of operation and number of pressure dips detected. Figure 1
shows the approximate deployment locations (we have redacted the exact coordinates since observations
are ongoing).

An initial deployment was made in April 2012. The strong temperature variations encountered by devices
left on the playa surface in desert sunshine led to high-noise levels in the pressure history, due to improper
temperature compensation of the pressure transducer readings, as discussed in Lorenz [2012a]. This issue
was ameliorated by acquiring more frequent temperature readings, and data in June/July 2012 and there-
after have improved noise levels. In addition to the analysis here, June/July 2012 data from three stations
were also analyzed by hand in Lorenz and Lanagan [2014]. One logger (designated P28) was deployed at the
western margin of the playa, location A in Figure 1, while two others (P11 and P10) were deployed toward
the eastern side near the station labeled D. Loggers at these locations were replaced during the course of
observations reported here.

Continuous records at all locations by the same loggers over the entire observation period were not always
possible since some loggers failed or were not retrieved. In other cases, the sequence of measurements at a
particular station was maintained by different hardware loggers (e.g., logger P14 was deployed where P11
was previously deployed). Two stations (designated P14 and P23) were operated over the winter 2012–2013,
although few events were expected. A wider suite of loggers was deployed in spring 2013 than in 2012.
Logging at locations D and A was maintained to yield a comparison with the previous year. We deployed
a cluster of stations in summer 2013 near the western side of the playa (A01, G01, M01, M02, and S42), all
within about 50 m of each other near station B.

Although the field site is one known to be hot and generally dry (hence the dust devil activity), the playa
flooded in August 2012 and in July 2013. In the latter instance, water ingress into data logger boxes (which,
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Table 1. Sensor Record Location and Name, the Dates and Total Days Active,
Latitude/Longitude, and Total Number of Pressure Dips Detected

Location/Name Dates (# Days) # Dips

0. Location_A/P23 2012-11-27 – 2013-03-08 (101) 20
1. ”/P28 2012-05-21 – 2012-06-11 (21) 139
2. ”/” 2012-06-11 – 2012-09-07 (88) 88
3. ”/S01 2013-04-29 – 2013-07-17 (79) 67

Total Sensor Days: 289 Total Dips: 314

4. Location_B/Anemom1 2013-04-29 – 2013-07-19 (81) 86
5. ”/Geophone01 2013-04-29 – 2013-07-12 (74) 91
6. ”/M01 2013-06-03 – 2013-07-14 (41) 22
7. ”/M02 2013-06-03 – 2013-07-20 (47) 26
8. ”/S42 2013-06-03 – 2013-07-04 (31) 28

274 253

9. Location_C/S02 2013-04-29 – 2013-07-14 (76) 84

10. Location_D/P11 2012-05-21 – 2012-06-11 (21) 114
11. ”/” 2012-06-11 – 2012-07-12 (31) 33
12. ”/” 2012-07-12 – 2012-08-22 (41) 25
13. ”/P14 2012-11-27 – 2013-04-24 (148) 48
14. ”/P16 2012-06-11 – 2012-09-04 (85) 65
15. ”/Radio 2013-06-03 – 2013-09-08 (97) 66

423 351

16. Location_E/S03 2013-04-29 – 2013-06-03 (35) 25

17. Location_F/P10 2012-05-22 – 2012-06-11 (20) 32
18. ”/” 2012-06-11 – 2012-07-12 (31) 21
19. ”/” 2012-07-12 – 2012-09-11 (61) 17

102 70

since they must monitor pressure, are not sealed) suspended data acquisition. Another hazard should be
noted: in our April 2013 visit, a rattlesnake sought shade underneath our parked vehicle.

The total data set comprises 1200 station days, which exceeds by a factor of 13 the prior in situ terrestrial
survey of 90 station days [Lorenz and Lanagan, 2014]. With a sampling of 2 Hz, the data set amounts to
>252 million measurements, motivating the application of automated methods.

3. Data Conditioning and Pressure Dip Detection

The data loggers record a pressure time series as a comma-delimited ASCII text file, with individual files
typically spanning 12 h. Over the course of a deployment, a logger might generate a few hundred
such files. (By comparison, the available Martian pressure data sets have time extents ranging from
several minutes to a day.) Our method for detecting dust devil pressure signals resembles that of

Figure 1. Google Earth map of the playa, with station locations marked.
The symbols we use for each location throughout the paper are also
shown, and the loggers deployed at each location are given in Table 1.

Wagstaff et al. [2006] and has some
elements in common with other Martian
dust devil searches [e.g., Ellehoj et al.,
2010], namely using the difference
between a short-term average and a
long-term average [e.g., Ringrose et al.,
2007]. This technique is referred to in
the seismology literature as a “phase
picker.” However, we have much
more data, and the data exhibit more
variability, necessitating a more complex
conditioning and detection process.
Our initial detection algorithm proceeds
as follows:
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1. We read in data text files and discard any corrupted ones. Corrupted files usually have only a few entries
in them, spanning a time shorter than a few hundred seconds.

2. We discarded data points more than 10𝜎 away from the median value for a given data file. (Throughout
the paper, 𝜎 represents the standard deviation calculated as 1.4826 × the median absolute deviation.
This quantity is more robust against outliers than the usual standard deviation) [Bevington and Robinson,
2003]. This step typically removes only about 1% of the initial data.

3. We applied a mean boxcar filter to remove long-term trends possibly resulting both from meteorological
and instrumental variability. We took a width W =1000 s for the boxcar, and this choice has some
modest influence on what signals we detect, as discussed in section 4.1. (Wagstaff et al. [2006] instead fit
a polynomial as a smooth background against which to detect temporary excursions.) After the trends are
removed, we add the data set mean back to the detrended data.

4. We calculated the median 𝜇 and 𝜎 of the data within a window of width W centered on time index ti . If
the datum at this index, di , lay below a chosen threshold number of 𝜎 (i.e., negative but with a magnitude
exceeding the threshold), we added it to the collection of points that may comprise dust devil dips. The
data exhibit nonstationary noise, and so we needed to calculate the local 𝜎 in a window W around each
point. Through inspection of the data and completeness tests discussed in section 4.1, we found that a 3𝜎
threshold provided a balance between recovering plausible dust devil signals and false positives.

5. We marched left and right from (before and after in time) an outlier point until we had a collection at least
100 points (or about 50 s) that lay within 1𝜎 of 𝜇 to ensure that the entire feature had been captured.

6. Finally, we combined features that overlapped in time into a single feature.

With this collection of putative detections in hand, we applied a series of model analyses to further winnow
the collection of dips:

1. We masked out the putative dips and reapplied the boxcar filter. We then linearly interpolated the filter
signal across the dips to remove variability and to avoid distorting the pressure dips.

2. We fit a Lorentzian profile L(t) to all the data points comprising a putative dip:

L(t) = − ΔP

1 +
(
(t − t0)∕Γ

)2
+ B (1)

where ΔP is the magnitude of the pressure dip, t0 the central time of the dip, 2Γ the profile full width at
half maximum (FWHM), and B the baseline outside of the dip. (Physical arguments suggest that dust devils
involve such a pressure structure [Rennó et al., 1998], and so such profiles have frequently been used for
dust devil analyses) [Ellehoj et al., 2010]. We estimated the uncertainties on individual data points as the
𝜎 value of points inside the window of width W centered on a dip but not part of the dip itself. We used
a Levenberg-Marquardt 𝜒2-minimization scheme [Markwardt, 2009], and, for uncertainties on the fit
parameters, we took the square root of the diagonal elements of the covariance matrix. Often, this fit
produced 𝜒2

𝜈
>1 (𝜒2

𝜈
is the reduced 𝜒2), suggesting that we may have underestimated the uncertainties,

and so we rescaled the uncertainties (on all data points and on the model fit parameters) by
√

𝜒2
𝜈

[Bevington and Robinson, 2003].
3. We redetermined the points constituting a dip by taking all points within 5 times the initial Γ value of

the initial t0. (This step only shifted slightly the points constituting the putative dip, and we found that
including more points often introduced background trends to the dip that confused the fitting algorithm.)
We then applied the same model fit to these points. Fitting the model to these points produced the final
best fit model parameters and uncertainties. We only included dips with Γ values greater than 10 data
points, typically 5 s but variable since the sampling frequency was not the same for all files.

4. We compared the final ΔP to the data point uncertainty to estimate the signal-to-noise ratio SNR for each
dip and only retained those with SNR >3.

Figure 2 shows an example of the data conditioning and detection for one file and compares dips detected
by the algorithm (blue curves) to those reported by Lorenz and Lanagan [2014] (red vertical lines).

4. Results

In this section, we first discuss estimates of the completeness rate and filtering out detections that may not
be dust devil pressure signals. Then we discuss the results from our detection scheme and the distribution
of model fit parameters for our detected dips.
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Figure 2. Pressure variations (in hectoPascal, hPa) versus local time for
one data file. (a) The raw data and (b) the detrended data. Blue curves
show model fits for those dips that pass our detection thresholds, while
red vertical lines show the dips reported for this file in Lorenz and Lanagan
[2014]. The inset zooms in on the dip just after 14:00. The striping in the
data results from discretization of the measurements to the nearest Pa.

4.1. Completeness and Filtering
Spurious Detections
To determine the algorithm’s ability
to recover known dips (completeness)
and how often it may be fooled by
spurious signals (false positives), we
compared our detections to those
generated by hand from Lorenz and
Lanagan [2014]. Figure 2 compares a
few detections from our automated
algorithm to those reported by Lorenz
and Lanagan [2014]. For this data
file, the algorithm detected five of
six dips reported previously and
generated an additional eight
possibles not reported.

To test our choices of W and SNR
threshold on the completeness rate,
we considered values of W ranging
from 10 up to 1000 s and SNR
thresholds between 3 and 10. For each
W/SNR combination, we calculated
the completeness by determining
how many “Class 1” (certain dust devil)
dips we recovered and divided by the
total number reported in Lorenz and
Lanagan [2014]. If the midtime t0 for
a detected dip lay within 3 FWHMs
of the time reported for a detection
in Lorenz and Lanagan [2014], we
considered that dip recovered.
Based on these calculations, we took
W =1000 s and SNR >3, giving a

completeness greater than 75%. We note that the Class 1 detections in Lorenz and Lanagan [2014] all had
SNR ≥4, while their “possible” detections had SNR between 3 and 8. All the Class 1 detections also had
pressure dips of 0.2 hPa or more.

This method of data conditioning means we likely distort or do not detect longer duration pressure dips
representing large and/or slow-moving dust devils. For example, a dip lasting nearly 1000 s would simply be
treated as a background fluctuation and either be filtered out or contribute to the estimate of 𝜎. However,
any detection scheme will overlook signals that differ significantly from the expected signal—that is the
purpose of a detection scheme.

Unfortunately, determining a false positive rate is more difficult since dips found by the algorithm but not by
Lorenz and Lanagan [2014] may or may not be real dust devils. (Lorenz and Lanagan [2014] do not report a
completeness rate.) In fact, using the W value and SNR threshold given above, the algorithm reported nearly
70% more dips than Lorenz and Lanagan [2014] using the same data set, but visual inspection suggests
many were not true dust devil dips—most are unexpectedly shallow. Figure 3a compares the average dip
reported by Lorenz and Lanagan [2014] (black) to the average one found here but not previously reported
(red). Note that each average profile shown has been normalized to its own best fit pressure depth so they
can all appear on the same scale. Figure 3b shows the ratio of ΔP to FWHM for the same two classes of
dip—those not previously reported tended to cluster at small values of this ratio. Assuming that many of
these previously unreported dips are spurious detections, we calculated 𝜎 for the ΔP to FWHM ratio for
this collection of dips (about 0.034 hPa/s) and dropped dips with values of this ratio <𝜎. The blue curve
in Figure 3a shows the average for the remaining previously unreported dips, which closely resembles the
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Figure 3. Normalizing each pressure dip individually by its best fit ΔP value, (a) the resulting average profile for dips
reported in Lorenz and Lanagan [2014] (black) and dips found here but not previously reported (red). (b) The distribution
of ΔP versus ΔP/FWHM for dips previously reported (black stars) and those not (red stars). Removing dips below the
dashed black line in Figure 3b produces the average, normalized profile in blue in Figure 3a.

black curve, suggesting we successfully removed most spurious dips. We applied this same filtering to all
the following dip analyses reported here.

4.2. Dip Statistics
4.2.1. Overall Statistics
Figure 4 shows the resulting distribution of fit parameters for the combined data set. Error bars are
suppressed for clarity but are typically 0.01 hPa for ΔP, 3 s for FWHM, and 0.5 s for t0. Our analysis produced
a large collection of putative dips with FWHM ≲ 5 s, not shown in Figure 4. These FWHM values represent
the smallest values allowed for 2Γ by our modeling fitting, 5× the sampling interval for a data file. Either
they are spurious detections (inspection of some suggests not), or there really are such short duration
dips, representing small/fast-moving dust devils. However, additional work is required to adequately assess
this population, so we conservatively include only dips with FWHM >10 s—reflected in Figure 4. In total,
we ended up with 1667 dips. To facilitate comparison with other data sets, Figure 5 shows a scatterplot
of FWHM versus ΔP with linear axes—we have zoomed in on the highest density region. The shaded, red
region shows where we have excluded dips for being too shallow. It is not obvious that dips in that region
are anomalous, but additional analysis and field work are probably required for a complete understanding.

It is worth noting that, since pressure loggers were often deployed within close proximity of one another,
passage of a single dust devil may have registered a dip on each of several loggers at nearly the same time.
However, additional data are required to distinguish these cases (e.g., the prevailing wind direction), and so
we make no effort to for this study.

As discussed by Lorenz [2011], the choices of bin size and number in generating histograms of dust devil
populations can significantly influence the results since these choices can affect a histogram’s overall shape.
We used Knuth’s algorithm (http://www.astroml.org/user_guide/density_estimation.html) to generate the
histograms in Figure 4, which employs a Bayesian framework, maximizing the posterior probability that
a histogram with a given uniform bin size represents the data set under consideration [Knuth, 2006]. This
approach to binning has the advantage that the bin sizes are objectively determined and tailored to the
data. For Figure 4, the algorithm gives bin sizes of 0.09, 0.07, and 55 min for log(FWHM), log(ΔP), and t0,
respectively. Alternative Bayesian binning methods have been proposed [e.g., Scargle et al., 2013], and
expanding on Lorenz [2011] to investigate optimal binning choices will be the subject of future work.

Referring back to the results, Figure 4 indicates an abrupt increase in activity about 6 A.M., with a less
dramatic drop-off after 6 P.M. Dust devils appear to be most common in the early afternoon, between 1 and
2 P.M., and the early afternoon sees some of the deepest pressure dips, completely consistent with previous
studies [Balme and Greeley, 2006]. There also appear to be detectable pressure dips before sunrise and after
sunset. These detections represent a small fraction of the total, and it is not clear whether they are spurious
(again, inspection suggests not) or are associated with meteorological phenomena other than dust devils.
Figure 5 shows that the distribution of ΔP values has a clear peak, with a median of about 0.24 hPa and 16th
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Figure 4. Distribution and histograms for ΔP, full width at half maximum (FWHM =2Γ), and local time t0 of dips. The
shallow dips excluded are indicated by the red region in the bottom right-hand panel.

and 84th percentiles (analogous to ±1𝜎 for nonnormal distributions) of 0.18 hPa and 0.48 hPa, respectively.
FWHM values are broadly distributed, with a median of 34.5 s and 16th and 84th percentiles of 15.8 s and
59.4 s, respectively.

Figure 5. Similar to 4 except with linear axes.

The total number of dips recovered by our
algorithm significantly exceeds the number of
dust devils considered by Lorenz [2012b] and
therefore allows a more robust determination
of pressure dip statistics, in particular which
distribution function provides the best fit. Lorenz
[2011] and others have pointed out that different
dust devil formation processes can give rise to
different populations, and so, in principle, the
population statistics can elucidate the origins of
dust devils.

Figure 6a illustrates the ΔP histogram with bin
sizes for ΔP of 0.03 hPa determined by Knuth’s
algorithm. Y error bars show Poisson uncertainties,
and X error bars show bin width. We compare a
power law (N=b(ΔP∕hPa)p, solid red line) to an
exponential fit (N=N0eΔP∕𝜆, dashed green line).
The number of dips with ΔP below the histogram
peak (at 0.24 hPa) drops off, possibly due to poor

JACKSON AND LORENZ ©2015. American Geophysical Union. All Rights Reserved. 7
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Figure 6. ΔP histogram, along with power law (solid, red
line) and exponential (dashed, green line) fits and corre-
sponding fit parameters. Bin size is 0.03 hPa. The standard
deviations of the posterior distributions returned by the
Markov chain Monte Carlo (MCMC) analysis are used for
uncertainties on the model parameters.

SNR, so we elected only to fit the power law for
ΔP>0.24 hPa, leaving 1097 dips. The best fit
parameters for both models are shown in the
figure (power law on top, exponential on bottom).

To generate the fits, we dropped bins with fewer
than two members and then applied a standard
Markov chain Monte Carlo (MCMC) algorithm
[Foreman-Mackey et al., 2013]. We checked for
convergence by requiring the correlation length
of each chain to be at least 10 times shorter than
the chains themselves (https://github.com/dfm/
acor). We took a burn-in length equal to a tenth of
the total chain length. Finally, we took the best fit
values for both models as the 50th percentiles of
the samples in the marginalized distributions and
approximated the uncertainties as the distribution
standard deviation. The 𝜒2

𝜈
value for the power

law fit is 1.76 and that for the exponential is 3.54,
indicating the power law is clearly preferred.
𝜒2
𝜈
>1 may mean we underestimated bin

uncertainties somewhat but does not affect
intercomparison of the models since they both
involve the same data.

Figure 6b illustrates a cumulative histogram, with
the same functions fit using the same algorithm.
However, we do not report uncertainties on the
fit parameters since we do not have error bars for
the data points in the cumulative histogram. In
this case, a 𝜒2 comparison favors the exponential
function because all data points are weighted
equally without uncertainties, and the exponential

does a better job of fitting the points with larger ΔP. Note also that the fit parameters for the cumulative
histogram do not agree with what we would expect if we integrated the functional fits for the differential
histograms. This exercise shows the influence of different binning and weighting on the resulting
fits—slightly different binning produces completely different results.

Note that one could fit a log normal or Weibull or other distribution to the recovered dips. However, it is
not clear how much the fall off below 0.24 hPa is due to poor detection efficiency, and how much to an
intrinsically small number of events. Lorenz and Lanagan [2014] noted that the Deardorff convection speed
associated with strong desert heating corresponds to a pressure fluctuation of about 0.04 hPa.

These results generally agree with previous studies. Lorenz and Lanagan [2014] found a cumulative slope for
the manually detected P28 June/July 2012 data of −1.5, corresponding to a differential exponent of −2.5
and in agreement with our results for a differential histogram. Fitting data from the Mars Phoenix lander
with a power law, Lorenz [2012b] derived an index of −2.20 ± 0.47, again in agreement with our results.
However, in the same study, a power law fit to Pathfinder data produced an index −1.56 ± 0.49, about 2𝜎
discrepant with our results. Their fit to the 19 dips reported by Lambeth [1966] gave −0.76 ± 0.74.

Two important differences between ours and other analyses may contribute to disagreement: different
histogram binning and a different population size. Lorenz [2011] considered the influence of the former,
so here we investigate the latter. For this purpose, we randomly selected some number of pressure dips
from the full population until we reached a desired number of sample points and then calculated a
differential histogram using the same binning as before. Employing a Levenberg-Marquardt algorithm to
facilitate the calculation, we then fit that histogram with a power law to determine the dependence of the
index on sample size and repeated this process 1000 times for each desired number of dips from 20 up to
1667 dips. For this calculation, we initially retained all dips, regardless of their ΔP value and dropped dips
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Figure 7. Dependence of the best fit power law index on
number of dips in a population. The red, shaded region
shows the 1𝜎 uncertainties for the index using a subset of
the full population, while the blue, shaded region shows the
best fit index and uncertainties produced by analyzing the
full population.

with ΔP below the maximum in the histogram,
exactly as we did for the full population of dips.
Figure 7 shows the results—the red, shaded region
shows the 1𝜎 range of indices, while the blue,
shaded region shows the range of uncertainties
for the index when we analyze all dips. The figure
shows we would have to find between 1200 and
1400 dips before the best fit index approximates
the correct, underlying value. For example, the
small sample size from Lambeth [1966] (with 19
dips) as compared to ours can easily explain the
discrepancy between power law indices. This
result suggests that large numbers of pressure dips
are probably required for an accurate assessment
of the population statistics.
4.2.2. Seasonality and Influence
of Precipitation
Figure 8 shows the occurrence of dust devils
through the observational seasons, from late
May to September 2012 and then again from
December 2012 to early June 2013. For this plot,
we have only included dips with ΔP>0.24 hPa to

mitigate the possibly poor detection statistics for the smaller peaks. Figure 8 also shows precipitation data
from a weather station deployed by the Community Environmental Monitoring Program (http://cemp.dri.
edu/) near Boulder City, Nevada, and about 16 km from our survey location. We applied the Knuth binning
algorithm separately to the dip counts and precipitation data and took the smallest bin size, giving bins
about 14 days wide.

Figure 8. (top) The total number of sensors deployed during a time
bin. As indicated in the text, we deployed more sensors in 2013 than in
2012. (bottom) The blue, solid line shows the number of pressure dips
per sensor (there are no observations between October 2012 and late
November 2012—see Table 1). The red dashed line shows the precipita-
tion at a weather station about 16 km from our survey location. Bins are
14 days wide.

The seasonality of dust devils is
obvious in the figure, with the summer
occurrence rate significantly greater
than those of other seasons. The
average number of dips per sensor
seems to have been much larger in
summer 2012 than in summer 2013,
the cause of which is not clear.
Interestingly, though, observations
record no precipitation between
mid-March and mid-July in 2012,
whereas 2013 saw precipitation events
as late as May, possibly suppressing
dust devil numbers that summer.
Dust devil formation is expected to be
suppressed for an extended period
after a precipitation event, as the playa
may be damp or even flooded for
weeks, depending on the evaporation
rate. In addition to the suppression of
dust lifting (note that airborne dust
may amplify dust devil intensity via
injection of heat into the vortex) [e.g.,
Lorenz and Myers, 2005; Fuerstenau,
2006], the increased thermal inertia
of the hard and/or damp playa will
reduce the intensity of surface heating
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Figure 9. (a) ΔP histogram and best fit power law scale b and index p for each logger location. Note that each histogram
is normalized to the total number of dips to allow us to show all data sets on the same plot. (b) Distribution of best fit
power law parameters for each logger location, same symbols as Figure 9a. As before, model parameter uncertainties
come from the posterior distributions.

that drives all convective vortices, whether dust laden or not. Figure 8 suggests an anticorrelation between
precipitation and dip occurrence, but a causal link is not clear.

An important caveat here is that the precipitation record shown may or may not reflect rainfall at El Dorado
Playa since rainfall in summer storms can be highly localized, even on the scale of the 16 km distance from
the playa to the Boulder City weather station.

The observed variability in dip frequency is also influenced by the number of sensors deployed during an
observational span, reflected in Figure 8 (top). For example, in some cases additional sensors were deployed
at locations that saw few dips, so the average number of dips per sensor would drop, even if the underlying
dip frequency had not changed. This effect may have influenced the drop in dip number in June 2013, when
nearly twice as many sensors were deployed as during the previous observation span.
4.2.3. Comparison Between Logger Locations
Since the loggers span a range of locations and monitoring times, they may have recorded different
populations of dust devils. Table 1 clearly shows that some loggers recorded more dips than others, so we
also analyzed the data set for each logger location individually. We first created a histogram of each loca-
tion’s ΔP values, exactly as we did for the full combined data set (using exactly the same bins), and fit each
histogram with a power law, employing the same MCMC analysis as above. Figure 9 shows the resulting
histograms and model fit parameters. With only 25 dips detected in the final reckoning, location E provided
poor statistics for this analysis, and so we excluded it here.

Inspection of Figure 9a shows reasonable agreement between histograms for most locations, and Figure 9b
shows that the corresponding power law indices all nearly agree to within uncertainties (calculated from
standard deviations for the posterior distributions returned by the MCMC model fit). The indices for loca-
tions C and F differ by about 1.7𝜎, indicating marginal disagreement. However, these locations also have the
fewest recorded dips (84 and 70, respectively), which might explain why their power law fits stand out.

Seasonal variability seems to contribute to differences in dip populations since not all loggers recorded
during the same time spans. To investigate this effect, we split the dips recorded at location D (with the most
dips) into those recorded during the summers 2012 and 2013 and those recorded during other seasons.
We applied the same binning and power law fitting, and the results are also shown in Figure 9, as black and
gold symbols and lines. Figure 9 shows clear disagreement between the fit parameters for summer and not
summer dips recorded at D, suggesting that we can, indeed, see seasonal influences. There are many more
large ΔP dips at location D outside of the summer than during the summer, as reflected in the larger b and
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Figure 10. Number of pressure dips for each logger location. Bins are
14 days wide.

p values for “not summer D.” It may
be that stronger heating in summer
yields many more small vortices
since the near-surface air destabilizes
more quickly, or it may be that
ambient winds are stronger in winter,
preferentially allowing only the
largest vortices to form and persist.

We also plot the occurrence rate by
location in Figure 10, analogous to
Figure 8 (but without precipitation).
The contrast between summers 2012
and 2013 is particularly pronounced
in this figure—all three active
locations saw a larger dip frequency
in summer 2012 than in summer
2013. Several previous studies have
considered the connections between
dust devil occurrence and spatial/
temporal conditions [e.g., Sinclair,
1969; Snow and McClelland, 1990],
and more thoroughly probing those
connections in our data sets will be
the subject of future work.

5. Discussion and Conclusions

We have reported the largest barometric dust devil vortex survey data set to date. This is not only the largest
dust devil data set for Earth but also for Mars which until recently had better fixed-station surveys than
for Earth. This large data set results from new field data acquisition techniques and the application of data
analysis methods.

Among other key results, our study highlights the importance of studying dust devil population statistics
and cautions against characterizing dust devils by average values. For example, based on analog
experiments designed to mimic terrestrial conditions, Neakrase et al. [2006] suggested that the dust flux
generated by a dust devil F goes exponentially with the depth of the pressure well ΔP. Using Figure 4 from
that study and the average ΔP from our survey, 0.4 hPa, to calculate an average flux gives an estimate
(⟨F⟩=F(⟨ΔP⟩)) more than 1000 times smaller than integrating the flux against the dust devil population we
retrieve here (⟨F⟩=∫ Fn(ΔP)d(ΔP)∕ ∫ n(ΔP)d(ΔP)). Not surprising, since an exponential dependence on ΔP
means the average flux is dominated by the rare vortices with the lowest pressure cores.

We find that the population function of the pressure dips we detect peaks at around 0.2 hPa, perhaps
suggesting this is the limit of efficient detection with the noise performance of the pressure sensors used,
or it may represent the minimum amplitude of pressure dip associated with vortices under field conditions.
The distribution function above this value appears to be well described by a power law with an exponent
between −2 and −3, rather similar to previous analyses. We note a fall off at the larger vortex end of the
distribution that may be real or may be a result of finite sample size. The exponent appears to change with
season, with summer having proportionately more abundant small vortices. Future work will examine the
relationship of ambient parameters (heating and wind) to the population function.

While the exponents are broadly the same across the playa, the overall abundance of vortices is not. Notably,
vortices appear more frequently throughout most of our study at station A, at the western margin of the
playa. This may be a result of southeasterly winds giving this station a longer fetch, allowing vortices to
develop across the playa. This may also explain the more abundant detections at stations C and D relative to
E and F.
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We observe a large difference between June 2012 and June 2013: the latter saw about a factor of 4 fewer
vortices at all stations. Thus, there is substantial interannual variability—a single observing campaign cannot
provide a definitive estimate of the long-term average population (as might be desired to compute dust
fluxes, for example). We also see a decline in vortex encounter rates after rainfall events. We note that the
vortex detection rate does not fall to zero outside of the summer, although the dip population is statistically
distinct from the summer population. Similar to Ellehoj et al. [2010], we also observed dips during the night,
which may be associated with meteorological phenomena other than dust devils.

As part of future work, we plan to correlate several kinds of meteorological data, which will improve our
understanding of the variety of pressure signatures for dust devils. For example, if dust devils are robustly
detected in time-lapse imaging of a study region as barometric data are collected, we could build a library
of dust devil pressure signals to improve detections, similar to waveform correlation techniques used in
seismology [Gibbons and Ringdal, 2006].

References
Balme, M., and R. Greeley (2006), Dust devils on Earth and Mars, Rev. Geophys., 44, RG3003, doi:10.1029/2005RG000188.
Balme, M., and A. Hagermann (2006), Particle lifting at the soil-air interface by atmospheric pressure excursions in dust devils, Geophys.

Res. Lett., 33, L19S01, doi:10.1029/2006GL026819.
Basu, S., M. I. Richardson, and R. J. Wilson (2004), Simulation of the Martian dust cycle with the GFDL Mars GCM, J. Geophys. Res., 109,

E11006, doi:10.1029/2004JE002243.
Bevington, P. R., and D. K. Robinson (2003), Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, Boston.
Cantor, B. A., K. M. Kanak, and K. S. Edgett (2006), Mars orbiter camera observations of Martian dust devils and their tracks (September

1997 to January 2006) and evaluation of theoretical vortex models, J. Geophys. Res., 111, E12002, doi:10.1029/2006JE002700.
Ellehoj, M. D., et al. (2010), Convective vortices and dust devils at the Phoenix Mars mission landing site, J. Geophys. Res., 115, E00E16,

doi:10.1029/2009JE003413.
Foreman-Mackey, D., D. W. Hogg, D. Lang, and J. Goodman (2013), EMCEE: The MCMC hammer, Publ. A. S. P, 125, 306–312.
Fuerstenau, S. D. (2006), Solar heating of suspended particles and the dynamics of Martian dust devils, Geophys. Res. Lett., 33, L19S03,

doi:10.1029/2006GL026798.
Gibbons, S. J., and F. Ringdal (2006), The detection of low magnitude seismic events using array-based waveform correlation, Geophys. J.

Int., 165, 149–166.
Karstens, C. D., T. M. Samaras, B. D. Lee, W. A. Gallus, and C. A. Finley (2010), Near-ground pressure and wind measurements in tornadoes*,

Mon. Weather Rev., 138, 2570–2588.
Knuth, K. H. (2006), Optimal data-based binning for histograms. ArXiv Physics e-prints.
Lambeth, R. L. (1966), On the measurement of dust devil parameters, Bull. Am. Meteorol. Soc., 47, 522–526.
Lorenz, R. (2011), On the statistical distribution of dust devil diameters, Icarus, 215, 381–390.
Lorenz, R. D. (2012a), Observing desert dust devils with a pressure logger, Geosci. Instrum. Method Data Syst. Discuss., 2, 477–505.
Lorenz, R. D. (2012b), Power law distribution of pressure drops in dust devils: Observation techniques and Earth-Mars comparison, Planet.

Space Sci., 60, 370–375.
Lorenz, R. (2013a), The longevity and aspect ratio of dust devils: Effects on detection efficiencies and comparison of landed and orbital

imaging at Mars, Icarus, 226, 964–970.
Lorenz, R. D. (2013b), Irregular dust devil pressure drops on Earth and Mars: Effect of cycloidal tracks, Planet. Space Sci., 76, 96–103.
Lorenz, R. D., and P. D. Lanagan (2014), A barometric survey of dust-devil vortices on a desert playa, Boundary Layer Meteorol., 153,

555–568.
Lorenz, R. D., and M. J. Myers (2005), Dust devil hazard to aviation: A review of US air accident reports, J. Meteorol., 30, 178–184.
Markwardt, C. B. (2009), Non-linear least-squares fitting in IDL with MPFIT, in Astronomical Data Analysis Software and Systems XVIII.

Vol. 411 of Astronomical Society of the Pacific Conference Series, edited by D. A. Bohlender, D. Durand, and P. Dowler, pp. 251,
Astronomical Society of the Pacific, San Francisco, Calif.

Metzger, S. M., J. R. Carr, J. R. Johnson, T. J. Parker, and M. T. Lemmon (1999), Dust devil vortices seen by the Mars Pathfinder Camera,
Geophys. Res. Lett, 26, 2781–2784.

Metzger, S. M., M. R. Balme, M. C. Towner, B. J. Bos, T. J. Ringrose, and M. R. Patel (2011), In situ measurements of particle load and
transport in dust devils, Icarus, 214, 766–772.

Murphy, J. R., and S. Nelli (2002), Mars Pathfinder convective vortices: Frequency of occurrence, Geophys. Res. Lett., 29(23), 2103,
doi:10.1029/2002GL015214.

Neakrase, L. D. V., R. Greeley, J. D. Iversen, M. R. Balme, and E. E. Eddlemon (2006), Dust flux within dust devils: Preliminary laboratory
simulations, Geophys. Res. Lett., 33, L19S09, doi:10.1029/2006GL026810.

Pathare, A. V., M. R. Balme, S. M. Metzger, A. Spiga, M. C. Towner, N. O. Renno, and F. Saca (2010), Assessing the power law hypothesis for
the size-frequency distribution of terrestrial and Martian dust devils, Icarus, 209, 851–853.

Renno, N. O., et al. (2004), MATADOR 2002: A pilot field experiment on convective plumes and dust devils, J. Geophys. Res., 109, E07001,
doi:10.1029/2003JE002219.

Rennó, N. O., M. L. Burkett, and M. P. Larkin (1998), A simple thermodynamical theory for dust devils, J. Atmos. Sci., 55, 3244–3252.
Ringrose, T. J., M. R. Patel, M. C. Towner, M. Balme, S. M. Metzger, and J. C. Zarnecki (2007), The meteorological signatures of dust devils

on Mars, Planet. Space Sci., 55, 2151–2163.
Scargle, J. D., J. P. Norris, B. Jackson, and J. Chiang (2013), Studies in astronomical time series analysis. VI. Bayesian block representations,

Astrophys. J., 764, 167.
Sinclair, P. C. (1969), General characteristics of dust devils, J. Appl. Meteorol., 8, 32–45.
Sinclair, P. C. (1973), The lower structure of dust devils, J. Atmos. Sci., 30, 1599–1619.
Snow, J. T., and T. M. McClelland (1990), Dust devils at White Sands Missile Range, New Mexico: 1. Temporal and spatial distributions,

J. Geophys. Res., 95, 13,707–13,721.
Wagstaff, K. L., R. Castano, and S. Chien (2006), Real-time, in-situ detection of dust devils using pressure sensors, AGU Fall Meeting

Abstracts, A3.
Wyett, R. E. (1954), Pressure drop in a dust devil, Mon. Weather Rev., 82, 7–8.

Acknowledgments
B.J. acknowledges travel support from
the Carnegie Department of Terrestrial
Magnetism. The work of R.L. was
funded by NASA through the Mars
Fundamental Research Program grant
NNX12AI04G. Thoughtful reviews
from Asmin Pathare, Jim Murphy, and
another referee significantly improved
this article. Our barometric data are
available at http://www.astrojack.com/
research/.

JACKSON AND LORENZ ©2015. American Geophysical Union. All Rights Reserved. 12

http://dx.doi.org/10.1029/2005RG000188
http://dx.doi.org/10.1029/2006GL026819
http://dx.doi.org/10.1029/2004JE002243
http://dx.doi.org/10.1029/2006JE002700
http://dx.doi.org/10.1029/2009JE003413
http://dx.doi.org/10.1029/2006GL026798
http://dx.doi.org/10.1029/2002GL015214
http://dx.doi.org/10.1029/2006GL026810
http://dx.doi.org/10.1029/2003JE002219
http://www.astrojack.com/research/
http://www.astrojack.com/research/

	Boise State University
	ScholarWorks
	3-1-2015

	A Multiyear Dust Devil Vortex Survey Using an Automated Search of Pressure Time Series
	Brian Jackson
	Ralph Lorenz

	A multiyear dust devil vortex survey using an automated search of pressure time series
	Abstract
	Introduction
	Instrumentation and Data Collection
	Data Conditioning and Pressure Dip Detection
	Results
	Completeness and Filtering Spurious Detections
	Dip Statistics
	Overall Statistics
	Seasonality and Influence of Precipitation
	Comparison Between Logger Locations


	Discussion and Conclusions
	References


