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Surface effects on the magnetization of Zn-doped SnO2 are investigated using first principles method.

Magnetic behavior of Zn-doped bulk and highest and lowest energy surfaces—(001) and (110),

respectively, are investigated in presence and absence of other intrinsic defects. The Zn-doped (110)

and (001) surfaces of SnO2 show appreciable increase in the magnetic moment (MM) compared to

Zn-doped bulk SnO2. Formation energies of Zn defects on both the surfaces are found to be lower

than those in bulk SnO2. Zn doping favors the formation of oxygen vacancies. The density of states

analysis on the Zn-doped (110) surface reveals that the spin polarization of the host band occurs

primarily from p-orbitals of bridging oxygen atoms and the Zn atom itself contributes minimally.

The present work provides a key understanding on the role played by the surfaces in inducing the

magnetism of doped nanoparticles and thin films. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4859995]

The Diluted magnetic semiconductors (DMSs) are known

for their potential applications in spintronic1 and optoelec-

tronic2 devices. Nanoparticles of wide bandgap semiconduc-

tors such as SnO2,3 TiO2,4 and ZnO5 are shown to display

magnetic behavior in presence of magnetic and nonmagnetic

dopants. Among the metal oxide diluted magnetic semicon-

ductor (MODMS), SnO2 is very interesting because of its

bandgap (�3.6 eV), high optical transparency, electrical con-

ductivity, and chemical sensitivity.6 Hence, SnO2 has gained

attraction for applications in solar cells, heat mirrors, catalysis,

and gas sensing applications. Recent experimental reports on

transition metal (TM)-doped (V,7 Cr,8 Mn,9 Fe,10 Co,11 Ni,12

Cu,13 and Zn14) SnO2 have shown promising application on

the high temperature ferromagnetic semiconductors.

Theoretical and computational studies on the TM-doped

(Co,15 Mn,16 Ni,17 Cu,18 and Zn19,20) SnO2 have also been

performed to understand the induced magnetism. Despite a

large number of experimental and theoretical investigations,

induced magnetism of doped SnO2 is still not very well under-

stood. Almost all the previous theoretical investigations have

exclusively focused on the bulk magnetism of doped and

undoped SnO2. However, in nanoparticles and thin films, sur-

face-to-volume ratio is significantly high. Recently, Zhang

et al.21 studied the surface magnetism induced by Co-doped

(110) surface of SnO2; Bouamra et al.22 studied the magnetic

properties of Rh-doped (110) surface of SnO2, and Rahman

and Garcia-Suarez23 studied the surface magnetism induced

by a C-doped (001) surface. However, till date, there have not

been any reports on the magnetism induced by nonmagnetic

and metallic atom doped SnO2 surfaces.

In this paper, we have studied the role of (110) and (001)

surfaces of SnO2 on the induced magnetism of Zn-doped SnO2

nanoparticles using density functional theory. We have studied

the structure, electronic, and magnetic properties of Zn-doped

bulk (001) and (110) surfaces of SnO2 in the presence and

absence of intrinsic defects such as oxygen and tin vacancies to

understand their influence on the energetics and magnetic

behavior. Our results provide an insight on the importance of

surfaces in inducing the magnetism in nonmagnetic and metal-

lic atom doped SnO2 nanoparticles and thin films.

To investigate the structural, electronic, and magnetic

properties of various point defects in bulk SnO2 and on its (001)

and (110) surfaces, we have used density functional theory

(DFT) in the pseudopotential formalism as implemented in

Quantum-ESPRESSO.24,25 The generalized gradient approxi-

mation (GGA) is employed for the exchange-correlation poten-

tial with Perdew-Burke-Ernzerhof (PBE) functional. SnO2

crystallizes in the rutile structure and we find the lattice parame-

ters as: a¼ b¼ 4.843 Å and c¼ 3.314 Å. These lattice parame-

ters compare well with earlier GGA calculations26 and from

experimental values.27 The 1� 1� 1 unit cell of SnO2 con-

tains two Sn and four oxygen atoms a Monkhorst-Pack28

k-mesh of 6� 6� 9 is adopted. A plane wave kinetic energy

cutoff of 100 Ry was used for all calculations and forces were

converged to 0.01 eV/Å. Surfaces of SnO2 were modeled

using a 2� 2 supercell of symmetric and asymmetric slabs.

The symmetric slabs contained seven atomic layers and a vac-

uum of �13 Å. Central 3-layers were fixed at their bulk-like

sites, and rest of the layers on top and bottom of the slabs were

allowed to relax. The asymmetric slabs contained five atomic

layers, having bottom three layers fixed at bulk-like sites.

We find that the band gap of SnO2 with GGA is 0.7 eV in

good comparison with previous GGA values of 0.6 eV,29

0.95 eV30 but the experimental value is 3.6 eV.31 It is known

that GGA underestimates the band gap of oxide materials.32

The surface energies of (001) surface was found to be 1.82 J/m2,

this compares well with the previously calculated GGA values

of 1.72 J/m2.33 The surface energy of (110) surface was found

to be 0.98 J/m2 and it compares well with 1.01 J/m2.34 Thus, we

correctly predict that (001) surface is higher in energy than the

(110) Formation of dominant surface would depend on the prep-

aration conditions (annealing temperature) during synthesis.35

We find that the enthalpy of formation for the SnO2 from
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metallic Sn and molecular oxygen (O2) is �4.39 eV, which

compares well with the value �4.51 eV36 obtained from a pre-

vious DFT-GGA calculations and the experimental value of

�5.99 eV/SnO2.
37 This slight difference is presumably due to

the self-interaction error in solids with local density

approximation/GGA38,39 as shown in the density of states for

the rutile phase of bulk SnO2. The undoped bulk SnO2, symmet-

ric and asymmetric slabs of (001) and (110) surfaces were found

to be non-magnetic, which compares well with previous theo-

retical26,28,36 and experimental42,43 observations.

In agreement with previous theory26,40,41 and experi-

ments,44 neutral and doubly ionized oxygen vacancies are

found to be nonmagnetic in bulk SnO2. However, singly ion-

ized oxygen vacancy is found to be magnetic with a total mag-

netization of 0.35 lB. Wang et al.45 also showed that singly

ionized oxygen vacancies induce magnetization in bulk SnO2.

Neutral and doubly ionized oxygen vacancies on (001) and

(110) surfaces are also found to be non-magnetic as in the case

of bulk; this is in agreement with previous DFT-GGA results.23

However, singly ionized oxygen vacancies are found to be

magnetic on (001) surface and nonmagnetic (110) surface.

Tin vacancies, however, are found to be magnetic in bulk

in agreement with previous calculations.26,41 We find that Sn

vacancies are also magnetic on both the (001) and (110) surfa-

ces. Magnetic moment (MM) of Sn vacancies is the same on

(110) and (001) surfaces. This suggests that the energy of the

surface or its geometry do not have much influence on the MM

of Sn vacancies. The MM of Sn vacancies on surfaces is found

to be similar to that of Sn vacancies in nanosheets of SnO2.40

We find that the MM of Sn vacancy on the symmetric and

asymmetric slabs on (001) and (110) is the same. However, its

MM is zero on the symmetric (001) and nonzero on the asym-

metric (001) surface. The vanishing magnetic moment of the tin

vacancy on symmetric slab of (001) surface suggests that the

easy axis of magnetization for the VSn is out of the plane, i.e.,

perpendicular to the (001) surface, which at the top and the bot-

tom of the slab cancel each other. However, the easy axis of

magnetisation is in the surface plane for VSn on (110) surface,

hence the two symmetric defects add up their magnetic moment.

Here, we focus mainly on neutral Sn vacancies because

they are the primary source of magnetism in SnO2
26,40,41 and

Zn is also found to be more stable at Sn-site than at O-site.

Formation energies (FE) of neutral oxygen and Sn vacancies

in bulk and on surfaces are shown in Table I. In general, we

find that both Sn and oxygen vacancies are easier to create on

surfaces than in bulk. Further, they are easier to form on (001)

surface rather than on (110) surface. This can be attributed to

the higher surface energy of (001) surface than (110) surface.

It is well known19,20 that doping SnO2 with Zn induces

magnetism in bulk. Doping oxide materials with transition met-

als—magnetic or nonmagnetic atoms, like Fe, Co, and Cu

induces magnetic moment11,46 in the nanoparticles. It has also

been found that even nonmagnetic-nonmetallic atoms like C,

N, and nonmagnetic, alkali metallic atoms like Mg, K can also

induce magnetism in oxides.23,47 Nanoparticles having radius

of only a few nanometers will have a large surface-to-volume

ratio. The effect of surfaces in inducing the magnetism in oxide

nanoparticles while doped with either magnetic or nonmagnetic

atoms has not been investigated in detail. In the present work,

we perform a consistent study of magnetism in doped bulk as

well as surfaces of SnO2 in order to understand the role of

surfaces in inducing the magnetism with a nonmagnetic atom

doping. Zn-doped SnO2 is taken as the case study to understand

the surface effects.

To understand the role of surfaces, Zn is incorporated at

Sn-site in surface and subsurface layers of SnO2. The total

magnetization of Zn-doped (001) or (110) surface was found

to increase by about �40% compared to that of Zn-doped

bulk alone. It is known that when Zn substitutes Sn-atom in

bulk SnO2, the nearest neighbor (NN) oxygens get their

p-orbitals spin polarized due to the holes generated by Zn

atom and thus contribute to the net magnetic moment. In the

case of Zn-doped (001) surface, Zn is surrounded by four

oxygens instead of six, therefore the same number of holes

generated by Zn polarize fewer oxygens, which results into a

larger magnetic moment. In the case of (110) surface, the Zn

polarizes the bridging oxygen atoms to a larger extent than

in-plane oxygens. Zn atom itself does not get polarized in all

the cases. The subsurface Zn doping on (001) and (110)

surfaces also showed similar magnetic moment per cell as

that of surface doping. When the doping is done on the

bulk-like sites of the (001) and (110) surfaces, the total mag-

netic moment of the (001) slab was found to be almost com-

parable to that of the (110) surface and the bulk calculation.

All these results (Table II) show that the MM of Zn-doped

SnO2 is greatly affected by the presence of surfaces.

FEs of Zn defects on surfaces are calculated to gauge

the feasibility of formation of Zn defects on surfaces. We

find that the FE of ZnSn is half of the FE in bulk, whereas on

(110) surface, FE is very similar to that in bulk. On (001)

surface, FEs increase as Zn goes in the subsurface and

TABLE I. Defect formation energies (in eV) of oxygen and Sn vacancies in

bulk and on surfaces within Sn-rich and O-rich conditions.

System Defects Sn-rich O-rich Mcell (lB/cell)

Bulk VO
0 1.08 3.27 0.00

Vsn
0 11.47 7.08 3.98

S-(001) VO
0 �1.68 0.51 0.00

Vsn
0 9.01 4.62 0.00

S-(110) VO
0 �0.64 1.56 0.00

Vsn
0 10.10 5.71 4.00

TABLE II. Defect formation energies (in eV) and magnetic moments (lB)

of isolated ZnSn defects in bulk, on (001) and (110) surface. ZnSn
B, ZnSn

l1,

ZnSn
l2, ZnSn

f indicate the position of Zn atom in bulk, surface layer, subsur-

face layer (2nd layer in slab), and in frozen part of the slab, respectively.

Mcell and MZn are magnetic moments of the whole cell and Zn atom alone.

System Defects Sn-rich O-rich Mcell (lB/cell) MZn (lB/Zn)

Bulk ZnSn
B 4.68 0.29 1.42 0.11

(001) ZnSn
l1 2.80 �1.59 1.96 0.10

ZnSn
l2 3.65 �0.74 2.00 0.00

ZnSn
f 4.83 0.44 1.85 0.11

(110) ZnSn
l1 4.02 �0.37 2.00 0.00

ZnSn
l2 4.30 �0.09 1.97 0.08

ZnSn
f 4.61 0.23 1.29 0.00
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eventually in bulk. However, the FEs on (110) are almost

constant while going from surface to subsurface to bulk.

Again, the FE of ZnSn on (001) is lower than that of the

(110) surface as found for oxygen and tin vacancies.

Spin resolved density of states studies are performed to

understand the origin of magnetism in Zn-doped SnO2 surfa-

ces. Figures 1(a)–1(d) show the partial density of states

(PDOS) of nearest neighbour bridging and in-plane oxygens,

Sn and Zn atoms on the Zn-doped (110) surface, respectively.

Unlike the Zn-doped bulk, the Zn atom on the (110) surface

does not contribute to the induced magnetic moment. The

PDOS of the NN bridging oxygen atom (Figure 1(c)) shows

larger asymmetry on the p-orbital states in the conduction

band minima as well as in the valence band maxima, which

mainly contributes to the asymmetry on the TDOS of the

Zn-doped (110) surface. The magnetic moment induced by the

NN bridging oxygen was found to be 0.925 lB. The PDOS of

the NN in-plane oxygen atom (Figure 1(d)) shows asymmetry

on the states arising from their p-orbitals, but their contribution

to the TDOS is very small, which is clearly shown in its contri-

bution (0.039 lB) to the total magnetic moment. The PDOS of

the NN Sn atom shows an asymmetry in the states of conduc-

tion band minima, arising from the d-orbital, but the contribu-

tion of this asymmetry to the TDOS of the Zn-doped system is

minimal, evident from the magnetic moment of 0.038 lB con-

tributed to the total magnetisation. Overall, it can be observed

that the asymmetry in the TDOS of the Zn-doped (110) surface

is mainly from the NN bridging oxygens and minimally from

the NN in-plane oxygen and Sn atom.

In summary, magnetism and energetics of isolated intrinsic

and extrinsic defects, in bulk, on (001) and (110) surfaces are

investigated to understand the role of surfaces in inducing the

magnetism in Zn-doped SnO2. We find that neutral and doubly

ionized oxygen vacancies do not induce magnetism in bulk

and on surfaces, while singly ionized oxygen vacancies do

induce magnetism in bulk and on (001) surface only. The oxy-

gen vacancies are much easier to create on surfaces than in

bulk. Isolated neutral tin vacancies are found to produce a large

MM, both in bulk and on surfaces; however, they are harder to

create in bulk as well as on surfaces. Isolated ZnSn defects are

found to have a larger magnetic moment on both the (001) and

(110) surfaces than in bulk. ZnSn defects are much easier to

create on (001) surface than in bulk but they are equally harder

to create on (110) surfaces. These observations ascertain the

role of surfaces in induced magnetism in Zn-doped SnO2.
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