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Abstract 

We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging 

soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden 

topographic variations of streaky fringes with a negative applied force when collected on a soft 

hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with 

positive applied forces. The instability of HSAFM images with the negative applied force was explained 

by the transition between contact and noncontact regimes in the force-distance curve. When the grating 

surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging 

stability was observed at both positive and negative applied forces. The higher adhesive interaction 

between the tip and the surface explains the improved imaging stability. The effects of imaging rate on 

the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the 

grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible 

within the force deviation less than ~0.5 nN at the imaging rate up to 0.2 s per frame, suggesting that the 

force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological 

samples. 

Keywords: COIFM; AFM; HSAFM; interfacial force spectroscopy; force-feedback; snap-to-contact; 

imaging stability. 
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1. Introduction 

Most widely used atomic force microscopy (AFM) techniques have a limited ability to detect the static 

force at a few nanometers above the attractive surface due to mechanical instabilities of the tip-sensor 

assembly called the “snap-to-contact” phenomenon [1-4]. This phenomenon corresponds to the sudden 

transition from the noncontact to contact states in contact mode AFM [4]. The transition is caused by the 

uncontrolled movement of the probe to the surface when the intermolecular force gradient (Fi/z) 

exceeds the spring constant of the force probe (k). The contact mode AFM is unable to image topographic 

structures of the surface in the noncontact regime due to this mechanical instability. 

To avoid the snap-to-contact phenomenon, amplitude modulation (AM) AFM was introduced to image 

soft samples or to visualize electric or magnetic structures, which generate long-ranged electric or 

magnetic forces. Kühle et al. found that several points of instability in the parameter space caused by 

attractive forces combined with repulsive elastic-type forces resulted in disturbances during image 

acquisition on hard elastic surfaces [5]. The AM-AFM images generated some protruded artifacts when 

the probe encountered the high hillock structures. These features were interpreted as nonlinear stochastic 

phenomena in the tip-sample interactions [6]. The abrupt changes in the height of topographic features 

were associated with the continual switching of the oscillating tip between the two stable states while the 

tip scans the surface in the AM-AFM [6-8]. Similarly, the topographic features in the magnetic image are 

attributed to the switching between the bistable states in magnetic force microscopy (MFM) [9]. This 

concept has been applied to separate the topographic structure from magnetic images using electrostatic 

modulation. In principle, both effects of the AM-AFM and MFM result from the intrinsic nonlinear 

mechanical bistability of the sensor-sample assembly.  

As an alternative approach, the snap-to-contact issue associated with contact AFM has been resolved by 

removing the bistability using voltage-activated force feedback [10, 11]. Previously, we developed an 

experimental technique called “cantilever-based optical interfacial microscopy” (COIFM) to measure 



 

 

NOTICE: this is the author’s version of a work that was accepted for publication in Ultramicroscopy. Changes resulting from the publishing 
process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this 

document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently 

published in Ultramicroscopy, 2012. DOI: 10.1016/j.ultramic.2012.09.012 

 

fundamental interfacial interactions at nanometer scales [11-13]. The COIFM utilizes a force-feedback 

technique to avoid the rapid snap-to-contact process associated with AFM measurement. By employing a 

feedback scheme, the spring constant can be considered infinite due to the counter force. It has proven its 

ability to simultaneously measure normal and friction forces between two surfaces at the nanometer scale 

in ambient environments using lateral modulation [12, 13]. The COIFM was later adapted for high-speed 

AFM (HSAFM) imaging of large-scale biological specimens through the force-feedback scheme [14].  

However, contrary to the AM-AFM, there have been few studies on how the stability influences the 

imaging in the force-feedback HSAFM. We investigated this effect by comparing both interfacial force 

spectroscopic and topographic information. 

2. Materials and methods 

We used a force-feedback HSAFM that had been previously developed and reported [14] by utilizing a 

commercially available cantilever called a “dimensional micro-actuated silicon probe” (DMASP) as the 

sensor and actuator. The actuation function of the DMASP was used to maintain the constant deflection 

of the cantilever at an applied force during the data acquisition through the application of output voltage 

from the force-feedback controller.  The output voltage was converted into the applied force by 

multiplying the conversion factor (5 nN/V) reported in our earlier publication [14]. The voltage applied to 

the piezo tube was recorded as a topographic signal for each AFM image displayed with 128 x 128 data 

points.  

All data presented here were recorded through analog-to-digital converter (ADC) inputs of the RHK 100 

and XPM PRO software. For the collection of force-distance curves, the force-feedback voltage (VZnO) 

was recorded as a function of distance between the probe and the sample surface during both approach 

and retraction of the piezo tube [11,13]. We obtained force-distance curves under the off-feedback 

condition by sweeping the computer-controlled input of a z high-voltage amplifier. 

All data were collected on an oxidized silicon two-dimensional grating sample with 10 m periodicity 

(laterally) and 180 nm step height acquired from Veeco, Inc. [15] at a relative humidity of 30% at a room 
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temperature of 22C. A soft hydrocarbon film was grown on the grating sample, which had been exposed 

to the ambient environment for 60 days. The ambient material allows for the covering of the hydrophilic 

grating sample with a layer consisting of hydrophobic properties [16]. Topographic and force images 

were taken with alternating positive and negative applied forces. After data acquisition the grating sample 

underwent a cleaning procedure consisting of submersion into a piranha solution made from a 3:1 

concentrated H2SO4/30% H2O2 (Pharmco and Fischer Scientific, respectively); then sonicated in acetone, 

ethanol, and distilled water for 5 min in each; and ultimately dried with an N2 flow. This allowed for 

comparison and correlation of the effects of hydrophilicity. To demonstrate its applicability to biological 

samples, an Escherichia coli (E. coli) culture and biofilm sample was taken from a PBS solution and 

deposited onto the clean grating structure. The culture of a non-pathogenic strand of E. coli (RK4353) 

was grown overnight with shaking (225 rpm) at 37°C in 5 mL of Luria Bertani broth. The culture was 

pelleted at 6000xg/10min, and resuspended in sterile PBS.  1 mL of the mixture was then dispensed into 

99 mL of fresh PBS solution, causing a 1:100 part dilution. The 10 m periodicity and 200 nm step height 

of the grating sample were used for an additional dimensional scale for each collected image. 

Topographic and force images were taken at the applied force of 0 nN for various scan speeds on the 

biofilm and E. coli samples. 

3. Results and discussion 

The force-feedback HSAFM was applied to high-speed imaging on a soft hydrocarbon film with large 

topographic height variations to investigate the stability of the system. First, force-distance curves were 

collected on the grating sample covered by the adsorbed material film. As expected both for the approach 

Fig. 1(a) and retraction Fig. 1(b) curves do not show any snap-to-contact phenomenon due to the zero 

compliance effect during the force-distance measurement. The data show that the minimum force is -1.5 

nN on approach, while the minimum force is -2 nN on retraction.  The displayed minute attractive force 

encountered on approach (as seen in Fig. 1(a)) implies that the outer surface of the adsorbed material is 

hydrophobic in nature, consistent with our earlier report [16]. The hydrophobicity of the surfaces is 
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derived from the nonpolar hydrophobic surface, which prefers to orient outward to be exposed to ambient 

air molecules which are predominantly non-polar.  The stiffness of the sample was found to be ~0.77 N/m 

from a linear curve fitting made in the repulsive regime from -5 nm to 2 nm tip-sample distance in Fig. 

1(b). 

As seen in Fig. 1(b), when imaging with a positive applied force (indicated by a dotted line representing 

the applied force of +1.25 nN), there is only one stable imaging condition (the intersection of the dotted 

line and the force-distance curve, represented by a solid circle). However, when imaging with a negative 

applied force, there are one stable and one unstable imaging conditions indicated by the solid circle and 

open circle, respectively, on the dotted line at -1.25 nN. We hypothesized that when imaging the grating 

sample, as the tip reached the sudden height deviation associated with the step structure, the tip-sample 

distance would momentarily increase, which would cause a negative rise in force within the force-

Fig. 1. Force-distance curve between the tip and a two-dimensional grating structure with 10 m 

periodicity, with a force activated voltage feedback system during approach (a) and retraction (b). 

Dashed lines represent the imaging applied force values, where the closed circles represent 

intersection of the curve with negative slope and the open circle represent intersection of the curve 

with positive slope. Inset is a zoomed in view of the force distance curve at the negative-positive 

slope transition point. The addition of the arrows in the inset indicate the direction the feedback 

moves after moving past one of the imaging states indicated by the closed and open circle on the 

dashed line symbolizing the applied force. Constant-force topographic (c,e,g) and simultaneous 

force (d,f,h) images collected in a scan size of 10 μm × 10 μm on the grating structure at an 

imaging rate of 10 s per frame at applied forces of +1.25 nN (a, b), -1.25 nN (c,d), +1.25 nN (e,f). 
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distance curve. This negative rise could potentially trigger a shift from the negative sloped stable imaging 

condition (closed circle) to the positive sloped unstable imaging condition (open circle), thus causing 

imaging instability as the tip transitioned between the two imaging states. When encountering a large 

topographic variation, the tip-sample distance change will cause the feedback of the system to adjust the 

tip-sample distance in such a manner as it perceives will bring the system back to the constant-force 

imaging condition (as depicted by the inset of Fig. 1(b)). However, if the system is pushed past the 

unstable imaging point (open circle), the system will reset and attempt to increase the tip-sample distance 

in order to increase force as if it were near the stable imaging condition. This causes the feedback to move 

in the wrong direction (as in the direction of the right-most arrow), creating an unstable imaging 

condition.  At the applied force of -1.25 nN, because only a slight amount of force ~0.75 nN is needed to 

make the transition between the two states, the feedback perturbation (i.e. the sudden tip-sample distance 

change) should allow for switching between the imaging states at almost equal probability during the data 

acquisition near the step-structures of the grating sample. 

To test this hypothesis, a sequence of high-speed imaging with different loading forces was performed. 

Fig. 1(c) and 1(d) show topographic and force images taken at a high-speed imaging rate of 10 s per 

frame with the applied force of +1.25 nN. The topographic image shows many rounded structures 

(presumably dust) with diameter of 10-300 nm, which had accumulated on the grating structure during the 

long storage period in air, without exhibiting any unstable features. The force image (as seen in Fig. 1(d)) 

is shown to remain relatively constant except when encountering areas that contain abruptly changing 

large structures (such as the grating steps). The observed force changes are due to the limited response 

time of the current force-feedback system to the sudden force changes. When we changed the applied 

force from positive to negative, the topographic and force images (Fig. 1(e) and 1(f) respectively) show 

some streaky fringe structures that flow in the scan direction. These streaky features represent moments of 

imaging instability after the system encountered a relatively large jump in tip-sample distance. The 

system is able to recover relatively quickly, depending on how far off the stable imaging condition (as 



 

 

NOTICE: this is the author’s version of a work that was accepted for publication in Ultramicroscopy. Changes resulting from the publishing 
process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this 

document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently 

published in Ultramicroscopy, 2012. DOI: 10.1016/j.ultramic.2012.09.012 

 

indicated by the solid circle in the inset of Fig. 1(b)) is moved. When we changed the applied force back 

to the positive value, those streaky structures disappeared (as seen in Fig. 1(g) and 1(h)). The appearance 

of the streaky structures when imaging at the applied force of -1.25 nN, and then the disappearance when 

imaging at the applied force of +1.25 nN, confirms the hypothesis that the negative applied force would 

allow for transition between the two imaging states depending on tip-sample distance (as seen in Fig. 

1(b)). 

The grating structure then underwent a strict cleaning procedure (described in the Materials and Methods) 

to remove the adsorbed material layer in order to obtain a comparison with the underlying known hard 

hydrophilic grating structure. Force-distant graphs were compiled for the approach (Fig. 2(a)) and 

retraction (Fig. 2(b)) process. The data shows that on approach the minimum attractive force is -39 nN 

while on retraction the minimum attractive force is -75.5 nN. When compared to the previous attractive 

forces of the unclean sample, the forces increased by a factor of more than 30. The increase in attractive 

forces indicates that water meniscus formed between the hydrophilic sample surface and the tip due to the 

removal of the hydrophobic components observed in Fig. 1(c).  

Interestingly, a periodic feature appeared between 0 nm and 8 nm during the approach process, as denoted 

as P1 and P2 in Fig. 2(a). The periodicity was calculated to be ~3 nm, possibly suggesting distance-

dependent structural transition [12, 13] of the water meniscus. In contrast, the periodic feature was absent 

in the force-distance curve on retraction. To verify the hardness of the sample, a linear curve fitting was 

made from -1.1 nm to 0.4 nm tip-sample distance in Fig. 2(b), thus giving a spring constant of ~57 N/m.  

Therefore, the spring constant is shown to be much larger than the 0.77 N/m observed in Fig. 1(b). 

Additionally, because a much larger negative force of ~70 nN than the ~0.75 nN of Fig. 1(b) is needed to 

make the transition between the two imaging conditions (as seen in Fig. 2(b)), even when the distance 

between the stable and unstable imaging states is only ~2 nm, it can be anticipated that the probability of 

reaching the unstable imaging condition is minute with an applied force of -1.25 nN. To test this 

hypothesis and to verify the sample’s cleanliness, a topographic image was taken with a scan area of 8 μm 
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x 8 μm, at the same applied force value of -1.25 nN, and at the same high imaging rate of 0.6 s per frame. 

The high-speed topographic image in Fig. 2(c) does not show the same features related to the 

hydrocarbon film observed in Fig. 1(c). This result verifies the samples cleanliness and indicates that the 

hypothesis is valid in that the system under the current circumstance did not reach the unstable imaging 

condition even when encountering the large topographic step heights of the grating sample. This result 

suggests that the imaging stability is dependent on the strength of adhesion between the tip and the 

surface. 

Now that the effect of the adhesion on the imaging stability is known, attention is focused on the effects 

derived from the imaging rate.  For this part of the experiment, real-world biological applications were 

tested by using a very soft E. coli sample. The force-distance approach curve (Fig. 3(a)) showed that 

initially the tip did not experience any force until the tip came in contact with the biomaterial. On 

approach, the tip experienced a sudden attractive force of -6.5 nN due to the tip-contact with the material 

Fig. 2. Force-distance curves measured without lateral modulation at RH 30 % during approach (a) 

and retraction (b).  P1 and P2 represent the period of oscillation. The segment after P2 is the 

transitional interval from oscillatory to repulsive force by the sample surface. The dashed line 

represents the imaging applied force value; where the closed circles represent intersection of the curve 

with negative slope and the open circle represent intersection of the curve with positive slope. (c) Fast 

topographical images collected at the applied force of -1.25 nN in a scan size of 8 μm x 8 μm on the 

cleaned grating structure at an imaging rate of 0.6 s per frame. 
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surface (seen to be approximately 95 nm from the force-distance curve). The tip-force then increased 

linearly as the tip-substrate distance decreased, causing the tip to push against the biomaterial. When the 

tip retracted (Fig. 3(b)), the linear force followed the original approaching curves until the tip distance 

was zero, showing that the observed force is similar to a reversible process in the repulsive force regime. 

However, below the tip distance of zero, the adhesive force linearly continued until it reached 245 nm. At 

245 nm, the attractive force rapidly increased toward zero and then slowed down near zero. The relatively 

large pull-off force (18 nN), in comparison to the attractive force (6.5 nN) on approach in the force-

distance curve, indicates the existence of adhesive bonding between the tip and the biomaterial. As the 

distance increases after the breakage of the adhesive bonding, van der Waals forces and electrostatic 

interactions are the only contribution to the observed attraction at the distance larger than 260 nm. 

Interestingly, the linear dependence of the force on the distance suggests that the adhesive internal 

material behaved like a linear spring that follows Hooke’s law. A linear curve fitting from -63 nm to 226 

nm tip-sample distance in Fig. 3(b) provides a spring constant value of 0.076 N/m, a fractionally smaller 

value than seen in the soft hydrocarbon film in Fig. 1(b). Because the distance is ~320 nm apart between 

the two imaging conditions (represented by the open and closed circles in Fig. 3(b)) at the standard 

operating applied force of 0 nN, the chance that the unstable imaging condition point will be reached is 

highly improbable with the observed large pull-off force of 18 nN. As before, to confirm this idea, 

topographic and force images were collected of biofilms with a single cell of E. coli on the grating sample 

under varying imaging rates. Fig. 3(c) shows an 8 µm x 8 µm high resolution topographic image and Fig. 

3(d) shows the corresponding force image, taken at a rate of ~128 s per frame, of what appears to be a 

sequence of step-like biofilm structures (with each step height of ~200 nm) developed during the sample 

preparation. The image contains a small rod shape about 2-3 m long and about 0.5 m in diameter in the 

lower right corner. We considered the structure as a lone E. coli cell because the dimension and 

morphology is consistent with the literature values of E. coli [17]. The E. coli was shown to have the 

characteristic smooth texture for the cell surface with a small indentation in the center of the cell. At the 

applied force of 0 nN, Fig. 3(c) shows that the tip followed step-like topographic features of the biofilm 
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faithfully. The force image (Fig. 3(d)) shows a minimal root mean square (RMS) value of ~0.039 nN, 

which corresponds to the noise level of the system. This result suggests that the slow scan rate allowed for 

the system feedback to compensate all topographic error signals.  

When the imaging rate is accelerated, the force image becomes rougher arising from the limiting 

capability of the piezo tube’s response to the rapid signal change [14]. The high resolution topographic 

imaging was not degraded at all as the rate was increased from ~128 s per frame to ~1 s per frame. Fig. 

4(a) and 4(b), respectively, show the high-speed topographic and force images collected simultaneously 

Fig. 3. Force-distance curve between the tip and an Escherichia coli sample, with a force activated 

voltage feedback system during approach (a) and retraction (b). The dashed line represents the 

imaging applied force value; where the closed circles represent intersection of the curve with negative 

slope d the open circle represent intersection of the curve with positive slope. Topographical and force 

images collected simultaneously at the applied force of 0 nN on E. coli biofilm with a planktonic cell 

at ~128 s per frame (c, d). The scan area is 8 μm x 8 μm with 128 x 128 data points. 
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at the same location at an imaging rate of ~1 second per frame. The high-speed topographic image again 

indicates that the tip truly follows topographic features such as steps and terraces. The high-speed force 

image (Fig. 4(b)), compared to the high-speed topographic image, shows better contrast in step edges and 

small structures on terraces attributable to abrupt signal changes. This higher contrast is due to the 

residual force signals that were not compensated by the topographic feedback loop when abrupt changes 

occurred in the sample’s mechanical property or topography. As those delicate features in the high-speed 

force image cannot be easily identified with the topographic image only, the force image can be used as 

complementary information in understanding the delicate structural changes on the biological surfaces. 

The high-speed force images are analogous to frictional images in friction force microscopy [18, 19] 

where the sample’s boundaries were always emphasized.  

A small y-axis striation pattern started to appear as the rate was increased from ~1 second per frame to 

~0.5 s per frame. The pattern increased in intensity from the left to the right side in the high-speed 

topographic image (Fig. 4(c)) and particularly prominent in the high-speed force image (Fig. 4(d)). The 

fastest scan rate without observing any appreciable striation effect was approximately 1 second per frame. 

As the rate increased from ~0.5 s per frame to ~0.2 s per frame, the patterns became more dominant. The 

topographic (Fig. 4(e)) and force images (Fig. 4(f)) taken at the scan rate of ~0.2 s per frame. Both 

images show larger striation patterns parallel to the y-axis with ~0.5 nN in RMS value. At the increased 

imaging rate of ~0.1 s per frame, the limited capability of RHK data acquisition system did not allow us 

to record high-speed topographic and force images at the same time.  When the topographic image was 

only collected at the rate of 0.1 s per frame (Fig. 4(g)), those structures of the biofilm appeared to be 

blurry, showing that the striation signal was too large for the system to respond. The striation pattern has 

been observed previously and found to be due to the resonant vibration of the piezo tube scanner (e.g. 

[20-24]). Therefore, the dominant factor that limits the response speed of the system at 0.1 s per frame 

was the resonance of the piezo tube [14]. 
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It is important to note that, except for the striation artifacts in the series of HSAFM images, no notable 

changes were discernible in the E. coli shape and the biofilm steps. The gram-negative cell seems to have 

sufficient tensile strength in its cell walls that it is not damaged by the oscillatory forces even though the 

tip is in contact with the sample. Although, if the sample is more delicate and has less tensile strength 

(such as a mammalian cell), then the imaging rate will likely need to be decreased in order for the system 

to avoid the oscillatory force and therefore be less invasive. The RMS-force deviation of each force image 

is plotted as a function of the scan rate to obtain the missing force change at 0.1 s per frame. Interestingly, 

it depends on the imaging rate logarithmically as shown in Fig. 4(h). Considering the insensitivity of this 

logarithmic dependence, the imaging rate slight at 0.1 s per frame will not result in any significant force 

change from ~0.5 nN. Also, the observed stability up to 0.1 s per frame indicates that the force change of 

~0.5 nN was too small for the system to pass through the minimum of -17 nN and to attain an unstable 

imaging state. Therefore, the imaging rate of 0.1 s per frame will not cause the system to make any 

dramatic stable-to-unstable imaging transition. In other words, the system is able to capture 

Fig. 4. Topographical and force images collected simultaneously at the applied force of 0 nN on E. 

coli biofilm with a planktonic cell at three different scan rates: ~1 second per frame (a, b), ~0.5 s per 

frame (c, d), ~0.2 s per frame (e, f). An additional topographic image is shown for ~0.1 s per frame 

(g). The scan area is 8 μm x 8 μm with 128 x 128 data points. RMS value vs. scan rate plot for force 

images in logarithmic scale (h). 
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distinguishable biological features at high-speed imaging rates up to 0.1 s per frame, an acquisition rate 

600-1000 times faster than conventional AFMs, while maintaining a stable imaging condition [25]. 

4. Conclusion 

We investigated the influence of applied loading force, hydrophilicity, and imaging rate on the imaging 

stability in force-feedback HSAFM. We investigated the influence by collecting force-distance curve, 

topographic, and force information for a variety of samples and parameters. When the force-distance 

curves were correlated with the images of an ambient adsorbed hydrophobic material layer on a grating 

sample with large step-structures, we found that stable and unstable imaging conditions depend on the 

distance between two points that satisfy the applied force value in the force-distance curve. When the 

sample adhesional property was changed from hydrophobic to hydrophilic by cleaning the surface of 

silicon grating, the enhanced adhesion between the tip and the surface improved the imaging stability. 

When we tested the influence of the imaging rate on imaging stability of an E. coli biofilm and planktonic 

cell, imaging was stable even at the high-speed imaging rate of 0.1 s per frame. Therefore, it can be 

concluded that the transitions between stable and unstable imaging conditions rely on applied force and 

hydrophilicity of the sample, but is independent of imaging rates up to the tested maximum rate of 0.1 s 

per frame. With the cooperative use of these variables that influence imaging stability, force-feedback 

HSAFM will potentially contribute to the imaging and understanding of hard and soft materials including 

biological systems. 
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