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Direct comparison between phase locked oscillator and direct
resonance oscillator in the noncontact atomic force microscopy
under ultrahigh vacuum

Byung I. Kima)

Department of Chemistry, University of Houston, Houston, Texas 77204

(Received 2 December 2002; accepted 26 July 2004; published 3 November 2004)

I have demonstrated the advantage of the phase locked oscillator(PLO) over the conventional direct
resonance oscillator(DRO) in noncontact mode atomic force microscopy(AFM) under ultrahigh
vacuum. Direct comparison between PLO and DRO has been made in terms of background noise
level, temporal response, and stability. Compared to the DRO method without phase coherence, the
experimental results show that the PLO method is more effective in reducing the noise level and
enhancing the stability over all force regimes in UHV noncontact AFM. The noise reduction and
stability enhancement in PLO indicate the important role of the phase coherent effect in improving
the capability of noncontact imaging in UHV. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1806998]

Noncontact mode atomic force microscopy(AFM) in
ultrahigh vacuum(UHV) is a very attractive technique be-
cause it provides atomic resolution images on insulating sur-
faces as well as conducting surfaces.1–4 However, the tech-
nique is still difficult and precarious for most laboratories
due to its complexity. This is mainly due to the extremely
high quality sQd factor of cantilevers, inherent in vacuum.
The technique requires an additional circuit that employs fre-
quency modulation.5 Frequency modulation uses a self-
oscillating feedback loop to measure the frequency shift that
arises from tip–sample interactions. Spontaneous vibration of
the cantilever induced by thermal excitation keeps track of
its resonance frequency, forming a direct resonance oscillator
(DRO). When the oscillating cantilever is brought near the
sample surface, the interaction between the tip and the
sample causes a resonance frequency shift,Df, which is used
as the probing signal.5

In addition to the resonance frequency shift, the phase
signal also shifts and can be used as a probing signal. Indeed,
a phase locked loop(PLL) has been successfully employed
through the phase locked oscillator(PLO) technique for
atomic resolution imaging,2,3,6 magnetic force microscopy,7

and measuring the adhesion and the energy dissipation on
metallic surface in UHV.8,9 Furthermore, its application ex-
tends to highQ systems such as a tuning fork in ambient
condition to control feedback for near field optical micros-
copy and shear force microscopy.10 More recently, high reso-
lution images of biological samples in liquid have been ac-
quired by enhancingQ by 3 to 4 orders of magnitude through
active feedback using a phase locked oscillator.11

Although the effectiveness and importance of the PLO
technique are well demonstrated in noncontact AFM, direct

comparison between DRO and PLO has rarely been made so
far. Here I present their performances in terms of noise level,
temporal response, and tip–sample interaction as a function
of separation distance between tip and sample by implement-
ing a versatile, inexpensive, and easily modifiable circuit to
an existing commercial AFM system.

I use an OMICRON UHV STM/AFM head with an op-
tical beam deflection detection system. For the noncontact
mode measurement, the cantilever can be oscillated by a thin
piezo attached underneath the cantilever stage. RHK elec-
tronics and software are utilized for data acquisition, control
of the microscope head, and data analysis. Figure 1(a) shows
schematic diagrams of PLO and DRO. The vertical compo-
nent of the cantilever vibration is detected with a quad-cell
position sensitive photodiode(PSD) in the optical beam de-
flection technique and used as the input signal of both oscil-
lators. PLO consists of a detector, a phase shifter and a PLL
while DRO has automatic gain control(AGC), a demodula-
tor, and a phase shifter. The output of the phase shifter that
follows PLL or AGC is used as an excitation signal of the
cantilever for proper tracking of resonance frequency. The
resonance frequency shift,Df, is used as a signal for servo-
feedback in noncontact mode operation. I could makein situ
comparison between PLO and DRO by toggling one to the
other with multiple switches.

Figure 1(b) shows the detailed schematic block diagram
of PLO. I used a simple integrated PLL circuit LM 565
(National Semiconductor) with a maximum operating fre-
quency of 500 kHz.12 The analog multiplier, as a phase de-
tector, generates the phase difference between the excitation
and response. The loop filter generates time averaged dc out-
put as the input of a voltage controlled oscillator(VCO) by
eliminating the frequency-doubled component after phase
detection. Since the input of the VCO becomes an accurate
measure of the frequency, PLL is used as an oscillator as
well as a demodulator. The center frequency of the VCO,fc,
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sweeps with a variable resistor between 200 kHz and 350
kHz until fc equals the resonance of the cantilever,f0.

12 At
fc= f0, the lock-in state is also acquired between the excite
phase,uexcite, and the response phase,uresponse.

13,14

One can adjust the bandwidth of the PLL by changing
the output resistancesR1 andR2 and the capacitanceC in the
loop filter as shown in the inset of Fig. 1(b). The loop re-
sponse function of PLL,Hs jvd, on modulation frequencyv
betweenuexcite anduresponsecan be written as15

Hs jvd =
jvvns2z − vn/KoKdd + vn

2

− v2 + 2jzvnv + vn
2 , s1d

where the natural frequency and the damping constant are
given, respectively, by

vn =Î KoKd

R1C + R2C
, s2d

z =
1

2
Î KoKd

R1C + R2C
SR2C +

1

KoKd
D s3d

for the sensitivities of the phase detector and the VCO,Kd

=0.68sV/radd andKo=4.1 fc srad/s /Vd with supply voltage
V=12 V, respectively.12 The natural frequency vn

=2p ·360 rad/s and damping constantz=1.0 are selected so
that the phase error,uexcite−uresponse, can be less than 1 radian
or 57°, leaving a 33° margin for noise. With loop gain
KoKd=33.6fc/V s1/sd , fc=270 kHz, and V=14 V for

LM 565,12 time constantsR1C=1.96310−2 s and R2C=4
310−4 s can be found from Eqs.(2) and (3). For a given
output resistanceR1=3.6 kV, I find C1=5.44mF and R2

=73.5V.
I measure the background noise, the temporal response,

and frequency shiftsDfd versus distance curve to check
the performance of PLO over conventional DRO. An
n+doped Si cantilever with resistivity 0.01–0.02V cm
(Nanosensor) is employed for these measurements. Silicon
oxide on the surface of tip is removed by sputtering with
1 keV Ar+ for 3 min to get a clean Si surface. Stiff silicon
cantilevers with resonance frequency aboutf0=270 kHz and

spring constantk=21–78 N/m are used as force sensors to
prevent the cantilever from having “snap to contact” with the
surface. Oscillation peak to peak amplitude of the cantilever
is about 30 nm under UHV environment with a base pressure
,1310−10 Torr.

First, the background noise with PLO far away from the
surface is lower than that of conventional DRO by a factor
,3 as found in the top and bottom of Fig. 2(a). This result is
consistent with the generally known noise reduction of a
PLL circuit, compared to the conventional demodulator.15

The bandwidth of PLO should be high enough to get a
practical scanning speedclose to the sample surface during

FIG. 1. (a) Schematic diagram of a phase locked oscillator(PLO) and a conventional direct resonance oscillator(DRO). The PLO is made of a detector, a
phase locked loop(PLL) and a phase shifter while the DRO consists of an automatic gain control(AGC) and a phase shifter.In situ comparison is made
between the PLO and DRO by toggling multiple switches.(b) Detailed schematic block diagram of the electronic circuit in the PLO. A limiter clips the
response signal from detector to ±0.6 V to reduce the spur noise due to the change of input amplitude. The output of the phase detector is time-averaged by
a loop filter, PLL, to eliminate high frequency ripple. It is then used as the input signal of a voltage controlled oscillator(VCO). The resultant sensitivity of
Df output is designed to be 5 mV/Hz atfc=270 kHz. Positive feedback is attained with a phase shifter by making an in-phase relationship between the
response of cantilever vibration and excitation signal from VCO. A rms to dc converter circuit(AD536 Analog Device) measures the root mean square
amplitude.(Inset) A loop filter in second-order which consists of output resistancesR1 andR2 and capacitanceC.

FIG. 2. (a) Background noises of(top) the PLO system and(bottom) the
DRO system with the root mean square(rms) values, 1.32 Hz and 3.46 Hz,
respectively. The acquisition time and the sampling rate are 0.7 s and
6.76ms/point, respectively, for both measurements.(b) Temporal responses
of (top) the PLO system and(bottom) the DRO system using electrostatic
force modulation between tip and sample, measured with driving frequency
4 Hz. In the PLO system, the measurement settings are natural frequency
vn=2p ·360 rad/s and damping constantz=1.0.
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imaging and force-profile measurement. In order to look at
time dependent response of feedback in PLO, I created a
time-dependent force field varying close to the sample sur-
face using an attractive electrostatic force modulation. The
capacitive forceFc can be written down as

Fcszd =
1

2

] Cszd
] z

V2, s4d

whereCszd is the capacitance between tip and sample and is
a function of the instaneous tip–sample distancez. Due to the
square law in Eq.(4), a second harmonic force is generated
with modulation frequency 2V for a given driving frequency
V. A square wave is applied between tip and sample directly,
with an amplitude of 10 V and a driving frequency of 4 Hz
using the VCO of a function generator.16

The top and bottom of Fig. 2(b) show the output signals
measured with PLO and DRO, respectively. These signals
are taken on a conductive VC(100) single crystal. The sur-
face is cleaned with Ar ion sputter/ anneal cycles in ultrahigh
vacuum.17 Both response signals show the square function
with frequency 8 Hz with some finite response time. The
measured bandwidth of the PLO is found to be over 340 Hz
when the driving frequencyV is swept between tip and
sample. This results suggests that the PLO enables one to get
an image within a practical time scale(5–10 min).

In addition to the background noise and the bandwidth, I
measured frequency shiftsDfd as the tip approaches a clean
VC(100) surface to understand the stability of both oscilla-
tors against external disturbances. Figures 3(a) and 3(b)
show a typical frequency shiftsDfd versus distance curves
for PLO and DRO, respectively. In the repulsive force re-
gime, theDf signal tracks the interaction very well for PLO

but it jitters for DRO. This result indicates that PLO is much
more stable than DRO against external disturbances. The re-
sult suggests that the phase coherent effect of PLO should
enhance the stability of imaging as well as reduce the noise
level. Since the roots of the denominator in Eq.(1) have only
positive imaginary parts, the phase relation betweenuexcite

and uresponsewill be unconditionally stable for all gains and
frequencies.15 This is believed to be the reason why stable,
reproducible atomic images have been obtained since the
employment of PLO in NC AFM systems.18,19 This is also
consistent with the observation by Reichlinget al. of a reso-
lution difference in imaging CaF2s111d using PLO and DRO
systems.20
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FIG. 3. Frequency shift versus distance curves taken on a clean VC(100)
surface with noncontact mode AFM using(a) PLO and(b) DRO.
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