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The relaxation period of the accelerated ac-dc-ac test for coatings is associated with the transient electrochemistry that occurs
when the immersed coated system is allowed to return to a stable open-circuit condition after being subjected to a cathodic
potential. A mathematical model of the transient electrochemistry that occurs during this relaxation period is presented for
coated aluminum. Expressions for the corrosion potential and corrosion current as functions of the local pH at the metal-
coating interface were developed using reported experimental results. These expressions enabled the simulation of the transient
electrochemistry under the constraint of balanced anodic and cathodic current densities. Regression of the transient relaxation
potential profiles to exponential decay functions provided time-constant characterization of the profiles. Simulated results are
presented that demonstrate the influences of the coating’s porosity and thickness, the applied dc potential and the metal-coating
interface condition on the time-constants associatedwith the relaxation profile. Interpretation of experimentally reported relaxation
potential profiles supported the analysis of the simulated results.

1. Introduction

Industrial metallic structures are subjected to weathering
conditions that promote corrosion and eventual loss in
design expectations of structural integrity and aesthetic
appeal. Mitigation of corrosion exacerbated by aggressive
weathering conditions is primarily achieved through the
use of organic coatings with its use being more common
than corrosion inhibitors, metallic coatings, and anodic and
cathodic protection approaches [1]. Metallic surfaces with
organic coatings are isolated from the environment with the
coating significantly reducing the transport of water and
entrained ionic species between the environment and the
covered metal-coating interface. Multilayer coating systems,
designed with each layer providing a specific protection, have
expected service lifetimes of years under actual weathering
conditions. However, increased protection translates into
lengthy times for performance characterization, necessitating
accelerated testing.

Conventional accelerated testing methods such as salt
fog (ASTM B117), Prohesion, and Prohesion/QUV (ASTM
D894) were designed to simulate aggressive environments
that would promote coating degradation while allowing
periodic monitoring. The continual development of organic
coatings has resulted in coatings that undergo degradation
in months to years, even under conventional accelerated
testing conditions. Extension of coating lifetimes increases
the time required for ranking coating performance and slows
down the iterative process of coating development, selection,
and qualification. Nonconventional accelerated test methods
that promote failure in considerable less time than the
conventional test methods have been presented in literature.
Essential to these tests is that the reduction in the time to
failure for an organic coating is due to the acceleration of the
expected corrosion mechanisms and not the introduction of
a new process.

The nonconventional accelerated ac-dc-ac test for coat-
ings introduced by Hollaender et al. involves subjecting a

Hindawi Publishing Corporation
International Journal of Corrosion
Volume 2014, Article ID 819476, 12 pages
http://dx.doi.org/10.1155/2014/819476

http://dx.doi.org/10.1155/2014/819476


2 International Journal of Corrosion

coated metal to cycles comprising three steps [2, 3]: an ac
testing step in which the coating properties are determined
using electrochemical impedance spectroscopy (EIS), a dc
step in which a cathodic potential is applied for a given time
period to promote cathodic reactions at the metal-coating
interface, and a relaxation step where the coating is allowed
to relax back to an open circuit condition with the relaxation
potential profile monitored. The ac-dc-ac test is primarily
used to rank coatings by the number of cycles which can be
kept small by utilizing a larger and more cathodic dc current
to promote degradation at the metal-coating interface [4–
11]. The interpretation of the relaxation potential profile is
based on the assumptions that the presence of a slow process
involves the exchange of ions between the coating and the
electrolyte, while a fast process involves the completion of the
electrochemical reactions [8].

The mathematical model of coated aluminum under
immersion was developed to provide insight into the pro-
cesses occurring during the relaxation step. The model
specific to aluminum, however, can be used to assist with
the interpretation of the relaxation potential associated with
coated aluminum alloys that have heterogeneous surfaces.
The transient, one-dimensional model uses a finite difference
approach to solve the governing equations of ionic trans-
port and electroneutrality with the electrochemical reactions
proving the boundary condition at the metal-coating inter-
face. Expressions for the corrosion potential and corrosion
current as functions of the local pH at the metal-coating
interface were developed using experimental results from
literature [12]. These expressions enabled the simulation of
the relaxation potential profile after a dc step has been ter-
minated. Regression of the transient profiles to exponential
decay functions provided time constants associated with the
profile [11].

Simulated results are presented and analyzed to demon-
strate the influences of the coating’s void porosity and
thickness, the applied dc potential and the metal-coating
interface condition on the time-constants associated with
the relaxation profile. The analysis yielded trends in the
time constants as function of coating porosity which were
supported by trends in experimentally reported relaxation
profiles.

2. Mathematical Development

2.1. Polarization Behavior. Polarization curves describing the
behavior of pure aluminium under deaerated conditions
were reported by Lee and Pyun for 0.01M NaCl solutions
where the pH was fixed at 7, 12, and 13 [12]. The electrode
potential values reported by Lee and Pyun [12] were relative
to a saturated calomel electrode and as such all potentials
reported here are referenced to a saturated calomel electrode.
Parametric values associated with a given polarization curve
are the corrosion potential (𝐸corr), corrosion current density
(𝑖corr), anodic Tafel slope (𝛽𝑎), and cathodic Tafel slope (𝛽

𝑐
).

These values were evaluated for the polarization reported by
Lee and Pyun [12] and are listed in Table 1. The value of
𝐸corr was obtained from the potential value associated with

Table 1: Parameter values obtained from the polarization data of
99.99% Al in deaerated 0.01M NaCl that was reported by Lee and
Pyun [12].

pH 7 pH 12 pH 13
𝐸corr (V) −1.33 −1.65 −1.84
𝑖corr (𝜇Acm−2) 0.020 2 20
𝛽
𝑎
(mVdecade−1) 73 93 78

𝛽
𝑐
(mVdecade−1) −43 −52 −55

the smallest magnitude of current density. A horizontal line
at this potential value separated the anodic and cathodic
segments of a given polarization curve. The value of 𝛽

𝑎
was

associated with the slope of the line tangential to the anodic
part of the curve while the 𝛽

𝑐
value was associated with the

slope of the tangential line for the bottom cathodic part. The
two tangential lines were constructed such that their point
of intersection coincided with the horizontal line associated
with the 𝐸corr value. The 𝑖corr value was the current density
associated with this intersection point.

The 𝐸corr values and log(𝑖corr) values are shown as func-
tions of pH in Figure 1.The regression of a quadratic equation
to the three points in a given plot was made and this is
superimposed on the plots. The quadratic lines agree well
with the experimental data points. The expressions for the
𝐸corr and log(𝑖corr) as functions of pH were

𝐸corr = −0.021pH
2

+ 0.335pH − 2.646, (1)

log (𝑖corr) = 0.1pH
2

− 1.5pH − 2.099. (2)

The assumption that log(𝑖corr) is a function of the local pH
is reasonable with an expression similar to (2) used for the
anodic dissolution current of mild steel in aqueous solutions
at 300∘C [13]. The assumption that the 𝐸corr is a function of
the local pH is also reasonable as Pourbaix diagrams relate the
expected thermodynamic corrosion potential as a function of
pH.

The parameters listed in Table 1 were used to construct
the polarization curves associated with pH 7, 12, and 13
and are shown in Figure 2. Superimposed on this figure is
a line labeled (i) that represented the value of 𝐸corr as a
function of 𝑖corr for uncoated Al for a pH range of 7 to 13
obtained using (1) and (2). This line intersects the locations
associated with the 𝑖corr values for a given polarization curve.
The consistency between the 𝐸corr and 𝑖corr values obtained
from (1) and (2) with the polarization curves supported
the use of these equations although they were obtained
from a limited number of experimental data points. The
polarization behavior of the metal-coating interface at open
circuit conditions was assumed to be related to the local pH
at the metal-coating interface, 𝑝mci. It was assumed that the
relationship between the metal potential, 𝐸

𝑚
, at the metal-

coating interface at an open-circuit condition and the local
pH is the same for the coated metal as for the uncoated metal
with the value of the 𝐸

𝑚
given by

𝐸
𝑚
= 𝐸corr (𝑝mci) , (3)
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Figure 1: (a) Corrosion potential and (b) corrosion current density as functions of pH. The experimental data was obtained using the plots
reported by Lee and Pyun [12]. Superimposed on the plots are quadratic lines that represent a fit to the data.
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Figure 2: Metal potential as a function of current density for
uncoated Al in a deaerated 0.1M NaCl electrolyte. The graphs
associated with pH 7, 12, and 13 were constructed using the
parameters listed in Table 1. The dashed lines represent the metal
potential and current density relationships for (i) uncoated Al and
(ii) coated Al at an open circuit condition for the pH range of 7 to
13.

where𝐸corr, a function of𝑝mci, is given by (1).This assumption
will be addressed after experimental data is obtained and can
be viewed as the absence of overvoltages due to the presence
of the coating. The current density at the metal coating
interface at an open-circuit condition, 𝑖

𝑚
, was assumed to be

related to the local pH and a weighting parameter, 𝜔,

𝑖
𝑚
= 𝜔𝑖corr (𝑝mci) , (4)

where 𝑖corr, a function of 𝑝mci, is given by (2). The use of
a weighting parameter to account for the reduction in the
current density at a buried metal-coating interface has been
reported [14]. The line labeled (ii) in Figure 2 represented 𝐸

𝑚

as a function of 𝑖
𝑚
for the pH range of 7 to 13. This line was

constructed using (3) and (4) with the weighting parameter
𝜔 set to 0.01.

2.2. Governing Equations for Model. There have been numer-
ousmathematicalmodels of the electrochemistry in occluded
systems of pits and crevices reported [15–17]; however, there
are limited efforts where the electrochemistry for coating
systems is explicitly modeled [14, 18] and the porosity is
addressed. The latter is presented here for a one-dimensional
model of the electrochemistry associated with an immersed
coated metal in an electrolyte. The development of the
governing equations is similar to the crevice and pit models
where mass conservation and electroneutrality are the gov-
erning equations. The model presented was developed such
that the constraint of a net zero current density is maintained
during the evolution of the transient electrochemistry. This
was done by using the local pH at a given time to determine
themetal potential and current density using (3) and (4).This
approach has not been presented before in literature to the
best of the author’s knowledge and represents a novel strategy
at determining the metal potential and current density at an
open circuit condition that is not necessarily at steady state.

The domain was divided into an electrolyte domain and
a coating domain. Four ionic species were considered, Na+,
Cl−, OH−, and Al3+, together with the solution potential,
Φ. The ionic species H+ was not included with the pH
values obtained using the OH− ion concentration. This is a
reasonable assumption as the pH values associated with the
simulations were greater than or equal to 9.

The model was developed to simulate the relaxation
potential profile after the coated substrate was subjected to
a cathodic potential.This would promote the electrochemical
production ofOH− ions with insignificant production of Al+3

ions. The Al+3 ions exist in hydrated forms as Al(OH)2+,
Al(OH)

2

+, and Al(OH)
4

−. Inclusion of these minor species
through homogeneous reactions would have resulted in a stiff
coefficient matrix with convergence problems. The focus of
this effort was to develop a model that can simulate lengthy
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periods of time that are similar to those observed during
ac-dc-ac testing. Therefore, these minor species were not
included in order to obtain simulation periods on the order
of hours.

The modeling of the electrolyte electrochemistry was
similar to models that have been presented in literature. The
governing equation for the concentration of a given species 𝑖,
𝑐
𝑖
, in the electrolyte was the conservation of mass given by

𝜕𝑐
𝑖

𝜕𝑡
= −∇ ⋅ 𝑁

𝑖
+ 𝑅
𝑖
, (5)

where 𝑁
𝑖
is the flux of the specie and 𝑅

𝑖
is the production

of a species by homogeneous reactions. There were no
homogeneous reactions consideredwith𝑅

𝑖
being set to a zero

value. In the electrolyte, the flux of a species in the absence of
convection is given by the Nernst-Planck expression

𝑁
𝑖
= −𝑧
𝑖
𝑐
𝑖
𝑢
𝑖
𝐹∇Φ − 𝐷

𝑖
∇𝑐
𝑖
, (6)

where 𝑧
𝑖
is the charge number, 𝑢

𝑖
is the mobility, Φ is

the solution potential, 𝐷
𝑖
is the diffusion coefficient for the

species, and 𝐹 is Faraday’s constant. A combination of the
expression [14]

𝑢
𝑖
=
𝐷
𝑖

𝑅𝑇
, (7)

where 𝑅 and 𝑇 are the universal gas constant and tempera-
ture, respectively, with (5), (6), and (7) yielded the governing
equation for the transport of a species in the electrolyte

𝜕𝑐
𝑖

𝜕𝑡
= −

𝑧
𝑖
𝑐
𝑖
𝐷
𝑖
𝐹

𝑅𝑇

𝜕
2

Φ

𝜕𝑥2
−
𝑧
𝑖
𝐹𝐷
𝑖

𝑅𝑇

𝜕𝑐
𝑖

𝜕𝑥

𝜕Φ

𝜕𝑥
− 𝐷
𝑖

𝜕
2

𝑐
𝑖

𝜕𝑥2
. (8)

The governing equation for the solution potential in the
electrolyte was the condition of electroneutrality:

∑

𝑖

𝑧
𝑖
𝑐
𝑖
= 0. (9)

A similar development can bemade such that the govern-
ing equation for a species in the coating is

𝜕𝜀𝑐
𝑖,𝑐

𝜕𝑡
= −

𝑧
𝑖
𝑐
𝑖,𝑐
𝐷
𝑖
𝜀
1.5

𝐹

𝑅𝑇

𝜕
2

Φ
𝑐

𝜕𝑥2
−
𝑧
𝑖
𝐷
𝑖
𝜀
1.5

𝐹

𝑅𝑇

𝜕𝑐
𝑖,𝑐

𝜕𝑥

𝜕Φ
𝑐

𝜕𝑥

− 𝐷
𝑖
𝜀
1.5
𝜕
2

𝑐
𝑖,𝑐

𝜕𝑥2
,

(10)

with the electroneutrality condition as

∑

𝑖

𝑧
𝑖
𝑐
𝑖,𝑐
= 0. (11)

In (10) and (11) the concentration of a species in the
coating is represented by 𝑐

𝑖,𝑐
and the solution potential as

Φ
𝑐
. The diffusion coefficient of a species in the coating 𝐷

𝑖,𝑐

is assumed to be related to the porosity 𝜀 by the empirically
determined relationship [19]:

𝐷
𝑖,𝑐
= 𝜀
1.5

𝐷
𝑖
, (12)

where the porosity is due to void volume in an inert matrix.

2.3. Boundary Conditions. The boundaries for the coating
domain were the metal-coating interface and the electrolyte-
coating interface. The boundary condition at the metal-
coating interface was given by expressions relating the flux
of a species and the current density at the interface. The
condition for the Al3+ species was

−3𝑐Al3+ ,𝑐
𝐷Al3+

𝑅𝑇
𝜀
1.5

𝐹
𝜕Φ
𝑐

𝜕𝑥
− 𝐷Al3+𝜀

1.5
𝜕𝑐Al3+ ,𝑐

𝜕𝑥
=
𝑖Al,𝑚

3𝐹
, (13)

and for the OH− species

−𝑐OH− ,𝑐
𝐷OH−

𝑅𝑇
𝜀
1.5

𝐹
𝜕Φ
𝑐

𝜕𝑥
− 𝐷OH−𝜀

1.5
𝜕𝑐OH− ,𝑐

𝜕𝑥
=

𝑖H2 ,𝑚

𝐹
. (14)

The current density at the metal-coating interface under
open circuit conditions, steady-state or transient, for the
aluminum dissolution reaction, 𝑖Al,𝑚, and for the hydrogen
evolution reaction, 𝑖H2 ,𝑚, was given by 𝑖𝑚. Expressions similar
to (13) were used for the metal-coating interface boundary
condition for the Na+ and Cl− ions except that there was no
production of these species by electrochemical reactions.The
boundary conditions at the electrolyte-coating interface were
the species concentrations and the solution potential of the
electrolyte domain at that interface.

The boundaries for the electrolyte domain were the bulk
boundary and the electrolyte-coating interface. The bound-
ary conditions at the bulk boundary for the concentration of
the species were the bulk concentrations with the solution
potential set to a zero value. The boundary condition at the
electrolyte-coating interface for a species in the electrolyte
domain was the flux at the interface in the coating domain.
This was given by

−𝑧
𝑖
𝑐
𝑖

𝐷
𝑖

𝑅𝑇
𝐹
𝜕Φ

𝜕𝑥
− 𝐷
𝑖

𝜕𝑐
𝑖

𝜕𝑥
= −𝑧
𝑖
𝑐
𝑖,𝑐

𝐷
𝑖

𝑅𝑇
𝜀
1.5

𝐹
𝜕Φ
𝑐

𝜕𝑥
− 𝐷
𝑖
𝜀
1.5
𝜕𝑐
𝑖,𝑐

𝜕𝑥
,

(15)

where the left-hand-side and right-hand-side of the equation
were the fluxes in the electrolyte domain and coating domain,
respectively.

2.4. Transient State Modeling. The electrolyte and coating
domains were discretized into nodes with a common node
at the electrolyte-coating interface. The governing equations
for the coating domain included a mass-transfer equation
for each of the four species, (10), and the electroneutrality
equation, (11). The mass-transfer equations at each non-
boundary node were discretized using a central finite dif-
ference approximation for the spatial derivative and a back-
ward difference approximation for the boundary condition
at the metal-coating interface node. These approximations
neglected terms of the second order and higher in the
spatial derivatives. The first-order temporal derivative was
used in terms of the order 𝛿𝑡 and higher neglected. The
initial conditions of the coating domain were the steady-
state conditions. The discretized equations and the algebraic
electroneutrality equation at each node in the coating domain
were cast into a matrix form:

𝐾
𝑐
⋅ 𝐶
𝑛+1

𝑐
= 𝑅
𝑐
. (16)
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The load vector 𝑅
𝑐
was a function of the current values

of 𝑐
𝑖,𝑐
and Φ

𝑐
at the nodes in the coating at the time step 𝑛.

The values of 𝑐
𝑖,𝑐

and Φ
𝑐
at the nodes for the time step 𝑛 +

1 were contained in the vector 𝐶𝑛+1
𝑐

. The coefficient matrix
𝐾
𝑐
was a function of the nodal 𝑐

𝑖,𝑐
and Φ

𝑐
at time step 𝑛 + 1.

An iterative algorithm utilizing Newton’s method was used to
solve for 𝐶𝑛+1

𝑐
. A convergence criterion of 0.01% was used.

The governing equations for the electrolyte domain were
four mass-transfer equations of the form of (8) and the
electroneutrality equation (9). These governing equations in
the electrolyte domain were discretized at each node using
the central finite difference approximation at nonboundary
nodes. A backward difference approximation was used for
the expression at the electrolyte-coating boundary.The values
of 𝑐
𝑖,𝑐

and Φ
𝑐
obtained from solving (16) were used in (15)

to calculate the flux of the species at the electrolyte-coating
boundary. The bulk boundary was set at the bulk conditions.
The discretized equations were cast into a matrix form:

𝐾
𝑒
⋅ 𝐶
𝑛+1

𝑒
= 𝑅
𝑒
. (17)

The load vector 𝑅
𝑒
was a function of the current 𝑐

𝑖
and

Φ values at time step 𝑛 and the coefficient matrix 𝐾
𝑒
was a

function of the values 𝑐
𝑖
and Φ at time step 𝑛 + 1. Similar to

the coating domain, an iterative algorithm utilizing Newton’s
methodwas used to solve for the vector𝐶𝑛+1

𝑒
which contained

the values of 𝑐
𝑖
and Φ at time step 𝑛 + 1. A convergence

criterion of 0.01% was used. The values for 𝑐
𝑖,𝑐
and Φ

𝑐
at the

coating-electrolyte interface were updated using the solved
values for 𝑐

𝑖
and Φ at time 𝑛 + 1 at the electrolyte-coating

interface node.

2.5. Steady-State Modeling. The steady-state concentration
and solution potential distributions in the electrolyte and
coating domains were solved iteratively as well. The govern-
ing equations for the mass transfer of a species in the coating
were given by

0 = −
𝑧
𝑖
𝑐
𝑖,𝑐
𝐷
𝑖
𝜀
1.5

𝐹

𝑅𝑇

𝜕
2

Φ
𝑐

𝜕𝑥2
−
𝑧
𝑖
𝐷
𝑖
𝜀
1.5

𝐹

𝑅𝑇

𝜕𝑐
𝑖,𝑐

𝜕𝑥

𝜕Φ
𝑐

𝜕𝑥
− 𝐷
𝑖
𝜀
1.5
𝜕
2

𝑐
𝑖,𝑐

𝜕𝑥2
,

(18)

and in the electrolyte as

0 = −
𝑧
𝑖
𝑐
𝑖
𝐷
𝑖
𝐹

𝑅𝑇

𝜕
2

Φ

𝜕𝑥2
−
𝑧
𝑖
𝐷
𝑖
𝐹

𝑅𝑇

𝜕𝑐
𝑖

𝜕𝑥

𝜕Φ

𝜕𝑥
− 𝐷
𝑖

𝜕
2

𝑐
𝑖

𝜕𝑥2
. (19)

The governing equations for the electroneutrality con-
dition remained the same as (9) and (11). The conditions
at the boundaries also remained the same. The governing
equations in the domains were cast into matrix form similar
to that described before. The solution method involved the
use of bulk boundary conditions initially and the conti-
nuity of concentration, solution potential, and flux at the
electrolyte-coating interface. The approach is similar to tran-
sient approach described before except that there is no time-
stepping procedure.

2.6. Relaxation Period Modeling. A brief outline of the steps
used in calculation procedure is given in Figure 3. The
initial conditions in the electrolyte and coating domains
were the steady-state conditions calculated using the steady-
state model. The relaxation period is initiated when the
applied dc potential is switched off such that there is no
supply or consumption of current external to the system.This
necessitates that any production of current may be consumed
within the system; thus, the anodic and cathodic currents are
balanced.The current density andmetal potential for an open
circuit condition at the metal-coating interface are calculated
using the local pH, (4) and (3), respectively, and used to
calculate the metal-coating interface boundary condition.

The compatibility between the coating and electrolyte
domains was achieved by an iterative approach that involved
solving (16) and (17). The transient conditions in the coating
are calculated using (16) with the condition at the electrolyte-
coating boundary fixed. The transient conditions in the elec-
trolyte are then solved using (17) with the fluxes in the coating
as the electrolyte-coating boundary condition obtained from
the solution of (16). Solution of (17) yielded conditions
at the electrolyte-coating node which were used to update
the boundary node of the coating domain. A convergence
criterion of 0.01% was used for the conditions at electrolyte-
coating interface. This approach satisfied continuity at the
electrolyte-coating interface in terms of concentration and
solution potential and flux.

3. Simulated Results

The model was used to simulate the transient concentra-
tion and solution potential distributions that are resulted
during the relaxation period after an applied dc potential
is switched off and the system returns to a stable open
circuit condition. The initial conditions for the transient
model were the steady-state conditions associated with the
applied dc potential calculated using the steady-state model.
Simulations were performed to demonstrate the influences
that the coating thickness, the coating porosity, and the bulk
NaCl concentration had on the electrochemistry during the
relaxation period. An effort to understand the influence of
the electrochemical reactions at the metal-coating interface
is also presented. Two coating thickness values of 0.1mm and
0.2mm were used. The void porosity values of the coating
were 0.02, 0.03, and 0.04 with these values being repre-
sentative of actual coatings. The bulk NaCl concentrations
were 0.01M and 0.1M. The bulk concentrations for Al3+
and OH− for all simulations were set at 10−15M and 10−5M,
respectively, with the bulk pH being 9. The concentration of
Cl− at the bulk was adjusted to satisfy electroneutrality at
the bulk boundary. The steady-state electrochemistry for the
electrolyte-coating system at an open-circuit condition with
a bulk pH of 9 is approximately −1.34V as seen in Figure 1(a).

The diffusion coefficients for the species were 𝐷Na+ =

1.334 × 10
−5 cm2s−1, 𝐷Cl− = 2.032 × 10

−5 cm2s−1, 𝐷OH− =

5.273 × 10
−5 cm2s−1, and 𝐷Al+3 = 0.541 × 10

−5 cm2s−1 [17].
The values for 𝛽

𝑎
and 𝛽

𝑐
were set at 80mV/decade and

−50mV/decade, respectively. The thickness of the electrolyte
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Figure 3: Block diagramoutlining the solutionmethod used for calculating the steady-state and transient conditions in the electrolyte-coating
domain.

solution layer was set at 1 cm. The number of nodes in
the electrolyte was 101 while in the coating was 41 for the
0.1mm coating and 81 for the 0.2mm coating. This yielded
values of Δ𝑥 = 0.1mm and Δ𝑥 = 1 𝜇m for the electrolyte
and coating domains, respectively. The time step used was
Δ𝑡 = 2 s and the simulation time was 48000 s (13.3 hrs).
The initial conditions for the transient relaxation period were
the steady-state electrochemistry associated with an applied
dc potential of −1.9 V. A dc potential of −1.6 V was used to
demonstrate the influence of the dc potential on the transient
electrochemistry.

3.1. Simulated Solution Potential and Concentrations. The
conditions at time 𝑡 = 0 were associated with the steady-state
condition at the applied cathodic potential of −1.9 V. At this
condition the anodic dissolution is negligible compared to the
cathodic hydrogen evolution.The steady-stateΦ distribution
at the applied potential of −1.9 V is shown in Figure 4 for
the 0.1mm coating with a value of 0.02 for the porosity. The
value of Φ at the metal-coating interface was −4.7mV and
this increased to −1.1mV across the coating to the electrolyte-
coating interface and then to the set condition of 0V at
the bulk boundary. The steady-state open-circuit corrosion

potential of −1.34V is associated with a pH condition of 9 at
themetal-coating interface.The steady-stateΦ distribution at
−1.34V applied potential and bulk pH of 9 is also shown in
Figure 4. The value of Φ for this condition is approximately
0mV with there being no observable change in its value
across the coating and the electrolyte. The −1.34V would be
associated with a net zero current density as the anodic and
cathodic reactions are balanced.

The Φ distribution 2min after the applied dc potential
of −1.9 V is switched off as shown in Figure 4. The Φ

distribution across the coating decreased from 5.9mV at the
metal-coating interface to 2.1mV at the electrolyte-coating
interface and then to 0mV at the bulk boundary. This
transient distribution was different than that of the −1.9 V
steady-state condition with the electric fields from the metal-
coating interface and bulk boundary being of opposite signs.
After 30min the Φ distribution had moved much closer to
the distribution associated with the −1.34V condition with
their being only a drop from 0.2mV to 0mV across the
coating and no change across the electrolyte. The calculated
Φ distribution indicated the influence of migration transport
across the coating during the first 30 minutes.

The steady-state pH distributions at −1.9 V and −1.34V
are shown in Figure 5. The pH distribution at −1.9 V
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decreased from 11.6 at the metal-coating interface to 10.9 at
the electrolyte-coating interface to 9 at the bulk boundary.
There was little change in the pH across the coating and
electrolyte for the −1.34V condition. The pH distribution
2min after the −1.9 V applied dc potential was switched off
was similar to that of the −1.9 V steady-state condition with
the pH value at the metal-coating interface being 11.4 and
reducing to 10.9 across the coating. The decrease in pH at
themetal-coating interface was associated with the reduction
in the production of OH− ions and the transport of OH−
ions out of the coating. This transport was supported by the
electric field across the coating as seen by the Φ distribution

in Figure 4. After 30 minutes, there was little change in pH
across the coating with the pH being approximately 10 at the
electrolyte-coating interface and reducing to approximately 9
at the bulk boundary.

The concentration distributions of the Na+ and Cl− ions
are shown in Figure 6(a) for the −1.9 V and −1.34V steady-
state conditions. At the −1.9 V condition, there would be a
production of the negative OH− ions at the metal-coating
interface significantly greater than the production of Al3+
ions. This resulted in the concentration distributions for
the positive Na+ and Al3+ ions having a larger value at the
metal-coating interface and reducing in value across the
coating and then across the electrolyte. The presence of these
positive species was required to satisfy the electroneutrality
condition. The chloride ion distribution increased across the
coating and then across the electrolyte. This also facilitated
the electroneutrality condition with their being OH− ions
being produced at themetal-coating interface. Upon removal
of the −1.9 V potential, the concentration distributions of
Na+ and Cl− ions move towards those associated with the
−1.34V open circuit condition. The 2min. distributions of
Na+ and Cl− ions indicated that Na+ ions were transported
out of the coatingwhile the Cl− ionswere transported into the
coating. The electric field across the coating and electrolyte
facilitated the migration of OH− ions out of the coating;
therefore, the transport of Na+ ions out of the coating was
driven by diffusion and that of Cl− ions into the coating also
by diffusion.

The concentration distributions of the Al3+ ion are shown
in Figure 6(b) for the −1.9 V and −1.34V steady-state con-
ditions. At the −1.9 V condition, there was a production of
Al3+ ions at the metal-coating interface which resulted in the
concentration distribution being highest at the metal-coating
interface and reducing across the coating and the electrolyte.
The steady-state distribution at −1.34V was similar to the
concentration at the metal coating interface being larger for
the more anodic −1.34V as compared to the −1.9 V. The
distribution 2min after the applied potential was switched
off including a concentration at the metal-coating interface
larger than that of the −1.34V steady-state conditions which
decreased across the coating and electrolyte. The large con-
centration at the metal-coating interface was attributed to
the influx of Al3+ ions driven by migration. The distribution
after 30min was similarly shaped as the −1.34V steady state
condition with the distributions after 30min approaching
that of the −1.34V condition.

3.2. Simulated Relaxation Potential and Current. The metal
potential and current density evolutions are shown in
Figure 7 for the 0.1mm and 0.2mm thick coatings with
porosity of 0.02 where the bulk conditions were 0.01M
NaCl, a pH of 9, and an Al concentration of 10−15M. The
simulated results are shown for a period of 11 hours with
the reasonable assumption that the metal potential was
approximately equal to the steady-state open circuit potential,
−1.34V, at such time. The metal potential at time 𝑡 = 0 was
−1.9 V with the steady-state electrochemistry in the coating
and the electrolyte used as the initial conditions.The𝐸

𝑚
value
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Figure 7: Transient metal potential and circuit current density with
coating thickness as a parameter for coatings of porosity 0.02.

after the first 60 s was −1.55 V. This increase of 0.35V was
attributed to the 𝑖𝑅 drop across the coating and electrolyte. At
the −1.9 V there was a production of cathodic current by the
hydrogen evolution reaction at the metal-coating interface
with electrons being supplied to the metal by the applied
potential. On switching off the applied dc potential, there
would be no more external supply of current with the net
current at the metal-coating interface being zero.

The 𝐸
𝑚
value during the relaxation period increased in

two observable trends as seen in Figure 7. The evolution of
𝐸
𝑚
for the 0.1mm coating during the first 5min increased

from −1.55 V to −1.49V after which it increased to −1.34V
during the following 10 hours. During this relaxation period
the constraint of a zero net current density is achieved by the
cathodic and anodic reactions being balanced. The current
density at the metal-coating interface 𝑖

𝑚
that is shown was

associated with either the anodic reaction or the modulus
of the cathodic reaction. The evolution of 𝑖

𝑚
for the 0.1mm

coating simulation involved a decrease in value over the
first 5min followed by a less sharp decrease that had an
asymptotic approach to 0.02 𝜇Acm2 over the remainder of
the simulation. It was observed that the initial changes in 𝑖

𝑚

and 𝐸
𝑚
during the first 5min were related while the slower

changes in 𝑖
𝑚
and 𝐸

𝑚
over the rest of the simulation were

related.
The −1.9 V applied at 𝑡 = 0was associated with a cathodic

reaction and the accompanying production of OH− ions was
associated with a negligible anodic reaction. The initial pH
at the metal-coating interface was 11.7, a pH greater than the
bulk due to the production of OH− ions. Upon removal of the
applied potential, the current densities of the cathodic and
anodic reactions were balanced and remained like this for
𝑡 > 0. This constraint was met as the model was developed
such that 𝐸

𝑚
and 𝑖
𝑚

at the metal-coating interface were
calculated from the equations that relate the 𝐸

𝑚
and the 𝑖

𝑚

to the local pH. During the relaxation period, the pH at
the metal-coating interface reduced, as shown in Figure 4, as
ions are transported by diffusion and migration between the
coating and the electrolyte. The change in pH resulting from
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the evolution of the electrochemistry resulted in the calcu-
lated 𝐸

𝑚
and 𝑖
𝑚
evolutions.

The evolution of 𝐸
𝑚

for the 0.2mm coating shown
in Figure 7 involved an increase from −1.69V to −1.475V
over 1 h while the increase to −1.34V took the remaining
simulation time. There was a longer time period for the
initial increase associated with the thicker coating. The rate
of change of 𝐸

𝑚
was similar for both coatings after the initial

increase and the potential was more positive than −1.45V.
These results indicated processes involved in the initial
increase in 𝐸

𝑚
were sensitive to the coating thickness, while

the processes involved in the latter increase were not. The
evolution of 𝑖

𝑚
for the 0.2mm coating simulation had similar

trends as the 0.1mm coating that involved a sharp decrease in
value over the first 1 h followed by an asymptotic approach to
0.02 𝜇Acm2 over the remainder of the simulation.

3.3. Characterization of Relaxation Potential Profile. A fast
and a slow process can be observed in the relaxation potential
evolutions associated with the 0.1mm and 0.2mm coatings
shown in Figure 7. This would be interpreted, according to
literature, as attributed to the ending of the electrochemical
reactions and the exchange of ions between the coating
and the electrolyte, respectively [8]. The evolution of these
processes would have associated time constants. A scaling
method was presented in literature to calculate these time
constants thereby quantitatively characterizing the relaxation
potential evolution [11]. This involves scaling the metal
potential using the expression

𝐸
𝑠
=

𝐸
𝑡
− 𝐸
𝑖

𝐸end − 𝐸𝑖
, (20)

where 𝐸
𝑠
is the scaled potential, 𝐸

𝑖
is the initial metal

potential, and 𝐸end is the potential at the stable condition.
The value of 𝐸

𝑠
as a function of time is shown in Figure 8 for

the coatings of thicknesses 0.1mm and 0.2mm whose metal
potential evolution is shown in Figure 7. The expression,

𝐸
𝑠
= 𝐴
1
exp(−𝑡

𝜏
1

) + 𝐴
2
exp(−𝑡

𝜏
2

) + 𝑦, (21)

was regressed, fitted, to the scaled relaxation potential with
the time constants 𝜏

1
and 𝜏
2
, preexponential factors 𝐴

1
and

𝐴
2
, and constant 𝑦. The values of parameters for the two

relaxation potential evolutions shown in Figure 8 are given in
Table 2.The time constants were identified as 𝜏

1
and 𝜏
2
, where

𝜏
2
> 𝜏
1
. The fast process would be associated with 𝜏

1
and

the slow process with 𝜏
2
. A larger value for 𝜏

1
was associated

with the thicker coating while the values for 𝜏
2
were similar

for both coatings. This result indicated that the fast process
was occurring in a shorter time in the 0.1mm coating while
the slower process was evolving similarly in both coatings.
This method of scaling and regression to (21) quantify the
relaxation potential evolutions into time constants that can be
analyzed and compared across many different virtual coating
systems.
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Figure 8: Evolution of scaled relaxation potential with coating
thickness as a parameter. Superposed are the fits of the expression
to the simulated evolution.

4. Influence of Modeling Parameters

Simulationswere performed and the relaxation potential pro-
files were characterized into contributing time constants to
determine the influences of coating thickness, bulk electrolyte
concentration, the metal-coating interface condition, and the
applied dc potential for coatings of porosity values 0.02, 0.03,
and 0.04.

The values of the time constants for coatings of 0.1mm
and 0.2mm thickness with porosity values of 0.02, 0.03, and
0.04 are shown in Figure 9. The bulk conditions were 0.01M
NaCl, pH 9, and 10

−15M Al3+. The time constant 𝜏
2
was

insensitive to changes in porosity and coating thickness with
an approximate value of 25000 s. The 𝜏

1
value was sensitive

to the coating porosity with a smaller 𝜏
1
value associated

with a more porous coating for a given coating thickness.
The 𝜏

1
value was sensitive to the coating thickness with a

larger 𝜏
1
value associated with a thicker coating for a given

porosity. The 𝜏
1
value was associated with the fast process

during the relaxation period and this result indicated that this
process was influenced by the coating properties of thickness
and porosity. The slow process associated with 𝜏

2
was not

influenced by these coating properties.
The time constant values calculated from the simulations

for a coating of 0.1mm thickness with porosity values of
0.02, 0.03, and 0.04 under bulk conditions of 0.01M NaCl
and 0.1M NaCl with a bulk pH of 9 and Al3+ concentration
of 10−15M are shown in Figure 10. As noted before, for
a given bulk NaCl concentration, the slow process time
constant 𝜏

2
was insensitive to changes in porosity while the

fast process time constant 𝜏
1
was influenced by the coating

porosity. Larger values of 𝜏
2
and 𝜏

1
were associated with a

smaller NaCl bulk concentration for a given porosity. These
results indicated that the bulk NaCl concentration influenced
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Table 2: Parameter values for the expression that was regressed to the simulated relaxation potential profile of coatings. The bulk conditions
were 0.01M NaCl, pH 9, and 10−15MAl3+, and the applied potential was −1.9 V.

Coating 𝑌 𝐴
1

𝜏
1
/s 𝐴

2
𝜏
2
/s 𝑅

2

0.1mm 1.227 ± 0.002 −0.270 ± 0.005 223 ± 5 −0.996 ± 0.001 25900 ± 100 0.999
0.2mm 1.198 ± 0.003 −0.334 ± 0.003 900 ± 12 −0.900 ± 0.002 25500 ± 160 0.999

0.02 0.03 0.04

Ti
m

e c
on

sta
nt

 (s
)

Porosity

0.1mm
0.2mm

𝜏1 (0.2mm)

𝜏1

𝜏2

(0.1mm)

101

102

103

104

105

Figure 9: Time constants 𝜏
1
and 𝜏
2
as functions of porosity with the

coating thickness as a parameter. The bulk conditions were 0.01M
NaCl, pH 9, 10−15MAl3+, and the applied dc potential was −1.9 V.

both slow and fast processes contributing to the relaxation
potential profile.

The influence of the applied cathodic potential at time
𝑡 = 0 was determined using the simulation associated with
applied dc potentials −1.9 V and −1.6 V for a 0.1mm coating
and 0.01M NaCl bulk electrolyte. The values for 𝜏

1
and 𝜏

2

as functions of porosity with the applied dc potential as a
parameter are shown in Figure 11. For a given applied dc
potential, the slow process associated with 𝜏

2
was insensitive

to porosity, while the fast process of 𝜏
1
was influenced by

the coating porosity. The applied dc potential did influence
the slow process with a more negative applied dc potential
yielding a larger value of 𝜏

2
for a given porosity. The applied

dc potential was not influential on the fast process associated
with 𝜏

1
. Amore negative applied dc potential would result in a

larger cathodic current density at the metal-coating interface
with their being a larger amount of OH− ions in the coating
for the −1.9 V dc potential as compared with the −1.6 V dc
potential. These results indicated that the slow process may
be influenced by the applied dc potential due to the greater
exchange of ions between the coating and the electrolyte that
is required to return to a stable steady-state condition.

The influence of the conditions at the metal-coating
interface was investigated by performing simulations where
the open circuit current density weighting parameter 𝜔 in (4)
was 0.1 and 0.01.The bulk conditions were 0.01MNaCl, pH 9,
and 10−15M Al3+ concentration and the coating was 0.1mm
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Figure 10: Time constants 𝜏
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and 𝜏
2
as functions of porosity with the

bulk NaCl concentration as a parameter. The bulk conditions were
pH 9 and 10−15MAl3+, the applied dc potential was −1.9 V, and the
coating was 0.2mm thick.
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thick. The regressed time constants 𝜏
1
and 𝜏

2
are shown in

Figure 12 for these simulations as functions of porosity and
weighting parameter 𝜔. The behavior of 𝜏

1
and 𝜏
2
for a given

weighting parameter was similar to that presented before,
with the time constant 𝜏

2
insensitive to porosity while 𝜏

1
was

sensitive to porosity.The fast process associated with the time
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weighting parameter 𝜔 for the current density at the metal-coating
interface as a parameter. The bulk conditions were 0.01M NaCl, pH
9, 10−15MAl3+ and the coating was 0.1mm thick.

constant 𝜏
1
was not influenced by the change in the weighting

parameter while a larger value of 𝜏
2
was associated with a

larger cathodic current density at a given porosity. These
results further indicated that the slow process was influenced
by amount of OH− ions in the coating while the fast process
was not.

The fast process associated with the time constant 𝜏
1

was on the order of 103 s and was influenced by the coating
thickness and porosity. The slow process associated with 𝜏

2

was on the order of 104 s and was influenced by the quantity
of OH− ions in the coating at the initial time. The bulk
electrolyte influenced both processes with a larger bulk NaCl
concentration resulting in smaller 𝜏

1
and 𝜏
2
values. The slow

process can be resolved to the exchange of ions between
the coating and the electrolyte, a process dominated by
diffusion. The fast process was attributed to the degradation
of the electric field in the coating, a process dominated
by migration. As seen in Figure 4, there was a negligible
electric field for the 30min solution potential distribution
as compared to that of the 2min distribution. This analysis
is consistent with the interpretation used in literature where
the slow process is associated with the exchange of ions
between the coating and the electrolyte. There is insight
gained from the contribution of the coating properties,
thickness, and porosity; their influence on the fast process
improves our understanding of the overall relaxation process.
The electrochemical reactions continue during the relaxation
period with anodic and cathodic reactions balanced. The
fast process observed is instead related to the ending of the
electric field across the coating.

5. Interpretation of Relaxation
Potential Profiles

Experimental results associated with an ac-dc-ac test were
reported by Allahar et al. [11] where the water uptake of

the coating was evaluated between each cycle. Also, the
applied potential wasmademore negative after several cycles.
The relaxation potential profiles were characterized to yield
three time constants similar to the characterization procedure
described earlier. The simulated data shown here yielded two
time constants and these were similar in magnitude to the
experimentally determined time constants of the fastest and
slowest processes. There is a missing third time constant
from the simulated data which may be unaccounted for in
the model. There was a decrease in the experimental time
constant of the fastest process during the first 10 cycles
where there was also a measured increase in the porosity.
During these cycles there was no change in the experimental
time constant of the slowest process. These experimental
results indicated that the fastest process was sensitive to
porosity with a smaller value of time constant for this process
associatedwith amore porous coating and the slowest process
unchanged by the coating porosity. This experimental result
was similar to the simulated result where the fast process
with the 𝜏

1
time constant was sensitive to porosity and the

slow process, 𝜏
2
, was insensitive. There was an increase in

the slowest experimentally determined time constant when
a more negative applied potential was used. This was also
observed from the simulated data where a larger value of 𝜏

2

was associated with a more negative applied potential.
The results associated with an ac-dc-ac test reported by

Garćıa and Suay involved a base epoxywith different amounts
of an inhibitor [8]. An equivalent circuit was regressed to the
EIS data collected during the ac steps and the polarization
resistance values were reported. The polarization resistance
after 5 cycles of the base epoxy with no inhibitor was four
orders of magnitude greater than that of an epoxy/inhibitor
coating. This indicated that the current density at the
metal/coating interface for the epoxy/inhibitor coating was
greater than the epoxy coating by orders of magnitude. The
relaxation potential profiles after 5 cycles indicated that a
steady state potential was attained after 4000 s for the epoxy
coating and by 10000 s for the epoxy/inhibitor coating. Based
on the analysis presented before, the longer time required for
the epoxy/inhibitor coating to attain a steady-state is due to
a larger current density at the metal-coating interface which
was consistent with the polarization resistance results.

The analysis of the simulated relaxation profiles indicated
that two processes contributed to the relaxation period of
the coating. The fast process with the smaller time constant
was associated with the coating properties while the slow
process with the larger time constant was associated with
the exchange of ions between the coating and electrolyte.
Relaxation potential profiles presented in literature support
the analysis of the time constants based on the simulated data.

6. Conclusions

A mathematical model was used to simulate the transient
electrochemistry associated with the relaxation period of a
coating system after being at an applied cathodic potential
during an ac-dc-ac test. The constraint that the cathodic and
anodic current densities should be balanced was achieved by
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assuming that the metal potential and current density at an
open circuit condition were functions of the local pH. The
transient change in the distribution of the concentration of
the Na+, Cl−, and OH− ions was monotonic with time with
the distributions at 𝑡 > 0 approaching that of the open circuit
stable condition starting from the distribution at the applied
dc potential.The change of the solution potential distribution
on the removal of the dc potential was such that the electric
field changed, aiding the migration of the negative OH−
species out of the coating and influencing the distribution of
the minor Al3+ species distribution.

The relaxation potential profiles were characterized by
two time constants calculated by regression. The simulated
results demonstrated that the fast process with the smaller
time constant, 103 s, was associated with the coating prop-
erties of thickness and porosity. The slow process with the
larger time constant, 104 s, was associated with the quantity
of OH− ions in the coating the initial time. Experimental
results from literature supported the interpretation of these
fast and slow processes. Future improvements and extensions
made to the models presented here will further support
improved electrochemical test method interpretation, novel
test method development, and increased understanding of
corrosion related transport and migration processes.
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