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Abstract 

A catalytic colorimetric detection scheme that incorporates a DNA-based hybridization chain 

reaction into gold nanoparticles was designed and tested. While direct aggregation forms an 

inter-particle linkage from only one target DNA strand, the catalytic aggregation forms 

multiple linkages from a single target DNA strand. Gold nanoparticles were functionalized 

with thiol-modified DNA strands capable of undergoing hybridization chain reactions. The 

changes in their absorption spectra were measured at different times and target concentrations 

and compared against direct aggregation. Catalytic aggregation showed a multifold increase in 

sensitivity at low target concentrations when compared to direct aggregation. Gel 

electrophoresis was performed to compare DNA hybridization reactions in catalytic and direct 

aggregation schemes, and the product formation was confirmed in the catalytic aggregation 

scheme at low levels of target concentrations. The catalytic aggregation scheme also showed 

high target specificity. This application of a DNA reaction network to gold nanoparticle-based 

colorimetric detection enables highly-sensitive, field-deployable, colorimetric readout systems 

capable of detecting a variety of biomolecules.  

  

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at 

Biosensors and Bioelectronics, published by Elsevier. Copyright restrictions may apply. DOI: http://dx.doi.org/10.1016/j.bios.2013.06.063. 



 2

1. Introduction 

 

Gold nanoparticle (NP)-based colorimetric detection exploits the plasmonic coupling during NP 

aggregation.(Elghanian et al. 1997; Ghosh and Pal 2007) Gold NPs with appropriate surface functionalization 

provide a simple and inexpensive method for sensing an expanding range of analytes such as nucleic acids,(Bai et al. 

2010; Deng et al. 2012; Reynolds III et al. 2000; Storhoff et al. 1998) biomolecules,(Beqa et al. 2011; Fu et al. 2012; 

Kim et al. 2012; Wang et al. 2010; Zhao et al. 2007) organic molecules,(Ai et al. 2009) and metal ions.(Beqa et al. 

2011; Chen et al. 2012; Lee et al. 2007; Lou et al. 2011; Luo et al. 2012; Xue et al. 2008) Gold NP-based detection 

methods have several advantages over other techniques because 1) gold NPs have high extinction coefficients, 

which translates to a stronger signal and high sensitivity and 2) their color change can be detected without 

instrumentation.(Storhoff et al. 1998) Despite these advantages, the most common methods for nucleic acid sensing 

remain using fluorescent dyes and polymerase chain reaction (PCR).(Lakowicz 2006; Saiki et al. 1985; Schweitzer 

and Kingsmore 2001; Wang et al. 2009)  

Conventional gold NP-based colorimetric detection requires additional amplification steps to increase its 

sensitivity, undermining the simplicity of the method. To overcome these limitations and to avoid the complexity of 

amplification steps such as PCR, we devised a strategy to allow a single target DNA to form multiple NP linkages 

thus significantly increasing the detection sensitivity. Engineered DNA reaction networks based on hybridization 

reactions offer an option for simple amplification of DNA strands.(Zhang and Seelig 2011) For example, an 

entropy-driven catalytic DNA reaction network was designed to undergo cascading reactions and amplify DNA 

signals.(Zhang et al. 2007) Also, through hybridization chain reaction (HCR), double helix chains of variable 

lengths were formed from two hairpin DNA strands in the presence of an initiator strand.(Dirks and Pierce 2007; 

Pierce et al. 2006) The sensitivity of gold NP-based colorimetric detection can be enhanced by implementing a 

similar DNA reaction network because the number of target strands can be amplified by such a network. In this 

paper, we report the implementation of HCR for the catalytic aggregation (CA) of gold NPs for enhanced 

colorimetric detection. The CA design was tested and it exhibited a multifold increase in detection sensitivity as 

compared to the direct aggregation (DA) scheme which is conventionally adopted. 

 

2. Materials and Methods 

 

Spherical gold nanoparticles of approximately 25 nm in diameter were synthesized by the reduction of gold 

chloride using sodium citrate.(Turkevich et al. 1951) Briefly, 100 mL of 0.25 mM HAuCl4 was heated to a boil and 

1 mL of sodium citrate (0.51 mM) was added with vigorous stirring. The solution was heated for an additional 15 

min and then allowed to cool to room temperature. The size of NPs was measured using transmission electron 

microscopy (TEM) and UV-Vis spectroscopy. Thiolated DNA strands, obtained from Integrated DNA 

Technologies, were first reduced using 0.1 M dithiothreitol (DTT) solution to cleave disulfide bonds, followed by an 

elution through a desalting column (NAP-10, GE healthcare) to remove unreacted DTT. Following quantification by 

absorbance measurements at 260 nm, DNA strands were mixed with gold NPs in a 500:1 ratio and the phosphate 

buffer concentration was increased to 10 mM and pH 7.4 along with 0.01 % (w/w) sodium dodecylsulfate (SDS).  

Following an overnight incubation, the NaCl concentration was gradually brought up to 0.3 M over 2 hours by 

additions of 4 M NaCl.(Hurst et al. 2006) The NPs were purified further by centrifugation (three times at 17200 g 

for 15 min) to remove any unreacted excess DNA strands. After each centrifugation, the NP pellet was re-dispersed 

in 10 mM phosphate buffer (pH 7.4, 0.01% (w/w) SDS, and 0.3 M NaCl) and the NP concentration was determined 

by measuring absorbance at 525 nm. The hybridization of target (T) strand to linker (L) strand bound to NPs was 

accomplished by overnight incubation of L strand-functionalized NPs with 500 times excess of T strand followed by 

purification by centrifugation to remove excess unreacted T strands. 

For each aggregation reaction, three reagents - the two complementary types of functionalized NPs and the target 

– were mixed in a plastic cuvette sealed with paraffin film. All aggregation reactions were conducted in 10 mM 

phosphate buffer (pH = 7.4) with 0.3 M NaCl and 0.01% (w/w) SDS.  Each 400 µL sample had a final gold NP 

concentration of 314 pM (157 pM of each type of NP). The T strand concentrations specified in the Results and 

Discussion section are multiples of 157 pM. Absorbances for each reaction were measured at 0, 1, 2, 4, 8, and 20 

hours from the time of mixing all reagents.  

Hybridization reactions of DNA strands used for gel electrophoresis were carried out in 10 mM phosphate buffer 

(pH 7.4), 0.01% SDS (w/w) and 0.3 M NaCl. Each hybridization reaction was allowed to sit at room temperature for 

4 hours before being loaded into the gels. The gel composition was 3% agarose in 1× TAE buffer with 5 µg/mL 

ethidium bromide. The gels were run at 100 V for 45 min. 
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3. Results and Discussion 

 

 
Figure 1. (a) Overall reaction equation and (b) reaction mechanism of catalytic aggregation reactions. Catalytic 

aggregation takes place between H strand-functionalized NPs and L:T duplex-functionalized NPs in the presence of 

free T strands. After an inter-particle linkage is formed, the T strand is regenerated, which propagates the reaction 

further (c) Overall reaction equation of conventional direct NP aggregation (complete base sequences are available 

in Table S1). 

 

Catalytic aggregation (CA) of gold NPs provides greater detection sensitivity compared to direct aggregation 

(DA) through the formation of multiple NP linkages from a single target DNA strand. The overall reaction of the 

CA scheme is illustrated in the reaction equation of Fig. 1(a) and the reaction mechanism of Fig. 1(b). Gold NPs are 

functionalized with either hairpins (H) or linker:target (L:T) duplexes and aggregate only in the presence of the 

target (T) strand. This hybridization reaction can be considered as a reaction between stoichiometric amounts of H 

strand and L:T duplex triggered by catalytic amounts of the T strand forming the H:L product that links two NPs. 

Due to the catalytic nature of the reaction, one T strand can cause formation of multiple inter-particle linkages. As 

illustrated in Fig. 1(b), NP aggregation is triggered when a T strand linearizes an H strand by toehold-mediated 

strand displacement. In this step, the a´ domain on the H strand acts as the toehold for hybridization with the T 

strand.(Yurke et al. 2000; Zhang and Winfree 2009) Once in a linear configuration, the c and b´ domains of the H 

strand are exposed. In the next step, the exposed c´ domain of L strand acts as the toehold for another strand 

displacement reaction that releases the T strand in L:T duplex. Two crucial events – formation of a linkage between 

two NPs and the release of a T strand – take place in this second step. The released T strand can reinitiate the entire 

sequence of DNA reactions thus propagating and enhancing NP aggregation. As a result, multiple linkages between 
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NPs can form for every free T strand present in the system. In principle, a target DNA in a HCR network can form 

an unlimited number of NP linkages. Thus, the combination of a HCR network with gold NPs creates a system 

capable of catalytic aggregation for high-sensitivity colorimetric detection.  

On the other hand, the DA scheme using gold NPs is composed of two different types of gold NPs, each 

functionalized with single-stranded DNA complementary to different parts of a target DNA strand, as illustrated in 

Fig. 1(c). Hybridization of both NPs to the same target effectively binds the NPs together, and the resulting NP 

aggregation induces a detectible change in their peak absorption magnitude and peak shift. In such conventional DA 

designs, target DNA is able to form only a single inter-particle linkage, which limits the sensitivity of this method. 

The CA design involves a 40 nucleotide (nt) hairpin strand (H) and a linker (L, 25 nt) : target (T, 18 nt) duplex. 

The domain lengths are specified in Fig. 1 and the base sequences of all DNA strands are listed in Table S1. Instead 

of two hairpin strands used for the original HCR,(Pierce et al. 2006) a hairpin strand (H) and a duplex (L:T) were 

used to alleviate steric hindrance between NPs that arises when the more than two NPs are linked into a single DNA 

double helix. Also, an extra domain (a1, 3 nt) that is complementary to half of the a´ domain was included to 

minimize reactions between L strand-bound T strands with H strands by sequestering a portion of the a´ domain and 

provide an advantage to free T strands in hybridizing with H strands. To compare the performance of the CA 

designs against a conventional colorimetric detection scheme, a DA scheme was also tested. DNA strands used for 

the DA scheme are composed of 12 nt spacer (sp) and 15 nt active domains (d and e). The inter-particle distance of 

NP aggregates produced from DA scheme is 54 bp, which is similar to that of CA (47 bp). 

 

 
Figure 2. Absorbance change as a function of target concentration and time for (a) catalytic aggregation and (b) 

direct aggregation schemes. The CA scheme exhibits a detectable signals at 3× and 10× while DA scheme does not 

show any detectable signal at those target concentrations. 

NP aggregation experiments of the CA scheme was conducted by adding varying amounts of target strand to a 1:1 

mixture of H strand-functionalized NPs and L:T duplex-functionalized NPs. The decreases of UV-vis peak 

absorbance (-∆A) and the peak shifts (Fig S2) for each sample were used as a metrics to quantify the extent of NP 

aggregation. The target concentrations in Fig. 2 are multiples of 157 pM (1× = 157 pM). As shown in Fig. 2(a) the 

CA scheme exhibited detectable -∆A at low (1×,  3×, and 10×) target concentrations, whereas -∆A from the DA 

scheme at such low target concentrations were either absent (1× and 3×) or minimal (10×). These results indicate 
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that measurable NP aggregation takes place even at low target DNA levels due to the catalytic nature of CA 

schemes. While the number of inter-particle linkages in DA scheme was not sufficient to cause detectable change in 

their optical properties in such low target concentrations, in the CA scheme, changes in optical properties are 

observed because more inter-particle linkages were formed for every T strand, hence enhancing the overall 

sensitivity of colorimetric detection. 1× and 10× samples in CA scheme exhibit similar level of -A to 10× and 30× 

samples in DA scheme after 20 hrs, respectively. These results suggest that between three to ten-fold increase of 

sensitivity was achieved at those concentrations. As expected, -∆A from DA samples significantly increased at 

higher (30× and 100×) target concentrations to levels comparable to the CA scheme because sufficient amounts of T 

strands were present to cause extensive NP aggregation even without T strand regeneration (Fig. 2(b)). The impact 

of higher T strand concentration on NP aggregation in the CA schemes was diminished because further aggregation 

induced by extra T strands in higher concentration had less impact on the optical properties of the NPs. The CA 

scheme exhibited slight NP aggregation even in the absence of the T strand, as evidenced by -∆A in a negative 

control (0×) sample (Fig. 2(a)). This shift indicates that the DNA hybridization reaction can be initiated by not only 

free T strands but also by T strands from the L:T duplex. Partial protection of a´ domain by a1 domain and steric 

hindrance between NPs in such instances proved insufficient to completely suppress such unintended initiation. 

Simulation results (Fig. S3 in supplementary materials), obtained using a domain-level strand-displacement 

computational system,(Phillips and Cardelli 2009) provide an insight into the difference between the DA and the CA 

systems. The simulations were run with 5 times excess NP-bound DNA strands (L1 and L2 for DA and H and L:T 

for CA) with respect to T strands, which well represents the condition at T strand concentrations as high as 10×, 

considering the large estimated number of thiol-modified DNA strands on 25-nm gold NPs.(Hurst et al. 2006) As 

expected, the concentration of T strands in CA scheme remains relatively stable after an initial decrease, whereas in 

DA scheme, T strand concentration continues to decrease because the strand is continuously being consumed as the 

reaction proceeds. In the DA scheme, the extent of the DNA hybridization reaction is limited by lower T strand 

concentration compared to concentration of NP-bound DNA strands (L1 and L2). In the CA scheme, hybridization 

reactions involving H strands and L:T duplexes reach near completion because they are not limited by low T strand 

concentration and NP aggregation takes place even at T strand concentrations lower than 3×. At high (30× and 

100×) T strand concentrations, the two schemes show similar kinetic behaviors. These simulation results explain the 

huge disparity in NP aggregation in the two schemes at low target concentrations. 

 

 
Figure 3. Agarose gel electrophoresis results of DNA strands used in (a) CA and (b) DA schemes. In the CA 

scheme, a distinct product band was observed when the T strand concentration was as low as 0.3×. (c,d) Absorbance 

decrease at 4 hrs with 30× concentration of specific and non-specific target strands. In the CA scheme, maximum 

A values were induced by the target (T) strands specific to the scheme. 

To verify the correct operation of the CA scheme, agarose gel electrophoresis of the DNA strands without NPs 

was performed. The DNA strands were incubated for 4 hrs prior to the electrophoresis, which was carried out in a 

3% agarose gel at 100 V for 45 min. The agarose gels were stained with ethidium bromide to label double-helix 

bands. Two major bands were observed from the CA sample (Fig. 3 (a)). The lower molecular weight band (lower 

band) represents the mixture of H strands and L:T duplexes. The higher molecular weight band (upper band) 
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represents the H:L product that links two NPs together. In CA the scheme, the product band became significant at 

0.3× target concentration. In the DA scheme, no appreciable double helix band was observed at low concentrations 

with a faint band appearing at 0.3× target concentration. These gel electrophoresis results verify that the H:L 

product, hence inter-particle linkages, formed at much lower T strand concentrations in the CA scheme. 

To test target specificity, aggregation experiments of the two schemes were tested with each of four DNA strands 

at 30× concentrations and 4 hr reaction times (Fig. 3 (c) and (d)). The four strands were T strands for DA, CA, and 

two control strands (C1 and C2). The control strands were designed with random, non-specific base sequences 

either in the a´ or b´ domain of the T strand. For example, the Control 1 (C1) strand has the same toehold region 

(domain a´ in Fig. 1(b)) as the T strand while the rest of the sequence is not identical to the b´ domain of the T 

strand. The Control 2 (C2) strand has a random toehold region (a´ domain) while the b´ domain is identical to the T 

strand. In each design, the correct target strand caused the largest absorbance decrease. The peak shifts from control 

target strands were comparable to those exhibited by samples without target strands. These results indicate that the 

catalytic aggregation schemes are very specific, and the DNA strand that can both attach to the toehold and open the 

hairpin is necessary to initiate NP aggregation. 

 

4. Conclusions 

 

In conclusion, we successfully implemented a modified HCR network to induce catalytic aggregation of gold NPs 

with lower concentrations of target DNA strands than detectable by direct aggregation. The catalytic aggregation 

design exhibited a multifold increase of absorbance change at low target concentrations, indicating more extensive 

NP aggregation compared to the direct aggregation scheme. Our results demonstrate that DNA hybridization 

reaction networks can be used to induce multiple inter-particle linkages for every target strand, enhancing the 

sensitivity of colorimetric detection of DNA. Design improvements will enable detection of various nucleic acid 

targets with different lengths. We also envision that this work can be expanded using DNA aptamers for sensing 

biomolecules beyond nucleic acids. 
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