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Abstract

Reconstruction of intentional or accidental release of contaminants into the atmosphere using
concentration measurements from a sensor network constitutes an inverse problem. An added
complexity arises when the contaminant is released from multiple sources. Determining
the correct number of sources is critical because an incorrect estimation could mislead and
delay response efforts. We present a Bayesian inference method coupled with a composite
ranking system to reconstruct multiple source contaminant release events. Our approach
uses a multi-source data-driven Gaussian plume model as the forward model to predict
the concentrations at sensor locations. Bayesian inference with Markov chain Monte Carlo
(MCMC) sampling is then used to infer model parameters within minutes on a conventional
processor. The composite ranking system enables the estimation of the number of sources
involved in a release event. The ranking formula allows plume model results to be evaluated
based on a combination of error (scatter), bias, and correlation components. We use the 2007
FUSION Field Trial concentration data resulting from near-ground-level sources to test the
multi-source event reconstruction tool (MERT). We demonstrate successful reconstructions
of source parameters, as well as the number of sources involved in a release event with as
many as three sources.

Keywords:

Event Reconstruction, Bayesian Inference, Source Term Estimation, Gaussian Plume Model

1. Introduction1

Environmental awareness plays an important role in public safety, health, and threat2

mitigation. The release of harmful contaminants into the atmosphere could come by inten-3

tional or accidental means, and a quick response is key to limiting possible hazard to the4

population. Researchers have proposed event reconstruction (ER), also called source-term5

estimation (STE), methods (Annunzio et al., 2012a; Chow et al., 2008; Keats et al., 2007;6

Senocak et al., 2008; Stohl et al., 1998) that use contaminant concentration data from a net-7

work of well-placed sensors to characterize a dispersion event in terms of its source location8
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and emission rate. STE methods have been studied for many applications including defense9

and air quality management (Watson and Chow, 2004).10

Most ER models adopt an inverse problem methodology along with a forward model11

to predict the plume dispersion. In cases where contaminant dispersion takes place over12

flat terrain on a scale of several kilometers or less, Gaussian plume models have been an13

effective forward model in ER methods (Senocak et al., 2008; Allen et al., 2007). At the14

continental scale with variable meteorological conditions, Monache et al. (2008) used the15

Lagrangian Operational Dispersion Integrator (LODI) as the forward model in a stochastic16

reconstruction method to determine the location of a radioactive release in Algeciras, Spain.17

At the urban neighborhood scale, Keats et al. (2007) adopted a computational fluid dynamics18

(CFD) model to better capture the effects of complex buildings on contaminant dispersion.19

Researchers have adopted different methodologies to formulate a STE problem. Both de-20

terministic and probabilistic algorithms have been proposed. By and large Bayesian inference21

methods form the basis for most of the probabilistic approaches. Johannesson et al. (2004)22

presented dynamic Bayesian models using both the well-established Markov chain Monte23

Carlo (MCMC) method and the sequential Monte Carlo for target tracking and atmospheric24

dispersion event reconstruction problems. Chow et al. (2008) extended the work presented in25

Johannesson et al. (2004) to neighborhood scale (building-resolved) atmospheric dispersion26

events using CFD models. Keats et al. (2007) combined a Bayesian inference method with27

an adjoint approach to reduce the computational time to reconstruct a release event in an28

urban environment using CFD based models. Senocak et al. (2008) developed a data-driven29

approach within a Bayesian inference framework whereby empirical turbulence diffusion pa-30

rameters of the Gaussian plume model are estimated as part of the inverse problem in ad-31

dition to characterizing the dispersion event. The practice led to substantial improvements32

over the empirically tuned Gaussian plume model.33

Some researchers have favored a deterministic approach in which an optimization method34

is used to solve the inverse problem. Henze et al. (2009) discusses the use of adjoint models35

to inversely model PM2.5 (particles with diameter less than 2.5µm) emissions. Akcelik et al.36

(2005) describes an optimization method which uses a conjugate gradient method to solve37

systems of partial differential equations. This method takes advantage of parallel computing38

to improve speed and efficiency of the otherwise lengthy optimizations for single-source event39

reconstructions. Another optimization method, proposed by Annunzio et al. (2012b), uses40

a Genetic Algorithm (GA) to carry out the optimizations in order to determine the source41

location of a single source release.42

A contaminant dispersion event can involve releases from multiple sources. The source43

type may vary (e.g., point, line, area, volume) as well as the source elevation (e.g., ground44

level, stack, elevated line from aircraft). The release may also be categorized by the manner in45

which it is released, such as instantaneous (puff), continuous, or time-varying. Based on the46

methods described in Annunzio et al. (2012b), Annunzio et al. (2012a) introduced the Multi-47

Entity Field Approximation (MEFA) method for cases involving one or more ground-level48

point sources. With regards to continuous release scenarios, MEFA uses available wind data,49

and constrains any multiple releases to fall within a hazard area predicted by calculating the50
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spread far downwind for a single-source plume approximation. MEFA then searches within51

this hazard area for the optimal source locations while incrementing the number of possible52

sources. A cost function is used in part to determine the number of sources involved in the53

dispersion event. Field data is used to show that the method is capable of providing good54

approximations for multi-source events.55

Platt and DeRiggi (2012, 2010) analyzed the blind predictions from STE models provided56

by eight different research groups, as applied to the FUSION Field Trials of 2007 (FFT-07)57

dataset (Storwold Jr., 2007). The comparative investigation provided useful information as58

to how well existing STE models perform relative to other STE models under different release59

scenarios. Platt and Deriggi applied a linear regression analysis to determine the significant60

factors that affected the reconstruction results obtained from various models. The present61

Bayesian inference method (Senocak et al., 2008) with a single-source, continuous release62

capability was also a part of the investigation. A subset of the results has revealed the63

advantages of a Bayesian inference method over other inverse methods that used the same64

forward model (i.e. Gaussian plume model).65

Reconstruction of a multi-source contaminant release event is more challenging than66

reconstruction of a single source event. Yee has shown remarkable success using Bayesian67

inference techniques to reconstruct multi-source events with the number of sources unknown68

a priori (Yee, 2008, 2012a,b). Yee incorporates the unknown number of sources into the69

Bayesian inference framework in a principled fashion, which results in a posterior probability70

density for the number of sources. In our approach, we propose an alternative method71

to source number quantification by extending the Bayesian inference method presented in72

Senocak et al. (2008) to reconstruct contaminant dispersion events from multiple sources73

and couple it with a model ranking system. We adopt a data-driven multi-source Gaussian74

plume model as the forward model in the Bayesian inference method, and suggest a separate75

ranking system to estimate the number of sources involved in a release event. We apply the76

combined method to FFT-07 trial cases with up to three sources.77

2. Forward Model78

We adopt a data-driven Gaussian plume model as the forward model, because it is a79

suitable model for short range releases, over flat terrain under steady wind conditions, such80

as the FFT-07 trials considered in the present study. It is also computationally inexpensive.81

Therefore it can be used rapidly in the sampling process within the Bayesian approach.82

We are able to achieve accurate reconstructions in under two minutes on a conventional83

workstation with an Intel E8400 3.0 GHZ processor. Speed is an important aspect of STE84

when the intended use is first-response. Sophisticated forward models should be preferred85

for contaminant dispersion problems where a Gaussian plume model might not be suitable.86

Stockie (2011) presents a derivation of the Gaussian plume model with single and multiple87

contaminant sources. For a single source release, the Gaussian plume model can be written88

as follows:89
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Cm(x, y, z) =
Q

2πUσyσz

exp

(

− y2

2σ2
y

)

×
{

exp

(

−(z −H)2

2σ2
z

)

+ exp

(

−(z +H)2

2σ2
z

)}

, (1)

where Cm is the concentration at location (x, y, z), Q is the rate of emission for the point90

source, U is the average wind speed, and H is the height of the release. We set z to 2m, the91

same height as the samplers used in the FFT-07 field experiments. In the FFT-07 trials, the92

contaminant was released from a near-ground-level source, therefore H is also set to 2m. H93

can also be set as an unknown and estimated using the Bayesian inference method as was94

shown in Senocak et al. (2008). Additionally, we combine Q

U
into a single parameter. The95

release rate, Q can then be estimated by calculating an average wind speed from local wind96

measurements at sensor height over the duration of the experiment.97

We use an open-country Pasquill D type stability (Hanna et al., 1982) to define turbulent98

diffusion parameters σy and σz as follows:99

σy = ζyx(1 + 0.0001x)−0.5, σz = ζzx(1 + 0.0015x)−0.5 (2)

where σy and σz are the standard deviations used in Equation 1 for the horizontal and100

vertical plume directions normal to the streamwise plume direction. Here, x refers to the101

distance along the streamwise plume direction. The parameters ζy and ζz are left as unknown102

parameters to be estimated by the Bayesian method, making the forward model a data-driven103

one. The practice results in significantly better estimates for the concentration field (Senocak104

et al., 2008; Senocak, 2010). Data-driven forward modeling gives better predictions than the105

baseline forward model when there are sufficient and reliable sensor data.106

3. Bayesian Inference Method for Multi-Source Release Events107

The Stochastic Event Reconstruction Tool (SERT) (Senocak et al., 2008) uses Bayesian108

inference to estimate information (i.e., source location, release height, emission rate, wind109

direction and speed) about the dispersion event. In this section, we present the Bayesian110

inference framework in SERT and extend it to multiple source releases. The number of111

sources involved in an event is then estimated separately using a ranking formula.112

Generally speaking, the inverse problem can be formulated as follows:113

m ≈ F−1(d), (3)

where d is a vector of observed concentration values and m is a vector of forward model pa-114

rameters to be estimated. F is the forward model, which is the Gaussian plume model in our115

case. Given the observed data, d, our goal is to estimate forward model parameters, m. In116

most Bayesian inference methods, Bayes’ rule is simplified into the following proportionality:117

P (m|d) ∝ L(d|m)P (m), (4)
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where P (m|d) refers to the posterior probability density of the forward model parameters,118

L(d|m) is the likelihood function which calculates the likelihood of the observations given the119

model parameters, and P (m) is the prior probability for the model parameters (Congdon,120

2010).121

Prior probabilities for model parameters are set based on certain expectations about each122

of the model parameters. All model parameters except Q/U and σ2 are assigned proper123

uniform prior distributions. The normalized emission rate Q/U is given a Jeffrey’s prior as124

follows:125

p(Q/U) ∝ 1

Q/U
. (5)

To avoid division by zero we set a small minimum value for Q/U . Q/U is scaled using this126

minimum value to ensure that the maximum prior value is unity.127

There are sensors capable of detecting trace amounts of a material in the atmosphere.128

But they have their limitations. Sensors can register a nominally zero value when, in fact,129

local concentration level, di, can be non-zero and below the detection threshold of the sensor.130

In such cases, we assign a probability to detecting a zero concentration level as follows:131

di =

{

0, with probability exp(−α · Ĉi)

ξi, with probability 1− exp(−α · Ĉi)
(6)

where ξi is a concentration measured by a theoretically ideal sensor, di is the concentration132

measured by an actual sensor, and Ĉi is the concentration predicted by the model at the133

sensor location. Given the model parameters, ξi has a lognormal distribution with the134

following density:135

p(ξi|m) =
1√

2πσξi
exp

(

− 1

2σ2
(ln ξi − ln Ĉi)

2

)

, (7)

When a sensor makes an observation at the sensor’s detection threshold, Cth, we assume136

that it does so with a probability of 1/2. Based on this assumption and Equation 6, α can137

be computed in the following manner:138

1− exp(−α · Cth) =
1

2
→ α =

1

Cth

ln(2). (8)

Given Equation 6, the conditional likelihood function is written as follows:139

L(di|m) =











exp(−α · Ĉi), if di = 0

1− exp(−α · Ĉi)√
2πσdi

exp

(

1

2σ2
(ln di − ln Ĉi)

2

)

, if di > 0
, (9)

where σ2, is the variance, which takes into account modeling and measurement errors cumu-140

latively. We assume that the variance has an inverse gamma prior distribution with hyper141
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parameters α = 1.0 and β = 1000.0.142

SERT’s previous design focused on single source continuous releases. In this study, we143

first modify the forward model to extend SERT to multiple source events. For a multi-144

source plume of a non-reactive and non-buoyant contaminant, the concentration at any145

point (x, y, z) is the sum of the contributions from each source (Stockie, 2011).146

Ctotal(x, y, z) =

n
∑

s=1

C(x′

s, y
′

s;Qs), (10)

where n is the number of sources, and Qs is the source emission rate. As in Stockie (2011),147

the shifted coordinates, x′

s and y′s, are defined as follows:148

x′

s = x−Xs, y
′

s = y − Ys, (11)

where, x and y are the Cartesian coordinates, Xs and Ys are the coordinates of source s.149

The origin is shifted to the source location, (Xs, Ys), and the positive x-direction extends in150

the downwind direction.151

Next, we introduce additional parameters required by the multi-source model into the152

Bayesian inference framework. Hereinafter we will refer to the multi-source event reconstruc-153

tion tool as MERT. For multiple source releases, we define a reference source, and all other154

sources are defined relative to the reference source based on the distance to the source, d,155

and an angle, ϕ, measured from the global x-axis, as shown in Figure 1. Each source has its156

own emission rate normalized by the mean wind speed, Q

U
. For example, the complete set of157

forward model parameters for a dual source model can then be written as follows:158

m =

[

xs1, ys1,

(

Q

U

)

, θ, ζy, ζz, σ
2, d2, ϕ2,

(

Q

U

)

2

]

, (12)

where (xs1, ys1) is the primary source location, and θ is the wind direction. We use Markov159

chain Monte Carlo (MCMC) sampling with the Metropolis Algorithm (Metropolis et al.,160

1953) to estimate the posterior distribution of the model parameters. In our approach, the161

candidate state is sampled from a Gaussian distribution centered on the current state.162

Figure 1 shows a dual source plume with sufficient distance between two sources, such163

that overlap of the plumes does occur downstream and yet the sources are not too close164

together to consider them as a single entity. We assume that the distance between the two165

sources, d, is relatively small compared to the size of the search region. Therefore, for the166

current study with a sensor grid that covers an area of approximately 500m by 500m with167

50m spacing between sensors, we set an upper limit of 5 times the spacing between sensors168

as the maximum cross-wind distance allowable between sources. If the sources are farther169

apart than this upper limit, they can be treated as individual single-source events in the170

present study. This reasoning also extends to sources that are extremely close to each other171

in the cross-wind direction, such that plumes overlap heavily to behave as a single source172

release. Therefore, a lower limit of one fifth of the spacing between sensors is used, below173

which we assume that plumes overlap and can be considered a single source release.174
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The additional parameters, d and ϕ, are used to calculate the location of the second175

source, (xs2, ys2), relative to the reference source. Equations 13 and 14 show the conversion176

from polar to rectangular coordinates with respect to the location of the primary source. It177

is not necessary to specify a primary source prior to the sampling process, because a source178

location, (xs1, ys1), is estimated from the MCMC sampling process, which will then serve as179

the reference source for other sources. Note that the other source locations are calculated180

using the estimated parameters d and ϕ. The polar configuration allows for additional181

sources to branch off of the primary source.182

Figure 1. Sample dual source Gaussian plume colored by contaminant concentration at 2m above
ground level. Source locations are shown as circles, d is the distance between sources, and ϕ is the
angle between sources with respect to the positive x-axis.

xsi = xs1 + di cos(ϕi) (13)

ysi = ys1 + di sin(ϕi) (14)

where i = 2, 3, ..., N and N is the maximum number of possible sources.183

4. Composite Ranking to Determine the Number of Sources184

Concentration or dosage of contaminant measured at the sensors can be an outcome185

of releases from single or multiple sources. However, in the ER problem we do not know186

the number of sources involved in a dispersion event, even for a single source release. A187

concentration field resulting from a multiple source release can come close to matching a188

concentration field from a single source with a different emission rate and source location.189
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The Bayesian framework that we presented in the previous section does not provide any190

inference on the number of sources involved in a dispersion event. Therefore, we propose a191

composite ranking approach to estimate the number of sources involved in an event. The192

ranking system is independent of the Bayesian inference to locate the source and emission193

rate. We consider single, dual, and three-source releases, but the overall method is applicable194

to more than three sources. In our approach, we execute MERT for each release possibility195

independently. Once the runs are completed, we extract the most probable value for each of196

the model parameters from the corresponding posterior probability distributions. We then197

run the forward model using the most probable parameters to calculate the concentrations198

at each of the sensor locations. We designate these model concentrations as Ĉ and compare199

them to the measured concentrations, C, for single, dual, and three-source assumptions200

separately using a ranking method.201

In atmospheric dispersion applications, it is typical to use multiple performance metrics202

to effectively evaluate the predictive capability of a dispersion model. Researchers suggested203

a variety of metrics (Stohl et al., 1998; Pullen et al., 2005; Svensson, 1998; Chang et al., 2003;204

Hanna et al., 1993). We propose a composite ranking model that is inspired by the recent205

Environmental Protection Agency protocol to determine the best performing air quality206

model (EPA, 2012). The literature is mostly in agreement that error (scatter), bias, and207

correlation are important metrics in the evaluation process, all of which are included in some208

form in the global statistics portion of Mosca et al. (1998). Each of these metrics is weighted209

equally in our ranking model to decide whether a specific model achieves better results using210

a single or multiple source setting. We then identify the setting with the higher ranking as211

the release event containing the correct number of sources.212

Our ranking model has three parts. The first component of the model’s rank is the213

FAC2, which is a quantity measuring the fraction of predictions that fall within a factor214

of two of the corresponding observations (Chang et al., 2003), as shown in Equation 15 .215

This operation is performed to obtain a measure of error, or scatter, when comparing the216

observed and predicted values.217

FAC2 = fraction of data for which 0.5 ≤ Ĉ

C
≤ 2.0, (15)

where C is the observed concentration at the sensor and Ĉ is the estimated concentration218

calculated by using the most probable parameters, obtained from posterior distributions, in219

the forward model.220

The next performance metric used in the ranking model is the Fractional Bias (FB). The221

FB is used to indicate a bias towards underprediction or overprediction of concentration222

data by the model. It has been used as a validation parameter for other dispersion models223

and is a robust indicator of model performance (Stohl et al., 1998). The FB ranges from224

-2 (extreme underprediction) to +2 (extreme overprediction), and 0.0 is a perfect score for225

this component. As part of the United States Environmental Protection Agency’s (EPA)226

performance evaluation protocol (EPA, 1992), the FB is defined as follows:227

8
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FB = 2

(

C̄ − ¯̂
C

C̄ +
¯̂
C

)

, (16)

where C̄ is the average measured concentration across all sensors, and
¯̂
C is the average of228

the predicted concentrations computed by the model at all sensor locations.229

The final component to our ranking model is the Pearson’s Correlation Coefficient (R),230

which contributes a measure of correlation to the ranking model. R ranges from -1.0 to +1.0231

with +1.0 corresponding to “perfect positive correlation”(EPA, 2012). An R value close to232

0.0 would indicate that the predicted data and the measured data are not related. R is233

defined as follows:234

R =

∑

i

(Ci − C̄) · (Ĉi − ¯̂
C)

[

√

∑

i

(Ci − C̄)2

][

√

∑

i

(Ĉi − ¯̂
C)2

] (17)

The three components described above are combined to form the following ranking model235

RANK = FAC2 +

(

1− |FB|
2

)

+R2 (18)

The ranking model contains a measure of error (scatter), bias, and correlation in a composite236

fashion. These metrics provide a concise and quantitative description of how well the model237

performs with a varying number of sources. The composite rank ranges from 0 to 3, with238

3 corresponding to a perfect score. The higher the RANK, the better the model did at239

matching the concentration predictions with sensor observations. We use the highest ranking240

model to make a decision on the correct number of sources involved in the dispersion event.241

5. Results242

In 2007, the Defense Threat Reduction Agency (DTRA) proceeded to address some of243

the unmet requirements in the current Joint Effects Model (JEM), which is to be used as the244

standard hazard prediction model at the Department of Defense (Storwold Jr., 2007). One245

of these requirements was to evaluate source term estimation models used to detect chemical246

and biological (CB) activity and estimate the characteristics of the source(s) in question. A247

large data set, FFT-07, was created for the evaluation and improvement of STE algorithms.248

The FFT-07 database provides detailed meteorological information and trace gas concentra-249

tion measurements for short range ( 500m) dispersion experiments. These experiments were250

performed with single and multiple sources for continuous and puff (instantaneous) releases.251

5.1. Evaluation with FFT-07 Trials252

We use data from Trials 7, 27, 28, and 40 of FFT-07. In trials 27 and 40, there are two253

sources with different tracer emission rates. Trial 7 is a single source trial that we include254
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in our study to demonstrate that the ranking model will identify the correct number of255

source terms, even in a single source case. Trial 28 is a three source case. The true source256

locations and emission rates are known from the field data and used to assess the accuracy257

of the reconstructed model parameters. In working with the FFT-07 concentration data, we258

ignored sensor data that reports an error message for more than 50% of the sampling time.259

In FFT-07, a grid of 100 digital photoionization detectors (digiPID) were spaced evenly260

on a square grid at 50m apart and 2m above the ground. A tracer of propylene gas was261

released from multiple locations at approximately 2m above ground and at constant flow262

rates for approximately 15 minutes per trial. We time-averaged the concentration data from263

sensors for the continuous release trials, which are the focus of the present study.264

FFT-07 Trial 40 had very few poor readings (sensors reporting an error more than 50% of265

the time). This abundance of reliable sensor data and fairly uniform wind conditions resulted266

in reconstructions of the source locations that are approximately 8 and 6 meters from the267

true source locations, as seen in Figure 2. For this case, 48 of the 100 sensors are used in268

the estimation. Note that we include all positive reading sensors. Figure 3 shows the tight269

posterior distributions for the two source locations in which the true values fall within, or270

very close to, the 50% contour line. This inner contour line encompasses 50% of the posterior271

samples and the outer contour line includes 90% of the posterior samples. The range of each272

cell is normalized in both the horizontal and vertical direction with the limits corresponding273

to the minimum and maximum values for each parameter in the posterior samples. The274

normalization enables us to assess accuracy in percentage form in a global fashion over the275

parameter space. The plots along the diagonal show the marginal distributions of each276

parameter. Trial 40 is a good example of successful reconstruction from reliable sensor data.277

Figure 4 shows a comparison of results from FFT Trial 40, where the left image uses a278

single source setting, the middle uses a dual source setting, and the third image uses a three279

source setting. The predicted values for the dual source setting (middle) match more closely280

to the data measured by the sensors. A perfect match would lie directly on the solid diagonal281

line running through the origin. This view of the data allows us to see the difference between282

an estimate with a single, dual, an three source setting. It also shows the points which fall283

within a factor of two of the observed values (FAC2) as well as the over or underestimation284

(Bias). From this figure, we can visually deduce that the dual source setting is most likely285

the correct answer, but we need a quantitative measure. Therefore, we proposed a composite286

ranking model as described in Section 4.287

The more reliable the sensor data, the more accurate the reconstruction will be. However,288

operational data may be less reliable than desired. Hence we use Trial 27 from the FFT-07289

data set, which has much less reliable data than the Trial 40, to test how less reliable or290

sparse data affects the reconstruction.291

Figure 5 shows the layout of the 57 sensors used in Trial 27, as well as the true and292

estimated source locations. We observe that the most probable source locations are approx-293

imately 15 and 25 meters from the true source locations. The true source locations are294

illustrated with squares and the source location estimates with ×’s. Ideally, the estimates295

would fall directly on the true locations (e.g. ×’s on top of squares). The distances may not296
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Figure 2. FFT-07 Trial 40 source location estimates (s1 and s2) with approximate errors of 8m
and 6m. Sensors reporting nominally zero concentration are colored white. Large rotated box is
the FFT-07 sensor network boundary.

be ideal (and not as small as Trial 40), but can still be very useful from an operational point297

of view since they would at least put any rapid response personnel in close proximity to the298

true locations.299

FFT-07 Trial 28 is a three-source release event and a similar layout plot can be seen in300

Fig. 6. In this figure we can see that estimated source locations for sources 1 and 3 are fairly301

close to the true values, but the estimated source location for source 2 is approximately 48m302

from the true source location. We do note, however, the estimated sources are in a somewhat303

linear arrangement, as are the true source locations, and they are of approximately correct304

spacing with respect to one another.305

5.2. Composite Ranking Model Results306

Thus far, we have presented reconstruction of source locations and emission rates for dual307

and three-source releases. We have not made an attempt to estimate the number of sources308

involved in a dispersion event. The composite ranking model that we proposed in Section 4309
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Figure 3. FFT-07 Trial 40 bivariate posterior distributions for location and emission strength.
The range of each cell is normalized with respect to the minimum and maximum values for each
parameter and distances can be viewed as percent error. The plot is colored by probability density
and the darkest regions are the most probable. The outer contour encompasses 90% of the posterior
samples and the inner contour includes 50%. White markers represent true values.

enables us to estimate the number of sources. We calculate RANK using Equation 18. The310

components that make up the RANK are: FAC2, FB, and R.311

Figure 7 shows the composite ranking for all cases in this study, and is colored by con-312

tribution from each component in the rank. A rank of 3.0 corresponds to a perfect score.313

For all the cases tested, the model with the correct number of sources ranked higher. For314

instance, Trial 7 is a single source release, and our ranking model gives the highest score315

to the single source assumption correctly. In all the other cases the correct source-number316

assumption received the highest score, as expected.317

6. Conclusions318

We have extended a Bayesian inference method to reconstruct single-source contaminant319

release event, SERT, to reconstruct near-ground-level multiple-source release events, MERT.320

We proposed a composite ranking system to identify the number of sources involved in an321

event. The ranking formula is independent of the Bayesian method and can potentially be322

adopted in other event reconstruction methods.323

We have applied the combined approach to releases from up to three sources, but the324

method can be extended to more than three sources. In the Bayesian framework we used a325

data-driven Gaussian plume model where turbulent diffusion parameters are inferred given326

the concentration data. The practice significantly improves the performance of the standard327
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Figure 4. Observed sensor concentrations for FFT-07 Trial 40 vs. computed sensor concentrations
using the most probable model parameters.

Gaussian plume model. However, for complicated dispersion events, sophisticated dispersion328

models should be preferred as the forward model.329
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Figure 7. Ranking for each case tested. Colors correspond to individual rank components (e.g.
R2, FAC2, 1 − |FB|/2) as shown in legend. (1),(2),(3) refer to single, dual, and three source
settings, respectively. FFT-07 Trials 27 and 40 are truly dual source releases. Trial 7 is a single
source release and Trial 28 is a three source release.
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