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How do they know it is a parallelogram? Analysing geometric 
discourse at van Hiele Level 3 

Sasha Wang and Margaret Kinzel  

In this article, we introduce Sfard’s (2008) discursive framework and use it to 

investigate prospective teachers’ geometric discourse in the context of 

quadrilaterals. In particular, we focus on describing and analysing two 

participants’ use of mathematical words and substantiation routines related to 

parallelograms and their properties at Van Hiele level 3 thinking. Our findings 

suggest that a single van Hiele level of thinking (1959/1985) encompasses a 

range of complexity of reasoning and differences in discourse and thus a deeper 

investigation of students’ mathematical thinking within assigned van Hiele levels 

is warranted.  

Keywords: mathematical discourse; geometry; van Hiele theory  

Introduction  

Research in mathematical thinking has attracted increasing interest in mathematical 

discourse and its development. Many researchers have adopted different theoretical 

perspectives to shift from monolithic views of mathematical discourse and to embrace 

the multi-semiotic nature of mathematical activity (Moschkovich, 2010). Given our 

interest in students’ geometric thinking, we set out to explore the characteristics of 

geometric discourse through a communicational approach. In particular, we report on 

work that combined Sfard’s (2008) discursive approach with the van Hiele levels of 

geometric thought. By so doing, we are able to provide a more robust characterisation 

of students’ thinking within one van Hiele level. 

The Dutch educators Pierre and Dina van Hiele (1959/1985) developed a model 

of geometric thought, incorporating “the van Hiele levels.” Many researchers (e.g., 

Mayberry, 1983; 1990 and Burger & Shaughnessy, 1986) have confirmed the usefulness 
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of the model for describing the development of students’ geometric thinking. Central to 

the model is the idea that each level has its own language and symbols, that a learning 

process is a process of reasoning using a new mathematical language, and the levels are 

hierarchical. However, some researchers (e.g., Usiskin, 1982 and Crowley 1987) find 

the model lacking in depth and have attempted to articulate thinking processes within 

and across levels in more detail. Previous efforts (Hoffer, 1981 and Battista, 2009) have 

suggested extensions of the model through identification of skills and or reasoning at 

each level. The notion of learning a new language at each van Hiele level indicates the 

unit of analysis that viewing language as saying, doing and being (Gee, 2011) Using a 

discursive lens allows us to focus on what students say and do in relation to geometric 

figures and their properties, with the goal of providing detailed and in-depth 

descriptions of students’ thinking processes as they are communicating mathematical 

ideas. In particular, our question is how the analysis of students’ geometric discourse 

reveals the complexity of their thinking.  

To address our question, we focused our analysis in two ways. First, we 

identified students at the same van Hiele level (level 3), and second, we chose the 

specific topic of parallelogram. We hypothesised that applying the discursive lens to 

the analysis of students’ discourse at the same van Hiele level and related to a specific 

concept would allow us to describe similarities and differences in their thinking. Such a 

description contributes to the perceived need for detail within a van Hiele level. In the 

next section we outline both the van Hiele model and the discursive lens. 

Theoretical background  

The van Hiele model of thinking continues to be the best-known theoretical account of 

students’ learning of geometric figures and their properties. The model suggests that 

students must progress through a sequence of discrete, qualitatively different levels of 
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geometric thinking. The first four levels in the model are as follows.Level 1 

(Visualisation), in which students recognise and learn the names of figures, and figures 

are judged by their appearance as a whole; Level 2 (Descriptive), in which students 

begin to recognise figures by their properties or components; Level 3 (Theoretical), 

where students begin to form definitions of figures based on their common properties 

and understand some proofs; and Level 4 (Formal Logic), in which students understand 

the meaning of deduction and construct mathematical proofs using propositions, axioms 

and theorems (van Hiele, 1986).  

 According to the van Hiele model, students begin to form definitions of 

geometric figures and to reason deductively at Level 3. However, the model does not 

explicitly describe thinking at this level. Battista (2007, p. 853) noted that “there is a 

lack of distinction between type of reasoning and qualitatively different levels in the 

development of reasoning” throughout the van Hiele studies. For instance, one could 

consider direct recognition as a type of reasoning based on intuition, and also could 

regard it as a period of development of geometric thinking. One challenge regarding the 

van Hiele model of thinking is to identify different types of reasoning and/or levels of 

reasoning. In their attempt, Gutierriz, Jaime and Fortuny (1991) proposed an alternative 

way of analysing students’ geometric reasoning, and the accuracy of that reasoning, to 

determine the degrees of acquisition of a van Hiele level. In our work, applying a 

discursive lens focuses on thinking as being communicated through interaction to help 

differentiate different types of reasoning and shed light on how meanings are made at 

the same van Hiele level, as well as across different levels. In the next section, we first 

present Sfard’s discursive framework, and then articulate our application of her 

framework within van Hiele level 3. 
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The discursive lens 

In Sfard’s (2008, p. 297) communication approach to cognition, she used the term 

discourse as a “special type of communication made distinct by its repertoire of 

admissible actions and the way these actions paired with re-actions; discourse including 

communication in written and spoken language.” In this sense, discourse goes beyond 

language as conventionally viewed and includes physical objects deployed for 

discursive ends. Sfard also made a distinction between language and discourse, viewing 

language as a tool, whereas discourse is an activity in which the tool is used or 

mediates. She proposed four characteristics of mathematics discourse: word use, 

routines, endorsed narratives and visual mediators. We use the specific context of 

parallelogram to illustrate each of these characteristics.  

• Word Use (mathematical words and their use). In a geometric discourse that 

deals with quadrilaterals and their properties, we focus on students’ use of words 

such as rectangle, rhombus, square, angles, sides and diagonals, to explore how 

meanings are communicated and made through interactions. For example, when 

two students are using the word rectangle, one may say it is also a 

parallelogram, whereas the other might disagree.  

• Routines. Routines are well-defined repetitive patterns characteristic of the given 

discourse. For example, a student’s justification routine could be to use a ruler to 

measure the sides of a parallelogram to show that opposite sides are congruent. 

Routines can be observed through conversations and analysed in terms of how 

students pay attention to the process of creating and justifying claims about 

geometric figures.  

• Narratives. “A set of utterances spoken or written that is framed as a description 

of objects, of relations between objects, or of processes with or by objects, that 
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is subject to endorsement or rejection, with the help of discourse-specific 

substantiation procedures” (Sfard, 2008, p. 134). In the context of geometry, 

endorsed narratives are evident in mathematical definitions, axioms, 

propositions and theorems. For example, the statement, “a parallelogram is a 

quadrilateral with two pairs of parallel sides” is an endorsed narrative of 

parallelogram, defining what a parallelogram is mathematically.  

• Visual mediators. Visual mediators provide the means through which objects of 

geometric discourse are identified. In geometric discourse, visual mediators 

include the orientations and the size of geometric figures and their parts, as well 

as symbolic artefacts that are created specifically for written mathematical 

communication, such as markings to indicate parallel lines or right angles.   

We chose Sfard’s (2008) discursive framework as an analytic tool to investigate 

students’ geometric discourses because it provides means through which to view 

thought processes at the higher resolution We focused on van Hiele Level 3 as it 

includes at least the beginnings of deductive reasoning and formation of definitions in 

the context of parallelograms, to allow for a detailed analysis across students. In the 

remainder of this section, we articulate further our view of geometric discourse focused 

on parallelogram at Level 3.  

Using discursive terms, geometric discourse at Level 3 includes naming a 

quadrilateral dependent upon on visual properties of angles and sides, as well as a 

common descriptive narrative (i.e., a definition) accompanying the name of the figure. 

That is, when a student is asked why a quadrilateral is called a “rectangle”, the course of 

action is to check the defining conditions of rectangle by counting the number of sides 

(it has to be 4-sided), and by checking the conditions regarding sides (opposite sides 

parallel) and angles (it has right angles). So, “it is a rectangle because it has four sides, 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Research in Mathematics Education, 
published by Taylor & Francis Copyright restrictions may apply.  doi: 10.1080/14794802.2014.933711



   6 

and it has four right angles”. At this level, a student can identify that a rectangle is also 

a parallelogram because it fits the description of “a quadrilateral with two pairs of 

opposite sides parallel”. For the same reason, a student begins to recognise that a square 

is also a rectangle, a parallelogram, and a rhombus because it fits all stated descriptions. 

Therefore, geometric objects at Level 3 are collections of discursive objects that begin 

to connect into joint categories. In the case of quadrilaterals, all 4-sided polygons begin 

to fall into a hierarchy of classification.  

Geometric discourse at Level 3 thinking also reveals the details of substantiation 

of narratives as a beginning stage of deductive reasoning. Substantiation of a narrative 

is a discursive process of making sure that the given narrative can be endorsed or that it 

is true. Our discussion of students’ reasoning at Level 3 focuses on two types of 

substantiations: an object-level and a meta-level (Sfard, 2008).  

Object-level substantiation emphasises students’ justification routines, looking at 

descriptions of how quadrilaterals are being investigated. Describing static lines, angles 

and polygons as movable entities under transformations (i.e., rotation, translation and 

reflection) as a way of substantiation is an example of object-level substantiation. 

Routines of substantiation that depend on measurement routines – checking sides and 

angles without thinking about how classes of quadrilaterals are related – are also 

examples at this object level. Object-level substantiation is a justification routine in 

which students focus on the concreteness of quadrilaterals, as figures to be transformed 

or measured.  

Meta-level substantiation emphasises students’ justification routines using 

endorsed narratives to endorse new narratives. That is, students use mathematical 

definitions and axioms to construct mathematical proofs. Students with substantiations 

at a meta-level may also use object-level substantiations as a type of reasoning to justify 
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their conclusions. For example, a student may use the Angle-Side-Angle congruence 

criterion to construct a proof at a meta-level that opposite angles of a parallelogram are 

congruent, and could also describe why this congruence criterion works using rotations 

at an object-level (Sfard, 2008). 

Human thinking is far more complex than our brief description may imply. We 

shall show that the development of geometric discourse varies from student to student at 

van Hiele Level 3. In particular, students’ use of the word parallelogram and the ways 

in which they justified claims about parallelograms revealed intricacies within discourse 

at Level 3. We will illustrate this intricacy through an analysis of two participants’ 

discourse related to parallelogram.  

Methods  

During the autumn of 2010, the van Hiele Geometry Test (Usiskin, 1982) was 

administered at the beginning of the semester (pretest) and ten weeks later (posttest) to 

sixty-three prospective primary and middle school teachers in a University in the US. 

Among these prospective teachers, twenty participated in two interviews, one after the 

pretest, and one after the posttest. Following the Cognitive Development and 

Achievement in Secondary School Geometry (CDASSG) project’s grading method 

(Usiskin, 1982), each participant was assigned to a van Hiele level. When assigning a 

student to a level, we chose the 4 out of 5 criterion, to determine whether a participant 

has reached a given van Hiele level, and to minimise the chance of a participant being at 

that level by guessing (Usiskin, 1982). The results show that 48% of participants 

reached Level 3 (n=30) at the posttest. This was anticipated as most primary and middle 

school geometry curricula emphasise geometric thinking up to Level 3 (Newton, 2010). 

Among the twenty interviewees, ten of them reached Level 3 thinking according to their 

van Hiele posttest. Given that half of the interviewees reached Level 3 thinking and 
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given the complexity of Level 3 thinking as noted earlier, we examined their geometry 

discourses at Level 3.  

Molly and Ivy (pseudonyms) were among the ten interviewees whose van Hiele 

posttest indicated their thinking reached Level 3; that is, they responded correctly to at 

least 4 out 5 items at each of the van Hiele Levels 1-3. The van Hiele Geometry Test 

provides initial information about participants’ van Hiele levels at a point in time, but it 

does not provide rich descriptions of their geometric discourses at a particular level of 

thinking. Molly and Ivy are chosen to highlight the potential of the discursive lens for 

characterising variations within a single van Hiele level.  

The interviews were designed to explore the possibilities of prospective 

teachers’ geometric thinking through one-on-one interactions. Molly and Ivy (along 

with the 18 additional interviewees) participated in a 90-minute interview a week after 

the pretest and a 90-minute interview a week after the posttest. All interview tasks were 

designed to elicit participants’ geometric thinking about quadrilaterals and were aligned 

with the van Hiele geometric test items. During the interview, all interviewees were 

asked to complete three tasks; however, for the purpose of this paper, we describe only 

the first two tasks here. The first task (shown in Figure 1), Sorting geometric figures, 

asked participants to place quadrilaterals into different groups. The second task (shown 

in Table 2), Investigating properties of parallelograms, was designed to investigate 

prospective teachers’ understanding of the properties of parallelograms. All interviews 

began with the same tasks and initial interview questions; One interviewer interviewed 

all participants and the interviewer was required to follow an interview protocol, 

however, the interviews were guided based on interviewees’ responses to the tasks and 

questions (Wang, 2011). All the interviews were video recorded. The interview 
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transcripts document what participants said and also the actions they performed in the 

interviews.  

Different geometric discourse at the same van Hiele level  

Although the van Hiele posttest results showed both Molly and Ivy reached van Hiele 

Level 3 thinking, discursive analysis revealed differences in their geometric discourses. 

In the following sections, we present our analysis of Molly and Ivy’s use of the word 

parallelogram and their substantiation routines. We compare these analyses to draw 

attention to the potential of the use of a discursive lens to provide additional detail 

within a particular van Hiele level, Level 3.    

Word Use 

All interviewees were presented with Task 1 and asked to sort eighteen polygons into 

groups. Once a grouping was completed, they were asked to justify the grouping. They 

were then asked to create and justify a second grouping. Subgroups could be created as 

needed. [Note: We refer to the eighteen polygons by their letter label.]  

Molly’s word use 

Molly grouped the quadrilaterals into: (1) squares (U, G, and R), (2) rectangles (M, F, 

and T); (3) rhombi (Z); and (4) parallelograms (L, J, and H). She explained her 

grouping as follows: 
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Figure 1. Sorting geometric figures  

Molly: Quadrilaterals, you have your square because each form 90-degree [angles] and all 

                   side lengths are equal [Pointing at U]. These are rectangles [Pointing at F and M] 

                   because those two sides are the same. But again they form 90-degree angles. 

                   Opposite angles are equal and opposite sides are equal, so these three would be an 

                   example of parallelogram. [Pointing to L, J and H] 

Molly did not spell out exact mathematical definitions of squares, rectangles, 

and parallelograms, but she was able to group them together based on the common 

features relating to angles and sides that she observed. To investigate further, Molly was 

asked whether J and Z, and U and M, could be grouped together. She replied as follows: 

Interviewer: Can I group figures J and Z together? 

                                     
Molly: Mm Hmm [yes]. 

Interviewer: Why is that? 

Molly: […] because they both have opposite sides parallel and opposite angles 

            are equal. 

Interviewer: Can I group figures U and M together? 

Q
R

F

V

P

N

L J Z H

G

X

U

S
T

M
WK

J Z
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Molly: Yeah, you can because U has the same property as M. The only differences 

            is that M does not have all the same sides length, so M would not have all  

            the properties as U, but U has all the properties of M. 

Molly did not initially group a rhombus and a parallelogram together, but we learned 

that she recognised that a rhombus is also a parallelogram. She also agreed that a square 

and a rectangle could be grouped together, because a square shares a property with a 

rectangle. In both cases, when prompted, Molly agreed that some quadrilaterals could 

be grouped together, but she did not on her own assign a common name (e.g., 

“rectangle”) to the group. When Molly was asked to identify all the parallelograms 

among the quadrilaterals, she replied, “L, J and H will be just parallelograms, but all of 

these figures [pointing to squares, rectangles and rhombi] could be parallelograms, 

because they all fit to the greater property of “opposite angles and sides to be equal”. It 

is not clear why figure P (another parallelogram) was missed from her grouping.  

When requested, Molly provided her of definitions for square, rectangle, 

parallelogram and rhombus: 

Table 1. Molly’s definitions of parallelograms  

Name  Definitions 

Square  A Square is when all the angles form right angles and they are all the 
same they are all 90 degrees and each side length also has to be the 
same 

Rectangle A Rectangle, each angle is 90 degrees but these sides are the same 
and parallel, and this one is the same and parallel, but not all 4 of 
them are the same, necessarily. 

Parallelogram A parallelogram is when opposite sides are equal and opposite angles 
are both equal. 

Rhombus As rhombus alone, it has all sides the same, but does not form 90-
degree angle. 

U M
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Molly’s use of the word parallelogram signified a family of quadrilaterals that 

share this common description: “they all fit to the greater property of opposite angles 

and sides to be equal”. We generated the following diagram within our analysis to 

illustrate Molly’s use of the parallelogram.  

 

Figure 2. An illustration of Molly’s use of the word parallelogram.  

When prompted, Molly agreed that these quadrilaterals--parallelograms, 

squares, rectangles, and a rhombus--all could be called “parallelograms”, however, it 

appeared that she was still a bit uncomfortable accepting that they (i.e., rectangles, 

squares and rhombi) are “parallelograms.” For example, she expressed, “as a rhombus 

alone, [it] does not form 90-degree angles, [but] sides are all the same”, and “L, J and H 

will be just basic parallelograms.” Molly’s use of the word parallelogram signified 

prototypical shapes that are “just basic parallelograms” and those quadrilaterals that 
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“could be called parallelograms”. Although Molly used her definition to check if a 

quadrilateral is a parallelogram, from the way she communicated, her defining routines 

were not yet well developed at the time. 

Ivy’s word use  

Ivy, another interviewee, was also assigned at van Hiele Level 3 thinking. However, the 

discursive analysis showed that Ivy’s use of the word parallelogram was different than 

Molly’s. During the post-interview, Ivy grouped all 4-sided figures (n=13) into the 

quadrilaterals group, and included parallelograms, squares, and rectangles as 

parallelograms, but not all the rhombi. The rectangles group consisted of rectangles 

and squares, and the rhombi group included squares and rhombi. Figure 3 presents Ivy’s 

groupings of parallelograms, rhombi and rectangles.  

Parallelograms group 

                                                 

                                 
Rectangles group 

                        
 
Rhombi group 

                             
Figure 3. Ivy’s grouping of parallelograms  

Ivy explained, “parallelogram is two sets of opposite parallel sides, and I did the 

ones that are kinda obvious [pointing to J], I also did the ones that you’d think of as a 

rectangle and a square [pointing to F and G] and rectangle are the ones that look like 

they had 90-degree angles, and I included squares cause squares are always rectangles,” 

PP H U G

T

R

M F J

M F

T

U G R

U G R Z L
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and then she continued, “rhombi have four equal sides and I have Z, R, G, U, and L 

[pointing to Z and R]”, and verified that both squares and rhombi were rhombi because 

“that is what a rhombus is, four sides of equal length”. To justify her responses in 

grouping rectangles and parallelograms together, Ivy also argued, “they’re 

parallelograms because they have two sets of opposite sides parallel”.  

Ivy used a definition of parallelogram to group all qualified quadrilaterals, and 

classified the quadrilaterals beginning with the attributes of their sides. When asked to 

create a different grouping, Ivy split her parallelograms group into parallelograms and 

rectangles, and split the rhombus group into rhombi and squares by the characteristics 

of right angles. We generated the following diagram to illustrate Ivy’s use of the 

parallelogram.  

 

Figure 4. An illustration of Ivy’s use of the word parallelogram.  

In Ivy’s case, her use of the word parallelogram signified a more hierarchical 

(and nested) classification of quadrilaterals. To Ivy, these parallelograms may have 

different visual appearances, some have right angles and some do not, but they all share 

a common descriptive narrative, “opposite sides parallel and equal”. That is, Ivy 

focused on using a definition of parallelogram to identify a collection of quadrilaterals.  

                                                                                                                                          
                                                                Parallelograms (n=11)                                        

                  

                                          Rectangles (n=6)                          Rhombus (n=5) 

                                                               

N Q

M F

T

U G R P H J L Z

M FF

T

L Z

R U G
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Both Molly and Ivy applied definitions in identifying parallelograms. However, 

Molly represents the case of a student who is still developing the use of definitions at 

Level 3, whereas Ivy represents a case of a student who gave a definition of 

parallelograms at that Level.  

Substantiation Routines 

In the following section, we examine another characteristic of Molly and Ivy’s 

geometric discourse, substantiation routines. During the post-interview, they were 

presented with Task 2, Investigating the properties of parallelograms. 

Table 2. Investigating the properties of parallelograms (Task 2).  

Draw a parallelogram in the space below. 

o What can you say about the angles of this parallelogram? 
 

o What can you say about the sides of this parallelogram? 
 

o What can you say about the diagonals of this parallelogram? 
Draw a new parallelogram that is different from the one you drew previously. 

o What can you say about the angles of this parallelogram? 
 

o What can you say about the sides of this parallelogram? 
 

o What can you say about the diagonals of this parallelogram? 
 

Molly’s substantiation routines 

Molly’s work on Task 2 included her drawings of a parallelogram and a rectangle. She 

drew a parallelogram first and then a rectangle when asked to produce a different 

example. When the interviewer asked her about the properties of the parallelogram, she 

responded,  

Interviewer: What can you say about the sides of this parallelogram? 
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      Molly’s drawing  

Molly: Opposite sides are equal and they should be equal.  

Interviewer: Why do you say ‘they should be’?  

Molly: Because it has the properties of a parallelogram. By looking at it, it looks as 

            if they are, so it could be good.  

Interviewer: Can show me why the opposite sides are equal and parallel? 

Molly: Based on the property of it [the parallelogram]. 

At this point, Molly’s course of actions consisted of visual recognition “by looking at 

it” and visually checking the sides, to verify her claim of opposite sides were parallel 

and equal. She used this narrative “the properties of it [parallelogram]” to confirm her 

claim. Molly provided a similar response when she discussed the diagonals of the 

parallelogram.  

Interviewer: What can you say about the diagonals of the parallelogram?  

Molly: They bisect whatever angles these are.  

Interviewer: How do you know diagonals bisect angles?  

Molly: It’s the properties of it [parallelogram].  

Molly’s claim that diagonals of this parallelogram (the one she drew) bisect the angles 

is not correct. She used the same narrative “it’s the property of it” to confirm her claim.  

To continue Task 2, Molly drew a rectangle as a new parallelogram that was 

different than the first one (a parallelogram). When asked about the properties of the 

rectangle, Molly’s response of the diagonals of this parallelogram (a rectangle) is as 

follows:  

Interviewer: What can you say about the diagonals of this parallelogram? 

Molly: The diagonals would have to be equal, form these right triangles,   

            specifically 90-degree. [Draw diagonals] 
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Molly: it takes half of these, so it'd be 45, 45, 90.  

   
Molly: Two diagonals form two congruent triangles because they have the same 

            base lengths, side lengths. [Referring to shaded and un-shaded triangles]  

   
Molly: [Diagonals] bisect the angles.  

Interviewer: How do you know they [diagonals] bisect angles? 

Molly: This is one of our right triangles. [Shade the triangle].  

     
Molly: This is 90-degree angle here. [Pointing at the ∠D] 

     
Molly: This diagonal [referring to the hypotenuse of the shaded triangle]  

            completely bisects these two angles (∠B and ∠C) in half because we have 

            our 45-, 45- 90-degree angles. You know that the [angles of] triangle has to 

            be equal to180. 

Again, Molly’s claim about diagonals bisecting angles in a rectangle is incorrect. 

Molly’s substantiation routines of “diagonals bisect the angles” consisted only of 

recalling and visual recognition in identifying partial properties of a parallelogram. In 

discursive terms, recalling is a routine that one performs to summon a narrative that was 

endorsed in the past, or to recall narratives that were memorised in the first place (Sfard, 

2008). Because Molly was confident about her conclusions of “diagonals bisect the 

angles” in a parallelogram and a rectangle, no further verifications were needed. Molly 

demonstrated incorrect deductive reasoning when she talked about the properties of 
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parallelograms, however she did use deductive reasoning, not explicitly, to verify the 

“diagonals form two congruent triangles”. Molly’s substantiation routines were self-

evident, and so were neither at an object-level (concrete comparison or measurement) 

nor at a meta-level (deductive logic).  

Ivy’s substantiation routines 

Ivy’s work on Task 2 included drawings of a parallelogram and a square. Her 

substantiation routines involved informal deductive reasoning. Ivy’s written responses 

to the question, “what can you say about the angles of this parallelogram?” are shown in 

Figure 5. 

 

Figure 5. Ivy’s written responses  

Ivy drew a parallelogram by constructing a quadrilateral with opposite angles 

equal, as she stated, “this is a parallelogram because I drew it, so angle A is equal to 

angle C and angle B is equal to angle D.” When talking about the angles of the 

parallelogram, Ivy also stated that the two consecutive angles of the parallelogram add 

up to 180°. Her justification of m∠A + m∠B = 180° is as follows: 

Ivy: If you were to extend this line [Side AB]… 

   
Ivy: You could look either way, like this angle is equal to this angle. BC and AD 

        are parallel. They [pointing at the marked angles] are corresponding angles 
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        because they are on the parallel lines. 

   
Ivy: Then you could tell that if you add these two angles, it’s angles on a line  

        [Pointing at ∠B and its exterior angle]. So it’s 180 degrees.  

   
Ivy: So angle A and angle B add up to 180 degrees. 

To verify m∠A + m∠B = 180°, Ivy extended side AB so that the structure of the 

corresponding angles formed by parallel lines and their transversals was visible. She 

stated that the corresponding angles were equal because they were on the parallel lines, 

and then concluded that angle A and angle B add up to 180 degrees. Although Ivy 

verified her claim informally, it is important to note that she justified her claim using an 

endorsed narrative, sides BC and AD are parallel, knowing that quadrilateral ABCD is a 

parallelogram.  

 Ivy also talked about the diagonals of the parallelogram. She stated, “the 

diagonals of a parallelogram bisect each other”, and added, “they [the diagonals] create 

corresponding triangles”.  

Ivy: They [the diagonals] cross at one point.  

                   
Ivy: They create corresponding triangles. Well, like this triangle corresponds with 

        this triangle [Shaded the two corresponding triangles] 

                
Interviewer: What do you mean by “corresponding triangles”? 

Ivy: This angle and this angle are equal, cause they're vertical angles… 
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Ivy: And then, this side should equal this side… 

               
Ivy: And this side should equal this side. And I know they're corresponding 

           through Side-Angle-Side. Like, that would be the rule that… 

         
Interviewer: How do you know these sides are equal? 

Ivy: Because diagonals bisect each other. 

Interviewer: How do you know they [diagonals] bisect each other? 

Ivy: I don't really know how I know… I guess it's because the sides are equal length 

        and they're parallel.  

In the preceding interaction, Ivy started with a descriptive narrative about the diagonals 

of a parallelogram, “they cross at one point,” and then asserted that the diagonals 

created corresponding triangles. She then verified the corresponding triangles were a 

pair of [congruent] triangles with the Side-Angle-Side (SAS) criterion. Here, Ivy used 

an endorsed narrative “diagonals bisect each other” to show that the corresponding 

triangles [were congruent]. However, when asked how she knew the diagonals of this 

parallelogram bisect each other, Ivy responded, “I don’t really know…I guess, it’s 

because the sides are equal length and they’re parallel.” 

Ivy did not just use the SAS criterion to verify congruent triangles, she also 

identified corresponding triangles, and the three elements needed for verification of 

congruent triangles. She recalled, “diagonals bisect each other” as a fact to justify the 

congruency of the sides, and used vertical angles to show the congruence of included 

angles. In this case, Ivy used an endorsed narrative “diagonals bisect each other” to 

verify her claim, but she did not know why the narrative was true.  
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To complete Task 2, Ivy drew a square as a new parallelogram. When asked 

about the diagonals of the square, Ivy provided two narratives, namely, “they’re equal”, 

and “they bisect the angles.” She applied her knowledge of the diagonals in a rectangle, 

“the same way I knew with the rectangle” to the case of a square. Ivy’s routines of 

justifying the statement “the diagonals bisect the angles” were analysed. As an 

illustration, we summarise Ivy’s substantiation routines, with corresponding transcripts.  

Table 3. An illustration of Ivy’s substantiation routine. 

Routine   Transcripts  
1. Declare narratives  Diagonals bisect the angles  
1.1Draw a diagonal  I guess I’d draw a diagonal 

              
1.2 Identify two right 
triangles  

It splits the square into two right triangles, because all of 
these angles are 90-degrees.  

             Adding right angle signs on all angles 
1.3 Identify the 
relation between the 
angles and sides of the 
right triangle. 

By the angle sum rule, all angles add up to 180 degrees [in a 
triangle]. You already have 90 here. So, X plus Y has to 
equal 90. It’s also an isosceles triangle.  

           Assigning X and Y to the two angles      
2. Verification of 
isosceles triangle 

Interviewer: How do you know it’s an isosceles triangle? 

2.1 Identify congruent 
sides of the triangle 

These two sides equal. 

           Adding two marks on the sides 
2.2 Verification of 
congruent angles  

It’s an isosceles triangle. So X is equal Y.  

2.3 Finding the angle 
measures of X and Y 

I know that X and Y have to equal 90 degrees. So, I know 
that X is 45 degrees and Y is 45 degrees.     

2.4 Finding other 
angles measures  

So, if you know it's 90, and Y is equal 45 degrees, and this 
angle is also 45 degrees. Same for X here. So diagonals 
splitting into two equal angles and they are 45 degrees each.  

                  “this angle is also 45 degrees” 
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3. Conclusion Yeah, diagonals bisect the angles. 
 

We saw that Ivy favoured algebraic reasoning in her substantiation routines. She 

labelled the angles X and Y, and used an endorsed narrative, “all angles are 90 degrees” 

to justify that X and Y were the angles of a right triangle. She used another endorsed 

narrative, “these two sides equal” to verify that the triangle was isosceles. Finally, Ivy 

solved for X and Y algebraically, to find that they were 45 degrees each. Using this 

newly endorsed narrative, Ivy concluded that the diagonals bisect the angles. In this 

example, Ivy’s substantiation routines are a mixture of algebraic and informal deductive 

reasoning.  

Although the van Hiele geometry test indicated that both Molly and Ivy were at van 

Hiele Level 3 (theoretical) thinking, our interview analysis reveals significant 

differences in their geometric discourses. These differences were not immediately 

detected, but were from Molly and Ivy’s responses to the tasks and different interview 

probing based on their responses. For example, Molly grouped quadrilaterals into 

groups of squares, rectangles, rhombi and parallelograms, and based on this response, 

the interviewer probed the questions of “Can I group a parallelogram and a rhombus 

together?” and “Can I group a square and a rectangle together?” to elicit her thinking of 

the relationships between different parallelograms. As we noted earlier, Molly did not 

initially group a rhombus and a parallelogram, a rectangle and a square together, but she 

recognised that a rhombus is also a parallelogram, and a square is also a rectangle after 

these interview probing. By contrast, Ivy first grouped quadrilaterals into groups of 

rectangles (with squares), parallelograms (with squares and rectangles) and rhombi 

(with squares), and based on this response, Ivy was asked to regroup the quadrilateral 

differently to confirm her understanding of the relationships between different 

parallelograms. The interviewer probed different questions based on interviewee’s 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Research in Mathematics Education, 
published by Taylor & Francis Copyright restrictions may apply.  doi: 10.1080/14794802.2014.933711



   23

responses to the tasks, to bring out their thinking about the relationships between the 

parallelograms, and to make their thinking more explicit to others. Using discursive 

terms, Figures 6 and 7 illustrates the characterizations of word use and substantiation 

routines in the context of parallelogram. In each figure, the left branch refers to the 

participant’s word use and the right branch to her substantiation routines. 

 

Figure 6. An illustration of Molly’s geometric discourse   

At van Hiele Level 3, Molly had developed some knowledge about 

quadrilaterals and was able to use her definitions to identify parallelograms. However, 

parallelograms were not clearly connected in a hierarchy of classifications. Further, 

Molly showed the ability to use deductive reasoning at the beginning stage of Level 3. 

Her substantiation routines appear to be self-evident, not requiring justifications, neither 

at an object-level nor a meta-level. 
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Figure 7. An illustration of Ivy’s geometric discourse   

By contrast, Ivy exhibited different characteristics in her geometric discourse. 

Ivy identified quadrilaterals by definitions and demonstrated an understanding of the 

hierarchical of classification of parallelograms. She used informal deductive reasoning, 

employing geometrical propositions to verify claims. In addition, she also applied 

algebraic reasoning to further justify her claims at a meta-level.  

Conclusion  

Revisiting van Hiele level 3 with a discursive lens provides details of what students 

mean when they say, “it is a parallelogram”, by analysing the words they use and the 

discourse-specific substantiation routines they engage.  

 There are differences in geometric discourses at van Hiele Level 3. With respect 

to the word parallelogram and its use, we observed that it had different meanings to 

students depending on how they defined it. We found that Molly’s knowledge of 

definitions for quadrilaterals was not well connected, whereas Ivy used her definitions 

to demonstrate her understanding of parallelograms through a hierarchical 

classification. In terms of substantiation routines, we identified their ability to construct 

mathematical proofs at different stages. For example, Ivy used endorsed narratives to 
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substantiate her claims and she constructed informal proofs using congruence (i.e., 

Side-Angle-Side) criterion to endorse new narratives. By contrast, Molly also used 

deductive reasoning to show the diagonals of a parallelogram form two congruent 

triangles in order to endorse a narrative of “diagonals of a parallelogram would be 

equal”, but her substantiation was incomplete. When asked to justify her claims of 

“diagonals bisect the angles in a rectangle and a parallelogram”, Molly’s courses of 

actions were self-evident and therefore the substantiation routines were absent. Both 

participants reached Level 3 thinking, but their geometric discourses were quite 

different regarding the word use and substantiation routines.   

 In looking at the details of the discursive analysis, we distinguish two very 

important features of van Hiele level 3 thinking. The first is the ability to use definitions 

within a hierarchy, a feature that characterises the student’s knowledge of mathematical 

definitions; and second is the ability to construct informal proofs, a salient feature that 

characterises the student’s beginning stage of deductive reasoning skills. The process of 

developing Level 3 thinking entails both using definitions fluently and learning to 

construct mathematical proofs. In addition, Molly and Ivy’s geometric discourses 

demonstrate that the degrees of acquisition of a van Hiele level can vary among 

individual students (Gutierriz, Jaime & Fortuny,1991). One might question whether 

Molly’s geometric thinking had in fact reached Level 3, our analysis of her geometric 

discourse indicated that she had a low acquisition of Level 3 because her knowledge of 

definitions and abilities of reason deductively were not well developed.  

 Examining students’ geometric discourses at Level 3 also raised questions about 

the relations between students’ use of definitions and their ability to construct informal 

proofs. When a student (like Molly) is still developing her knowledge of definitions, it 

might delay the development of routines of substantiation; in Molly’s case, these 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at Research in Mathematics Education, 
published by Taylor & Francis Copyright restrictions may apply.  doi: 10.1080/14794802.2014.933711



   26 

substantiation routines were absent. When a student (like Ivy) is able to construct 

informal proofs, her defining routines might have helped to develop the routines of 

substantiation; that is, Ivy’s understanding of definitions may have supported her ability 

to construct informal proofs. Discursive analysis poses a new question: how do the two 

features of van Hiele level 3 interact as students develop an understanding of proofs? 

 Approaching the van Hiele theory with a discursive perspective, our analysis 

suggests that a single assignment of van Hiele level does not encompass the range of 

complexity and variation of geometric thinking among individual students. This 

demonstrates the benefits of revisiting the van Hiele model of thinking with multiple 

lenses in order to better understand how geometric thinking develops. 
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