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ABSTRACT

This paper develops trend estimation techniques for monthly maximum and minimum temperature time

series observed in the 48 conterminous United States over the last century. While most scientists concur that

this region has warmed on aggregate, there is no a priori reason to believe that temporal trends in extremes

and averages will exhibit the same patterns. Indeed, underminor regularity conditions, the sample partial sum

and maximum of stationary time series are asymptotically independent (statistically). Previous authors have

suggested that minimum temperatures are warming faster than maximum temperatures in the United States;

such an aspect can be investigated via the methods discussed in this study. Here, statistical models with

extreme value and changepoint features are used to estimate trends and their standard errors. A spatial

smoothing is then done to extract general structure. The results show that monthly maximum temperatures

are not often greatly changing—perhaps surprisingly, there are many stations that show some cooling. In

contrast, theminimum temperatures show significant warming. Overall, the southeasternUnited States shows

the least warming (even some cooling), and the western United States, northern Midwest, and New England

have experienced the most warming.

1. Introduction

Extreme temperatures have profound societal, eco-

logical, and economic impacts. It is known that average

temperatures in the conterminous United States since

1900 have warmed on aggregate, with the west, northern

Midwest, and New England showing the most warming

and the Southeast showing little change (Lund et al.

2001). In fact, a linear trend estimate for the contermi-

nousU.S. series ofMenne et al. (2010), which aggregates

over a thousand stations in the region on a day-by-day

basis since 1895, is about 0.78C century21. This trend

applies to mean temperatures.

It is less clear whether minimum and/or maximum

temperatures have changed during this period. In fact,

maxima and averages are statistically independent in

large samples. Specifically, if fXtg is a stationary time

series, then �N
t51Xt and maxfX1, . . . , XNg, with N de-

noting the sample size, are asymptotically independent

under minor regularity conditions (McCormick and Qi

2000). The implication is that inferences involving

first-moment properties (such as a trend) and those

from higher-order statistics (such as extremes) need not

necessarily exhibit the same patterns. Katz and Brown

(1992) effectively argue that extremes are better linked

to variances than means. Mathematically, the limit the-

ory of extremes is described solely by tail properties of

the cumulative distribution function (Leadbetter et al.

1983; Coles 2001).

This paper proposes methods to accurately estimate

trends in monthly extreme temperature time series and

applies these methods to the U.S. record. Specifically,

monthly maximum time series from 923 stations and

monthly minimum time series from 932 stations located

in the 48 conterminous United States are examined.

Here, a monthly extreme temperature is the highest/

lowest daily high/low temperature observed during the

calendar month. For example, an extreme June high is

the largest daily high temperature observed over 1–30
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June. Hereafter, MaxTmax and MinTmin are used to de-

note monthly maximum and minimum temperatures,

respectively.

Other authors have studied changes in extreme tem-

peratures. For example, DeGaetano and Allen (2002)

and DeGaetano et al. (2002) fix temperature thresholds

and examine trends in the frequency of exceedances of

these thresholds. These studies find that low tempera-

tures are changing more (getting warmer) than high

temperatures are (staying approximately the same),

a pattern that we affirm later. While this gives good ru-

dimentary guidance, it does not incorporate the magni-

tudes of the extreme exceedances. Peterson et al. (2008)

also studies changes in the frequency of exceedances

above and below various thresholds (such as the 10th

and 90th distributional percentiles) and reaches similar

conclusions for North America as a whole; again, the

study does not consider the magnitude of the exceed-

ances. Peterson et al. (2008) conjectures that the changes

could be due to increasing carbon dioxide and/or in-

creasing precipitation (among other factors). Van de

Vyver (2012), in perhaps the most methodologically

similar study to ours, quantifies changes in extremes via

extreme value peaks over threshold methods; however,

gauge and station relocation effects are not considered

and that study only considers Belgium.

Two prominent issues tackled below involve period-

icities and changepoints. The MaxTmax and MinTmin

series tend to be more variable than monthly averaged

series. Intuitively, this is because averaging pulls

quantities toward a mean, while any extreme observa-

tion can set a record (persistence of the temperature is

not needed to set an extreme). The MaxTmax and

MinTmin series have periodic cycles in their mean and

variance that are as pronounced as those for series of

monthly average temperatures, with winter extremes

being cooler and more variable than summer extremes.

This increased variability makes changepoints harder

to detect than changepoints in monthly averaged

series; MinTmin series are slightly more variable than

MaxTmax series.

Changepoints here refer to mean shift structures that

are induced by station location moves, gauge changes,

etc. Moving a station can shift average temperatures by

several degrees. U.S. stations average roughly six re-

locations, gauge changes, or time of observation changes

per century (Mitchell 1953). Lu and Lund (2007) and the

references therein show that neglecting changepoint in-

formation can give unreliable trend estimates for

monthly averaged series at a local station. Many

changepoints are undocumented in station metadata

records; for monthly averaged series, roughly half

of the documented changepoint times do not impart

actual mean shifts. Below, we investigate whether or

not changepoints in MaxTmax and/or MinTmin series

are also changepoints in monthly averaged series and

how they correspond to the metadata record. However,

given length restrictions, our picture is somewhat in-

complete. Section 7 will affirm the importance of

changepoints in trend estimation for MaxTmax and

MinTmin series. DeGaetano et al. (2002) recognize the

importance of homogenizing extreme data for change-

point effects. Homogenized data are also useful in other

climate studies.

One issue common to all trend studies involves what

type of trend function to fit. For simplicity and ease of

interpretability, this study examines linear trends only.

While true temperature changes are surely nonlinear in

time, linear trends describe average changes over the

period of record and provide good rudimentary guid-

ance. Linear trend studies are ubiquitous in the climate

sciences (Jones 1988; Bloomfield and Nychka 1992;

Lund et al. 1995; Fomby and Vogelsang 2002).

The rest of this paper proceeds as follows. Section 2 de-

scribes our data and introduces a series from Jacksonville,

Illinois, that will be analyzed as a case study in section 7.

Sections 3–6 then discuss methods to obtain our trend

estimates. In particular, section 3 presents the extreme

value statistical background needed to estimate trends in

MaxTmax and MinTmin time series. Here, it is shown how

to obtain trend estimates inmonthly extreme series under

a general specified changepoint configuration. Section 4

describes how reference series are constructed. This is

used in section 5 to estimate the unknown changepoint

numbers and locations in our MaxTmax and MinTmin se-

ries. Here, the fact that station minus reference series are

approximately Gaussian is used to estimate an initial

changepoint configuration (this configuration is later re-

fined). Technical algorithmic issues are collected into

section 6. Section 7 then moves to a case study of the

MaxTmax time series from Jacksonville, Illinois. The in-

tent of this section is to inject some feel for the analyses,

including changepoint issues. Section 8 reports results for

all stations, and section 9 concludes with comments and

a summary.

2. Data description

Our monthly extremes are taken from the National

Climatic Data Center’s (NCDC’s) U.S. Historical Cli-

matology Network (USHCN) data. The USHCN data

contain daily maximum and minimum temperatures for

1218 stations located throughout the 48 conterminous

United States through December of 2010. The USHCN

data are available online (http://cdiac.ornl.gov/epubs/

ndp/ushcn/ushcn.html).
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Erroneous data entries do exist, but are not overly

prevalent. Sometimes erroneous negative signs or extra

digits were keyed in with the data. For example, some

observations exceed the U.S. record high temperature

(56.78C at Death Valley, California, on 10 July 1913) or

are lower than the U.S. record low (256.78C at Rogers

Pass, Montana, on 20 January 1954). The NCDC has

flagged inconsistent entries with quality control checks.

All flagged temperatures are regarded as missing. Burt

(2004) contains a good compilation of U.S. temperature

records. The Death Valley extreme is now regarded as

the world’s hottest naturally occurring temperature (El

Fadli et al. 2013).

Almost all stations in the USHCN daily data set have

some missing data. One missing daily observation

could alter a monthly MaxTmax or MinTmin value if the

extreme, in truth, occurred on that missing day. Be-

cause of this, a monthly extreme is flagged as missing

if one or more of the days within that month are

missing. About 75% of the months in the MaxTmax

series are nonmissing.

Stations where data begin or end in the interior of

a calendar year are cropped to full calendar years: each

station’s record begins with a January observation and

ends with a December observation. This simplifies our

notation and analysis. After this cropping, a station is

required to have at least 75 yr of data with a missing rate

of at most 33.3%, or have at least 50 yr of record with

a missing rate of at most 5%, to make this study.

These requirements leave 923 stations with analyzable

MaxTmax series. Figure 1 graphically depicts the spatial

location of these stations. The spatial coverage over the

48 conterminous United States is reasonable (longitudes

and latitudes of the stations are used later). When the

above requirements are applied to construct theMinTmin

series, 932 stations remain. The spatial coverage of

the MinTmin series is similar to that for the MaxTmax se-

ries. Missing data are assumed to occur ‘‘completely at

random’’ in time; accounting for other structures (e.g.,

missing valuesmight be more likely to occur immediately

after a changepoint) is beyond our scope.

The longest MaxTmax record comes from Atlantic

City, New Jersey (137 yr), and the shortest MinTmin re-

cord occurs at three stations, Bedford and Reading,

Massachusetts, and Las Cruces, New Mexico (51 yr).

Over 75% of the MaxTmax and MinTmin series start

between 1890 and 1910. Figure 2 presents a time series

plot of theMaxTmax andMinTmin series for Jacksonville,

Illinois. This station will be analyzed in detail in section 7.

The Jacksonville MaxTmax series begins in January 1896,

ends in December 2010, and has 115yr of monthly data

with a missing rate of 4.42%. The Jacksonville minimum

series spans for 114yr, January 1897–December 2010,

with a missing rate of 16.23%. Both extreme series ex-

hibit periodicity, with winter temperatures being cooler

and more variable than summer temperatures. The

seasonal variability cycle is seen by comparing the year-

to-year jaggedness of the summer peaks (smaller) to their

winter counterparts (larger).

3. Statistical background: Extreme value methods

This section narrates our extreme value statistical

methods. Extreme value methods are techniques espe-

cially suited for extreme data. Extreme data are often

FIG. 1. Map of MaxTmax station locations.

FIG. 2. (top) Monthly MaxTmax series from January 1896 to

December 2010 and (bottom)monthlyMinTmin series from January

1897 to December 2010 at Jacksonville, Illinois (8C).
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highly skewed and non-Gaussian; because of this, sub-

optimal inferences can be made if Gaussian techniques

are used. In practice, one simply replaces a Gaussian

likelihood with a generalized extreme value (GEV)

likelihood; unfortunately, most of the common closed-

form parameter estimator expressions in Gaussian se-

ries may be suboptimal in extreme settings. The reader is

cautioned not to use Gaussian methods in extreme

analyses without serious thought—different conclusions

could be made (Gumbel 1958; Reiss and Thomas 2007).

Also worth mentioning are quantile regression tech-

niques (Koenker 2005). Quantile regression methods

examine changes in a fixed quantile (e.g., the 95th per-

centile of the distribution) over time. As about 30 cal-

endar days exist in a month, one could view our analysis

as approximate 96.667 and 3.333 quantile analyses

(there are technical differences between extreme and

quantile analyses).

Our mathematical model for the monthly extremes

fXtg (MaxTmax or MinTmin) at a fixed station is as fol-

lows. We assume that fXtg is independent in time t and

marginally follows a GEV distribution with location

parameter mt, scale parameter st . 0, and shape pa-

rameter j at time t. The cumulative distribution function

of Xt is, for t 5 1, . . . , N,

P[Xt # x]5 exp

(
2

�
11 j

�
x2mt

st

��21/j

1

)
, (1)

where the subscript 1 indicates that the support set of

the distribution in (1) is all xwith 11 j(x2mt)/st. 0. In

the case where j5 0, the distribution is taken as Gumbel

(take limits as j / 0). When j , 1,

E[Xt]5mt 1
st

j
[G(12 j)2 1], (2)

where G(�) denotes the usual gamma function (E[Xt]

is infinite when j $ 1). The parameter mt is not the

true mean (since E[Xt] 6¼ mt), but is termed a location

parameter since it still influences central tendency.

When j , 1/2,

Var(Xt)5
s2
t

j2
[G(12 2j)2G2(12 j)] (3)

(the variance is infinite when j $ 1/2).

To allow for a time trend, the location parameter mt

is parameterized by a linear trend with shifts at all

changepoint times:

mt 5mt 1a
� t

100T

�
1 dt . (4)

Here, mt is a location parameter for month t, assumed

periodic with period T 5 12 (mt1T 5 mt), a is a linear

trend parameter (our focus), and dt is a location shift

changepoint factor obeying the structure

dt 5

8>>>><>>>>:
D1 , if t5 1, . . . , t12 1;

D2 , if t5 t1, . . . , t22 1;

..

. ..
.

Dk11 , if t5 tk, . . . ,N .

In this setting, k is the number of changepoints and 1 ,
t1 , . . . , tk , N are the ordered changepoint times.

The number of changepoints k, their locations ti, i 2
f1, . . . , kg, and their magnitude shiftsDj, j2 f2, . . . , k1 1g,
are all unknown. To keep model parameters statistically

identifiable, no shift parameter is allowed in the first

regime; that is, D1 5 0. The scaling factor 100T in (4) is

included for numerical stability and makes the trend

units of a 8C century21.

To allow for periodic variabilities in fXtg, the first-

order Fourier representation

st 5 c01 c1 cos

�
2pt

T

�
1 c2 sin

�
2pt

T

�
(5)

is used, where c0, c1, and c2 are free parameters. The

first-order parameterization in (5) seems to work well

for the fstgTt51 parameters, but adequate description of

the seasonal location cycle fmtgt51
T often demands

higher-order Fourier expansions. One could also al-

low j to depend on time in a periodic way, but Coles

(2001) advises (at least initially) to keep this param-

eter time constant.

Our primary inferential objective involves the trend

parameter a. Positive values of a indicate warming ex-

tremes; a negative a represents cooling extremes. The

expected change in extremes over a century is obtained

from (2) and is the same for all seasons n:

E[X
(n1100)T1n]2E[XnT1n]5m

(n1100)T1n2mnT1n 5a ,

when no changepoints occur between times nT 1 n and

(n 1 100)T 1 n. This relation remains valid for any

periodic st, or even if j is allowed to periodically vary.

Because the data are extreme series, autocorrelation

in fXtg is not allowed in our analysis. While correlation

is not totally absent in extremes, month-to-month tem-

perature extremes typically exhibit weaker dependence

than month-to-month temperature averages (again,

any irregular observation can set a monthly extreme

while monthly sample means are pulled toward a central
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tendency via the daily averaging). This said, some de-

pendence in the extremes likely exists. A cold snap, for

example, occurring on the last two days of a month and

the first two days of the next month, might set MinTmin

values for both months. Some authors (Smith 1989;

Coles 2001) combat this dependence by blocking runs

of hot and cold temperatures into distinct blocks,

and then report the extreme of all days within each

block. Unfortunately, blocking is not feasible given the

changepoint and periodicity features considered, au-

tomation issues, and the large number of stations in our

study. Also, correlation often does not appreciably

change the limiting GEV distribution of the extremes

(see Leadbetter et al. 1983). Residual autocorrelation

plots will be analyzed later to scrutinize this issue in

finite samples. The issue is not found to be overly

problematic.

Likelihood methods will be used to fit the extreme

models. If the number of changepoints k and their lo-

cation times t1, . . . , tk are specified, a GEV likelihood is

L5L(k; t1, . . . , tk)5P
N

t51

fX
t

(Xt) , (6)

where fXt
(x)5 dP[Xt # x]/dx is the GEV probability

density of Xt. The optimal likelihood Lopt is the likeli-

hood L optimized over the parameters m1, . . . , mT, a,

D2, . . . , Dk11, c0, c1, c2, and j. This optimum needs to be

found numerically—there are no explicit expressions

akin to Gaussian scenarios.

A standard error dVar(â)1/2 for the trend estimate is

calculated from the usual information matrix associated

with the likelihood fit. This standard error provides

a measure of uncertainty—smaller standard errors re-

flect greater certainty. Later the standard errors are used

to compute Z scores, which can be used to test the hy-

pothesis that the trend is zero, and in a spatial smoothing

procedure.

4. Reference series for changepoint estimation

The likelihood in (6) applies to cases where the

changepoint numbers and times are known (specified).

Unfortunately, this is not the case in practice. Whereas

files exist showing some of the station relocation and

instrumentation change histories (the so-called meta-

data), these files are notoriously incomplete—many

changepoints are not entered into the metadata logs. Of

the changepoint times that are documented, only about

half of these induce true shifts in average series. Because

daily temperatures are often formed by averaging daily

maximum and minimum temperatures, one hopes that

any inhomogeneity time in the extremes will also be an

inhomogeneity time in the means (and vice versa). On

a strictly mathematical level, neither condition implies

the other. Elaborating, if each day’s high becomes one

degree warmer and each day’s low becomes one degree

cooler, the extremes will change but the means will not.

Monthly means can also change without altering the

extremes (add a degree to each day’s high whenever this

high is not the monthly high). In what follows, we hope

to impart some feel for how the extreme and mean

changepoints relate, andwhether or not they correspond

to the metadata.

Trends for individual stations are usually distrusted

if homogenization has not been first attempted. The

case study in section 7 will reinforce this point with

extreme series. Our homogenization methods take the

classic reference series approach. A reference series is

a series taken from a location near the series being

studied (the series being studied is called the target

series). A good reference series is relatively change-

point free and experiences similar weather to the target.

The target minus reference subtraction serves to reduce

variabilities, seasonal cycles, and autocorrelation,

thereby illuminating the locations of any shifts. In good

target minus reference comparisons, the seasonal mean

cycle and variances are ‘‘reduced’’ compared to those in

the target series.

The reference methods in this section allow us to con-

struct a reasonable reference series for each target series,

which in turn will allow us to estimate the changepoint

times and locations in the target series. Once the

changepoint counts and location times are estimated, it

is relatively easy to fit the GEVmodel to fXtg and obtain
an estimate of the trend.

Multiple reference series for a given target series are

often helpful (Menne andWilliams 2005, 2009). Current

NCDC methods often compare over 40 or more refer-

ences to a given target (Menne and Williams 2009) be-

fore making changepoint conclusions. Issues arise in the

comparisons. Foremost, any changepoint in the refer-

ence series will likely impart a changepoint in the target

minus reference series—one adds to the changepoint

numbers by making reference comparisons. Menne and

Williams (2009) devise the so-called pairwise algorithm

to address this issue. The pairwise procedure becomes

complicated when assigning which station is responsi-

ble for an occurring changepoint, especially when there

is disagreement among the reference comparisons. To

keep changepoint issues manageable but realistic, our

approach will construct a composite reference series by

averaging many individual reference series. Strength is

gained by considering multiple references, but issues of

additional changepoints induced by the reference series

are minimized by the averaging.
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For each station, the 100 nearest (‘‘as the crow flies’’)

neighboring stations are first identified. Since good ref-

erence stations are heavily correlated with the target,

the correlation between the target and these 100 nearest

neighbors is next computed. This correlation is com-

puted after differencing at lag T 5 12. Differencing at

lag T5 12 eliminates the seasonal cycle and most of the

changepoint location shifts. In fact, dt 2 dt2T is nonzero

only when one or more changepoints occur between

times t 2 T and t. Lag one differencing may not elimi-

nate the seasonal cycle in the series and should be

avoided with monthly data unless the seasonal cycle has

been a priori removed in some other reliable way.

Let fXtg denote the target series and fYtg a candi-

date single reference series. With Ut 5 Xt 2 Xt2T and

Vt 5 Yt 2 Yt2T, a good reference series maximizes the

correlation

Corr(fUtg, fVtg)

5

�
N

t5T11

(Ut 2U)(Vt 2V)"
�
N

t5T11

(Ut 2U)2

#1/2"
�
N

t5T11

(Vt 2V)2

#1/2 . (7)

Here, U 5 (N 2 T)21�N
t5T11Ut and V 5 (N 2 T)21

�N
t5T11Vt. The correlation in (7) is computed over the

100 nearest neighboring candidate references; time t data

are not included in the sums should any missing quantities

be encountered.

Our reference series will average the 40 neighboring

series with the largest correlation, as computed in (7),

to the target. One caveat is made in selecting these 40

stations: only stations whose correlation to the target,

as computed in (7), exceeds 0.5 are used. Subtracting

a reference series whose correlation does not exceed

0.5 can actually increase data variability. For our 923

MaxTmax stations, only 76 stations had less than 40

candidate reference series with the required .0.5 cor-

relation. Should there be less than 40 such reference

stations, our composite reference simply averages over

the number of stations that have the required correla-

tion. Only four MaxTmax series had no references (and

these are only for the maxima series): Eureka, Cal-

ifornia; Fort Lauderdale, Florida; Tarpon Springs,

Florida; and Brookings, Oregon. Interestingly, these

stations are all coastal and are known for microclimates,

especially Eureka. These four stations are analyzed

without a reference.

A more subtle issue involves the starting date for

some of the longer series. Specifically, no reference

station exists for the January 1874 data point at Atlantic

City, New Jersey, the longest record in the study. To

accommodate, the starting year of the Atlantic City se-

ries was advanced to 1901, which is the median starting

year of the 40 reference stations with the highest cor-

relation over times that are common to both records. By

doing this, there are at least 20 reference stations at all

times past 1901 for the Atlantic City series. A similar

rubric is used for ending years, although this issue arises

less frequently. If data are missing in one or more of the

references, the composite reference is simply averaged

over the number of references with nonmissing data.

Because of this, composite reference series do not usu-

ally have any missing data.

Figure 3 shows our composite reference series for the

MaxTmax and MinTmin time series at Jacksonville, Illi-

nois. Figure 4 displays histograms of the target minus

reference differences. While not truly Gaussian (a for-

mal Shapiro–Wilks normality test is not passed at a 5%

significance level), it may be surprising that the target

minus reference series’ marginal distribution is not

radically non-Gaussian (they are certainly unimodal).

Computations with the target minus reference series

reveal seasonal means and variances (neither of these

features was completely eliminated by the target minus

reference differencing), but no other periodic structure.

Elaborating, the coherence tests of Lund et al. (1995)

were applied to assess whether or not the target minus

reference series is stationary after subtraction of a linear

trend and monthly sample means and division by

FIG. 3. Jacksonville composite reference series from 40 neighbors

for the (top) MaxTmax and (bottom) MinTmin series (8C).
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a monthly sample standard deviation. Figure 5 shows a

coherence plot with a 99% pointwise confidence thresh-

old for these seasonally adjusted differences for the

Jacksonville MaxTmax series. As there are no large ex-

ceedances of the 99% threshold, one concludes that the

target minus reference series, beyondmonthlymeans and

variances, has no additional periodic structure. This sim-

plifies our changepoint model in the next section.

Other stations were also scrutinized; in all cases, the

conclusions are the same as those for the Jacksonville

MaxTmax series. Hence, we move to our next task—

finding the changepoint locations in any target minus

composite reference series.

5. MDL estimation of the changepoint
configuration

Suppose that a target minus composite reference dif-

ference series fDtg, where Dt 5Xt 2 ~Yt with fXtg as

a MaxTmax or MinTmin series and f ~Ytg as its composite

reference series, has been computed at the times t 5
1, . . . ,N.We assume thatN5 dT for somewhole number

d (neglecting missing data) so that there are d cycles of

data available (i.e., d is a whole number).

A minimum description length (MDL) criterion

for estimating the number and location of the

changepoint times minimizes a penalized likelihood

score of form

MDL(k, t1, . . . , tk)52log2(Lopt)1P . (8)

In (8), Lopt is an optimized model likelihood given

the number of changepoints k and their location times

1, t1 , . . ., tk , N, P is a penalty term that accounts

for the number and types of model parameters, and log2
indicates logarithm base 2. MDL methods have yielded

promising results in recent changepoint studies (Davis

et al. 2006; Lu et al. 2010; Li and Lund 2012). The MDL

penalty is based on minimum description length in-

formation theoretic principles. While the reader is re-

ferred to the above references for technicalities, the key

point distinguishing MDL penalties from classical sta-

tistical penalties such as the Akaike information crite-

rion (AIC) and Bayesian information criterion (BIC) is

that MDL penalties are not solely based on the total

number of model parameters, but also account for the

parameter type and changepoint numbers and loca-

tions. Elaborating, MDL penalties penalize integer-

valued parameters, such as the changepoint numbers

and locations, more heavily than real-valued parame-

ters such as the trend. MDL penalties also account

for the changepoint configuration, penalizing configu-

rations where the changepoint times occur closer to-

gether relatively more heavily than uniformly spaced

configurations.

Our methods take fDtg as Gaussian, allowing for

periodic means and variances, to estimate the change-

point count k and location times t1, . . . , tk. Gaussianity

is only used to estimate the changepoint number(s)

and location(s); GEV models will be fitted after the

changepoint configuration is estimated. This allows us to

FIG. 4. Histogram of the Jacksonville target minus reference series

(top) maxima and (bottom) minima (8C).

FIG. 5. Average squared coherences for the seasonally adjusted

Jacksonville maxima target minus reference series. The absence of

values exceeding the pointwise 99% confidence threshold suggests

that no periodic features remain in the series.
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incorporate autocorrelation aspects into all changepoint

inferences. Mathematically, the model for fDtg takes

the periodic linear regression form

DnT1n 5mn*1a*(nT1 n)1 dnT1n 1sn*vnT1n . (9)

The terms in (9) are described as follows. First, a peri-

odic notation is used where T5 12 is the period and n 2
f1, . . . , 12g is the month (season) corresponding to time

nT 1 n. The mn* terms allow for a periodic monthly

mean cycle satisfying mt1T* 5mt* for all t. Observe that

mn* and mv may differ as may a and a* and sv and sn*.

The term sn* is included to describe the periodic vari-

ances present in fDtg. As our case study in the next

section shows, constructing a target minus reference

difference will not necessarily completely eliminate the

seasonal mean and variance structures in fDtg. The er-

ror series fvtg is posited to be first-order autoregressive

[AR(1)] noise with lag-one autocorrelation parameter

f 2 (21,1) and white noise variance s2 . 0. As it is not

overly important to model the autocorrelation structure

of fDtg to exactitudes—and the correlation structure of

fDtg is often simple because of the target minus refer-

ence differencing—a first-order autoregression is used.

It is straightforward to extend methods to higher-order

autoregressions should this be desired. This said, one

does not want to ignore correlation aspects completely

as they can drastically influence changepoint conclu-

sions (Lund et al. 2007). Elaborating, ignoring positive

autocorrelations can induce the spurious conclusion of

an excessive number of changepoints. We prefer to al-

low a linear trend parameter a* in the target minus

reference representation, which need not be the same as

the trend parameter a in the representation for fXtg, for
the following reason. If target series fXtg has a linear

trend that is not the same as that in the reference, then

a linear trend exists in the target minus reference time

series. Such a situation could arise if, for example, the

target is experiencing heating due to urban sprawl while

most of its neighbors in the reference are not. When

changepoint methods that assume no trend are applied

to data with trends, they often spuriously flag many

changepoints (Gallagher et al. 2013). This is a situation

to avoid.

We now develop the penalty term in (8). In computing

an MDL penalty, three principles are needed. First, the

penalty for a real-valued parameter estimated from g

data points is log2(g)/2. Second, the penalty for an

integer-valued parameter I that is known to be bounded

by the integer M is log2(M). If no bound for I is known,

the parameter is penalized log2(I) units. Third, the

model penalty P is obtained by adding the penalty for all

individual parameters.

To derive an MDL penalty, we assume first that there

are no missing data. The three parameters a*, f, and s2

are real-valued and estimated from all N data points.

Hence, they are charged a log2(N)/2 penalty each. The

seasonal location and variance parameters mn* and sn*,

n 2 f1, . . . , Tg, are real-valued and estimated via the

data from season n only; hence, they are each penalized

log2(d)/2. The jth-regime location parameter Dj, j 2
f2, . . . , k 1 1g (recall that D1 5 0 for model identifi-

ability), is real-valued and estimated from data in the jth

regime (the times from tj21 through tj 2 1). Thus, Dj is

penalized log2(tj 2 tj21)/2. The boundary conventions

t0 5 1 and tk11 5 N 1 1 are made for the first and last

regimes. The number of regimes parameter is k1 1 and

is charged log2(k 1 1) since this integer-valued param-

eter is unknown. Finally, since ti is integer-valued and

ti , ti11, ti is charged a log2(ti11) penalty. Adding the

above together gives the penalty

3

2
log2(N)1T log2(d)1

1

2
�
k11

j52

log2(tj 2 tj21)

1 log2(k1 1)1 �
k

j52

log2(tj)1 log2(N1 1).

Notice that this penalty depends on the changepoint

count k and the changepoint configuration ft1, . . . , tkg.
Since terms that are constant in N or d will not change

where the minimal MDL is achieved, the above penalty

is simplified to

P5
1

2
�
k11

j52

log2(tj2 tj21)1 log2(k1 1)1 �
k

j52

log2(tj) .

For cases withmissing data, one simply changes tj2 tj21

to the number of data points in the jth regime, etc.

The likelihood used in the changepoint calculations in

(8) is developed in detail in Lu et al. (2010). It is

Gaussian in form, conditional on the stipulation that k

changepoints occur at the times ft1, . . . , tkg, and can be

written in the innovations form (see Brockwell and

Davis 1991):

L5 (2p)2N/2

 
P
N

t51

y21/2
t

!
exp

"
2
1

2
�
N

t51

(Dt 2 D̂t)
2

yt

#
:

(10)

Here, D̂t 5P[Dt j 1, D1, . . . , Dt21] is the best linear pre-

diction ofDt from past observations and a constant, and

yt 5E[(Dt 2 D̂t)
2] is its unconditional mean squared
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prediction error. For a given changepoint configuration

ft1, . . . , tkg, we can further express D̂t and yt via the

AR(1) prediction relationships

D̂nT1n5E[DnT1n]1
fsn*

sn21*
(DnT1n212E[DnT1n21])

(11)

and

ynT1n 5sn*
2(12f2) (12)

fornT1 n$ 1, with the startup conditions D̂1 5E[D1] and

y1 5s
1
*2.All terms in (11) and (12), excludingf, are treated

as being periodic with period T, and the mean in (11) is

E[DnT1n]5mn
*1a*(nT1 n)1 dnT1n .

The likelihood in (10) can then be computed. For each

changepoint configuration, maximum likelihood esti-

mators ofm1*, . . . , mT* , a*, D2, . . . , Dk11, s1*, . . . , sT* , f,

and s2 are obtained. This computation is not overly

difficult and is described in Li and Lund (2012).

A serious computational issue now arises. It is not

feasible to compute the penalized likelihood in (8) over

all possible changepoint numbers k and configurations

ft1, . . . , tkg when N is large. Indeed, there are
�

N

k

�
ways to arrange k changepoints in N places. Summing

this count over all k for 0, 1, . . . , N and applying the bi-

nomial theorem show that there are 2N distinct change-

point configurations. ForN5 1200 (a century of monthly

data), an exhaustive check of all changepoint configura-

tions would require 21200 different likelihood fits, which

is not feasible. In the next section, a genetic algorithm is

introduced that intelligently walks through this huge

sample space and avoids evaluating the likelihood at

configurations that are likely to be suboptimal.

6. Genetic algorithm and spatial smoothing
methods

A genetic algorithm (GA), which is essentially a

Markov stochastic search, will be used to estimate the

number of changepoints and their times in the target

minus composite reference difference series. As change-

point effects in the composite series should be minimal,

any identified changepoints are attributed to the target

series. The GA development here is similar to that in Li

and Lund (2012), but has seasonal aspects.

Genetic algorithms are described via chromosomes.

Chromosomes here have the form (k; t1, . . . , tk) and

contain all changepoint information. Each different

chromosome is viewed as a different individual in a

population. One can compute an MDL score for a fixed

chromosome from the methods in the last subsection.

Individuals in the population are termed fitter (rela-

tively) when they have a smaller (relatively)MDL score.

GAs need to breed two chromosome configurations,

called the mother and father, in a probabilistic manner

to form a child. The better fit individuals will be more

likely to breed and pass on their chromosomes to the

next generation, thus mimicking natural selection prin-

ciples. Suppose a generation contains L individuals (we

use L 5 200 later). A mother and father are selected

from these L chromosomes as follows. The ith chro-

mosome is selected as the father with probability

Ri=�L
j51Rj, where Ri is the MDL rank of the ith chro-

mosome (the best MDL score is given rank L). A

mother is then chosen from all remaining chromosomes

(excluding the father) after reranking all nonfather

chromosomes.

From a mother and father chromosome, a child

chromosome is randomly generated as follows. Suppose

(i; §1, . . . , §i) and (j; t1, . . . , tj) are the mother and father

chromosomes, respectively. The child’s chromosome is

produced in three steps. First, the mother’s and father’s

chromosomes are combined by forming the chromo-

some (i 1 j; k1, . . . , ki1j). Here, the k‘s contain the or-

dered changepoint times of bothmother and father. The

number of changepoints is strictly less than i 1 j should

the mother and father have some common changepoint

times. Second, the k‘ changepoint times are then either

retained or discarded with independent coin flips with

success probability 0.5. This acts to thin the number

of changepoints. Finally, we allow the changepoint

times that remain to move their locations slightly: each

changepoint location stays the samewith probability 0.4,

moves to one time smaller with probability 0.3, or moves

to one time larger with probability 0.3 (subject to the

changepoint time being in f1, . . . , Ng). For example,

with N 5 8, suppose that a mother and father have the

chromosome (1; 6) and (3; 3, 5, 6), respectively. Then the

child chromosome is first set to (3; 3, 5, 6). Three fair

coins are then flipped independently. Should this have

resulted in success, failure, and success, the chromosome

is thinned to (2; 3, 6). Two draws from the above location

shift generation mechanism might then, for example,

keep the time 3 changepoint where it is and shift the time

6 changepoint to 7. This yields the end chromosome

(2; 3, 7). Once one child is generated, the process is re-

peated until L new children are formed. These children

represent the next generation.We do not allow different

children to have the exact same chromosome; however,

a mother and father could be the parents of more than

one child.
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Mutation is an aspect of GAs added to prevent pre-

mature convergence to poor solutions (local minima).

Our mutation mechanism allows a small portion of

children to have ‘‘extra changepoints.’’ Specifically, af-

ter each child is formed from its parents, each and every

nonchangepoint time is independently allowed to be-

come a changepoint time with probability pmut. In the

computations below, pmut 5 0.003 is used.

In this manner, successive generations are simulated.

The solution to the optimization problem is taken as the

fittest chromosome in the terminating generation. One

terminates the GA when there is little or no improve-

ment to the fittest member of a few successive genera-

tions. The specifics of how this is done are usually of

little consequence.

Onemust deal with missing data in the above setup. In

the GAs, we simply do not allow a changepoint to occur

at a time where the target series is missing (as noted

above, the reference series is almost never missing). If

a generated chromosome attempts to put the change-

point at a time where the target series is missing, we

move the changepoint rightwards (higher) to the first

time point with present data. The likelihood in (10) also

needs to be modified to sum only over data that are

present. Should we wish to predict DnT1n and the most

recent nonmissing data point is DnT1n2k, then the pre-

diction becomes k steps ahead:

D̂nT1n 5E[DnT1n]1
fksn

*

sn2k
*

(DnT1n2k 2E[DnT1n2k]) .

The mean square prediction error ynT1n is changed to

sn*
2(12f2k).

After the GEV likelihoods are fitted, each station has

an estimated trend for its MaxTmax and MinTmin series.

Also computed are standard errors for the trend esti-

mates. To aid interpretation of the geographical pattern

of the results, the estimated trends will be spatially

smoothed. Specifically, the head-banging algorithm

discussed inHansen (1991) will be applied to smooth the

significance of the raw trends by station longitude and

latitude. This is done via the Z scores

Z5
â

Var(â)1/2
.

The Z score has the traditional standard normal in-

terpretation, useful in hypothesis testing. Specifically, if

the absoluteZ score exceeds 1.65, the trend is concluded

significantly nonzero with 90% confidence; if the abso-

lute Z score exceeds 1.96, the trend is deemed signifi-

cantly nonzero with 95% confidence, etc.

The head-banging algorithm is a robust median-

polished smoother that capably extracts general struc-

ture from noisy data. It is named from a child’s game

where a face is banged against a board of nails pro-

truding at various lengths, leaving an impression of the

face, but smoothing the residual nail lengths. The algo-

rithm is recursive in nature and unwieldy to quantify

with equations [refer to Hansen (1991) for details].

However, head-banging techniques are local median

smoothing methods that group stations into many sub-

sets of neighboring stations, over which median trends

are taken. Taking local medians accounts for spatial

correlation in the trend estimates in a nonparametric

manner. To run the head-banging algorithm, one only

FIG. 6. (top) Jacksonville monthly maxima temperature anom-

aly, (middle) reference temperature anomaly, and (bottom) Jack-

sonville minus reference difference anomaly, with estimated

changepoint times demarcated with dashed vertical lines.
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needs to set a parameter, called the number of triples.

The number of triples essentially represents the number

of neighboring stations that will be used to compute the

smoothed values.

7. A case station study

This section examines the monthly MaxTmax series

from Jacksonville, Illinois, introduced in section 2. The

GA estimates two changepoints at the times 49 (January

1900) and 730 (October 1956). The estimated AR(1)

coefficient in the fitted model (9) is f̂5 0:160. Figure 6

plots the Jacksonville maxima anomaly, reference

anomaly, and the Jacksonville minus reference anomaly

time series [here, the means and seasonal cycles as es-

timated via (9) with no changepoints have been removed

to provide visual clarity]. The estimated GA change-

point times are demarcated with dashed vertical lines in

the bottom graphic. The two estimated changepoint

times appear to correspond to legitimate shifts in the

target minus reference series.

When the two changepoints are ignored and the GEV

model is fitted—this allows for general monthly means

and a first-order Fourier expansion for fstgTt51—the

trend estimate is â520:926 6 0.2218C century21 (the

error margins are one standard error). The estimated

GEV shape parameter is ĵ520:182 6 0.012. Table 1

(second column) shows monthly GEV estimates of mn.

The estimated coefficients in the first-order Fourier ex-

pansion of st are ĉ0 5 2:821 6 0.0568, ĉ1 5 0:714 6
0.0828, and ĉ2 5 0:489 6 0.0778C. From these statistics,

one might conclude that the Jacksonville MaxTmax se-

ries is cooling. It is also worth noting that the estimated

shape parameter j is negative, implying a finite upper

limit for temperatures (ignoring trends).

Aspects change when the two changepoints are con-

sidered. While all changepoints are deemed to induce

significant location shifts by the GA, they may not be

significant as judged by the GEV likelihood. We discard

all GEV nonsignificant changepoint times. Elaborating,

the least ‘‘GEV significant’’ changepoint time (at the

5% significance level) is identified, and the GEV like-

lihood is refitted ignoring this changepoint time. This

yields improved estimates of the location shifts and their

standard errors. Such a ‘‘backwards elimination pro-

cess’’ is repeated until all changepoints are deemed

GEV significant at level 5%. Elaborating, the jth

changepoint, where j 5 2, . . . , k 1 1, is GEV significant

if Dj 2 Dj21 is significantly nonzero. To gauge this, the

Z score (D̂j 2D̂j21)/Var(D̂j 2D̂j21)
1/2 is computed, and

the jth changepoint is eliminated if its absoluteZ score is

smallest among all absolute Z scores and less than 1.96.

Recall that D1 5 0 was taken for parameter identifi-

ability. The covariances Cov(D̂j, D̂j21) needed to esti-

mate Var(D̂j 2D̂j21) are extracted from the information

matrix in the GEV fit.

For the Jacksonville MaxTmax series, D̂2 521:385 6
0.4258 and D̂3 2D̂2 522:7056 0.3018C.As such, the two

changepoints are both GEV significant, and we do not

eliminate either of them. The estimated shape parame-

ter becomes ĵ520:1986 0.014, and the estimated trend

is revised to â5 2:7176 0.4518Ccentury21. Table 1 (third

column) shows monthly estimates of mn when our

two identified changepoints are allowed. The column 3

TABLE 1. Jacksonville GEV monthly location estimates and their

standard errors (all units are in 8C).

Month

Changepoint ignored

GEV fit

Two changepoint

GEV fit

January 13.169 6 0.392 13.803 6 0.526

February 15.814 6 0.381 16.461 6 0.523

March 23.204 6 0.354 23.837 6 0.497

April 28.444 6 0.314 28.968 6 0.476

May 31.304 6 0.274 31.846 6 0.449

June 34.466 6 0.242 35.031 6 0.432

July 36.190 6 0.236 36.768 6 0.424

August 35.620 6 0.236 36.184 6 0.430

September 33.267 6 0.263 33.848 6 0.449

October 29.091 6 0.301 29.661 6 0.471

November 22.403 6 0.346 22.949 6 0.500

December 15.504 6 0.377 16.059 6 0.520

FIG. 7. GEV estimated linear trend line with mean shifts in-

cluded (solid) and ignored (dashed) for the monthly Jacksonville

maxima anomalies with seasonal cycle removed.

TABLE 2. Jacksonville changepoint comparison.

Metadata

changepoints

Mean

changepoints

MaxTmax

changepoints

1 May 1895 December 1900 January 1900

27 Apr 1927 September 1931 October 1956

11 Jan 1962 August 1941

16 Jan 1974 October 1961

March 1970
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estimates are all larger than the column 2 estimates

(standard errors are also larger, reflecting perhaps the

extra uncertainty the two changepoints induce). The

estimated coefficients in the first-order Fourier expan-

sion of st are revised to ĉ0 5 2:7626 0.0558C, ĉ1 5 0:746

6 0.0788C, and ĉ2 5 0:493 6 0.0758C.
The crux here is that the estimated trend â reverses

sign from the no changepoint fit: from 20:926 6 0.2228
to 2.717 6 0.4518C century21. A plot of the estimated

mean function of the no- and two-changepoint models is

superimposed upon the raw series after monthly sub-

traction of m̂n in Fig. 7. The two-changepoint model

seems to describe the series well. Obviously, local trend

inferences greatly change when changepoint features

are considered.

It is worth comparing the changepoints found in the

Jacksonville MaxTmax series to the metadata and to

those found in a corresponding monthly average series

from Jacksonville. To obtain changepoints in the

monthly average series, a Gaussian MDL analysis akin

to that in Lu et al. (2010) was used—a reference series

was again constructed from the 40 most correlated

neighbors. Table 2 lists our findings. The metadata

identify station location or temperature gauge changes

in 1895, 1927, 1962, and 1974. There is no metadata re-

cord after 1986. The MDL analysis of the monthly av-

eraged series estimates changepoints in 1900, 1931, 1941,

1961, and 1970. Obviously, there are fewer changepoints

in the extreme series than the mean series. This is ex-

pected as extremes are more variable than averages—

abrupt shifts in them should be relatively harder to

detect. This said, 1900 is estimated as a changepoint time

in both the average and MaxTmax series. A changepoint

is listed in the metadata at 1895. The 1961 estimated

changepoint for averages corresponds better to the 1962

metadata changepoint than the estimated 1956 change-

point in the MaxTmax series, but not radically so. Obvi-

ously, additional study on this issue is needed.

The Jacksonville MaxTmax trend estimate, with all

significant extreme changepoints estimated via the GA,

is â5 2:7178C century21. This model fit has a negative log-

likelihood of 3977.862 (smaller negative log-likelihoods

are better). The trend estimate with all significant

metadata changepoints is â520:9438C century21, with a

GEV negative log-likelihood of 3983.432. This signifi-

cantly smaller likelihood implies that a two changepoint

FIG. 8. Sample autocorrelation function (ACF) of the seasonally

scaled monthly Jacksonville MaxTmax residuals.

FIG. 9. Map of GEV trends of U.S. monthly MaxTmax series (8C century21).
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model for the MaxTmax series is preferable to a model

with metadata changepoints.

To assess the importance of autocorrelation in the

month-to-month extremes, Fig. 8 plots the sample au-

tocorrelations of the seasonally adjusted Jacksonville

MaxTmax residuals

XnT1n 2 Ê[XnT1n]dVar(XnT1n)
1/2

,

where themean and variance are computed from (2) and

(3). Pointwise 95% bounds for white noise are included.

It appears that the autocorrelations at lags one and two

are nonzero (the lag-one sample autocorrelation is

0.212), but that higher-order autocorrelations are es-

sentially zero. While this moderate amount of autocor-

relation is not completely ignorable, accounting for it in

the GEV likelihood will not change our trend estimator

appreciably (it may alter its standard error more).

8. Results for all stations

Trend estimates for the monthly MaxTmax series for

all 923 stations are displayed in Fig. 9. While it may be

surprising that 583 of the 923 stations had negative

trends, a ‘‘warming hole’’ in the eastern United States

has been previously noted (Lund et al. 2001; Robinson

et al. 2002; DeGaetano and Allen 2002; Lu et al. 2005;

Kunkel et al. 2006; Meehl et al. 2012, among many

others). A histogram of the 923 GEV trends is supplied

in Fig. 10. The estimated trends are right-skewed with

a median trend of20.63 and a 90% interior range (5th–

95th percentile) between 23.56 and 2.97 (all units here

are 8C century21). The head-banging algorithm was ap-

plied to the raw trends with a smoothing parameter

of 10 triples. The result is depicted in Fig. 11. Here,

color shades run from bright red (the most warming) to

deep blue (the most cooling). In aggregate, maximum

temperatures are decreasing in the eastern United

States, with the exception of New England. In contrast,

the western U.S. maximum temperatures are slightly

warming for the most part. Head-banging smoothed Z

scores for the trends are displayed in Fig. 12. Because of

the larger absolute Z scores, our inferences are most

confidently made for the majority of the eastern United

States (cooling) and the southern Rockies (warming).

FIG. 10. Histogram of the GEV trends of U.S. monthly MaxTmax

series (8C century21).

FIG. 11. Head-banging smoothed GEV trends of U.S. monthly

MaxTmax series (8C century21). The eastern United States shows

cooling and the western United States shows warming.

FIG. 12. Z scores for the GEV trends of U.S. monthly MaxTmax

series.
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The trends for monthly MinTmin series exhibit a dif-

ferent pattern. The raw trends for the 932 stations are

displayed in Fig. 13. Here, the majority of the trends are

increasing (728 of the 932 stations). A histogram of

the trends is shown in Fig. 14. The median of the 932

trends is 1.65 and the 5th–95th percentile of trends

spans from22.158 to 5.538Ccentury21. The head-banging

smoothedminimum trends (10 triples again) are shown in

Fig. 15.With the exception of two localized pockets in the

Southeast and Colorado, cooling is sparse. Head-banging

smoothed Z scores for the trends (10 triples again) are

displayed in Fig. 16. The Southeast is the most sig-

nificantly cooling location; confidence in warming is

comparatively large for the western United States, north-

ern Midwest, and New England.

For overall conclusions, the average trend in the

MaxTmax series is 20.4688Ccentury21 with an average

standard deviation of 2.0488Ccentury21 (over all 923

stations). The average trend in the MinTmin series is

1.6468Ccentury21 with an average standard deviation

FIG. 13. Map of GEV trends of U.S. monthly MinTmin series (8C century21).

FIG. 14. Histogram of the GEV trends of U.S. monthly MinTmin

series (8C century21).

FIG. 15. Head-banging smoothed GEV trends of U.S. monthly

MinTmin series (8C century21).
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of 2.3858Ccentury21 (this is over 932 stations). It is in-

teresting to assess the role of changepoints in these trend

estimates. The average number of GEV significant

changepoints is 1.74 for the MaxTmax series and 1.91 for

the MinTmin series. When GEV likelihoods are fitted to

the MaxTmax series without changepoint effects, the

average trend is20.4208C century21; the corresponding

average trend in the MinTmin series when changepoints

are ignored is 1.0138C century21. Including changepoints

has slightly increased cooling in MaxTmax series and

appreciably increased warming in the MinTmin series.

Figure 17 displays a histogram of the estimated magni-

tudes of all GEV significant changepoint shifts for all

stations. About 95%of theGEV significant changepoint

magnitudes are within 65.08C for maxima and 65.98C
for minima.

We now do some comparisons. First, trend calcula-

tions were conducted when the only changepoint times

allowed are those specified in the metadata. Specifically,

GEV trend calculations were made when the only

changepoints allowed are gauge changes or station re-

location times that are listed in the metadata. Any

metadata changepoint time that does not induce a

significant series shift is eliminated in a backward re-

gression procedure, akin to what was done before.When

only metadata changepoint times are used, the average

trend in MaxTmax series increases from 20.4688 to

0.1518C century21; the average trend in MinTmin series

changes from 1.6468 to 1.6158Ccentury21. Table 3

summarizes our findings.

Second, Table 4 examines the effect of differing

starting times on the computed trends. This table sum-

marizes estimated trends in the MaxTmax and MinTmin

series in aggregate (averaged over all stations) for

varying starting times, including 1900, 1950, and 1979.

The table shows that the most warming has taken place

recently. Here, the changepoint times were taken as

those that were estimated by the GA algorithm.

Comparing to the trends in mean U.S. temperatures

reported in Lu et al. (2005), similar spatial patterns

FIG. 16. Z scores for the GEV trends of U.S. monthly MinTmin

series.

FIG. 17. Histogram of the estimated shift magnitudes of all GEV

significant changepoints for U.S. (top) MaxTmax and (bottom)

MinTmin series (8C).

TABLE 3. Trend quantile and mean comparisons (8C century21).

Data Changepoints 2.5% 25% Median Mean 75% 97.5%

MaxTmax GA 24.115 21.672 20.631 20.468 0.734 3.914

Metadata 23.773 21.157 0.119 0.151 1.459 4.372

MinTmin GA 23.200 0.262 1.652 1.646 3.070 6.360

Metadata 22.642 0.209 1.583 1.615 2.974 5.914
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emerge: a cooling southeastern United States with

warming elsewhere. One noticeable discrepancy per-

haps is the cooling seen here in MaxTmax series in the

southern Great Lakes and Ohio Valley. The overall

results also support the statement that minimum tem-

peratures are warming much more rapidly than maxi-

mum temperatures, a hypothesis generally believed to

be consistent with warming induced by carbon dioxide

and/or increasing precipitation (Karl et al. 1991; Jones

et al. 1999).

9. Comments and conclusions

About 75% ofMaxTmax andMinTmin series start within

10 years of 1900. Since a linear trend is constant over time,

to minimize statistical variability, it makes sense to use the

longest record possible. Balanced against this, true climate

trends are surely nonlinear, perhaps stemming from mul-

tidecadal variability (Williams et al. 2012). While our di-

agnostics do not reveal radical departures from linear

assumptions, adding nonlinear components would im-

prove the methods here. As Table 4 shows, trend estima-

tors from different time segments do vary.

An improvement to our methods would allow esti-

mation of the changepoint times and locations in the

GEV likelihood, accounting for autocorrelation and

reference station aspects. This would eliminate the

Gaussian analysis of target minus references series step

to estimate the station changepoint configuration. We

attempted to develop such methods but failed. Handling

autocorrelation in extremes is difficult.

It would be desirable to more deeply understand the

differences between changepoints in extreme and mean

series, along with how they relate to the metadata re-

cords. Such ‘‘validations’’ have been conducted for

trends in means (Wendland and Armstrong 1993; Vose

et al. 2005; Menne et al. 2009; Williams et al. 2012;

Zhang et al. 2012). It is worth repeating that accounting

for changepoints made overall trends cooler inMaxTmax

series and made overall trends warmer in MinTmin se-

ries. In contrast, accounting for changepoint aspects

substantially increased mean monthly maximum trends

and slightly decreased mean monthly minimum trends

(Menne et al. 2009). Reasons for this are worthy of

further study and should provide greater confidence in

our results.

Overall, the climate change inferences made here

support the conclusions of previous authors that mini-

mum temperatures are increasing more than maximum

temperatures (Karl et al. 1991; Jones et al. 1999;

DeGaetano and Allen 2002; Peterson et al. 2008). We

also find that the westernUnited States is warming more

than the eastern United States, consistent with Kunkel

et al. (2006) and Menne et al. (2009). As changepoint

information is crucial for obtaining a realistic trend es-

timate at a specific location, warming and/or cooling

conclusions for larger-scale regions may also depend on

changepoint aspects, especially if a particular type of

changepoint is systematic (e.g., a transition to electronic

resistance thermometers or location moves to an air-

port). Impacts of changepoints on trends have already

been verified in the literature, including Menne et al.

(2009) and Williams et al. (2012) at regional (conter-

minous U.S.) scales and Lawrimore et al. (2011) on

a global scale.
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