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SUMMARY

We develop a parallel computational algorithm for simulating models of gel dynamics where the
gel is described by two phases, a networked polymer and a fluid solvent. The models consist
of transport equations for the two phases, two coupled momentum equations, and a volume-
averaged incompressibility constraint. Multigrid with Vanka-type box relaxation scheme is used as
preconditioner for the Krylov subspace solver (GMRES) to solve the momentum and incompressibility
equations. Through numerical experiments of a model problem, the efficiency, robustness and
scalability of the algorithm are illustrated. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Polymer gels are composed of two materials: a polymer network and a solvent. By weight and
volume gels are mostly solvent, but the rheology of the gel can range from a very viscous fluid
to an elastic solid. In addition to viscoelastic stresses, gels can exhibit chemical stresses which
result in swelling and deswelling behavior.

A commonly used model for the mechanics of gels is the two-phase flow (or two-fluid) model
[1, 2, 3, 4, 5, 6, 7]. Each phase, network and solvent, is treated as a continuum and moves
according to its own velocity field. Each region in space is composed of a mixture of the
two phases that is described by the volume fractions of the phases. The equations of motion
for the gel consist of two coupled momentum equations and two continuity equations. These
models of gels are based on mixture theory [8, 9], which has been used for many applications
and is becoming increasingly popular in models of biological materials such as tissue [10],
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PARALLEL COMPUTATIONAL METHOD FOR GEL DYNAMICS 1

tumors [11, 12], cytoplasm [1, 3, 4, 6], and biofilms [13, 14, 2]. While much work has gone
into advancing these models, the same is not true for the development of efficient numerical
methods for simulating them. Since repeated simulation of models is crucial for validating their
usefulness, the need for fast and robust computational methods is essential. A significant step
in this direction was described in [15] where a novel serial algorithm for a subdivision of the
problems was introduced.

In this paper we extend the work in [15] by proposing a parallel computational methodology
for solving the same problems. Both the network and solvent are modeled as viscous fluids.
The viscosity of the network is much larger than that of the solvent. The gel feels a chemical
pressure that makes the system bistable, that is, it drives the network volume fraction to
one of two preferred states. Under appropriate conditions the chemical pressure induces phase
separation of the mixture and is a good test for the robustness of any numerical procedure.
Computational tests of the proposed method are carried out for the model in two dimensions,
from which the efficiency and robustness of the algorithm are investigated.

In many models of gel dynamics, including our model problem, viscous terms are assumed
to dominate so that inertial terms are negligible. This assumption leads to an elliptic system
for the coupled momentum and incompressibility equations that resembles Stokes equations.
However, there are many key differences which increase the complexity of the problem. First,
since there are two phases, there are two sets of momentum equations. Second, there are
off-diagonal terms coupling the two velocity fields (and the components of the two fields)
together. Third, the Laplacians involve time-dependent variable coefficients related to the
volume fractions of the two phases. Finally, incompressibility is replaced with a “volume
averaged” incompressibility over the two fluids.

We use second-order finite-differences on a marker-and-cell (MAC) grid [16] to discretize
this system. As with Stokes (and linearized Navier-Stokes) equations, this gives rise to a
large, sparse linear system of saddle point type. In [15], we developed an extension of a
multigrid method initially proposed for Stokes and Navier-Stokes equations by Vanka [17],
and which has seen considerable development in the past several years (see, for example,
[18, 19, 20, 21, 22, 23]). The method is characterized by the smoother used and is referred
to in literature as box [22, pp. 320-322], coupled [23], or Vanka [19] relaxation. The basic
idea of the smoother is to compute updates to the solution by collectively solving for the
velocity and pressure in the discrete momentum equations locally, computational cell (or box)
by cell. For the gel system, this means solving a (2d+1 + 1)-by-(2d+1 + 1) saddle point system
for each cell, where d is the number of spatial dimensions. Depending on how the cells are
processed (Jacobi or Gauss-Seidel like), the method can also be viewed as an additive or
multiplicative Schwarz domain decomposition method, where the subdomains consist of a
single computational cell [19]. We use the smoother with standard prolongation and restriction
operators and do a direct discretization of the equations on the coarse grids, which makes the
implementation relatively simple.

When the network and solvent are well mixed, the multigrid box-relaxation method performs
quite well as a solver for the model problem considered here. However, as phase separation
occurs, the solver performance degrades quite dramatically, and it, in fact, fails in some cases
as shown in [15]. One particularly effective way of improving the robustness of a non-optimal
(or even non-converging) multigrid method is to combine it with a Krylov subspace method
(see, for example, [22, §7.8]). In the current paper, a parallel version of the algorithm in [15]
is developed which combines the Krylov subsapce solver in PETSc [24] with the multigrid
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2 J. DU, A. L. FOGELSON AND G. B. WRIGHT

box-relaxation scheme as the preconditioner.
In addition to the momentum and incompressibility equations, models for gel dynamics

include equations for the transport of the network and solvent. For the transport equations we
use a conservative finite-volume discretization in which the advection term is treated explicitly
with first-order upwinding and the diffusion term is handled implicitly with backward Euler.

The rest of the paper is organized as follows. In Section 2, the model problem for describing
and testing the computational method is introduced. Section 3 describes the discretization (in
space and time) for the 2-D model. In Section 4, the elements of the multigrid box-relaxation
scheme are introduced with parallel considerations, followed by a description of its role as a
preconditioner for GMRES (generalized minimum residual). Section 5 presents the results of
simulations as well as the parallel performance.

2. MODEL PROBLEM

The model problem we consider is for a gel composed of two immiscible materials, a polymer
network and a fluid solvent. We assume that the total amount of gel remains constant and
that the transport of the network and solvent is governed by the equations:

∂θn

∂t
+∇ · (θnun) = 0 (1)

∂θs

∂t
+∇ · (θsus) = 0 (2)

where θn, and θs = 1 − θn are the respective volume fractions of the network and solvent,
0 < θn < 1, and un and us are the respective transport velocities. Adding these two equations,
and using θn + θs = 1 gives the incompressibility-type constraint

∇ · (θnun + θsus) = 0 (3)

The transport velocities are determined by conservation of momentum. We assume the
network acts as a constant density viscous material and the solvent acts as a Newtonian
fluid of much less viscosity. Viscous terms are assumed to dominate so that inertial terms are
negligible (similar to zero-Reynolds number flow), i.e. the system responds instantaneously to
applied forces.

The network and solvent are each subject to a number of intraphase stresses. We assume
that the viscous stress tensors σn and σs for the network and solvent are proportional to the
respective gradient of the network and solvent velocities, i.e.

σn = µn

(
∇un +∇unT

)
+ λnδij∇ · un (4)

σs = µs

(
∇us +∇usT

)
+ λsδij∇ · us (5)

where µn,s are shear viscosities and λn,s + 2µn,s/d are the bulk viscosities of the network and
solvent (d is the dimension). The network and solvent are also subject to a frictional drag since
the motion of the solvent influences the network. We model this by βθnθs(un−us), where β > 0
is the drag coefficient. The third force on each phase is due to hydrostatic pressure. Since the
polymer is assumed to be chemically active within the gel and the solvent is assumed to be
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PARALLEL COMPUTATIONAL METHOD FOR GEL DYNAMICS 3

chemically neutral, the final force is generated by a chemical pressure, Ψ(θn), and acts only
on the network. The form of Ψ(θn) used in this paper is described below.

Balancing the above forces on the network and solvent yields the equations:

∇ · (θnσn)− βθnθs(un − us)− θn∇p = ∇Ψ(θn) (6)
∇ · (θsσs)− βθnθs(us − un)− θs∇p = 0 (7)

where p is the hydrostatic pressure. These two equations, combined with (1) and (3), and
subject to suitable boundary conditions, govern the gel dynamics and are the same as used in
[1, 3, 4, 6, 15]. For our test problem we assume no-slip boundary conditions for the network
and solvent velocities, and no-flux boundary conditions for θn and θs.

The chemical pressure includes osmotic pressure, but it may also include active, contractile
stresses such as in the actomyosin gels of cytoplasm. In this paper we are not concerned with
the origins of the chemical stress, and refer to it simply as the osmotic pressure. We assume
the osmotic pressure is of the form

Ψ(θn) = γθn(θn − θn
0 )(θn − θn

∗) (8)

where γ > 0, 0 < θn
0 < θn

∗ < 1; see Figure 1 for a plot of Ψ(θn) with parameters used in
the numerical experiments that follow. This functional form is chosen since it can produce
phase separation, or channeling. In regions of space where Ψ′(θn) > 0 the mixture is stable,
but where Ψ′(θn) < 0 the mixture tends to phase separate; see Cogan and Keener [2] for an
analysis. This form of Ψ does not allow the phases to separate completely. Phase separation
is generally observed in gels [7], and is vital for locomotion and for transporting nutrients in
some amoeboid cells [25].
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Figure 1: (a) Osmotic pressure function (8) from the model problem with parameters γ = 5,
θn
0 = 0.01 and θn

∗ = 0.15 used in the numerical experiments. (b) A detailed plot of this function
near the origin.

Finally, we assume there is a small amount of diffusion between the network and solvent
in the gel. This is mathematically and computationally useful since it means the transition
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4 J. DU, A. L. FOGELSON AND G. B. WRIGHT

between the network and solvent will be smooth even in areas where the two phases have
separated. This additional assumption changes (1) and (2) to

∂θn

∂t
+∇ · (θnun) = κ∇2θn (9)

∂θs

∂t
+∇ · (θsus) = κ∇2θs (10)

where κ ≥ 0 is the diffusion constant. We use relatively small diffusion coefficients so that this
modification does not change the qualitative features of the model, but ensures the solution is
continuous.

3. DISCRETIZATION

Let un = (un, vn)T and us = (us, vs)T , where un, vn and us, vs are the respective network
and solvent velocity components in the x and y directions, and let the spatial domain be
Ω = {(x, y)|0 ≤ x ≤ a, 0 ≤ y ≤ b}. Then the momentum equations (6)–(7) and volume-
averaged incompressibility (3) are given in matrix-vector form as



Ln − C C −Gn

C Ls − C −Gs

−DT
n −DT

s 0






un

us

p


 =



∇Ψ(θn)

0
0


 (11)

where

Ln,s =
[
αn,s∂x(θn,s∂x) + µn,s∂y(θn,s∂y) µn,s∂y(θn,s∂x) + λn,s∂x(θn,s∂y)
µn,s∂x(θn,s∂y) + λn,s∂y(θn,s∂x) αn,s∂y(θn,s∂y) + µn,s∂x(θn,s∂x)

]

C =
[
βθnθs 0

0 βθnθs

]
, Gn,s =

[
θn,s∂x

θn,s∂y

]
, Dn,s =

[
∂xθn,s

∂yθn,s

]

and αn,s = (2µn,s + λn,s). Since θs = 1− θn, we need only an equation for the transport of θn,
which is again given by (9). We use no-slip boundary conditions for (11) and no-flux for (9).
Finally, the cubic function (8) is used for modeling the osmotic pressure.

For the spatial discretization we use a MAC grid where the positions of the unknowns are
indicated in Figure 2. The mesh-spacing in the x and y direction is set equal and is given by
h.

All equations in (11) are discretized using second-order, centered finite differences, which
leads to the following approximation of the first row of (11) at the interior point (xi+ 1

2 ,j , yi+ 1
2 ,j):

αn

h2

[
θn

i+1,j(u
n
i+ 3

2 ,j − un
i+ 1

2 ,j)− θn
i,j(u

n
i+ 1

2 ,j − un
i− 1

2 ,j)
]
+

µn

h2

[
θ
n

i+ 1
2 ,j+ 1

2
(un

i+ 1
2 ,j+1 − un

i+ 1
2 ,j)− θ

n

i+ 1
2 ,j− 1

2
(un

i+ 1
2 ,j − un

i+ 1
2 ,j−1)

]
+

µn

h2

[
θ
n

i+ 1
2 ,j+ 1

2
(vn

i+1,j+ 1
2
− vn

i,j+ 1
2
)− θ

n

i+ 1
2 ,j− 1

2
(vn

i+1,j− 1
2
− vn

i,j− 1
2
)
]
+ (12)

λn

h2

[
θn

i+1,j(v
n
i+1,j+ 1

2
− vn

i+1,j− 1
2
)− θn

i,j(v
n
i,j+ 1

2
− vn

i,j− 1
2
)
]
−

βθ
n

i+ 1
2 ,jθ

s

i+ 1
2 ,j(u

n
i+ 1

2 ,j − us
i+ 1

2 ,j)− θ
n

i+ 1
2 ,j

pi+1,j − pi,j

h
=

Ψ(θn
i+1,j)−Ψ(θn

i,j)
h
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Figure 2: Location of the unknowns in the MAC grid for the 2-D gel model:
B=network/solvent horizontal velocity, M=network/solvent vertical velocity, • =pressure, and
© =network/solvent volume fractions.

while the approximation to the second row at the interior point (xi,j+ 1
2
, yi,j+ 1

2
) is given by:

µn

h2

[
θ
n

i+ 1
2 ,j+ 1

2
(un

i+ 1
2 ,j+1 − un

i+ 1
2 ,j)− θ

n

i− 1
2 ,j+ 1

2
(un

i− 1
2 ,j+1 − un

i− 1
2 ,j)

]
+

λn

h2

[
θn

i,j+1(u
n
i+ 1

2 ,j+1 − un
i− 1

2 ,j+1)− θn
i,j(u

n
i+ 1

2 ,j − un
i− 1

2 ,j)
]
+

αn

h2

[
θn

i,j+1(v
n
i,j+ 3

2
− vn

i,j+ 1
2
)− θn

i,j(v
n
i,j+ 1

2
− vn

i,j− 1
2
)
]
+ (13)

µn

h2

[
θ
n

i+ 1
2 ,j+ 1

2
(vn

i+1,j+ 1
2
− vn

i,j+ 1
2
)− θ

n

i− 1
2 ,j+ 1

2
(vn

i,j+ 1
2
− vn

i−1,j+ 1
2
)
]
−

βθ
n

i,j+ 1
2
θ
s

i,j+ 1
2
(vn

i,j+ 1
2
− vs

i,j+ 1
2
)− θ

n

i,j+ 1
2

pi,j+1 − pi,j

h
= 0

Bars over θn and θs represent arithmetic averages of the values of these variables at nearest
neighbor cells with two-point averages when there is a mix of integer and half-integer indices,
and four-point averages when there are two half-integer indices. The discretizations of the third
and fourth row of (11) are the same, but with variables for the network replaced accordingly
by the variables for the solvent. Finally, the last row of (11) is approximated at (xi,j , yi,j) by

−θ
n

i+ 1
2 ,ju

n
i+ 1

2 ,j
+ θ

n

i− 1
2 ,ju

n
i− 1

2 ,j

h
+
−θ

n

i,j+ 1
2
vn

i,j+ 1
2

+ θ
n

i,j− 1
2
vn

i,j− 1
2

h
+

−θ
s

i+ 1
2 ,ju

s
i+ 1

2 ,j
+ θ

s

i− 1
2 ,ju

s
i− 1

2 ,j

h
+
−θ

s

i,j+ 1
2
vs

i,j+ 1
2

+ θ
s

i,j− 1
2
vs

i,j− 1
2

h
= 0 (14)

Where necessary, we use second-order extrapolation to account for the no-slip boundary
conditions.
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6 J. DU, A. L. FOGELSON AND G. B. WRIGHT

For a grid with N cell-centers in the x-direction and M cell-centers in the y-direction, the
above approximations can be collected in a (5NM −2(N +M))-by-(5NM −2(N +M)) linear
system, which we denote by



Lh

n − Ch Ch −Gh
n

Ch Lh
s − Ch −Gh

s

Gh
n

T Gh
s

T 0




︸ ︷︷ ︸
Ah



un

us

p


 =



∇hΨ(θn)

0
0


 (15)

This forms the discrete approximation to (11). Since we assume 0 < θn < 1, it follows,
for example, from [26, Theorem 3.6] that the eigenvalues of Ah have nonpositive real part
(Ah is negative semistable), i.e. Re(λ) ≤ 0 for all λ ∈ σ(Ah). This can be advantageous for
(preconditioned) Krylov subspace methods [26].

For the temporal discretization of (9), we use explicit first order upwinding for the advective
term ∇ · (θnun) (specifically we use LeVeque’s first order upwind with transverse wave
corrections [27]), and we treat the diffusion implicitly with backward Euler. The linear system
that arises because of the implicit discretization is solved using preconditioned GMRES solver
in PETSc with block Jacobi as the preconditioner. For efficiency and stability, we use the
adaptive time-stepping procedure described in [15].

The basic strategy we use for simulating the two-dimensional gel is as follows:

1. For a given θn at time t, solve the discrete system (15) for un, us, and p at time t.
2. Solve for θn (and thus θs) at time t + ∆t using upwinding for (9), as discussed in the

previous paragraph, with the value of un at time t.
3. Repeat step 1, with the θn at t + ∆t.

4. SOLVING THE COUPLED MOMENTUM AND CONTINUITY EQUATIONS

To solve the discrete system (15), we use a collective (box) relaxation scheme within a multigrid
procedure [17]. The box relaxation scheme updates unknowns locally, cell-by-cell, by solving a
succession of small linear systems. The updated unknowns are used in a Gauss-Seidel manner
as soon as they are available. The key elements of the algorithm are described below.

4.1. Smoother

For the 2-D system (11) on the MAC grid, the box relaxation involves solving the discrete
equations (15) locally in each computational cell (or box). For each interior box, this requires
solving a 9-by-9 linear system (4 equations for the network velocity, 4 equations for the solvent
velocity, and 1 equation for the pressure) for corrections to the unknowns un, us, and p. With
Dirichlet boundary conditions, boxes at the corners of the domain require solving 5-by-5 linear
systems, while boxes on the edges require solving 7-by-7 systems. We update corrections to
the unknowns in a Gauss-Seidel-type manner and combine this with underrelaxation with
ω = 0.675. Suppose the linear system on a single box is Lx = b, where L, x and b are the
coefficient matrix, unknown vector and right hand side, respectively. Then after the (k + 1)th
box relaxation:
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PARALLEL COMPUTATIONAL METHOD FOR GEL DYNAMICS 7

xk+1 = (1− ω)xk + ωL−1b (16)

The boxes are processed using red-black ordering. Note that vector values located at cell
edges are relaxed twice while scalar values located at cell centers are relaxed once within each
iteration. Parallelization similar to [18] is developed using the Message Passing Interface (MPI)
for communication on distributed memory computers.

The parallel box relaxation works as follows. Suppose we have a portion of our two
dimensional staggered grid on a specific processor as in Figure 3, with one layer of buffer
cells. The solid thick line is the parallel subdomain boundary.

At the beginning of the sweep, the values stored in the buffer cells are current. Let (i, j) be
the global cell index, then cells with (i + j) mod 2=even are marked as red and those with
(i + j) mod 2=odd are marked as black. During the red sweep, the red cells in the subdomain
are updated in lexicographic order. The updated velocity components (small rectangles)
and pressures (circles) are shown in Figure 3(a). The red cells within the buffer are also
simultaneously relaxed on neighboring processors but their state values are not yet available
to this processor. After the red sweep, a two-stage communication process is carried out with
adjacent processors to update the buffer states. The first stage exchanges local state values
along the left and right subdomain boundaries with the corresponding neighboring processors.
The updated states after the communication are cross-hatched in Figure 3(b). In order to
distinguish the red and black relaxations, the states updated by the red sweep are indicated
above or to the right of the cell edges and those updated by the black sweep are shown below or
to the left of the edges. Updating the states in the upper and lower buffers is achieved through a
similar communication step. Note that unlike the left-right communication, states on the corner
cells such as those within the dashed circles in Figure 3(c) are also sent/received in order to
interpolate corrections to the next finer grid for the subdomain. Explicit communications with
diagonal neighbors are avoided since all the corner states have already been updated in the
left-right communication step of the upper/lower processors. The black box relaxation is done
in the same way, as shown in Figure 3(d-f). It is clear that after the final communication step,
all velocity components have been relaxed twice and pressure components have been relaxed
once. It is also clear that all buffer cells hold updated information and so the information to
carry out another smoothing sweep is in place. Note also that the current values of all variables
needed to compute residuals at subdomain cells are available at the end of each sweep.

4.2. Transfer operators

Suppose the mesh-spacing in both the x and y directions is given by h, with 1/h a power
of 2. We define a sequence of coarser grids, where each grid is a factor of two coarser than
the previous in both the x and y direction. After one iteration of box-relaxation, residuals
rh are calculated at the same locations on the MAC grid as the corresponding unknowns,
and the right hand sides f2h of the defect equations on the next coarser grid are formed
through restriction with standard full-weighting. As shown in Figure 4(a), scalar quantities
f2h (pressure or volume fraction) at a coarse grid center F are calculated as the arithmetic
average of the related rh values at the fine grid centers 1, 2, 3 and 4. Six-point weighting is
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(a) red box relaxation

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

(b) left-right red box communication
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(c) upper-lower red box communication
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(d) black box relaxation

Figure 3: Progression of red-black Gauss-Seidel box-relaxation smoothing sweep. (a) After
completion of the the red sweep, pressures at red cell centers and all velocities on red cell edges
have been updated. (b) Updated red cell values are communicated to neighboring processors
to the right and left to update red cell values in subdomain buffer cells. (c) Updated red cell
values are communicated to neighboring processors above and below to update red cell values
in subdomain buffer cells. (d) After completion of the black sweep, pressures at black cell
centers and all velocities on black cell edges have been updated. (e) Updated black cell values
are communicated to neighboring processors to the right and left to update black cell values
in subdomain buffer cells. (f) Updated black cell values are communicated to neighboring
processors above and below to update black cell values in subdomain buffer cells.
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(e) left-right black box communication
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(f) upper-lower black box communication

by neighboring processors
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Figure 3: Continued
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Figure 4: Multigrid transfer operators: (a) Restriction: For variables at cell centers (F),
restriction is the arithmetic average of values from the neighboring fine grid points (1,2,3,4).
For variables at cell edges (E), restriction uses a weighted average of values at the neighboring
edges (a-f). (b) Interpolation: The value of a variable at a fine grid cell center (2) is calculated
by bilinear interpolation from neighboring course grid cell centers (A, B, C, D). The value of
variables at fine grid cell edges such as points 3 or 4 are interpolated by linear interpolation
from the neighboring two (I and M) coarse grid cell edges or by bilinear interpolation from
the four neighboring coarse grid cell edges (H, I, J, K).
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10 J. DU, A. L. FOGELSON AND G. B. WRIGHT

used for vector values at a coarse grid edge center E:

f2h(F ) =
1
4
[rh(1) + rh(2) + rh(3) + rh(4)] (17)

f2h(E) =
1
8
[rh(a) + rh(c) + rh(d) + rh(f) + 2rh(b) + 2rh(e)] (18)

Note that communication is needed to provide current fine grid residual values with the fine
grid buffers (dashed cells) such as at points a and d, before the restriction is carried out.

After reaching the coarsest grid, corrections on the next finer grid are calculated by
linear/bilinear interpolation and box relaxation is carried out again with the corrected state
values. In Figure 4(b), point 2 is a fine grid center, and points 3 and 4 are centers of fine grid
cell edges. The corrections for the pressure (Cph) and the velocity (Cvh) are calculated from
the related coarse grid values as:

Cph(2) =
1
16

[9P2h(C) + 3P2h(B) + 3P2h(D) + P2h(A)] (19)

Cvh(3) =
1
4
[3V2h(M) + V2h(I)] (20)

Cvh(4) =
1
8
[3V2h(H) + 3V2h(I) + V2h(J) + V2h(K)] (21)

where P2h and V2h are the pressure and the velocity on coarse grid. Note that it is also necessary
to interpolate corrections to those fine grid points in the buffer (e.g., point 5) which is within
the processor’s subdomain on the finer grid. Obviously, buffer state values at points such as
E, F , G and J , K, L are needed to interpolate corrections at points 1, 4 and 5. Since these
values are already available through the communication step of box relaxation, no additional
communications are required for interpolation.

4.3. Parallel multigrid on coarsest grid

The relative communication overhead increases as the grid gets coarser during the multigrid
cycle, and it is known that this may result in a significant loss of efficiency for the parallel
application. We use the agglomeration method to overcome the problem. Specifically, in our
implementation, if the grid is coarse enough so that there is only one grid cell in the x or
y direction for any of the processors, data values (right hand side and volume fraction) are
gathered and distributed globally onto every processor through an all-to-all communication
procedure. Then each processor solves the same system of equations on the entire coarsest grid
using Gaussian elimination with pivoting, and updates the data within its own subdomain.
Since the size of the system to solve grows with the number of processors, the box relaxation
scheme mentioned before with a prescribed small number of iterations (e.g. 5 for the simulation
results presented here) is employed instead of the direct method in cases when the latter
becomes too expensive. Therefore, the parallel multigrid algorithm, in which the coarsest grid
level depends on the number of processors, and in which the coarsest grid equations are solved
approximately, is different from its serial counterpart, in which the coarsest possible grid is
used and the coarsest grid equations are solved exactly. As a result, the numerical efficiency
may be reduced although the above strategies may increase the parallel efficiency. It is the
balance between the two that should be optimized [28].
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4.4. Multigrid as preconditioner for GMRES

It is shown in [15] that multigrid used on its own as the solver for the gel system may not be
very robust, especially when phase separation occurs. The reason is the appearance of a few
large isolated eigenvalues of the multigrid iteration matrix. It is also shown in [15] that these
large eigenvalues are well captured by a Krylov acceleration technique [29]. Specifically, the
multigrid procedure just described is used as a (right) preconditioner for GMRES solution of
the system (15). The multigrid-preconditioned GMRES procedure is robust and efficient even
when sharp gradients in volume fraction develop during the gel separation process. We follow
the same strategy for the parallel algorithm by using the multigrid box relaxation scheme as a
preconditioner for the parallel GMRES solver in PETSc [24]. The Krylov method is applicable
to non-symmetric matrices and non-positive definite preconditioners, both of which are found
for the gel system. One multigrid sweep is carried out per Krylov iteration.

If we let yT = [(un)T (us)T pT ] and f be the right hand side of (15), the preconditioned
system of equations to solve with GMRES is given by

Ah(Mh)
−1

z = f (22)

where z = Mhy, and Mh represents the preconditioning matrix from the multigrid box
relaxation scheme. As shown in [30], the (m+1)th iteration of the multigrid procedure can be
written in the form

y(m+1) = (I − (Mh)−1Ah)y(m) + (Mh)−1f (23)

Applying this once with zero initial guess gives

y(1) = (Mh)−1f

This is exactly what we do when applying multigrid once as a preconditioning matrix to
vector f . Therefore the multigrid preconditioner always takes zero as the initial guess, the
input vector as the right hand side, and sets the updated state variables after one multigrid
iteration to be the output vector. Function PCShellSetApply(pc, (∗apply)(void∗, V ec, V ec))
in PETSc provides a convenient way to implement a user-defined parallel preconditioner, where
pc is the preconditioner context and apply is the user-provided preconditioning routine. The
first input argument of function apply is a void pointer and can be cast to whatever the user
has set the application-defined context to be and the other two arguments are global input
and output vectors [24].

We consider the system (15) at time t “solved” when the residual of the `th iterate of the
respective method satisfies

‖r(`)‖2
‖f‖2 ≤ 10−6 (24)

where r̃(`) = f − Ahy(`). Unless otherwise specified, for all time steps but the initial one,
we use the previous time step’s values for the network and solvent velocities and pressure
as initial guesses for the iterative methods. After solving system (15), updated values of the
network velocity are communicated to the appropriate buffer cells. These values are needed
at the beginning of the next time step in order to evaluate the discrete advection terms in
approximating the continuity equation (9) for θn.
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12 J. DU, A. L. FOGELSON AND G. B. WRIGHT

5. NUMERICAL RESULTS

To test the method in 2-D, we let the domain be the unit square and start with an initial
distribution of network θn that is perturbed about the unstable region of the osmotic pressure
Ψ (cf. Figure 1):

θn = 0.08 + 2.5 · 10−4(cos(6πx) + cos(4πy))

The model parameters are set to µn = 0.1, λn = 0.3, µs = 0.025, λs = 0, β = 1, and κ = 10−7.
The first four of these values make αn = 0.5 and αs = 0.05. Note that multigrid F-cycle is
always used for cycling through the grids. Plots of the network volume fraction and velocity
field at various stages of gel phase separation are shown in Figure 6. Figure 5 shows the network
volume fraction θn distributions along x = 0.5 for different time steps. Clearly as time evolves,
the network and solvent phases separate and channels with sharp edges form. The simulation
was run on 16 processors with a 512 × 512 grid, using multigrid preconditioned GMRES as
the solver for the momentum equations.
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Figure 5: Network volume fraction distribution along x = 0.5 at different time steps.

Figures 7 and 8 display the number of iterations needed to satisfy the relative residual
condition (24) for multigrid (F-cycle) as a stand-alone solver (MGF) and as preconditioner
for GMRES (GMRES-MGF) with mesh size 512 × 512 at different time steps during the
simulation. The results are for serial (1× 1) and parallel simulations with 32 processors (8× 4
parallel decomposition). As pointed out in [18], since cells of the same color are still coupled
with each other, a degradation in the smoothing rate of the scheme may be expected as the
number of processors increases. Another source for the degradation may be the reduction in the
number of multigrid levels as the number of processors increases, along with the approximate
iterative solution of the coarsest grid equations (see Section 4.3). It is clear from the figures that
this degradation, increasing the number of iterations by 1 − 3, is not severe with a moderate
number of processors. By comparing with Figure 5, it can be seen that the number of iterations
required by the numerical solvers remains approximately constant until channels with sharp
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Figure 6: Network volume fraction (left) and distribution of the network velocity (right). Vmax
is the largest velocity value in the plot.
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14 J. DU, A. L. FOGELSON AND G. B. WRIGHT

edges form. Starting at this stage, the number of iterations for MGF increases sharply. In fact,
MGF fails to converge in the later stages of gel separation within 30 iterations. In contrast,
GMRES-MGF performs well for all stages of gel separation, showing only a moderate increase
of iterations. Therefore, as previously mentioned in [15], using multigrid as the preconditioner
for GMRES yields a more robust solver than multigrid alone.
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Figure 7: Number of iterations for MGF at different time steps for 1 and 32 processors.
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Figure 8: Number of iterations for GMRES-MGF at different time steps for 1 and 32 processors.

By choosing a time step in which the serial and parallel methods required the same number
of iterations, the speedup of the code within one time step of a simulation was determined. This
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is plotted in Figure 9 for grid sizes of 1024×1024 and 512×512. It is clear that for a sufficiently
large problem, the code shows good scalability. Table I shows the detailed information about
the wall clock time distribution percentage for parallel runnings with different number of
processors. The results for the last column include parallel box relaxation, residual evaluation
and intergrid transfers, which are fully parallelizable. Smoothing on coarsest grid only makes
use of one processor and forms the serial part of the algorithm.
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Figure 9: Speedup plot for GMRES-MGF for different sized grids.

6. CONCLUSIONS

We have presented a computational methodology for simulating models of two-phase gel
dynamics. The main computational challenge of these models is in solving the momentum
and incompressibility equations which involve variable-coefficient differential terms and terms
coupling the two fluids. Our method of solving this system by using parallel multigrid with
a box-type relaxation procedure as a preconditioner for GMRES solver in PETSc package
appears to be very effective with good parallel performance. Numerical results from model
problems in two dimensions indicate the method is both robust and efficient.
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# of processors Communication Smoothing on coarsest grid Others
8 2.7% 0.8% 96.5%
16 6.8% 2.3% 90.9%
32 11.1% 5.1% 83.8%

Table I: Wall clock time distributions for simulations on 1024× 1024 grid.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:0–0
Prepared using fldauth.cls

elizabethwalker
Text Box
This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at International Journal for Numerical Methods in Fluids, published by Institution of Engineering and Technology. Copyright restrictions may apply.  DOI: 10.1002/fld.1907



	Boise State University
	ScholarWorks
	9-10-2008

	A Parallel Computational Method for Simulating Two-Phase Gel Dynamics
	Jian Du
	Aaron L. Fogelson
	Grady Wright

	tmp.1285620198.pdf.Mexsm

