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SUMMARY

This paper proposes an accurate confidence interval for the trend parameter in a linear regression

model with long memory errors. The interval is based upon an equivalent sum of squares method

and is shown to perform comparably to a weighted least squares interval. The advantages of the

proposed interval lies in its relative ease of computation and should be attractive to practitioners.
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1 Introduction

This paper examines confidence intervals for the parameters in the simple linear regression model

Yt = µ+ βt+ εt, t = 1, 2, . . . , n, (1)

where {Yt} is a stationary time series, µ and β are unknown regression parameters, and the er-

rors {εt} are a zero mean stationary series with long memory in that
∑∞

h=0 |γ(h)| = ∞, where

γ(h) = Cov(Yt, Yt+h). Our task is to construct an accurate confidence interval for β with minimal

computational burden.

Regression inference with long memory errors has been previously studied. Robinson and Hi-

dalgo (1997) establish a central limit theorem for the weighted least squares (WLS) estimators in

regressions with long memory errors. Ordinary least squares (OLS) estimators, though subefficient

to WLS estimators in long memory settings, often perform well and were studied in Yajima (1988),

who established their asymptotic normality and derived their explicit asymptotic variance. Yajima

(1991) and Kleiber (2001) present efficiency relations between WLS and OLS estimators in long

memory error settings.

To construct confidence intervals in the practical setting where the errors are governed by un-

known long memory parameters, estimates of these parameters are needed. Whittle-type estimators

are popular and have desirable properties even when the underlying error model is misspecified

(see Taqqu and Teverovsky, 1997). Koul and Surgailis (2000) show that the asymptotic normality

of the Whittle estimator depends on the rate of consistency of the regression parameter estimate.

As a variant of maximum likelihood, Haslett and Raftery (1989) use the concentrated maximum

log-likelihood in the time domain to estimate d. For other estimation methods, see Taqqu et al.

(1995).

Our goal here is to obtain an approximate (1− α) × 100% confidence interval for β. To do this,

we will use an equivalent sum of squares method that employs a closed form expression for the OLS

parameter variances to ‘adjust’ for the long-memory aspects in the series. The explicit computations

presented here allow us to account for the effects of a finite sample size in confidence intervals and
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should have other uses. The performance of our method improves on the OLS methods of Yajima

(1988, 1991) and bypasses the computationally demanding WLS methods of Robinson and Hidalgo

(1997). Our method merely requires an estimate of the long memory parameters.

The rest of this paper proceeds as follows. We review simple long memory processes and Yajima’s

OLS asymptotic variance in Section 2. Section 3 identifies the exact variance of the OLS estimators

in closed form and clarifies our proposed interval. This interval is studied by simulation in Section 4.

Extensions of the methods to several common autoregressive fractionally integrated moving-average

(ARFIMA) processes is presented in Section 5.

2 Preliminaries

2.1 Long memory processes

A long memory process is a time series that has a slow decay in its autocovariances: |γ(h)| ∼ ch−κ,

for 0 < κ < 1 and large h, with c > 0 a constant depending on the process. As a result, the

autocovariances of long memory process are not absolutely summable (over all lags) and typical

regularity conditions for time series limit theorems do not immediately apply.

A simple long memory model can be defined in terms of a fractional difference operator (1−B)d,

which is viewed as a general binomial series expansion. For d ∈ (−0.5, 0.5), we define

(1 −B)d =

∞∑

j=0

(
d

j

)
(−1)jBj ,

with B the backward shift operator (BXt = Xt−1) and the square summable coefficients

(
d

j

)
(−1)j =

Γ(d+ 1)(−1)j

Γ(d− j + 1)Γ(j + 1)
=

Γ(−d+ j)

Γ(−d)Γ(j + 1)
.

Here Γ(·) denotes the gamma function defined as Γ(v) =
∫ ∞

0 tv−1e−tdt for v > 0, Γ(0) = ∞, and by

integration by parts for negative arguments: v−1Γ(1 + v) for v < 0 (Brockwell and Davis 1991).

A fractionally differenced noise, or ARFIMA(0, d, 0) process, {Xt} is defined as the solution to

the equation (1−B)dXt = Zt, where {Zt} is white noise with zero mean and variance σ2 (see Granger
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and Joyeux 1980 and Hosking 1981). An ARFIMA(0, d, 0) process is stationary and invertible when

−0.5 < d < 0.5.

The autocorrelation ρ(h) = γ(h)/γ(0) of an ARFIMA(0, d, 0) process is known explicitly as

ρ(h) =
Γ(h+ d)Γ(1 − d)

Γ(1 − d+ h)Γ(d)
, h = 1, 2, . . . , n− 1. (2)

and the process variance is

γ(0) = σ2 Γ(1 − 2d)

Γ2(1 − d)
. (3)

For 0 < d < 0.5, {Xt} has long memory with κ = 1 − 2d and the autocorrelation of {Xt} is

positive at every lag and decays hyperbolically to zero with increasing lag. When d = 0, {Xt} is

white noise and therefore has γ(h) = 0 for all h 6= 0. If −0.5 < d < 0, {Xt} has short memory

and the autocorrelations of the process are all negative (with the exception that ρ(0) = 1 (Hosking

1981)). Because of this, we work with an ARFIMA(0, d, 0) {εt} with 0 < d < 0.5. Generalizations

to ARFIMA(p, d, q) error structures are studied in Section 5.

2.2 Asymptotic variance of the OLS estimator

Yajima (1988) derived the asymptotic variance of the OLS estimator of β (see also Koul and Surgailis

2000). For this, let D be a 2× 2 diagonal matrix with elements Dj,j = [
∑n

t=1 t
2(j−1)]1/2 for j = 1, 2.

Suppose that S = [sk,`]k,`=1,2 and R = [rk,`]k,`=1,2, where

sk,` =

√
(2k − 1)(2`− 1)Γ(1 − 2d)

Γ(d)Γ(1 − d)

∫ 1

0

∫ 1

0

xk−1y`−1|x− y|2d−1dxdy

and rk,` =
√

(2k − 1)(2`− 1)/[k + ` − 1]. Yajima (1988) showed that the asymptotic variances of

the OLS estimators are

Varasy(β̂OLS) = n2dA2,2

D2
2,2

, Varasy(µ̂OLS) = n2dA1,1

D2
1,1

,

where A = σ2R−1SR−1.

One can base confidence intervals on the above variances and asymptotic normality. In particular,

a (1 − α) × 100% confidence interval for β is simply

β̂OLS ± zα/2Varasy(β̂OLS)1/2,

4
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where zα is the upper αth quantile of the standard normal distribution. This interval requires values

for d and σ2. As we will see later, raw estimates of d can be very biased. Moreover, this bias will

degrade interval performance if ignored. We also seek to modify the interval to account for the

effects of finite sample sizes.

2.3 Effective sample sizes

For correlated series, effective sample sizes measure the number of independent observations con-

taining a preset quantity of information for a fixed parameter. Such ideas go back to Laurmann

and Gates (1977) and are perhaps best illustrated with a simple example. Suppose that {Yt} is

stationary in time t with mean µ, variance γY (0), and autocorrelation ρY (h) at lag h. Then the

sample mean Ȳ = n−1
∑n

t=1 Yt has variance

Var(Ȳ ) =
γY (0)

n

[
1 + 2

n−1∑

h=1

(
1 −

h

n

)
ρY (h)

]
.

The variance of Ȳ in the case of independent observations is γY (0)/n. The ratio of these two

variances is set equal to the ratio of the effective sample size, call it ne, to the sample size n:

Var(ȲIID)

Var(ȲCORR)
=

[
1 + 2

n−1∑

h=1

(
1 −

h

n

)
ρY (h)

]−1

:=
ne

n
,

where the subscripts IID and CORR indicate variances in independent and identically distributed

and correlated settings, respectively. The idea is that the variance of Ȳ is exactly the same in two

cases: 1) a series with ne independent observations each with variance γY (0), and 2) a series of n

dependent (but stationary) observations with variance γY (0) and autocorrelation ρY (h) at lag h.

Additional heuristics are developed in Thiébaux and Zwiers (1984) and Lee and Lund (2007).

3 A calibrated OLS interval

Let Y = (Y1, Y2, . . . , Yn)′ denote the data vector and let X be the design matrix with (t, k)th element

xt,k = tk−1 for k = 1, 2. The OLS estimator of θ = (µ, β)′ is

θ̂OLS = (X ′X)−1X ′Y,
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and has variance

Var(θ̂OLS) = (X ′X)−1X ′CX(X ′X)−1,

where C is the n × n variance/covariance matrix of {εt}
n
t=1 with (i, j)th element Ci,j = γ(|i − j|)

for i, j = 1, 2, . . . , n.

The exact variance/covariance structure of the OLS estimators of µ and β with stationary

ARFIMA(0, d, 0) errors is a tedious computation. However, Lee and Lund (2004) present closed

form expressions for the variances of µ̂OLS and β̂OLS when {εt} is a general stationary process.

Plugging γ(0) and ρ(h) in (2) and (3) into Lee’s and Lund’s (2004) variance formulas produces

Varexact(β̂OLS) =
12σ2Γ(1 − 2d)

n(n+ 1)(n− 1)Γ2(1 − d)


1 + 2

n−1∑

h=1

uh





h∏

j=1

j − 1 + d

j − d






 (4)

and

Varexact(µ̂OLS) =
2σ2Γ(1 − 2d)

nΓ2(1 − d)


2 +

3

n− 1
+ 2

n−1∑

h=1

wh





h∏

j=1

j − 1 + d

j − d






 , (5)

where {uh} and {wh} are, for h = 1, 2, . . . , n− 1,

uh =
(n− h)(n2 − 2hn− 2h2 − 1)

n(n+ 1)(n− 1)
, wh =

(n− h)[2n2 − (3h+ 1)n− 3h2 − 1]

n(n− 1)2
.

We have been unable to locate the explicit forms in (4) and (5) elsewhere; these variances margins

will have uses beyond confidence intervals. Notice that the weights {uh}
n−1
h=1 and {wh}

n−1
h=1 do not

depend on d and σ2; the variance of β̂OLS increases as d increases. These computations are exact

and apply to every sample size n.

For the parameter β, the equivalent sample size is

ne = n

[
Var(β̂OLS, IND)

Var(β̂OLS, CORR)

]
= n


1 + 2

n−1∑

h=1

uh





h∏

j=1

j − 1 + d

j − d







−1

. (6)

A similar ne could be derived for µ with (5). Observe that ne → ∞ as n → ∞ and that ne ≤ n

when d ∈ (0, 0.5).

When d and σ2 are known, we hence propose the interval

β̂OLS ± zα/2Varexact(β̂OLS)1/2 (7)
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as a good interval. When d and σ2 are unknown, estimates of these parameters can be substi-

tuted into (4) and (5) to obtain estimated variances of the OLS estimators, which we denote as

V̂arexact(β̂OLS) and V̂arexact(µ̂OLS). Because µ and β are estimated, the z margins in (7) are modi-

fied to t-percentiles. In short, our ‘calibrated’ interval is

β̂OLS ± tα/2,n̂e−2V̂arexact(β̂OLS)1/2, (8)

where tα,n̂e−2 is the upper αth quantile of the Student’s t-distribution with n̂e−2 degrees of freedom,

and n̂e is as in (6) with estimates of d and σ2 plugged in for their true values. This interval uses the

exact OLS variance for each sample size n, which should help performance for smaller sample sizes.

The proposed interval also avoids the computational demanding task of calculating the inverse of

the covariance matrix of a long memory error series, which is needed to obtain a WLS estimate. In

fact, taking this inverse may not be numerically feasible for large n. As long memory is a ubiquitous

property for series that are sampled frequently in time (in which case n is usually large), this is an

important practical point. As we will see in the next section, the interval in (8) performs just as

well as WLS intervals in simulations.

4 A Simulation Study

We now study the performance of our interval for the sample sizes n = 50, 100, 200, 500, 1000, and the

long memory parameters d = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45. The other parameters

in the regression model were taken as µ = 3.5, β = 0.5, and σ2 = 1.

To proceed further, we need an estimate of the long memory parameter d and the innovation

variance σ2. While we do not wish to favor any particular estimation method, we will examine

both the Haslett and Raftery (1989) and Whittle-type estimators. The Haslett-Raftery estimator

maximizes approximate concentrated log-likelihoods and the Whittle estimator involves the peri-

odogram of the series (see (3.2) and (3.3) in Taqqu and Teverovsky 1997). These estimates enjoy

practical popularity and are easy to compute — the one line commands fracdiff (or arima.fracdiff in

S-Plus) and farisma or whittleFit in R are such ways. Unfortunately, these estimators of d are also

7
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biased. Table 1 shows sample average biases and standard deviations, computed from ten thousand

independent simulations. The biases are all negative and some are quite large, particularly for small

n and d slightly below 0.5. Overall, the Whittle estimates are less biased, but have a slightly larger

standard deviation. We have found that neglecting this bias will produce untrustable confidence

intervals, regardless of the method the interval is based upon (OLS or WLS); this point is illustrated

below. An explicit expression for this bias is not immediately obvious to us, as in fact the concen-

trated log-likelihood and Whittle methods require a numerical optimization, which is typically done

by Newton’s method. However, it is a simple task to bias adjust the estimators of d with the values

in Table 1. In the event that the bias adjusted estimate of d exceeds 0.5, we simply interpret our

estimate of d as 0.5. After d is estimated, σ2 is estimated as the sample variance in the fractionally

differenced OLS residuals {(1 − B)d̂(Yt − µ̂OLS − β̂OLSt)}. Estimating σ2 is not as problematic as

estimating d.

Tables 2 and 3 summarize our simulations. In both tables, ‘CAL’ refers to the proposed ‘cal-

ibrated’ interval using equivalent sample sizes, ‘ASY’ as Yajima’s asymptotic OLS interval, and

‘WLS’ as the gold standard best linear estimation method based on asymptotic normality. To gen-

erate the tables, ten thousand simulations were run for various d and n, and confidence intervals

were computed for 1) our ‘calibrated’ interval in (8), 2) Yajima’s asymptotically normal interval

described in Section 2.2, and 3) an optimal WLS interval. Haslett-Raftery and Whittle estimates of

d were obtained from the OLS residuals {Yt − µ̂OLS − β̂OLSt} and the bias corrected d̂ was used in

all three intervals.

Table 2 summarizes the coverage probabilities of the three methods for a 95% interval. With

the bias corrected estimate of d, all three methods are working well, with our calibrated method

producing empirical coverage probabilities slightly closer to the target level of 0.95 than the other

methods, especially for small n. This is attributable to the finite sample size correction (6) with the

exact computations in (4). As a convention, we assume that any interval where the bias adjusted

estimate of d exceeds 0.5 includes the trend parameter β. This is because the data is suggesting

that the error margin in (4) is infinite. The bias corrections are very important. For example, when
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d = 0.45 and n = 200, Haslett-Raftery estimate bias corrected and non-biased corrected intervals

have coverage probabilities (CAL 0.9514/0.8852), (ASY 0.9385/0.8617), and (WLS 0.9387/0.8693)

respectively. The coverages of the non-biased corrected intervals are far too low to be considered

reliable. Confidence intervals based on the bias-corrected Whittle estimator perform slightly worse

than intervals based on the bias-corrected Haslett-Raftery estimate, but not drastically so. Because

we are bias-correcting the estimate of d, it is not surprising that the estimator of d with a smaller

variance is preferable. In cases where the Whittle estimate of d was too small (which due to its

higher variability happens slightly more frequently than with the Haslett-Raftery estimator), the

error margin of the interval was underestimated and the target parameter β was not in the interval

as frequently as it needed to be.

Table 3 reports the average length of the confidence intervals in Table 2, conditional on the bias

adjusted estimate of d being less than 0.5. Of course, the WLS interval has the shortest length;

however, the length of the calibrated interval is quite competitive across the board. Finally, Table 4

reports the percent of times the bias corrected d exceeds 0.5. Of course, this percent decreases as n

increases. These percentages are slightly higher for the Whittle estimator, which is attributed to its

larger variance.

Overall, the calibrated interval appears to function well in small and moderate sample size

settings, and retains very good asymptotic properties. It bypasses the need to take an inverse of an

n× n long memory variance/covariance matrix, which is required to obtain the WLS interval. The

accuracy of the WLS method is, however, approximately retained.

5 Extensions

Although we have focused on a simple linear regression model with ARFIMA(0, d, 0) errors, the

proposed method can be extended to polynomial or multiple regression models with ARFIMA(0, d, 0)

errors. We will not pursue this here.

General ARFIMA(p, d, q) long memory errors can also be handled. Sowell (1992) derives the
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autocovariance function of such models as follows. If {Xt} is a solution to the ARFIMA(p, d, q)

difference equation

Φ(B)(1 −B)dXt = Θ(B)Zt,

where Φ(B) = 1−φ1B−· · ·−φpB
p, Θ(B) = 1+θ1B+ · · ·+θqB

q , and {Zt} is zero mean white noise

with variance σ2 (assume that Φ and Θ are causal and have no common zeroes), then Sowell (1992)

derives γ(h) explicitly and Doornik and Ooms (2003) express it in the numerically stable form

γ(h) = σ2 Γ(1 − 2d)

Γ2(1 − d)

q∑

k=−q

p∑

j=1

ψk ζ̃jC̃(d, p+ k − h, ρj)
(d)p+k−h

(1 − d)p+k−h
,

where ψk =
∑q

s=|k| θsθs−|k| (θ0 = 1), ρ1, . . . , ρp are the p roots of the AR polynomial Φ,

ζ̃−1
j =

p∏

i=1

(1 − ρiρj)

p∏

m=1

m6=j

(ρj − ρm),

(a)i is Pochhammer’s symbol defined as (a)i = Γ(a+ i)/Γ(a), and

C̃(d, l, ρ) = ρ2pG(d+ l; 1− d+ l; ρ) + ρ2p−1 +G(d− l; 1− d− l; ρ)

with G(a; b; ρ) =
∑∞

i=0(a)i+1ρ
i/(b)i+1.

The autocovariance functions of several ARFIMA models can be explicitly extracted from the

above. In particular, if {Xt} is an ARFIMA(0, d, q) series, then Sowell (1992) obtains

γ(h) =
σ2Γ(1 − 2d)

Γ2(1 − d)

q∑

k=−q

ψk
(d)k−h

(1 − d)k−h
.

In the special case where q = 1, we have

γ(h) =
σ2(1 + θ21)Γ(1 − 2d)

Γ2(1 − d)

{
1 +

2θ1
1 + θ21

(
d(1 − d) − h2

(1 − d)2 − h2

)}
(d)h

(1 − d)h
.

If {Xt} is ARFIMA(p, d, 0), then

γ(h) =
σ2Γ(1 − 2d)

Γ2(1 − d)

(d)p−h

(1 − d)p−h

p∑

j=1

ζ̃jC̃(d, p− h, ρj).

When p = 1, we obtain

γ(h) =
σ2Γ(1 − 2d)

(1 − φ2
1)Γ

2(1 − d)

(d)1−h

(1 − d)1−h
C̃(d, 1 − h, φ1).
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These results can be used to derive the exact variance of β̂OLS. In the regression model (1) with

{εt} as ARFIMA(p, d, q), use of the OLS variance expressions in Lee and Lund (2004) gives

Varexact(β̂OLS) =
σ2Γ(1 − 2d)∑n

t=1(t− t̄)2Γ2(1 − d)

n−1∑

h=0

ũh

q∑

k=−q

ψk





p∑

j=1

ζ̃jC̃(d, p+ k − h, ρj)





(d)p+k−h

(1 − d)p+k−h
,

where t̄ = (n+ 1)/2, ũ0 = 1 and ũh = 2uh for 1 ≤ h ≤ n− 1.

For the errors as an ARIMA(0, d, q) series, this gives

Varexact(β̂OLS) =
σ2Γ(1 − 2d)∑n

t=1(t− t̄)2Γ2(1 − d)

n−1∑

h=0

ũh





q∑

k=−q

ψk
(d)k−h

(1 − d)k−h



 ,

which can be manipulated into

Varexact(β̂OLS) =
σ2(1 + θ21)Γ(1 − 2d)∑n

t=1(t− t̄)2Γ2(1 − d)

n−1∑

h=0

ũh

{
1 +

2θ1
1 + θ21

(
d(1 − d) − h2

(1 − d)2 − h2

)}
(d)h

(1 − d)h

when q = 1.

When {εt} is ARFIMA(p, d, 0), we have

Varexact(β̂OLS) =
σ2Γ(1 − 2d)∑n

t=1(t− t̄)2Γ2(1 − d)

n−1∑

h=0

ũh





p∑

j=1

ζ̃jC̃(d, p− h, ρj)





(d)p−h

(1 − d)p−h
,

which reduces to

Varexact(β̂OLS) =
σ2Γ(1 − 2d)∑n

t=1(t− t̄)2(1 − φ2
1)Γ

2(1 − d)

n−1∑

h=0

ũhC̃(d, 1 − h, φ1)
(d)1−h

(1 − d)1−h

when p = 1.

The equivalent sample size ne for the models in this section proceeds as was done in (6) for an

ARFIMA(0, d, 0) series. We omit these computations.
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Haslett-Raftery Whittle

n n

d 50 100 200 500 1000 50 100 200 500 1000

0.05 Bias -.0278 -.0231 -.0184 -.0127 -.0078 -.0212 -.0194 -.0164 -.0119 -.0074

SD .0499 .0450 .0397 .0316 .0247 .0597 .0487 .0409 .0319 .0247

0.10 Bias -.0614 -.0481 -.0334 -.0168 -.0089 -.0517 -.0427 -.0305 -.0158 -.0086

SD .0656 .0625 .0530 .0377 .0259 .0769 .0663 .0542 .0378 .0259

0.15 Bias -.0920 -.0651 -.0393 -.0174 -.0087 -.0790 -.0577 -.0359 -.0163 -.0082

SD .0806 .0755 .0603 .0375 .0260 .0935 .0797 .0612 .0377 .0262

0.20 Bias -.1162 -.0749 -.0408 -.0183 -.0096 -.0995 -.0657 -.0366 -.0169 -.0089

SD .0955 .0848 .0618 .0375 .0256 .1095 .0894 .0631 .0379 .0260

0.25 Bias -.1368 -.0810 -.0423 -.0177 -.0100 -.1168 -.0696 -.0372 -.0157 -.0089

SD .1073 .0907 .0625 .0368 .0258 .1224 .0960 .0639 .0374 .0260

0.30 Bias -.1511 -.0863 -.0429 -.0185 -.0101 -.1259 -.0726 -.0363 -.0156 -.0085

SD .1169 .0920 .0631 .0372 .0256 .1340 .0987 .0658 .0380 .0260

0.35 Bias -.1663 -.0909 -.0469 -.0202 -.0106 -.1365 -.0735 -.0383 -.0161 -.0081

SD .1223 .0916 .0605 .0366 .0255 .1409 .1004 .0645 .0379 .0260

0.40 Bias -.1781 -.0963 -.0491 -.0218 -.0116 -.1437 -.0736 -.0363 -.0155 -.0078

SD .1241 .0872 .0586 .0355 .0255 .1442 .0985 .0649 .0379 .0265

0.45 Bias -.1932 -.1049 -.0577 -.0267 -.0139 -.1541 -.0769 -.0397 -.0160 -.0070

SD .1242 .0814 .0539 .0329 .0233 .1444 .0939 .0619 .0375 .0258

Table 1: Simulated biases and standard deviations (SD) of estimated d
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Haslett-Raftery Whittle

n n

d 50 100 200 500 1000 50 100 200 500 1000

0.05 CAL .9511 .9461 .9409 .9432 .9425 .9504 .9453 .9407 .9431 .9425

ASY .9408 .9397 .9383 .9418 .9420 .9396 .9391 .9384 .9417 .9420

WLS .9442 .9414 .9383 .9427 .9415 .9436 .9411 .9388 .9425 .9419

0.10 CAL .9498 .9396 .9423 .9432 .9443 .9460 .9372 .9428 .9426 .9441

ASY .9369 .9320 .9397 .9416 .9435 .9339 .9304 .9394 .9414 .9433

WLS .9408 .9334 .9415 .9419 .9432 .9371 .9321 .9416 .9414 .9429

0.15 CAL .9436 .9380 .9368 .9444 .9426 .9403 .9357 .9363 .9439 .9424

ASY .9309 .9295 .9317 .9423 .9416 .9260 .9282 .9321 .9419 .9410

WLS .9334 .9322 .9332 .9411 .9430 .9303 .9301 .9337 .9411 .9425

0.20 CAL .9409 .9323 .9375 .9446 .9459 .9357 .9305 .9366 .9451 .9458

ASY .9269 .9224 .9328 .9419 .9432 .9212 .9215 .9319 .9422 .9431

WLS .9281 .9241 .9334 .9412 .9427 .9233 .9232 .9330 .9412 .9429

0.25 CAL .9365 .9283 .9346 .9427 .9500 .9296 .9267 .9337 .9429 .9503

ASY .9170 .9189 .9263 .9386 .9472 .9105 .9173 .9256 .9378 .9473

WLS .9233 .9200 .9277 .9361 .9446 .9157 .9181 .9269 .9360 .9449

0.30 CAL .9334 .9382 .9416 .9464 .9509 .9246 .9346 .9399 .9462 .9509

ASY .9134 .9250 .9321 .9387 .9461 .9073 .9199 .9312 .9378 .9459

WLS .9166 .9248 .9324 .9392 .9449 .9109 .9220 .9307 .9389 .9450

0.35 CAL .9335 .9357 .9419 .9520 .9529 .9273 .9316 .9402 .9508 .9526

ASY .9148 .9226 .9298 .9416 .9446 .9064 .9156 .9266 .9415 .9445

WLS .9192 .9226 .9308 .9411 .9464 .9135 .9181 .9290 .9412 .9467

0.40 CAL .9372 .9424 .9462 .9525 .9544 .9296 .9352 .9422 .9514 .9543

ASY .9177 .9256 .9335 .9417 .9427 .9077 .9192 .9300 .9409 .9427

WLS .9206 .9270 .9321 .9395 .9455 .9130 .9219 .9289 .9389 .9450

0.45 CAL .9375 .9406 .9514 .9562 .9552 .9274 .9335 .9477 .9544 .9539

ASY .9216 .9279 .9385 .9462 .9451 .9087 .9209 .9347 .9447 .9442

WLS .9233 .9269 .9387 .9454 .9445 .9126 .9209 .9353 .9435 .9434

Table 2: Empirical coverage probabilities of the calibrated OLS interval (CAL), Yajima’s asymptotic

OLS interval (ASY), and the feasible WLS interval (WLS) when 1 − α = 0.95.
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Haslett-Raftery Whittle

n n

d 50 100 200 500 1000 50 100 200 500 1000

0.05 CAL .0449 .0161 .0059 .0015 .0006 .0452 .0162 .0059 .0015 .0006

ASY .0427 .0157 .0058 .0015 .0006 .0429 .0157 .0058 .0015 .0006

WLS .0433 .0158 .0058 .0015 .0006 .0435 .0158 .0058 .0015 .0006

0.10 CAL .0508 .0190 .0071 .0020 .0007 .0511 .0191 .0071 .0020 .0007

ASY .0478 .0184 .0070 .0019 .0007 .0480 .0184 .0070 .0019 .0007

WLS .0484 .0184 .0070 .0019 .0007 .0485 .0185 .0070 .0019 .0007

0.15 CAL .0585 .0228 .0087 .0025 .0010 .0587 .0229 .0088 .0025 .0010

ASY .0544 .0218 .0085 .0024 .0010 .0546 .0219 .0085 .0024 .0010

WLS .0547 .0217 .0085 .0024 .0009 .0549 .0218 .0085 .0024 .0009

0.20 CAL .0673 .0270 .0107 .0032 .0013 .0673 .0271 .0107 .0032 .0013

ASY .0619 .0255 .0103 .0031 .0013 .0619 .0256 .0103 .0031 .0013

WLS .0620 .0253 .0102 .0031 .0012 .0619 .0254 .0102 .0031 .0012

0.25 CAL .0766 .0321 .0130 .0040 .0017 .0754 .0322 .0131 .0040 .0017

ASY .0699 .0301 .0125 .0039 .0016 .0690 .0301 .0125 .0039 .0016

WLS .0696 .0296 .0122 .0039 .0016 .0687 .0297 .0123 .0039 .0016

0.30 CAL .0853 .0381 .0160 .0052 .0022 .0832 .0379 .0161 .0052 .0022

ASY .0776 .0354 .0152 .0050 .0022 .0759 .0353 .0152 .0050 .0022

WLS .0769 .0346 .0148 .0049 .0021 .0751 .0345 .0148 .0049 .0021

0.35 CAL .0931 .0441 .0198 .0067 .0030 .0898 .0433 .0198 .0067 .0030

ASY .0848 .0409 .0186 .0064 .0029 .0819 .0402 .0186 .0064 .0029

WLS .0836 .0397 .0180 .0062 .0028 .0808 .0391 .0180 .0062 .0028

0.40 CAL .0994 .0495 .0237 .0086 .0040 .0961 .0481 .0233 .0086 .0040

ASY .0907 .0460 .0223 .0082 .0038 .0876 .0447 .0219 .0082 .0038

WLS .0891 .0446 .0214 .0078 .0036 .0862 .0433 .0211 .0078 .0036

0.45 CAL .1040 .0534 .0273 .0108 .0052 .1004 .0516 .0266 .0106 .0052

ASY .0952 .0500 .0259 .0103 .0050 .0918 .0481 .0251 .0102 .0050

WLS .0933 .0482 .0248 .0098 .0048 .0901 .0465 .0241 .0097 .0048

Table 3: Average lengths of the calibrated OLS interval (CAL), the Yajima’s asymptotic OLS

interval (ASY), and the feasible WLS interval (WLS).
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Haslett-Raftery Whittle

n n

d 50 100 200 500 1000 50 100 200 500 1000

0.05 .0000 .0000 .0000 .0000 .0000 .0001 .0000 .0000 .0000 .0000

0.10 .0000 .0000 .0000 .0000 .0000 .0005 .0000 .0000 .0000 .0000

0.15 .0001 .0000 .0000 .0000 .0000 .0023 .0001 .0000 .0000 .0000

0.20 .0019 .0001 .0000 .0000 .0000 .0099 .0004 .0000 .0000 .0000

0.25 .0144 .0006 .0000 .0000 .0000 .0363 .0034 .0000 .0000 .0000

0.30 .0507 .0035 .0000 .0000 .0000 .0827 .1280 .0003 .0000 .0000

0.35 .1273 .0319 .0015 .0000 .0000 .1686 .0605 .0085 .0000 .0000

0.40 .2408 .1190 .0231 .0004 .0000 .2637 .1598 .0547 .0034 .0000

0.45 .3988 .3058 .1861 .0402 .0033 .4072 .3341 .2391 .0885 .0242

Table 4: Proportion of bias-corrected d̂ > 0.5
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