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SELECTIVE SCREENABILITY IN TOPOLOGICAL
GROUPS

LILJANA BABINKOSTOVA

Abstract. We examine the selective screenability property in topo-
logical groups. In the metrizable case we also give characterizations
of Sc(Onbd,O) and Smirnov-Sc(Onbd,O) in terms of the Haver property
and finitary Haver property respectively relative to left-invariant met-
rics. We prove theorems stating conditions under which Sc(Onbd,O) is
preserved by products. Among metrizable groups we characterize the
countable dimensional ones by a natural game.

1. Definitions and notation

Let G be topological space. We shall use the notations:
• O: The collection of open covers of G.

An open cover U of a topological space G is said to be
• an ω-cover if G is not a member of U , but for each finite subset F

of G there is a U ∈ U such that F ⊂ U . The symbol Ω denotes the
collection of ω covers of G.

• groupable if there is a partition U = ∪n<∞Un, where each Un is finite,
and for each x ∈ G the set {n : x 6∈ ∪Un} is finite. The symbol Ogp

denotes the collection of groupable open covers of the space.
• large if each element of the space is contained in infinitely many

elements of the cover. The symbol Λ denotes the collection of large
covers of the space.

• c-groupable if there is a partition U = ∪n<∞Un, where each Un is
pairwise disjoint and each x is in all but finitely many ∪Un. The
symbol Ocgp denotes the collection of c-groupable open covers of the
space.

Now let (G, ∗) be a topological group with identity element e. We will
assume that G is not compact. For A and B subsets of G, A ∗ B denotes
{a ∗ b : a ∈ A, b ∈ B}. We use the notation A2 to denote A ∗ A, and for
n > 1, An denotes An−1 ∗ A. For a neighborhood U of e, and for a finite
subset F of G the set F ∗ U is a neighborhood of the finite set F . Thus,
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the set {F ∗ U : F ⊂ G finite} is an ω-cover of G, which is denoted by the
symbol Ω(U). The set

Ωnbd = {Ω(U) : U a neighborhood of e}
is the set of all such ω-covers of G.

The set O(U) = {x ∗ U : x ∈ G} is an open cover of G. The symbol

Onbd = {O(U) : U a neighborhood of e}
denotes the collection of all such open covers of G. Selection principles us-
ing these open covers of topological groups have been considered in several
papers, including [4], [5], [16] and [23], where information relevant to our
topic can be found. Now we describe the relevant selection principles for this
paper. Let S be an infinite set, and let A and B be collections of families of
subsets of S.

The selection principle Sc(A,B), introduced in [2], is defined as follows:
For each sequence (An : n < ∞) of elements of the family A
there exists a sequence (Bn : n < ∞) such that for each n
Bn is a pairwise disjoint family refining An, and

⋃
n<∞ Bn is

a member of the family B.
The selection principle Smirnov − Sc(A,B) is defined as follows:

For each sequence (An : n < ∞) of elements of the family A
there exists a positive integer k < ∞ and a sequence (Bn :
n ≤ k) where each Bn is a pairwise disjoint family of open
sets refining An, n ≤ k and

⋃
j≤k Bj is a member of the

family B.
The metrizable space X is said to be Haver [12] with respect to a metric

d if there is for each sequence (εn : n < ∞) of positive reals a sequence
(Vn : n < ∞) where each Vn is a pairwise disjoint family of open sets, each
of d-diameter less than εn, such that

⋃
n<∞ Vn is a cover of X. And it is

said to be finitary Haver [8] with respect to the metric d if there is for each
sequence (εn : n < ∞) a positive integer k and a sequence (Vn : n ≤ k)
where each Vn is a pairwise disjoint family of open sets, each of diameter
less than εn, such that

⋃
n≤k Vn is a cover of X.

2. Selective screenability and Sc(Onbd,O)

Recent investigations into the Haver property and its relation to the se-
lective screenability property Sc(O,O) revealed that the Haver property is
weaker than selective screenability. E. and R. Pol has reported the following
nice characterizations of Sc(O,O) in terms of the Haver property:

Theorem 1 ([20]). Let (X,d) be a metrizable space. The following are
equivalent:

(1) X has property Sc(O,O).
2
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(2) X has the Haver property in all equivalent metrics.

For a topological group the property Sc(O,O) is stronger than Sc(Onbd,O).
This is in part seen by comparing Theorem 1 with the following result:

Theorem 2. Let (G, ∗) be a metrizable group. The following are equivalent:
(1) The group has property Sc(Onbd,O).
(2) The group has the Haver property in all equivalent left invariant

metrics.

In the proof of Theorem 2 we use the following result of Kakutani:

Theorem 3 ([14]). Let (Uk : k < ∞) be a sequence of subsets of the topolog-
ical group (H, ∗) where {Uk : k < ∞} is a neighborhood basis of the identity
element e and each Uk is symmetric 1, and for each k also U2

k+1 ⊆ Uk. Then
there is a left-invariant metric d on H such that

(1) d is uniformly continuous in the left uniform structure on H × H.
(2) If y−1 ∗ x ∈ Uk then d(x, y) ≤ (1

2)k−2.
(3) If d(x, y) < (1

2 )k then y−1 ∗ x ∈ Uk.

In the above theorem V 2 denotes {a ∗ b : a, b ∈ V }. For n > 1 a positive
integer the symbol V n is defined similarly.

And now the proof of Theorem 2:
Proof: 1 ⇒ 2: Let d be a left-invariant metric of G and let (εn : n < ∞) be a
sequence of positive real numbers. For each n choose an open neighborhood
Un of the identity element e of G with diamd(Un) < εn and put Un = O(Un).
Then {Un : n < ∞} is a sequence from Onbd(U). Apply Sc(Onbd,O). For
each n there is a pairwise disjoint family Vn of open sets refining Un such that⋃

n<∞ Vn is an element of O. Now for each n, for V ∈ V\ there is an x ∈ G
with V ⊆ x ∗ Un. But then diamd(V ) ≤ diamd(x ∗ Un) = diamd(Un) ≤ εn.
Thus the Vn’s witnesses Haver’s property for the given sequence of εn’s.
2 ⇒ 1: Let Un = O(Un), n < ∞ be given. For each n choose a neighborhood
Vn of the identity element e in G such that:

(1) For all n, Vn ⊂ Un.
(2) For all n, Vn ∗ Vn ⊂ Vn−1.
(3) {Vn : n < ∞}is a neighborhood basis of the identity e.

By Kakutani’s theorem choose a left invariant metric d so that for every n:
(1) If y−1 ∗ x ∈ Vn then d(x, y) ≤ (1

2 )n−2.
(2) If d(x, y) < (1

2)n then y−1 ∗ x ∈ Vn.

For each n, put εn = (1
2)n. Since G has the Haver property with respect

to d, choose for each n a pairwice disjoint family Vn of open sets such that:
(1) For each n and for each V ∈ Vn, diamd(V ) < εn.
(2)

⋃
n<∞ Vn covers G.

1Uk is symmetric if Uk = U−1
k
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Then for every n and for every V ∈ Vn, there is and xV with V ⊆ x ∗ Vn ⊆
xV ∗ Un ∈ Un and so Vn refines Un. But then Vn witness Sc(Onbd,O) for
{Un : n < ∞}. ♦

Using the similar ideas one can prove the following:

Theorem 4. Let (G, ∗) be a metrizable group. The following are equivalent:
(1) The group has property Smirnov − Sc(Onbd,O).
(2) The group has the finitary Haver property in all equivalent left in-

variant metrics.

One may ask when the properties Sc(O,O) and Sc(Onbd,O) are equivalent
in a topological group. We do not have a complete answer. The Hurewicz
property gives a condition: A topological space G has the Hurewicz property
if for each sequence Un, n < ∞ of open covers of X there is a sequence
Fn, n < ∞ of finite sets such that each Fn ⊂ Un, and for each x ∈ G, the
set {n : x 6∈ ∪Fn} is finite.

Theorem 5. Let (G, ∗) be a topological group with the Hurewicz property.
Then Sc(Onbd,O) is equivalent to Sc(O,O).

Proof: Let (G, ∗) be a topological group. It is clear that Sc(O,O) implies
Sc(Onbd,O). For the converse implication, assume the group has property
Sc(Onbd,O). Let (Un : n < ∞) be a sequence of open covers of G. For each
n, and each x ∈ G choose a neighborhood V (x, n) of the identitity e such
that x∗V (x, n)4 is a subset of some U in Un. Put Hn = {x∗V (x, n) : x ∈ G}.
Apply the Hurewicz property to the sequence (Hn : n < ∞). For each n
choose a finite Fn ⊂ Hn such that for each g ∈ G, the set {n : g 6∈ ∪Fn}
is finite. Write Fn = {xi

n ∗ V (xi
n, n) : i ∈ In} and In is finite. For each

n, define Vn =
⋂

i∈In
V (xi

n, n) a neighborhood of the identity e. Choose a
partition N =

⋃
k<∞ Jk where each Jk is infinite, and for l 6= k, Jl ∩ Jk = ∅.

For each k, apply Sc(Onbd,O) to the sequence (O(Vn) : n ∈ Jk). For each
n ∈ Jk find a pairwise disjoint family Sn of open sets such that Sn refines
O(Vn) and

⋃
n∈Jk

Sn covers G. For each n define Vn = {S ∈ Sn : (∃U ∈
Un)(S ⊆ U)}. Since Vn ⊂ Sn, Vn is pairwise disjoint and refines Un. We
will show that

⋃
n<∞ Vn covers G. Pick any g ∈ G. Fix Ng so that for all

n ≥ Ng, g ∈ ∪Fn. Pick kg so large that min(Jkg ) ≥ Ng. Pick m ∈ Jkg with
g ∈ ∪Sm. Pick J ∈ Sm with g ∈ J . We will show that J ∈ Vm. We have
that g ∈ ∪Fm, so pick i ∈ Im with g ∈ xi

m ∗ V (xi
m,m). Since J ∈ Sm, also

pick hm so that J ⊆ hm ∗ Vm = hm ∗ (
⋂

i∈Im
V (xi

m,m)) ⊆ hm ∗ V (xi
m,m).

We have that g = xi
m ∗ zg = hm ∗ tg for some zg, tg ∈ V (xi

m,m). So
hm = xi

m ∗ zg ∗ tg
−1. Now consider any y ∈ J . Choose ty ∈ V (xi

m,m) with
y = hm ∗ ty. But then y = xi

m ∗ (zg ∗ tg
−1 ∗ ty ∗ e) ∈ xi

m ∗ V (xi
m,m)4 ⊆ U ,

for some U ∈ Um. So we have that J ∈ Vm and g ∈ J .♦
The symbol S1(A,B) denotes the statement that there is for each sequence

(On : n < ∞) of elements of A a sequence (Tn : n < ∞) such that for each n
Tn ∈ On, and {Tn : n < ∞} ∈ B. A topological group (G, ∗) is said to be a
Hurewicz-bounded group if it satisfies the selection principle S1(Ωnbd,Ogp).
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In [2] was shown that Sc(O,O) is equivalent to Sc(Ω,O). The analogous
equivalence doesn’t hold in topological groups:

Theorem 6. Sc(Ωnbd,O) does not imply Sc(Onbd,O).

Proof: Let (C, ∗) be the unit circle in the complex plane with complex
multiplication. It is a compact metrizable group embedding the unit interval
[0, 1] as a subspace. Since (CN, ∗) is a compact group it has the Hurewicz
property, so is Hurewicz bounded. Also R, the real line with addition, is
a Hurewicz-bounded topological group. Thus the product group R × CN is
Hurewicz bounded, so has the property S1(Ωnbd,O), and so has Sc(Ωnbd,O).
But [0, 1]N embeds as closed subspace into R×CN, and [0, 1]N does not have
the property Sc(O,O). Thus the topological group R × CN does not have
Sc(O,O), and as it has the Hurewicz property, Theorem 5 implies it is not
Sc(Onbd,O).♦

The symbol Sfin(A,B) denotes the statement that there is for each se-
quence (On : n < ∞) of elements of A a sequence (Tn : n < ∞) of finite
sets such that for each n Tn ⊆ On, and ∪{Tn : n < ∞} ∈ B. It was shown
in [15] that Sfin(Ω,Ogp) is equivalent to the Hurewicz property. And it is
well known that Sfin(O,O) is the Menger property, which is equivalent to
Sfin(Ω,O). A topological group is said to be a Menger bounded group if it
has the property S1(Ωnbd,O).

By how much can the requirement that (G, ∗) has the Hurewicz property
be weakened in Theorem 5? Natural possibilities include the Menger prop-
erty, Menger boundedness or Hurewicz boundedness. In light of interesting
recent examples of E. and R. Pol - [19], [20] we conjecture that none of these
weakenings is enough:

Conjecture 1. There is a metrizable Menger bounded topological group
which has the property Sc(Onbd,O), but not the property Sc(O,O).

Conjecture 2. There is a metrizable Hurewicz bounded topological group
which has the property Sc(Onbd,O), but not the property Sc(O,O).

Conjecture 3. There is a metrizable topological group which has the Menger
property and property Sc(Onbd,O), but not the property Sc(O,O).

It is clear that Conjecture 3⇒ Conjecture 1 and Conjecture 2 ⇒ Conjec-
ture 1. It may be that Conjecture 2 is independent of the Zermelo-Fraenkel
axioms. Recently E. and R. Pol showed that CH implies Conjecture 3.

3. Products

E. Pol showed in [17] that there exist a zerodimensional subset Y of the
real line and a separable metric space X and such that X has the property
Sc(O,O) in all finite powers, but X×Y does not have Sc(O,O). This failure
does not happen for the group analogue:

Theorem 7. Let (G, ∗) be a group satisfying Sc(Onbd,O). If (H, ∗) is a
group with property Sc(Onbd,Ocgp), then (G × H, ∗) also has Sc(Onbd,O).

5
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Proof: For each n let Un be an element of Onbd(G × H). Each Un is of
the form Un = O(Un) where Un is a neighborhood of the identity (eG, eH)
of G×H. Pick Vn ⊂ G a neighborhood of eG, and Wn ⊂ H a neighborhood
of eH so that Vn ×Wn ⊆ Un. Then Wn = O(Vn ×Wn) is a refinement of Un,
for all n. Let Hn = O(Wn) ∈ Onbd. Apply Sc(Onbd,Ocgp) to the sequence
(Hn : n < ∞). For each n find a finite pairwise disjoint refinement Kn of
Hn so that each x is in all but finitely many of

⋃
Kn. Next, for each n put

Gn = O(Vn) ∈ Onbd. Apply Sc(Onbd,O) to the sequence (Gn : n < ∞). For
each n choose pairwise disjoint Jn that refines Gn so that

⋃
Jn is a large

open cover of G. For each n define Vn = {J × K : J ∈ Jn,K ∈ Kn}.
Claim 1: Vn refines Wn: For J ∈ Jn and K ∈ Kn there is an element
g ∈ G and h ∈ H such that J ⊆ g ∗ Vn and K ⊆ g ∗ Wn. But then
J × K ⊆ g ∗ Vn × h ∗ Wn ∈ Wn.
Claim 2: Vn is pairwise disjoint: Let J1 × K1 and J2 × K2 be elements of
Vn with J1 × K1 6= J2 × K2. If J1 6= J2 then J1 ∩ J2 = ∅ because the Jn is
disjoint. So (J1 ×K1)

⋂
(J2 ×K2) = ∅. Similarly, (J1 ×K1)

⋂
(J2 ×K2) = ∅

if K1 6= K2.
Claim 3:

⋃
Vn covers G×H. Consider (g, h) as an element of C×H. Since⋃

Jn is a large cover of G the set S1 = {n : (∃J ∈ Jn)(g ∈ J)} is infinite
and there is an N such that S2 = {n : (∃K ∈ Kn)(h ∈ K)} ⊇ {n : n ≥ N}.
Pick an n ∈ S1 ∩ S2. Pick J ∈ Jn with g ∈ J and K ∈ Kn with h ∈ K.
Then (g, h) ∈ J × K ∈ Vn.♦

Corollary 8. Let (G, ∗1) and (H, ∗2) be metrizable topological groups such
that (G, ∗1) has Sc(Onbd,O) and H is zero-dimensional. Then (G×H, ∗) is
a group with property Sc(Onbd,O).

Proof: We show that (H, ∗) has Sc(Onbd,Ocgp). The reason for this is
that since H is zerodimensional, each open cover of it has a refinement by a
disjoint open cover. Thus for a given sequence (Un : n < ∞) from Onbd for
H we can choose for each n a disjoint open refinement Vn which covers H.
Clearly ∪n<∞Vn is c-groupable.♦

To illustrate: Let P denote the set of irrational numbers. E. Pol has shown
under CH2 that there is a metrizable space X with property Sc(O,O) such
that X × P does not have Sc(O,O). Now P is homeomorphic to a closed
subset of the zerodimensional group (ZN,+). Thus X×ZN also does not have
Sc(O,O). But for any topological group (G, ∗) with property Sc(Onbd,O),
the group G × ZN still has Sc(Onbd,O).

Hattori, Yamada and independently Rohm, have proven the following
product theorem for Sc(O,O):

Theorem 9 (Hattori-Yamada, Rohm). If X is σ-compact and if X and Y
both have the property Sc(O,O), then X × Y has the property Sc(O,O).

2For a new proof using a weaker hypothesis, see [19] and [20].
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We shall prove an analogous theorem, Theorem 11, for topological groups.
Since Sc(Onbd,O) is weaker than Sc(O,O) (see the remarks following Con-
jecture 3), we are able to use a weaker restriction than σ-compact. We use
the following result in our proof:

Lemma 10 ([7]). The following statements are equivalent:
(1) X has the Hurewicz property and property Sc(O,O).
(2) For each sequence (Un : n < ∞) of open covers of X there is a

sequence (Vn : n < ∞) such that:
(a) Each Vn is a finite collection of open sets;
(b) Each Vn is pairwise disjoint;
(c) Each Vn refines Un;
(d) there is a sequence n1 < n2 < · · · < nk < · · · of positive integers

such that each element of X is in all but finitely many of the
sets ∪(∪nk≤j<nk+1

Vj).

Theorem 11. Let (G, ∗) be a group which has property Sc(Onbd,O) as well
as the Hurewicz property. Then for any topological group (H, ∗) satisfying
Sc(Onbd,Λ), G × H also satisfies Sc(Onbd,O).

Proof: Let (O(Un ×Vn) : n < ∞) be a sequence of Onbd-covers of G×H.
Then each O(Un) is an Onbd-cover of G and each O(Vn) is an Onbd-cover of
H.

Since (G, ∗) has the Hurewicz property and Sc(Onbd,O), it has by Theo-
rem 5 the property Sc(O,O). Letting (Onbd(Un) : n < ∞) be the sequence
of open covers in (2) of Lemma 10, let (Vn : n < ∞) be the corresponding
sequence provided by (2) of that lemma, and fix n1 < n2 < · · · < nk+1 < · · ·
as there.

For each k define Wk = ∩nk≤j<nk+1
Vj. Then consider the sequence

(Onbd(Wk) : k < ∞) for H. Since (H, ∗) has property Sc(Onbd,Λ) choose
for each k a pairwise disjoint refinement Rk of Onbd(Wk), consisting of open
sets, such that each h ∈ H is contained in infinitely many of the sets ∪Rk.
Notice that for each k, Rk is a disjoint refinement of each Onbd(Vj) for
nk ≤ j < nk+1.

For each j define Kj as follows: Find k with nk ≤ j < nk+1 and put

Kj = {V × R : V ∈ Vj and R ∈ Rk}.
Claim 1: Kj is a refinement of Onbd(Uj × Vj):
Proof: Consider V ×R ∈ Kj: Since V ∈ Vj, choose a member Aj of Onbd(Uj)
with V ⊂ Aj. Choose gj ∈ G with Aj = gj ∗Uj . Next, since R ∈ Rk, choose
a Bk ∈ Onbd(Wk) with R ⊆ Bk. Choose hj ∈ H with Bk = hj ∗ Wk.
Then in particular we have R ⊆ Bk ⊆ hj ∗ Vj. But this implies that
V × R ⊂ (gj , hj) ∗ (Uj × Vj), an element of Onbd(Uj × Vj).

Claim 2: Kj is a disjoint family of open sets:
Proof: This is clear.

7
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Claim 3: ∪j<∞Kj is a cover of G × H:
Proof: To see this, consider (g, h) ∈ G×H. Choose N so large that for each
k ≥ N we have g ∈ ∪(∪nk≤j<nk+1

Vj). Then choose a k > N with h ∈ ∪Rk.
It follows that for a j with nk ≤ j < nk+1 we have (g, h) in ∪Kj .
This completes the proof. ♦

Theorem 12. Let (G, ∗) be a non-discrete metrizable topological group3.
Then Sc(Onbd,O) is equivalent to Sc(Onbd,Λ).

Proof: Let (O(Un) : n < ∞) be a sequence in Onbd(G). Choose a
sequence εn : n < ∞) such that εi > εi+1 for all i < ∞ and diamd(U1 ∩U2 ∩
· · · ∩ Un) > εn for all n. Define (O(Vn) : n < ∞) such that diamd(Vi) = εi

for i = 1, 2, · · · , n. Write N =
⋃

m<∞ Im where each Im is infinite, and for
m 6= k, Im ∩ Ik = ∅. Apply Sc(Onbd,O) to the sequence (O(Vn) : n ∈ Im)
for all m. Let Tn be a pairwise disjoint family refining O(Vn), n ∈ Im such
that ∪{Tn : n ∈ Im} covers G. We will show that ∪{Tn : n ∈ N} is a large
cover. Take an element x ∈ G and pick m1 ∈ I1 with x ∈ ∪ Tm1 . Next,
pick W1 ∈ Tm1 with x ∈ W1 and N1 so large that for all n ≥ N1 we have
εn < diamd(W1). Then pick i2 so large that the smallest element of Ii2 is
larger than N1. Now choose m2 ∈ Ii2 with x ∈

⋃
Tm2 . Pick W2 ∈ Tm2 with

x ∈ W2. Since m2 ≥ N1, εm2 < diamd(W1), and by definition of O(Vm2),
diamd(W2) ≤ diamd(Vm2) ≤ εm2 < diamd(W1). Next pick N2 so large that
for all n ≥ N2 we have εn < diamd(W2) and continue the same way as we
did with N1. Continuing like this we find W1,W2,W3, · · · infinitely many
distinct elements of ∪{Tn : n < ∞} covering x.♦

Note in particular that if for each n Vn is a disjoint family of open sets, and
if ∪n<∞Vn is a large cover of G, then for each g ∈ G the set {n : g ∈ ∪Vn}
is infinite. This is because for each n there is at most one set in Vn that
might contain g.

Corollary 13. Let (G, ∗) be a group which has property Sc(Onbd,O) as well
as the Hurewicz property. Then for any metrizable topological group (H, ∗)
satisfying Sc(Onbd,O), G × H also satisfies Sc(Onbd,O).

Proof: Use Theorems 11 and 12. ♦

Corollary 14. Let (G, ∗) be a metrizable group which has property Sc(Onbd,O)
as well as the Hurewicz property. Then all finite powers of (G, ∗) have the
property Sc(Onbd,O).

Proof: Use Corollary 13. ♦
It is not clear that the full Hurewicz property is needed in Theorem 11

or Corollaries 13 and 14: maybe Hurewicz-boundedness is enough.

Problem 4. In Theorem 11, can we replace the requirement that G has the
Hurewicz property with the weaker requirement that (G, ∗) has the property
S1(Ωnbd,Ogp)?

3In this context, non-discrete is equivalent to having no isolated points.

8
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In light of results of E. and R. Pol - [19] - we conjecture that neither
Menger boundedness, nor the Menger property is enough to obtain Theorem
11:

Conjecture 5. There is a metrizable Menger bounded group (G, ∗) with
property Sc(Onbd,O), such that G2 is Menger bounded but does not have
Sc(Onbd,O).

Conjecture 6. There is a metrizable group (G, ∗) which has the property
Sc(Onbd,O), and G2 has the Menger property but does not have Sc(Onbd,O).

4. Games

The following game, denoted Gc(A,B), is naturally associated with Sc(A,B):
Players ONE and TWO play as follows: They play an inning for each natural
number n. In the n-th inning ONE first chooses On, a member of A, and
then TWO responds with Tn refining On. A play (O1, T1, · · · ,On, Tn, · · · )
is won by TWO if ∪n<∞Tn is a member of B; else, ONE wins. Versions of
different length of this game can also be considered: For an ordinal number
α let Gα

c (A,B) be the game played as follows: in the β-th inning (β < α)
ONE first chooses Oβ , a member of A, and then TWO responds with a
pairwise disjoint Tβ which refines Oβ . A play

O0,T0, · · · ,Oβ , Tβ, · · · β < α

is won by TWO if ∪β<αTβ is a member of B; else, ONE wins. Thus the
game Gc(A,B) is Gω

c (A,B).

Theorem 15. Let (G, ∗) be a metrizable group. Then the following state-
ments hold:

(1) If dim(G) ≤ n then TWO has a winning strategy in Gn+1
c (Onbd,O).

(2) If TWO has a winning strategy in Gn+1
c (Onbd,O), then the dim(G) ≤

n.
(3) If G is countable dimensional, then TWO has a winning strategy in

Gω
c (Onbd,O).

(4) If TWO has a winning strategy in Gω
c (Onbd,O), then G is countable

dimensional.

Proof:We prove 3 and 4. The proofs of 1 and 2 are similar.
Proof of 3:

Suppose that G is countable dimensional. We define the following strategy
for TWO: Write G = ∪n<∞Gn where each Gn is zero-dimensional. Let U be
an element of Onbd. For U = O(U) of G and n < ∞, consider U as a cover
of Gn. Since Gn is zero-dimensional, find a pairwise disjoint family Vn of
subsets of Gn open in Gn such that Vn covers Gn and refines O(U). Choose
a pairwise disjoint family σ(U , n) refining O(U) such that each element V of
Vn is of the form U ∩Gn for some U ∈ σ(U , n). Now TWO plays as follows:
In inning 1 ONE plays U1, and TWO responds with σ(U1, 1), thus covering
G1. When ONE has played U2 in the second inning TWO responds with
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σ(U2, 2), thus covering G2, and so on. And in the n-th inning, when ONE
has chosen the cover Un of G TWO responds with σ(Un, n), covering Gn.
This strategy evidently is a winning strategy for TWO.
Proof of 4: Let σ be a winning strategy for TWO. Choose a neighborhood
basis (Un : n < ∞) of the identity element e of G so that diamd(U) < 1

n for
all n. Consider the plays of the game in which in each inning ONE chooses
for some n a cover Un of G of the form O(Un).

Define a family (Cτ : τ ∈ <ωN) of subsets of G as follows:
(1) C∅ = ∩{∪σ(Un) : n < ∞};
(2) For τ = (n1, · · · , nk), Cτ = ∩{∪σ(Un1 , · · · ,Unk

,Un) : n < ∞}
Claim 1: G = ∪{Cτ : τ ∈ <ωN}:
For suppose on the contrary that x 6∈ ∪{Cτ : τ ∈ <ωN}. Choose an n1 such
that x 6∈ σ(Un1). With n1, · · · , nk chosen such that x 6∈ σ(Un1 , · · · ,Unk

),
choose an nk+1 such that x 6∈ σ(Un1 , · · · ,Unk+1

), and so on. Then

Un1 , σ(Un1), Un2 , σ(Un1 ,Un2), · · ·
is a σ-play lost by TWO, contradicting the fact that σ is a winning strategy
for TWO.
Claim 2: Each Cτ is zero-dimensional.
For consider an x ∈ Cτ . Say τ = (n1, · · · , nk). Thus, x is a member
of ∩{∪σ(Bn1 , · · · ,Unk

,Un) : n < ∞}. For each n choose a neighborhood
Vn(x) ∈ σ(Un1 , · · · ,Unk

,Un). Since for each n we have diamd(Vn(x)) <
1
n , the set {Vn(x) ∩ Cτ : n < ∞} is a neighborhood basis for x in Cτ .
Observe also that each Vn(x) is also closed in Cτ because: The set V =
∪σ(Un1 , · · · ,Unk

,Un) \ Vn(x) is open in G and so Cτ \ Vn(x) = Cτ ∩ V is
open in Cτ . Thus each element of Cτ has a basis consisting of clopen sets.
Also note that for each n, Cτ is a disjoint union of clopen sets each of
diameter ≤ 1

n . ♦

5. Remarks and acknowledgment.

Regarding Theorem 2: For a left invariant metric d let Ud be a the family
of sets Uε, ε > 0 where we define Uε = {(x, y) ∈ G × G : d(x, y) < ε}. The
family Ud generates the left-uniformity of the topological group G. Refer to
[9] Chapters III §3 and IX §3 and [10] Chapter 8.1 regarding these facts. Let
Od denote the collection of open covers of the form {Uε(x) : x ∈ G} where
Uε(x) = {y : (x, y) ∈ Uε}. The referee pointed out that a third equivalence
can be added in Theorem 2:

(3) For each left-invariant metric d, Sc(Od,O) holds.

If additionally it is assumed that G has the Hurewicz property, then yet
another equivalence can be added (see [3], Theorem 5):

(4) For some left-invariant metric d, Sc(Od,O) holds.

It is not clear that (3) and (4) are equivalent for all metrizable groups. In
light of the example of E. Pol and R. Pol in connection with Conjecture 3,
it seems likely that (3) and (4) are not equivalent.
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However, note that in Corollary 13, if we assume that the one metrizable
group has the Hurewicz property, and if we assume each of the two metriz-
able groups has the Haver property in all equivalent left invariant metrics,
then the product group also has the Haver property in all equivalent left
invariant metrics, even though this product need not have the Hurewicz
property. For example, let (R,+) be the one group, and let (ZN,+) be
the other group. Each is metrizable, (R,+) has the Hurewicz property and
(ZN,+) does not have the Hurewicz property. But R × ZN is finite dimen-
sional and so has Sc(O,O). Thus by Theorem 1 this product has the Haver
property in all equivalent metrics but does not have the Hurewicz property.

Regarding Theorem 5: There is a more general theorem. Let U be
uniformity on X generating the topology τU . For V ⊂ X × X, define
V (x) = {y ∈ X : (x, y) ∈ V }. We say that an open cover of (X, τU ) is
uniform with respect to U if it is of the form {V (x) : x ∈ X}, for some
V ∈ U . Define OU = {{V (x) : x ∈ X} : V ∈ U}.

Theorem 16. Let U be a uniformity generating the topology τU on the set
G. Assume that the topological space (G, τU ) has the Hurewicz property.
Then Sc(OU ,O) is equivalent to Sc(O,O).

The proof of this theorem is very similar to the proof of Theorem 5.
I thank the referee for the useful remarks and E. Pol and R. Pol for

communicating their result on Conjecture 3 to me.
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